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MATHEMATICAL CONSIDERATIONS OF DETERMINING 
NEUTRONSPECTRA FROM ACTIVATION MEASUREMENTS 

J orma T. Routti 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

August 10, 1969 

Abstract 

Several techniques of high-energy neutron spectroscopy, like those. using 
activation detectors, moderating spheres, and nuclear emulsions, require a 
mathematical unfolding procedure to obtain the neutron energy spectrum from 
a set of measured data. We discuss the general requirements for a solution 
meth~d as well as tests to study how well these requirements are met. The 
solution method has to be ~ble to combine the information contained in the me as
ured data with available prior knowledge of the neutron spectrum. Otherwise 
complications like nonuniqueness, oscillatory and negative character of the solu
tion, are likely to arise. The commonly used solution techniques are reviewed 
and their applicability to high-energy neutron Spectroscopy is discussed. The 
resolution obtainable for the neutron spectrum, although limited by the mathe
matical nature of the problem, is in most cases sufficient to be useful in prob
lems of shielding design and operational safety. 

1. Introduction 

High-energy accelerators give rise to complex radiation fields which 
necessitate elaborate shielding around them. The shielding requirements of 
the machines presently in use, with energies up to 30 GeV, are largely dictated 
by the high-energy neutron component of the radiation field. Both design econ
omy and operational safety require a good understanding of the radiation fields 
and reliable experimental techniques to measdre them. 

When high-energy particles escaping fi·om the accelerator vacuum cham
ber· strike the surrounding material large numbers of secondary particles are 
produced. Of these particles neutrons with erlergies above 150 MeV have the 
longest attenuation lengths, and thus dominate the shielding requirements. The 
slowing down of the cascade and evaporation neutrons through elastic and in
elastic scattering gives rise to neutron spectra whose energy scale extends 
from thermal regions to the primary particle ,energies .. A comprehensive re
port1 of a large shielding study made at the CERN proton synchrotron, in co
operation by the CERN, LRL, and RHEL labotatories, discusses in detail the 
current understanding of the neutron fields inside the shield. Figure 1, which 
is taken from that report, shows some characteristic high-energy neutron 
spectra. 
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The neutron spectrum to be studied is characterized by energy and 
intensity ranges extending over several orders of magnitude, by very small 
flux values beyond any considerable thickness of shielding, and by omnidi
rectionality. The use of· activation detectors has proven to be one of the best 
techniques to measure such neutron fields. The relative merits and experi
mental aspects of such detectors, including threshold detectors, moderating 
spheres, and nuclear emulsions, have been adequately discussed in, earlier 
studies, many of which were presented in the First Symposium on Accelerator 
Radiation Dosimetry and Experience. 2 

The use of activation detectors does not, however, yield directly the 
neutron energy spectrum. A mathematical unfolding procedure is required to 
obtain the spectrum from the set of measured data. 

Several numerical methods have been proposed for the solution of neu
tron spectra from activation measurements. The application of many of these 
techniques to high-energy neutron spectroscopy has met with considerable dif
ficulty. Some of the problems arise from the mathematical characteristics of 
the equations to be solved, others are related to specific solution methods. 
These problems are often compounded by large uncertainties in the response 
functions of the detectors and in the measured data. However, a critical use 
of an appropriate solution technique can yield reliable neutron spectra, the 
resolution of which, although limited, is quite adequate to aid shielding design 
and operational safety. · 

. In this paper we discuss the mathematical aspects of determiningneutron. 
spectra from activation measurements. We specify general requirements which 
an appropriate solution method has to meet and discuss procedures to test how 
well these requ,irements are met. We briefly review the commonly used solu.., 
tion techniques and discuss their applicability to high-energy neutron spectros
copy. 

2. Formulation of the Problem 

The measurement of radioactivity induced by neutrons provides informa
tion on the flux. The study of several activation reactions with different known 
energy-dependent response functions, or cross sections, enables us to obtain 
knowledge also of the energy distribution of the neutron flilx. Specifically, in 
activation-detector spectroscopy we search for a solution for a neutron spec
trum <j>(E) from a set of activation equations of the form 

1
Emax · 

A. = C. 0' . (E) <j>(E) dE:, 
J J . J 

. E . 
for j = 1., • • • , m. ·"-. (1.) 

m1n 

Here Aj is the saturation activity ofJ.th detector, O'j (E) is the corresponding 
response function, and Cj is a normalizing constant l:ietween count-rate and neu
tron flux units. The normalizing constants --sbmetimes difficult to specify--are 
taken to be equal to unity in the following. Em ·n and Emax define the energy 
range of the neutron spectrum, and m gives tf{e number of detectors, normally 
between 4 and 1.5. Equation (1.) is a degenerate case of a Fredholm integral 
equation of the first kind, 
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· {max · · 
A(E') =).,.,. K(E', E) <j>(E)dE, 

E . 

(2) 

m1n · 

which arises in seve.ral unfolding problems.· 

The composition rdf the kernel of this integral equation is of great im
portance in several solution methods. In practical applications accurate knowledge 
of the response functions is greatly desired, and experimentally verified num-
bers should be preferred. In many cases calculated response functions are more 
readily available, and are used when there are not complete enough experimental 
data~ In the testing procedures discussed later the calculated response functions 

·may also be equally well used. 

Iri threshold-detector spectroscopy the kernel is composed of the eros s 
sections of different reactions. Figure 2 shows the experimental cross sections 
for a Berkeley detector system, in the development of which great emphasis 
has been placed on achieving maximum sensitivity. Fluxes as small as 
1n/cm2sec can be measured with most of these detectors. 1 

The detection of spallation products in medium-heavy targets offers 
some interesting possibilities for making a new type of high-energy threshold 
detector system. Our preliminary studies3 indicate the feasibility of direct 
)'-spectroscopic measurement oflarge numbers of reactions. For instance, in 
a copper target irradiated in high-energy particle flux, we can see more than .. 
20 reaction products by using instrumental gamma spectroscopy with high- ·;, 
resolution Ge(Li) detectors. Figure 3 shows cross sections for some reaction 
products from elemental copper target, which we have calculated by using 
Rudstam' s formalism. 4 The small values of the cross sections and the low de
tection efficiency limit these studies to areas of high fluxes. 

Figure 4 shows the response functions up to about 100 MeV of moderating 
or Bonner spheres, that is, detectors having a thermal neutron detector inside. 
moderating. spheres of different diameters. These values have been calculated 
by Hansen and Sandmeier5 and reported by Awschalom. 6 

·The detection of protons scattered by fast neutrons forms the basis of a 
number of methods for measuring neutron spectra. In this study we consider 
one such technique, proton-recoil spectroscopy with nuclear emulsions. The 
kernel of the integral equation calculated from an analytical formula given by 
Gammel? is shown in Fig. 5. The formula, which is applicable up to 42 MeV, 
includes a correction term for nonisotropy; this becomes significant above 10 
MeV. If, as usual, the proton recoil spectrum is determined for a limited num
ber of track length bins, then the mathematical formalism is identical to that of 
a threshold-detector system. In Fig. 5 the cross section for producing a scat
tered proton of a specified energy is given by a curve which has a threshold at 
this energy. 

3. Problems and Requirements for Solution Methods 

Several solution methods are available for obtaining a formal solution to 
the first-order Fredholm integral equation. Theformal methods, however, are 
not applicable in the case in which .neither the measured distribution A(E') nor 
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the kernel K(E', E) is known analytically; rather, each is· known as a set of 
discrete points. The solution of such a system may be obtained through nu
merical techniques. In most of these the integral equation is approximated by 
a system of linear equations of sufficiently high order, and the methods known 
for the solution of such a system are applied. Activation-detector spectroscopy 
represents a difficult case of this problem, and special techniques are required 
in the solution. 

Nonuniqueness of the Solution 

The activation equation for a single detector can be matched by a spec
trum of any shape, when properly normalized. In many cases the number of 
activation detectors and thus the number of activation equations is smaller than 
the number of points that specify the neutron spectrum. The solution of such a 
system is not unique. If no restrictions are placed on the shape of the solution, 
the homogeneous system, the system with zero responses, has also nonzero 
solutions. Such solutions may appear as unwanted oscillations in the solution 
of the nonhomogeneous system. This is exemplified by ·a calculation by Burrus, 8 
which shows that for any integrable kernel the attenuation of a sinusoidal solu..: 
tion distribution increases without limit when the frequency of the sinusoid in
creases. In any practical measurement neither the responses nor the kernel 
are known exactly. These uncertainties add to the uncertainty of the solution. 

Solution Classes 

The terms exact, approximate, and appropriate solution are often used 
to characterize the solution obtained. An exact solution satisfies accurately 
the activation equations but often has unacceptable oscillatory character. An 
approximate solution matches the responses only within reasonable error limits. 
Selection of a physically acceptable approximate solution yields an appropriate 
solution, which is. generally not unique. The remaining ambiguit~· reflects the 
accuracy and the number of the responses and the composition and the accuracy 
of the kernel. 

Prior Information on the Solution 

The selection of an appropriate solution among the nonunique solutions 
requires the use of prior information on the solution. Such information is al
most always available on physical grounds. In neutron spectroscopy the solu
tion is known to be nonnegative, and zero beyond certain maximum energy. Be
yond some thickness of shielding the neutron spectrum can also be assumed to 
be relatively smooth. Additional information may be available on its intensity 
or shape at some energies. 

In the solution technique it is importanl to properly weigh the prior 
knowledge and the information contained in the measured responses. The addi
tional constraints applied to the solution should not prevent it from matching the 
measured responses, nor should they prevent the solution from assuming any 

0 physically acceptable shape. 

Requirements for a Solution Method 

Any appropriate solution method for the determination of a neutron spec
trum from activation measurements has to meet two basic requirements. The 
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first requirement is that the neutron spectrum found be a solution to the acti
vation equations if such a solution exists. This means that the method has to 
be able to find a solution which accurately matches the responses due to any 
reasonable spectrum. 

The second requirement is that if many solutions to the activation equa
tions exist, then an appropriate solution must be found. Iri other words there 
must be a flexible way to apply physical prior information on the solution, such 
as nonnegativity conditions and requirements of smoothness and general shape 
of the solution. 

In determining neutron spectra from measured data some difficulties 
are likely to arise. Because of measurement errors and large uncertainties 
in the response functions one often encounters inconsistent sets of responses, 
that is, responses for which there does not exist any appropriate solution. In 
such a case a compromise has to be made between the requirement of matching 
measured responses and satisfying the prior information on the solution. But 
here again, with such cases, we can have confidence only if the solution method 
is known to be able to find a reasonable solution if such exists. The flexibility 
in applying the constraining information to the solution is also of major im
portance with these cases. 

4. Testing Solution Methods 

It is important to make sure that the solution method employed meets 
the requirements discussed above. This can be done conveniently by simulating 
the experiment by specifying test spectra and computing the responses of dif
ferent detectors for these given test spectra. Uncertainties in the response 
functions and in the measurement are simulated by introducing random errors 
in the synthetized responses or in the response functions. The solution is then 
obtained from the synthetized responses without using any information directly. 

The testing procedures are much easier to perform in this manner than 
with actual measurement. Furthermore we will know "the true solution" and 
can compare it to the spectrum obtained. 

To illustrate the testing procedure we use a block diagram shown in 
Fig. 6. We first specify a test spectrum <i> test which has a reasonable shape 
for a high-energy neutron spectrum. The responses due to this are obtained 
by simply integrating the activation equations. The errors and uncertainties in 
the measurement and in the cross sections can be simulated by pert~rbing these 
responses by random deviations. We thus get the input responses A 1nput . In 
the case of a measurement we of course obtain these input responses without 
knowledge of the true spectrum and true errors. 

• In determining the solution spectrum <j>SOl one combines the information 
contained in the input responses with the prior information. And finally, or 
usually in the course of finding the solution <j>8ol, we also compute the responses 

w::J Asol corresponding to <j>Sol. 

The requirement about the ability to satisfy the activation equations can 
be restated now in the following words. If we start with a reasonable test spec
trum and do not use any perturbation- -that is, Ai:I?-put = A test_ -then the method 
employed has to find such a solution that Asol = A1nput = Atest. For this to be 
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sol "'test, true it is generally not necessary that <j> = 't' although such a condition 
would also satisfy the requirement. 

It is very instructive to use the test procedures in studying the importance 
of the a priori conditions as well. With many response kernels the synthesized 
responses may be easily matched with an appropriate solution that may be quite 
different from the test spectrum. In such cases we need to estimate the amount 
of prior information required for a close match between the two spectra. This 
is closely related to what could be called the inherent resolution of the kernel. 
That determines how exactly the solution is defined without using any prior in
formation on the solution. In many cases specific prior knowledge of the so
lution must be applied to obtain an appropriate solution that is less ambiguous. 

To estimate the success obtained in a test case we check the match be-
tween the test and the solution responses and the closeness of the solution to the test spec
truro. We also evaluate the agreement of integral quantities such as the flux, 
the dose rate, and the mean energy. 

5. Review of Existing Solut~on Methods 

Several numerical techniques have been applied to the solution of neutron 
spectra from activation-detector measurements. Most of such studies have 
been directed towards the determination of epithermal and fast neutron spectra 
in nuclear reactors. The extension of these techniques to high-energy neutron 
spectroscopy has not always been successful, because of lack of suitable de
tectors and reliable cross-section data, inadequate prior knowledge of the solu
tion, and the wide energy and intensity ranges encountered. 

The utilization of prior information on the solution is essential to obtain 
a physically acceptable solution. This is done either by smoothing procedures, 
by nonnegativity constraints, or by a choice of suitable expansion functions. In 
the following some of the methods employed for fast-neutron spectroscopy and 
their applicability to high-energy neutron spectrometry are discussed. 

Parametric Representation 

If there is available a functional representation of the neutron spectrum 
based either on theoretical considerations or previous experimental results, 
then the parameters in such a representation can be determined by matching the 
measured responses. For instance in reacto:t experiments both thermal-neutron 
and fission spectra can be approximated by such formulae. Functional repre
sentation of neutron spectra has been applied to high-energy neutron spectros
copy as well. 9-11 The formula often used assumes a spectral shape of E-nform, 
or a spectrum composed of several such sections of different slopes on a loga
rithmic scale, with possibly a smooth extension to zero. at cutoff energy. The 
slope of the spectrum, the parameter n, and possible other parameters can be 
easily determined by matching the measured responses in the least-squares 
sense. 

Parametric representations of"this kind severely restrict the form which 
the neutron spectrum may assume. Consequently they should be used only when 
such restrictions are well founded, or more often, when not enough experimental 
information is available for other approaches. On the other hand this approach 
avoids most mathematical complications peculiar to other methods, and in some 
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cases allows the determination of neutron spectra directly from calculated 
tables, as described by Patterson et al. 11 . . 

Orthonormal Expansions 

Several numerical techniques used for the solution of neutron spectra 
from the activation equations can be classified as series -expansion methods. 
The neutron spectrum is expressed as a sum of linearly independent functions 
ljJk (E)' 

m 

<(l(E) = W(E) 2 l3k ljJk(E) ; 

k=1 

(3) 

where W(y) is a weighting function and m, the number of terms, is equal to the 
number of response functions. In the selection of the expansion functions one may 
try to satisfy boundary conditions of the solutioh, and use orthonormal functions 
to simplify the calculations. Orthogonal functions can be obtained also from the 
cross sections through the Gram-Schmidt proc~dure. The formalism of the 
orthonormalization and the determination of the: coefficients l3k in the expansion 
through known technique of linear algebra have been discus sed in detail by 
Ringle12 and DiCola et.al. 13 With such techniques the linear independence of 
the response functions is of great importance; this requirement often limits the 
choice·of activation detectors. 

The application of orthonormal expansion techniques to neutron spectros
copy have been studied by several authors. Ringle12 investigated their use with 
threshold detectors in the energy range of 2. 5 to 30 MeV, and Gold14 and 
DiCola and Rota13 in the determination of reactor fast-neutron spectra with 
activation foils. Severe limitations in the reliability and accuracy of the method 
were found in the studies. The convergence rate of the expansion is often not 
adequate to provide good accuracy and physically acceptable boundary conditions 
in the solution with a limited number of terms. Proper choice of the functions 
can improve the convergence; the necessity of such choice limits the flexibility 
of the method. Unfortunate choice of detectors may result in an ill-conditioned 
system in which small changes in known terms result in large variations in the 
solution. The solution often assumes negative values and it is not possible to 
easily use nonnegativity or other prior information on the solution. The de
ficiencies of the expansion methods are likely to be amplified when a larger 
energy range is covered by few detectors. 

Least..:Squares Expansion Methods 

In the least-squares expansion or relative -deviation-minimization method 
the neutron spectrum is again expressed as a sum of expansion functions, as in 
Eq. (3 ). The coefficients l3k are determined by minimizing the quadratic form 

n E 2 
Aj-2 13k f max W(E) ljJk(E) <7/E) dE 

k=1 0 
m 

o = 2: A. 
(4) 

i = 1 J 

with respect to !)k. 
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This minimization can be' performed for 1 < n < m. The optimal value of n 
corresponds to smallest Q and a physically acceptable solution; in most cases 
this is found when n < m. · The case n = m is equivalent to the formal expansion 
method discussed in the preceding section. The details of the procedures are· 
discussed by DiCola et al. 13 

The success in the least-squares expansion method depends strongly on 
the choice of the basis functions. A proper choice gives an opportunity to satisfy 
the boundary conditions and reflect the expected behavior of the solution. 

Least-squares techniques have been applied to the study of reactor fast
neutron spectra with activation detectors. Chebyshev and Laguerre polynomials 
have been used as exfansion functions, both of which were found to give physically 
acceptable results. 1 • 13 The method has generally been found superior to the 
orthonormal expansion method. DiCola et al. found the method to be more 
sensitive to the effects of experimental errors, but the results were still better 
than those from orthonormal expansions. 

The minimum-relative -deviation method has been applied to high-energy 
neutron spectroscopy in the range of 2. 5 to 30 MeV by Kohler. 15 Step-function 
and polygonal approximations were used for the solution. An iterative technique 
was employed to minimize the sum of the squares of the deviations with respect 
to parameters defining the amplitude of each step. These parameters were 
squared to impose the nonnegativity. 

Although least-squares expansion methods have shown good success in 
the determination of the reactor fast-neutron spectrum, their use is less profit
able with high-energy spectra. Since both the shape and the energy range of the 
spectrum may vary widely, it is difficult to find generally applicable basis func
tions. The step-function and polygonal approximations provide flexibility in this 
respect; however, the resolution, which is dictated by the small number of the 
expansion terms,· remains very poor. Furthermore it is not possible to use 
prior information on the neutron spectrum in a flexible manner. 

Iterative Unfolding Method for Response Matrices 

An iterative unfolding method has been described by Scofield16 and 
Gold. 17 The method finds nonnegative solution by minimizing through an itera
tive procedure the deviation between the measured and computed responses. 
The procedure is terminated after a certain n\1mber of iterations or when the 
deviations pass through a minimum. 

This iterative method has been applied to proton-recoil spectroscopy by 
O'Brien et al. 18 in the study of high-ener~y a~celerator leakage spectra, to 
multisphere spectroscopy by Awschalom, and to multisphere and threshold
detector spectroscopy by Stevenson. 19 The procedure was compared to least
squares techniques by Su. 20 

The studies indicate that the method compares favorably to the others dis
cussed above. The studies of multisphere technique by Awschalom and Stevenson 
indicated good success in the computation of integral quantities, such as flux and 
dose, in urifolding given test spectra. The determination of differential spectra 
indicated larger deviations from test spectra. In application to threshold detec-· · · · 
tors the method failed to match some of the responses, and consequently there. . .. 
was significant discrepancy between the solution and the test spectra. 19 The 
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method imposes a nonnegativity condition on the solution, and it is possible to 
use also smoothness constraints. The application of specific prior knowledge, 
such as cutoff energy or preferred spectral shape, has not been incorporated to 
the method. 

Iterative Perturbation Methods 

Aniterative technique which employs the on-line facilities of the 
CDC-6600 computer has been developed at LRL and used for the analysis of 
high-ertergy neutron spectroscopy with few threshold detectors. 1 A cathode-ray
tube .display is used with light-pen input. The user draws a spectrum with the 
light-pen on the screen after which the responses are computed for each detector. 
The solution is then perturbed in order to get a better match between the com
puted and the measured responses. After a number of trials the responses are 
matched, withan accuracy reflecting the experimental errors. The procedure 
also allows the user to apply any prior knowledge of the solution. 

With an increasing number of detectors with overlapping response curves 
it becomes increasingly difficult to make decisions on the direction of the next 
iteration. This and the slow speed restrict the applicability of this method to 
the study of systems with relatively few response functions. In such cases, 
however, it performs quite well and avoids all the numerical difficulties which 
are common with all the other methods mentioned. 

An iterative method in which the subsequent perturbations to the initial 
trial spectrum are automatically computed by using energy-dependent sensitivity 
functions has been reported by 1\;1cElroy et al. 21 This method has been success
fully applied to the determination of neutron spectra, mainly reactor spectra in 
the energy range 10-10 to 18 MeV. Hargreaves and Stevenson22 have employed 
a simpler iterative technique based on regions' of maximum response defined 
for each detector. The results reported from such calculations applied to 
high-energy neutron spectroscopy are still somewhat inconclusive. The iterative 
procedure used imposes the nonnegativity condition, but ill-conditioned cases 
may still result in diverging solutions. The results obtained with the simpler 
method, however, indicate that as good results can be expected as with the more 
complex procedures mentioned. 22 

Constrained Least-Squares Methods with Matrix Inversion 

A numerical technique for the solution of first-order Fredholm integral 
equations incorporating a controlled degree of smoothness or closeness to a given 
approximative solution has been proposed by Phillips23 and further developed by 
Twomey. 24 More recently extensions of these techniques have been reported by 
Greer et al. 25 and Strand and Westwater. 26 A generalized formalism was in
troduced by Routti3 and is discussed below . 

The integral equation 

I max 

E . 
m1n 

K(E' , E) <j>(E) dE = A(E') + E(E' ) , (5) 

where E(E 1
) reflects the uncertainties and error, is first replaced by a quadrature 

form 
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Kcj> =A+ E. (6) 

Here A is the measured spectrum with components Aj and errors 
E j' j = 1, • · • , m, cj> is the solution vector with components cj>.,. = 1, • · · n, and 
K is the response matrix of dimensions nXm. In the derivat~oh of the quadrature 
form we approximate the solution by a piecewise linear continuous function. With 
an adequate number of steps this approximation provides an arbitrary closeness • 
to any real continuous function without prescribing the shape of the solution. 

The solution of the integral equation is obtained by minimizing the quadratic • 
form 

(7) 

where 
m 

ao L € 2 
= r. E. 

J J 
j:=1 

n 
cl>o 

Q1 L = r. ( cj>. 
1 1 

cj>~ )2' 
1 

i=1 

n-1 

Q2 L d 
= r. (cj>. 1 

1 1-

i=2 

The term a
0 

is related to the matching of the responses, which can be weighted 
by rj. The term 01 requires closeness to a given approximate solution cj>O; 
this crite~bon may be weighted with an energy-dependent function specified by 
weights ri . The term 02 imposes a smoothness r~quirement by including the 
numerical second derivative of the solution in the sum to be minimized; this also 
can be weighted with energy-dependent terms r~. 

. 1 

The auxiliary conditions included in terms a 1 and a 2 are weighted rela
tively by W 1 and W 2' and finally'( specifies the overall importance of .the a priori 
conditions. The solution is obtained by minimizing Q with respect to cl>i by setting 

a a 
-- - 0 for i = 1, · • · , n. acj>. - , 

1 

(8} 

The resulting equations can be written in matrilx form and solved in a single 
matrix inversion. 3 

• l 

Somewhat similar techniques are used in the method reported by Tihonov. 27 

In this case the sum to be minimized includes the norm of the solution and its first 
derivative. The application of that method to the multisphere spectroscopy has 
been proposed by Buxerolle et al. 28 

The statistical aspects of the numerical solution techniques have been dis
cussed by BurrusS and Strand and Westwater. 26 The latter treat the problem where 
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the covariance matrices of both the observed vector A and the solution <j> are 
known, and derive an optimal smoothing criterion based on maximum-likelihood 
method. · 

Greer et al. 
25 

have discussed in detail the case in which the function to 

be minimized may

0

b: ~itte; as~ ( <l>i -<I>~) 
L ej+ L o · 
j=1 i=i <l>i 

(9) 

An iterative procedure was derived in which the problem is solved in several 
steps by replacing the approximate solution q,O by the solution <j> of the previous 
step. The limiting solution, which except for numerical difficulties may be ob
tained directly, is shown to converge to the solution that is closest to the original 
trial solution in the least-squares sense. The iterative procedure has been ap
plied by Greer et al. to the determination of reactor fast-neutron spectra from 
activation-detector measurements. Generally a fission-neutron spectrum was 
u_sed as initial trial solution. Good results of both integral and differential 
quantities were obta~ned in test case.s and with actual data. 

The methods described provide convenient means to apply prior informa
tion on both the smoothness and the shape of the solution. However, the non
negativity of the solution is not guaranteed. This leads into difficultie.s ~ith 
large uncertainties in the measured responses: and the cross sections, where a 
compromise must be made between matching the responses and satisfying the 
prior information. It is also difficult to properly weigh the auxiliary conditions 
in cases in which the neutron spectrum extends over very many orders of mag
nitude. On the other hand, the computation is quite fast even in cases with many 
response functions, such as proton recoil spectroscopy. · 

Generalized Least-Squares Method with Nonnegative Solution· 

To overcome the difficulties of the above matrix inversion methods we have 
developed a formalism in which the solution is forced to be Ilfnnegative and the 
auxiliary conditions can be used on several different scales. The neutron spec-
trum is again approximated by a piecewise linear, continuous function defined at 
energy points Ei by intensity values <l>i• which are taken to be squares of real 
numbers, <l>i = x'{, to eliminate negative values. The re-quirements of matching 
the measured responses as well as satisfying the a priori conditions are com
bined by defining a quadratic form as in Eq. ('7). Because of computation-economy 
requirements the neutron spectrum may be defined at fewer points than the cross 
sections. The constraints about the smoothness and approximative shape of the 
spectrum are now expressed either on a linea:r, a relative, or a logarithmic scale-
for instance on a logarithmic scale as 

n 

Q~og = L ri ( log X~ log <!>~ )2 
(10) 

1=1 1 1 

0
1og _ 
2 -

n -1 

L rt (log x~-1 - 2 log X~+ log x~+1 )2 
. 

i=2 

.•I 

I 
d 

I 
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The solution can no longer be obtained through matrix inversion, but 
rather by minimizing Q with respect to the parameters Xi through iterative 
techniques. We found a gradient minimization technique with variable metric 
to be well suited for this computation. 3 · 

The formalism described above allows us to combine prior information 
on the neutron spectrum with the information contained in the measurement of • 
the resP,onses in a very flexible form. The method and the computer program 
LOUHI, 3 written to perform the analysis, have been subjected to mathematical 
tests discussed in Section 4. These results indicate that the method meets all • 
the requirementsset for a solution method in Section 4. The technique is best 
suited for a large computer. In most cases the solution obtained is not a sensi-
tive function of the weighting parameters used in the expression of Q. However, 
when largely perturbe.d test responses or inconsistent sets of measured data 
are used, the analysis benefits greatly from the possibility of running LOUHI 
on-line with cathode -ray-tube display of intermediate results and the option of 
choosing optimal weighting parameters while solving the problem. 

6. Examples and Comments 

To illustrate some of the points made of testing and analysis procedures 
we next consider a few examples •. These computations have been performed with 
the program LOUHI. 3 All the cases discussed have been run by using a uniform 
logarithmic smoothing criterion and no other prior information on the solution. 

Figure 7 shows atest case run with a simulated neutron spectrum with a 
14-MeV peak and the emulsion kernel. Excellent agreement is obtained between 
the two proton recoil spectra due to the test spectrum and the solution spectrum, 
as well as the two neutron spectra. In this case the very good agreement be
tween the solution and the test spectra is due to an unrealistically close match 
between the two proton spectra. If the proton spectrum had realistic uncertainties, 
then such a close match would result in an oscillatory solution spectrum. Figure 
8 shows a case in which such oscillations have been avoided by using the smoothing 
criteria; however, the agreement between the test and solution spectrum is no 
longer so good. 

With kernels of lower resolution than that of the emulsion kernel the 
statistical uncertainties of the responses ofteri are not recognizable. In such 
cases even the perturbed responses may be matched arbitrarily accurately with
out introducing unacceptable oscillations in the solution spectrum. And often it 
is difficult to say whether the structure in the solution spectrum necessitated by 
a close match of the input responses is due to errors in the data or real struc
ture of the neutron spectrum. For example, in Fig. 9 we show a neutron spec
trum obtained from a set of detectors exposed inside the beam tunnel of the 
CERN PS. 1 Requiring a 5o/o match between the measured and computed responses 
necessitates the structure shown in the spectrum. If only four of the seven de
tectors exposed were used, or if 50o/o discrepancies between the measured and 
the computed of the additional three responses were accepted, then the smoother 
solution shoWn. could be obtained. In this case it is difficult to know whether the 
structure is real or only a reflection of experimental uncertainties. 

Kernels of lower resolution often leave some ambiguity in the results even 
when there are no errors in the input data. For example, in Fig. 10 there is 
considerable discrepancy at low energies between the test and the solution spectra 
despite an excellent match between the unperturbed input responses and the solution 
responses. In this case it is obviously caused by the lack of any response of the 
detectors ~t low energies. But often such discrepancy is more subtle, and can be 

·-
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best explained by the limited inherent resolution of the kernel. This quantity 
unfortunately can not be easily characterized by any single number, but rather 
has to be determined in each case by using the testing procedures. 

The limited inherent resolution also explains the apparent inconsistency 
that different solution spectra are obtained when different initial guesses are 
used in iterative methods. Once the responses have been matched accurately 
then the.remaining ambiguity of the neutron spectrum depends on the a priori 
information specified or built into the program, rather than indicates any 
inadequacy of the method. For the same reason it is quite difficult to obtain 
reliable estimates of the accuracy of the spectral shape, or confidence limits 
of the solution, from a single computation. Rather this has to be estimated 
through multiple trials with different starting values" and perturbed 'input·. 
responses. 

Because of the mathematical nature of the problem the resolution ob
tained in neutron spectroscopy with activation detectors remains limited even 
in ideal cases. The detailed structure introduced in the test spectra or possi
bly existing in the real spectrum is difficult or impossible to recover. For the 
studies of the accelerator shields the resolution obtained is, however, quite 
adequate. And although spectral shapes may be sensitive functions of errors 
in the input data, these errors affect integrated quantities, such as flux and 
dose rates, much less severely. Knowledge of the energy distribution of the 
neutrons can alsq be used to obtain appropriate conversion factors to justify 
the use of a single or few detectors to measure such integrated quantities. 29 
This ipformation can also be us38 to justify simplified models in shielding cal-
culations and dose estimations. · 
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FIGURE CAPTIONS 

Fig. 1. Typical high-energy neutron spectra. 'PS bridge" and "ring top" 
refer to the CERN 30- GeV proton synchrotron. Relative intensities 
of different spectra are arbitrary. 

Fig. 2. Response functions of high-energy neutron detectors. 

Fig. 3. Spallation yields for different reaction products from Cu target 
calculated from Rudstam formula. 

Fig. 4. The response functions of Bonner spheres of different diameters. 

Fig. 5. The cross section as a function of the .neutron energy for producing 
a scattered proton of a specified energy is given by a curve which has 
a threshold at this energy. The small deviations between different 
curves above their threshold energies are due to the nonisotropy cor
rection in the distribution of scattered protons. 

Fig. 6. Block diagram of the procedures used in testing the solution methods 
and analyzing measured data. 

Fig. 7. Results from a test case with the proton- recoil scattering kernel. 

Fig. 8. Results from a test case with the proton- recoil scattering kernel. 

Fig. 

Fig. 

9. Neutron s~ecfra unfolded from measurements with four detectors 
(BF~, AI-+ 4 Na, C - 11c, Bi-fission) and with seven (the above plus 
S-+ 2p, C -+ 7Be, Hg-+ 149Tb) exposed in the beam tunnel of the 
CERN 28 -Ge V proton synchrotron. 

10. Results from a test case with Cu- spallation kernel and program 
LOUHI. Excellent agreement is obtained between the unperturbed 
input responses and the calculated responses. The deviation of the 
solution from the test spectrum No. 7 can be explained by the absence 
of all response functions at low energies. 
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