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The endless cycle of idea and action, 

Endless invention, endless experiment, 

Brings knowledge of motion, but not of stillness. 

-- T. S. Eliot 
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A Study of the Reaction K-N + ~ 
from Threshold to 2.7 GeVIc 

Richard A. Muller 

University of California 
Berkeley, California 

August 8, 1969 

ABSTRACT 

UCRL-19372 

We have performed a partial wave analysis of the reactions K p-+ :::!-K+, 

- 0 0 -K p -+ :::! K , and K n ~-Ko 
~ ~ . We used about 3000 events with beam momenta 

ranging from 1.2 to 2.7 GeV/c, obtained in the Berkeley 72 in. bubble cham

ber. We present new data for the reaction K-ri-+ E-KO at 2.1 and 2.64 GeV/c. 

+14 . +10 The total cross sections at these momenta are 69_
7 

~b and 36_
5 

~b respec-

tively. The polarization was measured from the sequential weak decays 

E-+ Aw, A-+ pw-. By assuming that the parts of the invariant amplitudes 

that are due to baryon exchange factorize into functions that depend only 

2 on s = (total center of mass energy) and u = (4-momentum of exchanged 

baryon) 2 , we generate powerful constraints on the partial wave amplitudes. 

Using these constraints we have done an energy dependent fit to the data. 

We conclude from the fit that the data can be explained in terms of iso-

topic spin 0 baryon exchange, with small but important contributions from 

isotopic spin 1 baryon exchange and direct channel resonance production. 

* Only known Y resonances were included in the direct channel. The baryon 

exchange partial waves move in counter-clockwise circles in the Argand 

diagram, suggesting·that they may have a "dual" interpretation as reson-

ant partial waves: 
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I. INTRODUCTION 

This study is an attempt to understand the reaction K N + 3 K in 

terms of baryon exchange and direct channel resonance production. In 

particular we would like to answer the following questions: 

* Are the known resonances, i.e. Y resonances that have been studied 

in the elastic channel and in the total cross-section data, sufficient 

to explain all the data when combined with a reasonable parameterization 

for the "background"? If not, is there sufficient evidence to indicate 

the existence of one or more new resonances? 

Can we understand the "background" in terms of particle (baryon) 

exchange? If so, can we learn anything about baryon exchange amplitudes 

from a study of our background? 

In our analysis we used about 3000 events with beam momenta ranging 

1-4 from 1. 2 to 2. 7 GeV I c, obtained in the Berkeley 72" bubble chamber. 

At three momenta -- 1.5, 2.1, and 2.6 GeV/c -- we have data for all three 

of the. following reactions: 

(1) K p 
I - + 

-+ 3 K 

(2) K p -+ 3oKo 

(3) K-d -+ 3-K0 + spectator proton 

The approach we decided upon was an energy dependent partial wave 

analysis. In a partial wave analysis one expresses the total amplitude 

for the reaction in terms of "partial waves" which are complex functions 

of energy corresponding to definite spins and parities. This is the 

natural approach for studying direct channel resonances since a resonance 

has definite spin and parity and, therefore, contributes to only one 
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partial wave. Furthermore, the energy dependence of a resonance is 

adequately represented by a simple Breit-Wigner function with only two 

or three parameters. 

Partial wave analysis·is not,.however, the usual way to study 

particle exchange amplitudes, which can contribute to many partial 

waves. Unfortunately (for the experimenter) there is no canonical 

way to study particle exchange amplitudes. One way is to take a de-

tailed theoretical model, such as a Born term with absorption or a 

Regge exchange model, and attempt to fit it to the data. 5- 7 What we 

tried to do instead was to develop a parameterization for the exchange 

amplitude which,is consistent with a simple physical picture of particle 

exchange. Our parameters are the set of partial waves at some reference 

energy, and therefore partial wave analysis is as appropriate for the 

particle exchange terms as it is for the resonant terms. 

The 2 K reaction has several interesting and unusual features: 

(a) We get a good measurement of the polarization of the 2 

from its cascade decay: 2 +A~, A+ pn . 

(b) Meson exchange, which dominates many other reactions, is 

"forbidden" in ours because it would involve a strangeness 

' 8 2 meson, and no such meson is known. 

(c) The existence of a strong "backward peak" in the differell-

tial cross sections at all energies above 1.2 GeV/c indicates 

that baryon exchange is important. There are both experi-

mental and theoretical reasons to believe that the baryon 

exchange amplitude is confined to the lower partial waves (J ~ t>· 

. : 

• 

it 

\. ·.• 
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(d) The known resonances in our energy region are confined to the 

higher partial waves, and are therefore distinct from the 

baryon exchange partial waves. This separation is important 

in view of recent theoretical work on the "duality" principle. 

(We discuss this point in greater detail in section IV.) 

(e) The existence of data for all three of the above reactions 

enables us to determine the isotopic spin decomposition of 

the reaction amplitudes. By making the decomposition in the 

u-channel we can determine the isotopic spin of the exchanged 

baryons. 

The remainder of this paper is organized as follows: 

Section II. A summary of the formalism of partial wave 

analysis and isotopic spin decomposition as 

applied to our reactions. 

Section III. Preliminary analysis of the deuterium data 

at 2.1 and 2.64 GeV/c. (The reduction of the 

rest of the data has been described else

where.)1-4 

Section IV. Qualitative features of the data. 

Section V. Model of baryon exchange and resonant partial 

waves. Description of the fitting program. 

Results of the fit • 

Section VI. Conclusions. 
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II. FORMALISM 

In this section we present the results of applying the conservation 

of parity, angular momentum, and isotopic spin to meson-nucleon scatter-

ing. The conventions used are: 

ql' ml' el momentum, mass, and energy of incoming meSO'Q. 

q2' m2' e2 momentum, mass, and energy of outgoing meson 

pl' Ml' El momentum, mass, and energy of incoming baryon 

P2' M2' E2 momentum, mass, and energy of outgoing baryon 

w total center of mass energy 

cos(8) A q2 in center of ql . mass 

M (Ml + M2)/2 

E ± M [ (El ± Ml) .. (E2 ± M ) ]1/2 . 
2 

A. Parity 

The amplitude for scattering from a state Xi to a new state Xf can 

be expressed as Xf M Xi where M is a 2 x 2 matrix. Parity conservation 

implies that M can be expanded in terms of two scalar (but not Lorentz 

invariant) functions as follows: 

-+ 
M = f + igcr • -a 

-+ -+ 
where n = q1 x q2 is the normal to the production plane and a is the 

set of Pauli matrices. If the target baryon is unpolarized, then the 

differential cross section and final state polarization are given by 

-+ dcr 1 t -+ * A P dQ = 2 Tr M aM = 2 Im (fg )n 

M is sometimes defined in terms of amplitudes f 1 and f 2 where 

,. 

"' . 

"'I 

ti. 
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f 1 and f 2 are related to f and g as follows: 

f = fl + f2 cose 

g = f 2 sine 

If we express the transition amplitude in covariant form 

we explicitly pisplay the two Lorentz invariant amplitudes A and B. 

5 These are related to the amplitudes f 1 and f 2 as follows: 

1 1/2 -
fl = 8TIW((El + Ml) (E2 + M2)] [A + (W-M)B] 

f2 = a;w[(El,-Ml) (E2 -M2)ll/2 I-A+ (w + M)BJ 

B. Angular Momentum 

The amplitudes f and g can be expressed as a sum of amplitudes of 

definite spin and parity as follows: 

where 

1 I f=-
pl i 

1 I g =.-
pl i 

P1 (cos8) 
£ 

[ (i + 1) Ti+(W) + i Ti-(W)] Pi(cos8) 

[T i+(W) - Ti-(W)] PQ_ (cos8) 

sin 8 Pi (cos 8)= sin 8 dPi(cos S) 
d cos e 

+ 
T£- is the "partial wave" with orbital angular momentum i and total 

angular momentum J = i ± 1/2. Using the relationships that exist 

between the conventional amplitudes f and g, and the invariant ampli-

tudes A and R, we write A and B in terms of the partial waves: 
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+ + 
where E- and w- are the following kinematic functions: 

We also refer to the partial waves using the optical notation L21 , 2J 

or simply L2J where L is S, P, D, F, •.. etc. for R. = 0, 1, 2, 3, 

... , I is the totals-channel isospin, and J is the total angular 

momentum. 

C. Legendre Expansion Coefficients 

The differential cross sections and polarizations for our three 

reactions can be expressed in terms of Legendre polynomials as follows: 

dcr a I (AR.) 
PR, (cos 8) -= 

47T dn 
R-=0 Ao 

p_ oo = _Q_ I ·cBR-> 1 
8) PR, (cos 

::: dn 47T R.=l Ao 

2 
where Ao = cr/47T * , and* is.* divided by p1 , the initial state center 

of mass momentum. These expansions were carried out at our thirteen 

energies, using the method of moments3 to obtain the coefficients 
\ 

~/A0 and BL/A0 ; the results are shown in Figures 9-16 and Tables 2-5. 

The ~'sand BL's can be expressed in terms of a sum of products of 

partial wave amplitudes as follows: 9 

\ ij * 
AR, = l ~n Re (Ti Tj) 

i<j x, 

'• 

,· 

• I 
! 

•· 

I 
I 

'I 
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I 
i<j 

aij I (T *T ) tJ n m . • 
JV ]_ J 

The coefficients a and S are given in Tables la and lb.
10 

The data can 

be qualitatively understood by looking at the energy dependence of the 

At's and Bt's, and using these tables to deduce which partial waves must 

be important. (See Section IV below.) 

D. Isotopic Spin 

The partial wave amplitudes for our three reactions can be decom-

posed into. amplitudes having simple properties in either the direct, or 

d h 1 U . h . f h . . 11 a crosse c anne . s1ng t e convent1ons .or t e 1sosp1nors, 

I~] ~ J 

T (~-K+) = 1:_ (Tl - To) = 1:_ (Tl - To) 
2 s s 2 u u 

T (~oKo) = 1:_ (Tl + To) = -T~ 2 s s 

T (~-Ko) = Tl = - 1:_ (Tl + To) 
s 2 u u 

Here the subscripts refer to the channel in which the isospin is being 

evaluated, and the superscripts refer to the total isotopic spin in that 

channel • 

• 
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Table la. Legendre Polynomial Coefficients .. ' 

"o ... , "2 ... 3 ... 4 "s ... 6 A7 AI ~ "•o "u Au "u 
s

1
s

1
·r

1
r

1 
s

1
r

1 2.000 

s,r3·r,o3 4,000 

r,r3. 5 t 03 4.000 .. 
Pl3. 03°3 2 2.000 

r 3o3 0.800 7.200 

s 1o,-r1r5 
6.000 

r
1
o

5
.s

1
r
5 

6.000 

P l0S•03FS 7.200 4.800 

o3os•P 3F5 1. 714 10.286 

osos•FsF s 3.429 2.571 

05FS 0.514 3.200 14.216 

s
1

r
7
•r

1
c

7 1.0110. 

r / 7•s1c 7 I.OOl• 

P
3

F
7
•o

3
c 7 10.286 5. 714 

Dl7•P3G7 2.667 ll.UJ 

o
5

F7•F5G7 10.286 1.000 5. 714 

F
5

F
7

•D
5
G

7 
1.143 4.675 11.112 

F,F 7•c7c 7 
4 4. 762 4.201 J.OJO 

r 7c 7 0.381 2.112 6.593 u.a .. 

S
1
G

9
•P

1
11

9 10.000 

p IG9• 51119 10.000 

P3G9•Dlll9 13.333 6,667 

03G9 •P 3119 3.636 16.364' 

0Sf.9•FSII9 14.286 !1.351 6.364 

F5G9•U~Ii.g l. 811 6.154 22.021 

F7G9•GJI9 
1,3.333 10.909 9.231 6.S27 

G7G9•FJ1
9 

0,866 3.237 8.485 a7.41S 

G9G9•119119 5 6.061 5.664 4.841 S.427 

G9119 0.303 1.671 4.615 10.750 32.6$S 

s 111 11 •P 11 ;I 12.000 

r
1

11
11

•s
1

t
11 12.000 

p l 1111•Ullll 16.364 7. 63(, 

03111l+P llll 4.615 19.385 

0s 11 ll•rs 111 11.182 10.769 7.049 

r
5
u

11
•u5t

11 
2.517 7.636 25.846 

r;r 11 ·r.7t 11 
18.182 12.587 10.182 7.049 

G7111l•F71 II 1.39!1 4.308 10.366 31.928 

G~ll 11 •119 1 II 16.364 13.706 12.301 10. 3(,6 7.256 

"~"u•G9111 0,699 2.5P 5.989 ll. 985 37.809 

H111111• I IIIII 6 7.34l 7.0~9 6.H7 5.410 s. 71l 

Hlllll 0.252 1.371 3.620 7.638 15.549 4],570 

sltll•r,Ju 14.000 I 

Pllll•SIJ13 . 14.000 WI 

P3lll•U3JI3 19.385 1.61:; 

0111l•P;rll3 5.600 22.400 

0s 1u•F5JI3 U.028 1~.218 7. 754 •! 
FSill•OsJI3 3.231 9.122 29.647 

F7lll•G,J ll 22.844 14.359 11.195 7.602 

G7lll•F,J 13 1.958 5.390 U.243 36.40!1 

G9lll•H9JI3 22 .oza 15.664 13.476 11.130 7. 702 

1191U•GgJ 13 1.142 3.37!1 7. lt.S IS. 204 42.910 

11 u 1u·1uJu 19.385 16.448 15.204 13.640 11.403 7.9Zl 

111 11l•HIIJ1l 0.587 2.073 4. 72& 9.275 11.083 49.253 

1u 1u•J llJ u 8.615 1.397 7.111 7.015 5.9111 4.104 

11lJil 0.215 1.161 3.001 6.062 11.155 20.914 ss;492 

' ! 
I 
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Table lb. Legendre Polynomial Coefficients 

----·------···---· 

Bl 82 83 14 •s 16 .. , •a a, 1
10 Ill BIZ •u 

->1 r 1 2.000 
:" 

SIP3-PI03 2.000 

r
1

P
3
-s

1
o

3 
2.000 

.p li>J 1.600 2.400 

SIUS-PIFS z.ooo 

PIOS-SIF5 z.ooo 

rlos- 0ls 3.600 0.400 

o
3
o

5 
-P 

3
r
5 

1.429 Z.S7l 

-osrs. 1.543 1.600 Z.IS7 

SIF7-P1C7 z.ooo 

P lr7-slc7 2.000 

p lf7-DJG7 3.429 0.571 

o
3

r
7
-P

3
c

7 l.lll 2.667 

DSF7-FSC7 5.143 0.667 0.190 

FSF7-DSG7 1.333 1.636 3.030 

-F7C7 1.524 1.4SS 1. 758 3.Z6S 

SIG9-PI119 2.000 

PIG9-Sillll z.ooo 
p lG9-DlH9. 3.331 0.667 

ll
3

G
9

-P 
3
H

9 
1.273 2. 721 

OSG9-FSH9 4. 762 O.lllS o.JOJ 

F SG9-DSII9 1.212 1.641 3.147 

r7c 9 -GA 6.667 0.909 0.301 0.117 

G7G9·Frtg I. 299 1.~57 1.118 3.427 

-G
9
u

9 1.515 1.3glJ 1.538 1.920 3.621 

5 111 11-PIIII l.OOO 
/" 

Plllli-Sllll l.OOO 

r >11 u- 0J 1ii 3.273 0. 7!7 

Dlllli·PJIII 1.231 2. 769 

0s 11 l!.fS 111 4.S4S 1.077 0.378 

FSIIli·DSIII l.Ul 1.636 J. 231 

Fr1li-G7I ll 6.061 1.25!1 0.495 o. 196 

Cr1Jl-F7111 1.166 1.436 1.851 l.S48 

G9 11 11-II9I II 8.182 1.142 0.410 O.ISS 0.011 

li~IIII-G9 1 11 1. zaz I.JBS 1.56!1 1.!114 3. 711 

-1111 I II 1. SIO 1.171 1.448 1.637 2.073 3.961 

5 1 I 13-P IJ 13 2.000 

Pllll-SIJIJ 2.000 

PJI u·DJI il 3.231 0.76!1 

.. DJIJ:iPJJI3 1.2110 2.aoo 

0s 1u·Fs.J 11 4.406 1.164 0.431 

Fsl u·UsJ u 1.077 1.6:!!1 l. 2'J4 

F7l u·Cr il 5.711 1.431> 0.600 o.~5l 

• G7I u·fr 13 1.077 1.412 1.170 3.641 

G9 113-u9J 1l 7.343 1.56<. 0.6H O.lO'J 0.140 

11911l-G9J 13 1.14Z 1.351 1.S71 2.027 3.901 

11 u 1u" 1uJll 9.692 1.371 0.507 0.244 0.127 0.060 

1u 1u"11uJ ll 1.273 1.348 1.464 1.67S 2.137 •• 104 

-IIJJIJ I. S08 l.lSS 1.4110 !.SIS 1. 735 Z.ZII 4.269 

\, 
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III. DATA PROCESSING 

The film of 2.1 and 2.64 GeV/c K- on deuterium was scanned for all 

one-prong events (a spectator proton does not count as a prong) with 

either one or two associated vees. These events were measured on a 

Franckenstein measuring machine and kinematically fitted with the program 

SIOUX. Failing events were re-scanned and remeasured at least once, and 

up to four times. For our final sample we chose those events with a 

visible spectator and momentum less than 300 MeV/c. We have 93 such events 

at 2.1 GeV/c, and 46 at 2·.64 GeV/c. (Events with high momentum spectators 

are presumably due to interactions off the entire deuteron rather than off 

the neutron.) 

At 2.1 GeV/c three scans were carried out. About 25% of the events 

were scanned twice, and about 10% were scanned three times. The scanning 

efficiencies were estimated from the formula ea = Nab/Nb, where ea is the 

efficiency for scan #a, Nab is the number of events found on both scans 

#a and #b, and Nb is the number of events found on scan #b. The scanning 

efficiencies estimated in this way were 83%, 55%, and 83% for scans 1, 2, 

and 3 respectively. The overall scanning efficiency for the three scans 

combined is 86%. 

There are two scanning biases (which presumably reflect in the above 

efficiencies) which could affect our production distributions. The first 

is due to the loss of 3's that decay forward in the laboratory. Weighting 

factors to correct for such as loss (and for the loss of short3 and A 

decays) were calculated for the reaction K p + 3-K+. 3 By studying the 

effect of removing these weights on the Legendre expansion coefficients 

~I 

i .. 
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(see Figure 1) we determined that with.our limited statistics such losses 

did not significantly bias our data. 

The second and potentially more serious bias comes from the loss of 

events with no visible difference between the incident K- and the _ 

directions. (A scanner would call such an event a V-one-prong.) Such a 

bias would result in a depletion of events in the cos8 ~ -1 direction. 

This bias presumably would not be as serious in the subset of events 

that had either a visible K0 decay (which points back to the production 

vertex) or a visible spectator proton. We compared the angular distribu-

tions of these subsets, and we did not see any significant differences. 

The statistics after the cuts were very poor, .however, and we decided t:o 

increase our error estimates in order to account for a possible bias. 

If the E's ~n the region -1 ~ cosB ~ -0.8 were detected with only 1/3 

efficiency, our total cross sections would be about one standard devia-

tion greater than the present estimate, and the calculated Legendre 

coefficients ~/A0 and BL/A
0 

would be shifted by approximately one stan

dard deviation (see Figure 2). To account for the possible bias we 

doubled the upper errors for the total cross sections and we doubled all 

the errors for the Legendre coefficients. 

The total cross sections are presented in the following table: 

Lab. Events with Path Missed A-~·tl7f 0 Avg. Wt. for Decay Total Cross 
Mom. Visible A Length· Correction ~nd Scanning Losses Section 

2.1 93 2. 71 ev/]lb 1.53 1.3 69+14 b -7 ]l 

2.64 46 2.84 ev/]lb 1.53 1.45 36~~0llb 
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The differential cross sections and polarization distributions are 

shown in Figures 3 and 4. The polarizations were calculated by using the 

~ A A - 3 complete distribution function for the sequential decay :::.-+ ll'IT, ll-+ p'IT • 

.. 

• 
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IV. THE DATA 

A. Qualitative Features 

Figures 3 - 7 show the differential cross section and polarization 

distributions for our reactions at selected energies. Except for the 

1-4 deuterium data, these distributions have been published previously. 

The major features of the data are summarized below: 

1. A strong peak in the backward direction in reactions (1) and 

(3), at all beam momenta above 1.22 GeV/c. 

2. The backward peak sharpens considerably at the higher energies. 

3. At 2.64 GeV/c there are rapid undulations in the differential 

cross section. (A1 through A8 are all more than two standard 

deviations from zero.) 

-4. The total cross section in reaction (2), K p-+ ::°K0 is 

considerably smaller than that for the other two reactions. 

5. The shape of the distributions in reaction (2) varies 

rapidly with energy. 

6. There is significant polarization present at most energies. 

The polarization in the region of the backward peak is low, 

and there is a region (0.0 <cos e < 0.8)where the polarization 

is consistent with -1. 

AO = cr/4rr ~ 2 is shown in Figure 8 and Table 6. In both reactions 

(1) and (2) it peaks at about 1.7 GeV/c and then falls off. The A~'s 

and .B~'s are shown in Figures 9 - 16 and Tables 2 - 5. In reaction (1) 

only A~'s and B~'s through ~ = 3 are significantly different from zero 

at the lower energies. A6 is 3-1/2 standard deviations from zero at 
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Production distributions for K-p- -= 9 JP from 1. 7 to 
2.64 GeV/c. The solid curves are calculated from 
Legendre f~~ctio~ moments of the distributions with 
Lmax=5; the dashed curves correspond to Lmax=3. 
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2.0 GeV/c, and as previously noted, A8 appears to be present at 2.64 GeV/c. 

In reactions (2) and (3) the statistics are poor, but A5 is necessary for 

a good fit to the angular distributions in reaction (2), and in reaction 

(3) coefficients up to t = 3 are necessary. 

B. Qualitative Interpretation 

Figure.l7 shows the baryon exchange diagrams for our three reactions. 

(Meson exchange would involve a strangeness 2 meson; we shall neglect this 

possibility.) We have indicated the quantum numbers of the exchanged 

particle by labeling it either a A or a E i", although excited states of 

these particles could also be exchanged. 

The data are most simply interpreted as being dominated by the ex-

change of an isotopic spin 0 baryon, with smaller (but important) contri-

butions from I=l exchange and resonances. The large backwa~d peak CQ~~d 

be generated from a u-channel pole, and its sharpening with energy could 
. 2 

be partially due to its functional dependence on u • (p 2-q1) • Since I=O 

baryon exchange is forbidden in reaction 2, the amplitude for ::::°K0 would 

consist of the smaller I=l exchange and resonances--hence the smaller cross 

section. The rapid variation with energy in the differential cross section 

of reaction 2 would be accounted for by the relatively large contribution 

of the resonances. Likewise the high order Legendre expansion coefficients 

9 needed above 2.1 GeV/c would be due to the presence of one or more J ~ 2 

resonances present at the higher energies. 

C. Duality 

The concept of "duality has recently received a good deal of 

attention. 12 In its strongest form.the duality principle says that 
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the amplitudes for particle exchange and for resonant production are one 

and the same, and that if you add together particle exchange amplitudes 

and resonance represented by Breit-Wigner functions, you are engaged in 

"double counting". Since the previous qualitative discussion and the 

detailed fit in the next section seem to ignore this principle, some 

discussion is appropriate here. 

The established resonances in the region we are studying are all 

in the higher partial waves, J > t· On the other hand, baryon exchange 

forces have a limited range, typically that of an inverse baryon mass. 

At our highest beam momentum (2.7 GeV/c) the incident center of mass 

momentum is p ~ ],. GeV/c. Semi-classically we would expect the baryon em 

exchange force to contribute only to the lower partial waves, up to 

p 
em r max 1 . 1 1 - ·~ ~. 

i.e., P wave. In other theories, such as a Regge exchange theory, the 

cut-off is not as clear since there are unknown residue factors. How-

ever, since the prominent "baryon-exchange" feature of our data, the 

backward peak, is well fit by the first three Legendre expansion co-

efficients, we shall assume that the part of the baryon exchange ampli-

tude that produces this peak is confined to the lower partial waves, 

n312 and lower. 

Therefore, in our particular situation, duality poses no problem. 

We have one amplitude, whose lower partial waves behave like "baryon 

exchange" partial waves, and whose high partial waves behave like 

resonances. If it happens that the baryon exchange partial waves move 
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in counter-clockwise circles in the Argand plot with increasing energy, 

then the duality principle says we can also interpret these partial waves 

12 
as resonant. 

,. 
! 
j 
l 
I 
!. 
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V. MODEL 

A. Baryon Exchange Amplitude 

Partial wave analysis is particularly well suited to the study of 

resonances, since a resonance has definite spin and parity and therefore 

contributes to only one partial wave. Non-resonant partial waves are 

usually considered "background" and are often parameterized by simple 

polynomials. In our three reactions, however, the background seems .to 

be confined to the lower partial waves, and it has properties (see 

Section IV) .that indicate it is due to baryon exchange. We can make 

use of this knowledge to develop a parameterization for our "background" 

which is particularly suitable for our reactions. 

Suppose our reactions were dominated by a single amplitude A rep-

resented by the baryon exchange diagram below: 

2 

2 Natural variables to describe such a .process are s = (p1 + q1) = W , and 

(u is the square of the 4-momentum of the exchanged 

baryon.) Let us assume the amplitude A factorizes: 

A(s,u) = S(s) U(u) 

We believe that this is a reasonable assumption to make for a baryon 

exchange am;:·Litude. The simple Born-Approximation baryon exchange model 

has this feature for spin-1/2 exchange, even if several baryons are 

5 exchanged. 

13 
models. 

Aside from a factor of sa(u~ so do simple Regge-exchange 

A simple meson exchange amplitude does not have this feature 

(it factorizes into a function of s times a function of t = (p1-p2)
2

) 
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and neither does a resonant amplitude (which factorizes into a function 

of s times a function of cos8). 

The factorization assumption generates powerful constraints on the 

energy dependence of the partial waves. To see how this comes about, let 

us ignore the complications of spin for the moment, and write the partial 

wave expansion of A(s,u), 

LMAX 
A(s,u) = L T1 (s) P1 (x) 

L=O 

·* where X = COS 8 = known function of S and U, 

According to our factorization assumption, 

U(u) = A(s,u)/S(s) = IT1 (s) P1 (x)/S(s) 

U(u) is independent of the energy W ~ IS. Evaluating U(u) at two 

energies specified by s1 and s 2 , 

By using the orthogonality of the Legendre polynomials, we can solve for 

where 

~L' 

* x(s,u) is given explicity by x 

where E1 
2 2 + m1)/2W p1 = [S 

M~)/2W p~ = [S 

/ 

I 
'I 

l: 

. 
' 
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is a known function of s1 ,. s 2 , and the particle masses. 

The important feature is that aside from an overall normalization 

that is indendent of L, the partial waves at any energy may be cal-

culated from the partial waves at any other energy, by multiplication 

by a known matrix. In other words, given a set of partial waves at 

energy W, the factorization assumption completely determines their 

relative energy dependences. 

If we include the complications of spin we can still deduce a 

matrix relationship, but the derivation is complicated, and at least 

. 14 
one arbitrary parameter must be included. For the details, see the 

Appendix. 

The matrix nature of the relationship is significant. It is a 

consequence of calling u rather than cos8 the important variable. Had 

we parameterized the individual partial waves with polynomials, for 

example, the low' energy S wave would be related only to S waves at 

other energies. In our formalism it is related to S, P, and D waves 

at other energies. 

By using the R matrix to give the relative energy dependences of 

the lower partial waves, we can construct the total normalized amplitude 

A(s,u) ~ A(s,u)/jA(s,u)j given a set of partial waves at any one energy. 

If our reaction were completely dominated by baryon exchange we could do 

an energy dependent fit to the .shape parameters, ~/A0 and BL/A0 , using 

the set of partial waves at any one energy as our variables. (The shape 

parameters depend on A(s,u) rather than on A(s,u).) 

In order to include resonances in the fit, and to add together I=O 
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and I=l baryon exchanges, it is necessary to make some assumption about 

the functional form of S(s). We have found that any function of the 

following general form works well: 

a . 2 
S(s)=g·(threshold term) ·(high energy fall off)·exp (i(c+ds+es )) 

Here g is a constant. "Threshold term" is any term that vanishes at 

threshold, such as p2 , or (s-sthreshold). "High energy fall off" is a 

term that causes the amplitude to go to zero at high energy. Such a 

term is reasonable in view of a compilation by Morrison15 which shows 

that single particle exchange amplitudes (except for Pomeron exchange) 

-b fall off like (Plab) where b > 0. A term such as Morrison's, or a 

-b -bs Regge s or a simple e all work equally well in the fit. ·The 

final terin in the expression for S(s), a quadratic phase term, was 

necessary. We did not get good fits leaving the phase of S(s) constant 

or linear ins. We also tried the following functional forms for S(s): 

S(s) 

S(s) 

2 = A+Bs+Cs 

2 
= A+Bp2+Cp2 

where A, B, and C are complex numbers, and 

S(s) = (A+Bs+Cs 2)·exp(i(D+Es+Fs 2)) 

S(s) = (A+Bp2+ep2
2)·exp(i(D+Ep2+Fp2

2) 

where A, B, C, D, E, and F are real constants. None of the above 

parameterizations gave good fits. 

B. Resonant Partial Waves 

The higher partial waves were parameterized as Breit-Wigner 

functions with the masses and widths of established resonances. Only 

4 I 

I 
I 

. ~ ' 
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the partial widths into our channel were free parameters. The form 

d f h B . w· 16,17 use or t e re1t- 1gner was: 

T = 
w cr r >

112 
0 1 2 

w 
f

2
= partial width into ~K = f (_Q) (JL)Z~+l o w q0 

2 2 qo + M ~ 
( 2 2 ) 
q + M 

r 1 (the partial width for the elastic channel) and rtot were taken to 

be constants because our energies are well above the elastic channel 

threshold. w0 is the mass of the resonance, and q0 is the final state 

center-of-mass momentum at resonance. M is a mass characteristic of 

the inverse range of the interaction. The fit is insensitive to the 

choice of M; we used M = 2m~. We did not find it necessary to include 

background contributions in any of the resonant partial waves. Reso-

nances near threshold are sensitive to the parameterization of the 

energy dependence of the width, but just above threshold they are not. 

For example, when we set the partial widths equal to constants the 

* amount of the Y0 (1830) put in by our fitting program changed consider~ 

* ably, but the amount of the Y1(2030) was virtually unaltered. 

The fit included the following resonances: 18 

Resonance Width (MeV) Assumed Partial Wave 

* Y0 (1815) 75 F5 
(1830) 80 D5 
(1864) 39 F7 
(2100) 140 G7 
(2350) 210 G9 or H9 

Y1 (1915) 60 F5 
(2030) 120 F7 
(2455) 120 G9 (best fit) 
(2250) 200 H9 (best fit) 
(2595) 140 Ill(best fit) 
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C. The Fitting Program 

The program used to fit A0 , ~!A0 and BL/A0 for our three reactions 

contained approximately 35 free parameters. These parameters were: 

1. s1 , P1 , P3 , n3 partial waves for I=O and I=l exchanges at any 

one energy w0 . 
19 (The fit is independent of w0 .) From these , 

. the relative amplitudes and phases of the lower partial waves 

at all energies could be calculated. (8 complex numbers, 16 

parameters) 

2. Parameterization of f for I=O and I=l exchange. (See Appendix s 

and footnote 14.) (2 parameters) 

3. Parameterization of S(s) for I=O and I=l exchange. There are 4 

parameters for each exchange. (See page 42. The parameters g 

and c are included in 1 above. 8 parameters.) 

4. Resonant partial widths. (6-10 parameters) 

5. n5 complex partial wave for IaQ exchange above 2.4 GeV/c. (S~e 

page 46. 2 parameters) 

The program used the equations derived in the Appendix (on the basis 

of the factorization assumption for the two Lorentz invariant amplitudes) 

to calculate the partial waves and Legendre expansion coefficients, ~ 

and BL' at each of our beam settings. 20 We formed the chi-squared 

function: 

"ex" refers to the experimental data points, and the sum ran over all 

.., 

11 

I 
! 

I 

' i 

: f 
•t. 
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of our beam settings, over ~;1 to 8, and over all three reactions when 

we had data for them. This x2 was minimized by numerical minimizing 

program21 which employed a ravine following search routine. When a 

solution was found we checked that the high order Legendre coefficients 

L > 8, which were not explicitly included in the fit, were compatible 

with zero. 

D. Results of the Fit 

We first fit the data in the region 1.2 ~ Plab ~ 2.1 GeV/c, assuming 

that no resonances were present. (The data above 2.1 were not included 

because of the presence of high Legendre coefficients, L > 4, which 

could not be due to the lower partial waves.) The solution accounted 

qualitatively for some of the general features of the data, especially 

the rise in A2, but it certainly did not fit the reaction in detail. 

When the resonances listed on page 43 were included, a good fit was 

obtained, with a x2 of 281 for 296 data points. 22 

We restarted the fitting program, with random values for the para-

2 meters, approximately 15 times. The next best solution found had a X 

of 303. This fit had features very similar to those of the best fit; 

the amount and behavior of all the partial waves, resonant and non-

resonant, was similar. 

The spins and parities of the known resonances which might con

tribute to our reactions above 2.1 GeV/c have not yet been determined. 

In order to include the high energy data in our fit it was necessary 

to try various combinations of spins and parities for these resonances. 

The best fit was obtained with the combinations listed on page 43. In 
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addition we noticed that at 2.64 GeV/c the I=O baryon exchange partial 

waves s1 , P1 , P3 , and n3 were of comparable magnitude. Guessing that 

our cut-off at n3 was too low, we tried including a n5 I=O exchange 

2 partial wave above 2.4 GeV/c; the X was reduced by about 15. The final 

2 fit had a X of 371 for 365 data points (solid line in Figures 8 to 16). 

A Saclay-Rutherford collaboration has recently published23 data for 

reactions (1) and (2) in the region 1.26 ~ Plab ~ 1.84 GeV/c. ·When we 

used their data in our fit, including all our data below 2.4 GeV/c, we 
2 . 

obtained a X of 525 for 504 data points. The parameters of the fit were 

not significantly altered by the inclusion of the Saclay data. Fitting 

their data alone yields a x2 of 211 for 208 data points. Including the 
p + ~ . 

J = 3/2- or 5/2- resonance suggested by the Saclay fit did not substan-

tially improve our x2• The major differences between our fit and Saclay's 

lie in our treatment of the lower partial waves (Saclay treated them as 

complex linear functions of the beam momentum) and our inclusion of all 

relevant resonances. For example, the Saclay group did not include the 

* Y1 (2030) in their fit because of its low elasticity, the absence of 

significant A7, and the lack of a bump in the total cross section. In 

* our fit (see Discussion) the Y1 (2030) plays a major role despite thes~ 

features. 

Argand diagrams for the lower partial waves are shown in Figure 18. 

The amplitudes shown have definite isotopic spin in the u-channel. The 

contributions of the resonances to the fit are shown in Table 7. The 

errors were estimated by varying the amount of each resonance individ-

2 ually; the values correspond to an increase of X by unity. Also shown 

i 
J 
i 
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Partial Wave Amplitudes of Definite 

u-channel Isotopic Spin 
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Table 7. 
:l.. 

Contributions of Resonances to ?C= 372 Fit 

Resonance Jp -iTr at resonance -Xif T1 = 0 Contribution to &, for .::::.. - K+ 

YQcl81))· 5/2+ 0.28 ± .3x~ 373 o.23 x lo-3 

(1830) 5/2- o.21 ± .o2 515 0.13 

(1864) 7/2+ -0.18 ± .06 381 0.11 

(2100) 7/2- 0.10 ± .05 375 o.o4 

(2350) 9/2t. -o.l5 :t .12 380 0.12 

y;:(J.915) 5/2+ -0.26 ± .07 385 0.21 

(2030) 7/2+ 0.73 ± .os 560 2.10 
I 

9/2+ 
·.j:o. 

(2250) 0.20 t .o5 391 0.19 co 
I 

(2455) 9/2 ..0.12 t .05 376 o.o8 

(2595) 11/2- 0.37 :t .,10 388 o.cs 

\:--- -~ ~ • ... 
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2 
is the effect on the X when the amount of that resonance is reduced to 

zero without permitting the other parameters to vary. 

B. Discussion 

The fit supports the qualitative interpretation given in section IV. 

As can be seen in the Argand plots, the reactions are dominated by I=O 

baryon exchange. At low energies the baryon exchange amplitude is con-

fined mostly to the s1 and P1 waves, but at the high energies P3 , n3 , and 

finally n5 become important. The large s1 and P1 waves move counter-

clockwise in the complex plane as the energy increases. If we invoke 

the duality principle
12 

to interpret these lower partial waves as reson-

ances, we would need at least four new resonances: s01 , s11 , P01 , and 

P11 where the subscripts refer to 2I and 2J where I is the isotopic spin 

in the s-channel. Resonances of both s-channel isospins are necessary 

in order to keep the isospin 1 baryon exchange amplitude small through 

partial cancellation. (See page 7.) 

The I=O baryon exchange amplitude falls off at high energy as 

(Plab)-1 •5• This is consistent with the fall-off found by Morrison for 

15 other baryon-exchange processes. (He found the ~xponent to vary 

between -1.5 and -2.0.) The I=l baryon exchange amplitude falls off as 

-4.7 . 
(Plab) ; however, we do not consider our determination reliable be-

cause of the weakness of I=l exchange in our reactions. 

The baryon exchange amplitude contributes significantly to the 

polarization, as can be seen from the contribution it makes\to the B1 's 

(dashed line in Figures 9-16). It is not surprising that the polarization 

does not come entirely from interferences with the resonances since, as 

we noted previously, the polarization distribution varies slowly with 
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energy. The fact that the polarization in the backward peak is small 

is related to the fact that the s1 and P1 I=O exchange partial waves 

are almost relatively real. By this we mean that Re(S1/P1) > Im(S1/P1) 

at all of our beam settings. This fact can also be seen in the Argand 

plots by noticing that the phases of the s1 and P1 partial waves differ 

by approximately 180°. It is interesting to note that for both Born-

approximation and Regge exchange amplitudes, the partial waves are 

relatively real as long as only On_e particle is exchanged. 

Although the lower partial waves dominate, resonance production in 

the higher partial waves is important at all energies. At our highest 

energy we are able to obtain a good fit by assigning the spins and 

parities listed on page 43 to the known resonances that might contribute 

in that region, but this high energy data is not good enough for us to 

be able to claim that we have determined those spins and parities. We 

have not tried all combinations which might give a good fit. 

* Only two resonances are essential to the fit: the Y0 (1830) and the 

* Y1 (2030). The amounts of these resonances put in by the fit are relatively 

small, and their effect is primarily on the lower Legendre coefficients 

through interferences with the lower partial waves. For example, there 

* is not enough Y1 (2030) to generate a significant A6, although this reson-

ance contributes substantially to the shape of A3 through its interference 

with the s1 baryon exchange partial wave. 

* * The inclusion of the Y0 (1815) and the Y0(2100) have little effect 

3 on the fit. In an earlier paper we interpreted the peak in A0 near 

* 1.7 GeV/c in reaction (1) and (2) as evidence for the Y0{2100) in those 

_,I 
I 

+I 

I 
-~,, 

.. ' 
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reactions. The present fit does not completely account for the peaks 

in A0 , however, it is possible that the peaks are just statistical 

fluctuations.* In the region of the Y~(2100), if we include the Saclay 

total cross section data, our fits are about 2 standard deviations low 

in reaction (1) and about 2 standard deviations low in reaction (2). 

The Saclay-Rutherford collaboration23 likewise concluded that the 

* Y0 (2100) does not make an important contribution to ~K. 

We tried to use our partial wave analysis to make an experimental 

determination of the parity of the ~. When we assume that the parity 

* is negative (so that the Y1 (2030) contributes to the F17 rather than 

to the c17 partial wave) we are again able to obtain a good fit to the 

low energy data. The fit yields a x2 of 284 for 296 data points, com

pared to a x2 of 281 assuming positive ~ parity. We conclude that we 

are unable to determine the ~ parity from our fitting procedure. Because 

of the indications of su3 that the ~ parity is positive, we shall not 

discuss the negative parity solutions any further. 

* * We tried forcing the fit to include substantial Y0 (2100). When we did 

this we got a better fit to A0 but a much worse fit to A3• The fit had 

2 
of 460 for 365 data points. a X 
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VI. CONCLUSIONS 

The reaction K-N + 3K can be understood in terms of the exchange of 

one or more isotopic spin 0 baryons wi.th small btat important contributions 

from I = I exchange and direct channel resonance production. The known 

resonances are sufficient; there is no evidence for new resonances. At 

low energies the baryon exchange amplitude is mostly in the s1 and P1 

partial waves, and these waves are "almost" relatively real. The baryon 

exchange amplitude is responsible for most of the small polarization. 

The large s1 and P1 partial waves move in counter-clockwise circles in the 

complex plane, suggesting that they may have a "dual" interpretation as 

resonant partial waves. 

Bec~use the data does not have significant high order Legendre 

* * coefficients in the region of theY (1830) andY (2030), we do not claim 

to have determined the branching fractions of these resonance~ into K 3. 

In our data below 2.4 GeV/c these resonaces are seen only in the lower 

coefficients through interferences with the baryon exchange amplitude. 

(Perhaps if we had come up with a better parameterization of the function 

S(s) the fit would not have included either of these resonances!) Above 

2.4 GeV/c there is strong evidence for the contributions of J ~ 9/2 

resonances. 

Our approach has been different than that of many phase-shift analyses: 

instead of speculating about new resonances we have concentrated on a care-

ful treatment of our "background". We think such an approach can make im-

portant contributions to an understanding of exchange mechanisms. 

, .. 
f. 



-53-

ACKNOWLEDGMENTS 

I am very grateful to Luis W. Alvarez and Philip M. Dauber. I 

would also like to thank Lawrence H. Smith, Robert G. Smits, and Michael 

A. Wahlig. 



-54-

APPENDIX 

We outline here the derivation of the R-matrix for the scattering 

of a spin 0 boson off a spin 1/2 baryon. As discussed in section III, 

there are two invariant amplitudes A and B. We assume that both of these 

amplitudes factorize: 

A(s,u) = SA(s) UA(u) 

B (s, u) = SB(s) UB (u) 

Using these equations, and explicitly writing out the partial wave expan-

sion in terms of S, P, and D waves:. 

is related to x(s2,u) by the following kinematic formula: 

where 

a = e1(s1)E2(s1) - e1(s2)E2(s2) 
ql(s2) p2(s2) 

b = qi(sl) p2(sl) 

ql (s2) p2(s2) 

The notation used is the same as that in section III. Evaluating UA and 

UB at s1 and s 2 , and then using the fact that they are independent of 

energy, we get: 

1 +- +- - + 
SA(l) [(-W1-3xW1)D3(1) + (3xW1+W1)P3(1)-W1P1 (1) + WlSl(l)] 

1 + - - + + - - + . 
= SA(2) [(-W2-3aW2-3bW2x)D3(2) + 3bW2x + 3aW2 + w2)P3(2)-W2P1 (2)+W2S1(2)] 

! 
;a.\ 

I 
. ! 
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and: 

1 
SB(l) 

1 + - - + + - -[(-E2+3aE2+3bE2x)D3(2) + (3bE2x+3aE2-E2)P3(2) + E2P1 (2) =-~.,.... 

SB (2) 

+ + E1s1(2)] 

The rest is simple, but messy, algebra. We have two equations, each 

linear in x. By equating the coefficien~s of x we generate four equa-

tions relating the four partial waves at one.energy to the four partial 

waves at the second energy. We define the R-matrix by 

s \ 
1 sl 

pl SA (2) (!<•1'82~ pl 
= SA(l) 

p3 p3 

D3 s 2 D3 sl 

Its. elements are listed in table A. Notice that R(s ,s) is the identity·. 

matrix. The matrix R should satisfy the matrix relation: 

We h.ave not proven explicitly that our R matrix satisfies this relation, 

but we have checked numerically and found that it does. 



Additonal symbols used: 

R42 = 0 

R41 = 0 

f = s 

R = a 

~= 

R = 
c 

R = d 
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TABLE A 

The R-Matrix 

SB (2) SA(l)/SB(l) 

+ 3aw;)R43 + (-W -2 
+ 

3aw;)1.44 + (-W -2 
+ -(-E2 + 3aE2)R43 + 

+ - . (-E2 + 3aE2)R44 + 

R34 = (-W~ E; + w; E~ £
8
)/ b(W; E; + w; E;) 

·:-r - - + . + - - + 
R33 = ( Vi E2 + w2 El fs)/ b(W2 E2 + w2 E2) 

R32 = 0 

R31 = 0 

SA (2) 

+ -(3aW2 + w2)R33 
+ -(3aW2 + W2)R34 
+ -(3aE2 - E2)R33 
+ -(3aE2 - E2)R34 

,-
' 

' 
~· 

.l 
I 
I 

I 
! 
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