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ABSTRACT 

'On the basis of the Mohling-Smith generalized master-graph 

formulation of qUantum statistics, the properties of photons in a 

noh-relatiVistic, multicomponent fully ionized gas in thermal equilibrium 

are investigated. The photon self-energy is calculated by summation, 

to all orders, of selected diagrams, and it is proposed that the solution 

is formally exact. Next, the photon momentum distribution is calculated, 

in the high-temperature, low-density limit, to second order in the fine-
\ 

structure constant. Several nonperturbative results are obtained which are 
I 

significant even in lowest order. The lowest-order results have an 

interesting relation to the pair-Hamiltonian approximation and the 

Bogoliubov transformation, and this relation is discussed. Finally, 

the counterterm technique of the generalized master-graph theory is 

employed to accomplish mass-renormalization through second order in the 

fine"'structure constant. The investigation is valid for particle 

densities p« 10
24 

particles/cm3 and for absolute temperatures 

T < 106 OK (but large enough for a high degree of ionization). 
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I. INTRODUCTION 

It is reasonable to expect that quantum mechanics and quantized 

Maxwell""Lorentz electrodynamics can serve as a basiq for a microscopic 

theory for- calculating accurately the properties ofa non-relativistic 

fully ionized gas in thermal equilibrium. 
1 In a previous paper such a 

theory was proposed, where the goal has been to develop a theory that 

is not only rigorous, but also is tractable in practice. 

Three type of divergences are prominent in a many-body theory 

of the equilibrium fully ionized gas: the ultraviolet, the Coulomb, 

and the infrared divergences--all are of electromagnetic origin. Thus, 

we are concerned with developing techniques for dealing with these 

di vergences. The counterterm techniquE developed in I can be used to 

remove the ultraviolet divergence by means of mass-renormalization, and 

the Coulomb divergence has been effectively approached by selective 

summation of the so-called ring diagrams.
2 

In a nonrelativistic 

theory, the infrared divergence has not yet been eliminated in a 

fundamental manner. In this paper, we avoid certain perturbation 

theoretic difficulties arising from the infrared divergence by finding 

non-iterative solutions or by selective summations of diagrams. In 

some applications the infrared divergence can be isolated by a 

Bogoliubov transformation of the photon operators, and relevant aspects 

of this technique will be discussed. 

For the system of interest in this paper, there has been 

considerable activity directed toward the calculation of the photon 

3-8 momentum distribution in the high-temperature, low-density region; 
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of course, a comprehensive treatment has not yet been achieved owing , 
"-

to the inherent complexity of the problem. Several of the recent 

. t· t· 4-7 h b b d th t h f l' f lnves .lga lons ave een ase on e mas er-grap orma lsm 0 MG, 

and a,renewed interest in the problem was created by the discovery 

that MG is substantially in error for certain self-energy structures 

[called (2,0) and (0,2) structuresJ. These self-energy structures 

are included properly in I, and it is of interest in this paper to use 

the generalized master-graph theory of I to learn the effects of a 

complete photon self-energy analysis on previous results. Also, it 

is of interest to explore the usefulness of the counterterm technique' 

given in I. 

In this paper we present results of calculations of the photon 

self-energy and momentum distribution. Thus, in Sec. II we give 

necessary preliminary details about the system. In Sec. III we outline 

the calculation of the photon self-energy; the result obtained is based 

on an extensive partial sumrnation procedure, and it is suggested ,that 

our solution may be formally exact. Next, in Sec. IV, we calculate the 

photon momentum distribution to second order in the fine-structure 

constant. In both Secs. III and IV, the effects of the (2,0) and (0,2) 

structures are investigated. In the,final section, Sec. V, we summarize 

the general nature of these studies. The counterterm which achieves • 
mass-renormalization to second order in the fine-structure constant 

is presented in an appendix. 
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II. THE MODEL SYSTEM 

In this section we discuss briefly the properties of the 

system under study and the ranges of certain physical parameters which 

characterize the system. The basic model of the system is discussed 

in detail~n I; here, we simplify that model by neglecting short-range 

forces and by imposing the high-temperature, 10v(-densi ty limit so that 

the Coulomb interaction can be neglected. Thus, we are interested in 

~~ multi component , nonrelativistic fully ionized gas in thermal 

equilibrium, where the dominant interaction is the transverse electro-

magnetic interaction between partiCles and photons. 

Since the system is noarelativistic, thermal energies must 

be much less than particle rest energies, and photon energies must be 

insufficient for pair-production; thus, we have the conditions 

(2.1) 

and 

(2.2) 

where A -= (~T)-l, . th B It t t T . th bIt 1-''' K lS e 0 zmann cons .an, lS· e a so u e 

temperature, Mb is the mass of a-type particles and c is the 

speed of light in vacuo. In Eq. (2.2) we have introduced the particle 

(11k is ,... 

momentum). In the high-temperature, low-density limit the fugacity 

for 2 
a-type particles is given approximately by 

<.<.. 1 , 



-4- UCRL-19412 

where ga is the chemical potential (and gy = 0), . Pa is the number 

desnity, Aa is the thermal wavelength, given by 

(2.4) 

and Sa is the spin quantum number. The inequality in Eq. (2.3) 

-1/3 implies that the average interparticle spacing Pa is much larger 

than the thermal \,Iavelength "-ex and reflects that in the high-tempera

ture, low-density limit, particle states are weighted statistically 

by the Boltzmann factor. On the other hand, photon statistics and 

dynamics are treated entirely quantum mechanically. 

The definition of the high-temperature, low-density limit is 

completed by requiring the Debye length to be much.larger than the 

interparticle spacing; this restriction, with Eq.(2.3), is equivalent 

to the condi tion 

t3 11 u) <.< 1, 
P 

where the composite plasma frequency 

w 
p 

2 2 
w (a) 

p 

w is defined by 
p 

(2.5) 

(2.6) 

wp (a) is the plasma frequency and Za the·· charge number of a-type 

particles. The inequalities in Eqs. (2.1), (2.2),and (2.5) are mutually 

compatible for the following temperature and density regions: 

p <.<.10
24 

par ticles/cm3 
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THE PHOTON SELF-ENERGY 

The basic quantities in the generalized master-graph theory of 

I are the line factors /2 (t2, tl,kCX
) [throughout this paper 

~ ~,v. - . 

~ +, v = 2J. In this section we concentrate on gll(t2,tl'~Y)' , 
defined as the solution of the integral equation, Eg. (1-5.21),1,9 

where the kernel Q(t2,tl'~Y) [Eq. (1-5.20) with CX = yJ is 

In Eq. (3.2,) J( (t2,t
l

,kY) is given by the sum of all different 
~,v -

generalized master (~,v) L-graphs and §(t2,tl'-~Y) is given by 

[see Egs. (1-5.18) and (I-5.19)J10 

- y .. 
~l,l(s,tl'-~ ) . 

(3·3) 

In Eg. (3.3) we have 

-. Y- -. Y 
~11,l(t2,tl'-~ ) = Uy(-~)[9(t2 -,t1 ) +;y( .. ~)J + J(1,1(t2,tl'-~ ) , 

(3.4) 
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where c.X1,l (t2 , tl-~ Y) is defined-diagrammatically analagausly to' 

J( l l (t2,tl'~Y). Our abjective naw is to' calculate the phatan self-, -

energy; ··ta db this we first examine the cantributiansta thephatan 

. II 
caunterterm uy(~) in Eq. (3.2) thraugh s~cand arder in the fine-

structure canstant . CXO' where CX o 
2!¥. .. e ruc. Thus, as seen fram Eqs . 

(r.,.2.7) and (1-5.5), this amaunts to' a renarmalizati·on ar dressing af 

the vacuum phaton energy ~ck to 

Ther.e are l8 generalized master (1-1, v) graphs of arder CXo 
aridCXo

2 , and these are given in· Figs. l.through 4 [the rules far 

writing dawn the analytical expressians far generalized master (l-1,v) 

graphs are given in ~ppendix A of I]; In.arder to' gain insight into' 

the general structure af the phatan self-energy; we must go. beyand 

the diagrams in Figs. 1 thraugh 4 and examine cantributians to' the 

second and third terms in Eq. (3.2) which arise framhigher-arder 

iteratians.Thus, we iterate Eq. (3.3) to' obtain 

= 

+f 
where 

and rewrite Eq. (3.2) in the iterated farm 
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In this paper we discuss explicitly the iterations which arise from the 

graphs in Figs. 1 through 4; thus, in Eq. (:5.7), i, runs over the 14 

graphs in Figs. 1 through 3, j runs over the two (2,0) graphs in 

Fig. 4, £ runs over the two (0,2) graphs in Fig. 4 and 

- Y 
~1,1(t2,tl'-~) will be approximated by 

-(2) . Y 
~1,1(t2,tl'-:~) [see 

Eq. (3.4) and the second graph in Fig. lJ, -(1) . Y 
since .:Ml,1(t2,tl'-~ ) 2: ° 

[see Eq. (3.18), belowJ. 

two parts 

Next, it is convenient to separate u(k) yrv 

= u y( k) 1 + u' (k) , 
rv yrv 

into 

where Uy(~\ is the contribution to u/~) from (1,1) graphs [the 

first sum in Eq. (3.7)J, and u'(k) is the remaining contribution which yrv 

involves the (2,0) and (0,2) graphs [arising from the sums over j and 

£ in Eq. (3. 7) J • 

It is straightforward to write down the analytic expression for 

(i) y 
Jrl,1(t2,tl'~)' i=1,2,···,14, in Eq. (3.7) and then to identifY the 

corresponding. self-energies u y (i) (~). 8 Here, for the sake of 
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illustration, we give the approximate expressions for the two graphs in 

Fig. 1. We use 

the lowest order approximation to the particle line factor in Eq. 

(1-5.21), to obtain, assuming mass-renormalizationhas been performed 

.. 12 13 
(see the Appendix), ' 

Z 2(28 + l)M -1 
a a ex 

\ ZN 2( 28rv + l)Mrv -2 ~ (k ~.~ )2W -1 6 L '-" '-" '-" ",2 k . 1 ~l' (~2+~) 
a ~,~ 

where 

X[9(t; - tl)Va(~2) + g(tl - t2)va(~1) + €ava(~1)va(~2) ] 

X exp [ (tl - t2 )Wl ] , 
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- w (k
l 

) - w (k
2

) - .w' (k ) \ a~ a~ y~ 

e Y . - 1 
[ 

(3w' (k) ]-1 

v (k) a ~ 

E: == +1. for a = boson, E =-1 for a = fermion and e
k 

is the a a 
photon unit polarization vector (as in I, we are using the Coulomb 

. gauge). In the high-temperature, low-density limit as expressed by 

Eq. (2; 3)· and with the nonrelati vistic condition in Eq, (2.2), we 

have from Eqs. (3.10) and (3.11) the approximate photon self-energy 

t 'b t' 11 con rl, u lons 

u (1) (k) 
Y' ~ 1 

~. -f:t2 w 2/2fick , 
p' 

2 

L 
2 -1 -2' [waCk)] 

Pa Zrv ~ A.rv -----::2::--------",2 
u, u- u [W~(k) J -' [wa(k) J a 

(3,17) 

. Here, we see that the choice in Eq. (3.16) leads to the result 

~ 0 , 

Once the mass-renormalization counterterm has been introduced, a 

straightforward, but tedious, calculation leads to the conclusions 

14 

L 
i=3 

Thus, the .contributions u (i)(k) . 
Y.. l' 

i=3,,··,14, can be neglected. 
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Now, we examine the contributions to uy(~) which arise from 

the temperature independent parts of JdSJ(~:b§J(~~~ in Eq. (3.7). 

To do this, it is useful to simplify the notation; thus, corresponding 

to the appropriate terms in Eq. (3.7), we identify' symbolically the 

f 11 . t t . ddt t " t' " ' 11 o oW1ng, empera ure ln epen en . quan:1 1esf 

= 2::::= Uy(~) J£pr... , 
j,£,p,r, ." 

where, in simplified notation, 

{'icf3 u'(k). ==-
Y rVJ £pr... 0 

x + .• j 
JT.I.P. 

(3. 21) 

and T.I.P. denotes temperature-independent part. In what follows, 'we 

examine Eq; (3.21 ) with P = r = 2 [recallEq. (3.18) J, and the p and 

rsubscripts used in Eq.(3.20) will be suppressed. 

Next, we attempt to discover the genera~ structure of uyCk); 

in order to do this, we start with a detailed examination of the three 

leading order contributions toEq" (3,.20 ) given in Figs; 5 through 7. 

W' f" d' ft td'" "ult"' 14 e 1n a er some e lOUS man1pa lons, " 

, (k) ~ _ [u (1) (k)' .J2 W-1(1 _ R)-l 
u y 11, Y ,1 ' , (3. 22) " 

,Uy(k}12 U y(k)21 , 

=:,,[u/1 )(k)1 ~;2)(ki]w""1(1 _, R)""l 

~" 

, 
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where 

R 

(3 0C) .c) 

W w~O~) + Wy( -~) , 

w4 - wC/~l) - wa(~2) + w~(~) (3.27) 

Wl wa(~l) - wa(~2) - wy ( -~) 
and Wl is given in Eq. (3.13). The important point here is that 

temperature integrals and momentum sums have decoupled in such a way 

as to enable factorization of terms in Eq. (3.21) and the summation 

of the resultant geometric series. With the results in Eqs. (3.22)-

(3.24), we obtain for Eq. (3.20) 

(3. 28) 

We have examined Eq. (3.20) for all combinations of the graphs ~n 

Figs. 1 throl1gh' J+ (as well as, for a few more complicated graphical 

structures) and have obtained the more general result 

(3. 29) 

where uY<~)l is to be obtained from uY(~)l by changing ~ to -k 

and then replacing, w' (-k) by _wi (k) wherever this quantity occurs , y "-' y,~ 

inside momentum sums. Now, we introducelS 
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and use Eq. (3.29) to rewrite Eq. (3.8) in the form 

w~(~) 

which, in turn, can be solved for 

w' (k) 
y~ 

w' (k) 
y~ 

to give 

Here, it is to be realized that the simple form of Eq. (3.34) is 

deceptive, since it is actually a nonlinear integral equation. 
\ 

(3.31) 

We suggest that Eq. (3.26) and, hence, Eq. (3.32) are formally 

exact. Of course, this assertion is based only on the experience 

gained by the detail.ed examination of the perturbation series in 

Eqs. (3.7) and (3.21) with the approximation given, in Eq. (3.9). Also, 

we note that the inclusion of the Coulomb interaction would riot alter 

the procedures used above. A general proof of, this assertion, iT 

one exists, has not yet been developed. The main question is whether 

energy denominators occurring in Eq. (3.21) _can be factorized (to give 

decoupling) . 

For the 14' graphs in Figs. 1 through 3, relabelling leads to 

the resul.t 

'. 
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[U(i)(k) _ ~ (i)(k) ] 
y ~ 1 Y ~l 

o . 

Moreover, using Eq. (3.19) and the analogous relation for ; (i) (k) 
Y ~ 

and assuming the high-temperature, low-density limit, we have for 

Eq. ('3.34) 

where 

w' (k) 
y~ 

is given by Eq. (3.17), and Eqs. (3.16) and (3.35) 

have been used. In fact, Eq. (3.36) is given, to a good approximatio'n, 

by 

2 2 2 l 
[(1ick) + 11 w J2 == w (k) , . p r ~ 

because, for all k, l2f':tck u/2)(~)1[Wrq~)r21 is bounded by 

(2w 2)-1 L . 2 . 
which is always small, 2 2 

1)ex W1? ( ex ) since w > w (ex) 
p ex 'P - 'P 

and 1) «1 .ex [see Eq. (2.1) J. Thus, in conclusion, Eq. (3.37) 

represents accurately the photon self-energy (in the high-temperature, 

, low~dens ity limit). 

It is interesing to note that the photon self-energy in 

Eq. (3.37) corresponds precisely to that obtained in the pair-

Hamiltonian approximation, which is diagrammatically equivalent to 

considering only the two graphs in Fig. 8. Moreover, as will be 

indicated in Sec. IV, the pair-Hamiltonian can be diagonalized by a 

Bogoliubov transformation,16 and the resulting quasi-photon energy is 

that given by Eq. (3.37). The .d9minant nature of Eq.(3.37) as an 
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approximation to in Eq. (3.34) suggests that. the pair-

Hamiiltonlan'is a good starting point for a perturbationtheoret:i.c 

development· - this point of view will be adopted henceforth .. At the 

end of the following section, the pair-Hamiltonian and the B()goliubo~ 

transformation are discussed in detail. 

. . - . 

.... 
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IV. THE PHOTON MOMENTUM DISTRIBUTION 

In this section we calculate the photon momentum distribution 

(n (k)), [which is the average number of photons with momentum k --
T~ . ~ 

see Eq. (4.16), below]., Thus; we are to evaluate [see Eqs. (1"'3.7) and 

(I-5· 24 )J 

(4.1 ) 

~here v~(~) is given in Eq. (3.14), and the line factor 

0 1 ,1 (t2,tl,~T)' is given by Eq. (3.1): The choice of counterterms 

made in the preceding section leads to the cancellation of all tempera-

'ture independent parts of Eq. (3.2), so that the kernel 

in Eqs. (3.1) and (3.2) involves now only tffilperaturedependent parts 

11 (T.D.P.). 

First, we observe that the vertex functions for the electro-

magnetic iriteractions [Eqs. (1-5.2)'-' (1-5.6) give ris~ to factors of 

11k in Eq. (3.2) so tha't the iterative solution of Eq. (3.1) is not 

valid for k ~ 0; thus, we should always seek noniterative solutions 

of Eq. (3.1). It is easy to find the exact, noniterative solution 

of Eq. (3.1) in the pair-Hamiltonian approximation (which corresponds 

to the two graphs in Fig. 8). However, since the contributions of the 

(2,0) and (0,2) photon self-energy structures are of particular interest, 

we go beyond the simple pair-Hamiltonian approximation and include the 

leading order contributions to 
. T 

gl 1(t2,tl'~) which arise from these , 
structures . Thus, instead of the graph? in Fig. 8, v!eexamine those 
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in Fig. 9., Corresponding to the diagrams in Fig~ 9 and for the selection 

of counterterms made in the preceding section, the kernel in Eq. (3.2) 

is 

,4.2) 

where 

E (4·3) 

and W' is given in Eq. (3.26). Now; with Eq. (4.2), the line factor 

in Eq. (3.1) is obtained by solving the integral equation 

In the high-temperature, low-density limit 

approximately by Eq. (3.16) and Ur(2)(-~)1 

U (1) (-k) is given 
y ~1.. 

by Eq. (3.17); thus, in 

(4.4) 

this case, the kernel of Eq. (4.4) diverges for k ~O. This causes 

no problem since the exact, noniterative solution to Eq. (4.4) is 

found to be 

where 

(4.5 ) 

II 

I 

• 



,. 
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-1 
M 

- -1 
exp(-~E) [1 +[v (-k)] } - 1 . 

Y 'V i 

Next, we use Eq. (4.5) as an approximate solution to Eq. (3.1) and 

(4.6) 

introduce the lowest order temperature dependent contribution of the 

diagrams in Figs. 1 thrpugh 3, namely that from the second diagram in 

Fig. 1. Thus~ to th,is order, we obtain 

(4.7) 

where F(t2,tl'~Y) is given by Eq. (3.12). Since Eq. (3.12) has a 

factor Ofk-l , Eq~ (4.7) can not be used to construct an iterative 

solution of Eq.(3.1) for small k. Analogous to the procedures 'Used 

in the preceding section, we have developed a partial summation program 

to obtain solutions to Eq. (3.1) 'which cause no problem for··small k. 

However, the resulting analytical expressions are not particularly 

illuminating and are perhaps not useful, since it is difficult to assess 

the relative importance of neglected terms in the integral equation. 

With these points in mind, we use Eq. (4.7) to estimate the photon 

momentum distribution in Eq. (4.1). In the high-temperature, low-

density limit we obtain for Eq. (4.1) with Eq. (4.7) 

v~(~) + v~(~) EM(W - E) -1 [exp [SeW - E)] - l} 

+ (2snck)-1 L n2
w
p 

2(0;) [w~(~) + wo;(~)]-2 . 

0; 

(4.8) 

We wish to explore the meaning of this result, by examining its lowest- ' 

order approximation; thus, we use Eq. (3.19), Eq.(3.16) for 

and Eq. (3.37) for Wy(~) to optain17 

. i 

U (l)(_k) 
Y , ~ 1 
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(n (k)) 
y'" 

+ 

where 

ex 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

with -w (. 1 ) (. -k ) L k - (1 ) ( , k) ='llC + u· - 1. Y ..., Y N 
We see that Eqs. (4.8) and (4.13) 

-1 diverge as k for small k; this same divergence is also exhibited 

by the Planck or free-photon distribution function. However, this 

kind of behavior is of no consequence, since in calculations of all 

measurable quantities the divergence is removed by the density-of-

states factor. Thus, in lowest order, we have obtained a result which 

does not suffer from the infrared divergence. It is interesting to 

note that the first term in Eq. (4.9) is independent of the system 

temperature; the electrodynamic origin of this term is not clear. 

lri closing this section we wish to ~ndicate th~ connection 

between Eqs. (3.37), (4.9), and the pair-Hamiltonian, Hp. It is 

straightforward to extract Hp from the system Haffiiltonian;16 the 

result is 

II, 

• 



• 
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H 
P 

::: 

, " 

2 2 [(nck + 11 w /2nck) at (k) a(k) 
. P. --

(4.13) 

whereat (!:) and a(~) are photon creation and annihilation operators. 

The pair-Hamiltonian can be diagonalized by means of a Bogoliubov 

transformation; thus, one introduces the quasi-photon creation and 

annihilation operators bt(~) and b(~) as follows: 

at(~) ~Uat(~)Ut _ f+(~) bt(~) - fJ!s) b(-ls) , 

f (k) ~(k) - f (k) bt(-k) +rJ rv __ rv 

and f (k) _ N are given by Eqs. (4.10)-(4.12). 

readily verifies that 

H' 
P 

U H . Ut 
P L 

k -

One 

(4.14) 

(4.15) 

where wr(~) is given in Eq. (3.37). Now, we can also relate the true 

photon momentum distribution and the quasi-photon momentum distribution. 

If we introduce the transformation in Eq. (4.14) into the definition 

of the photon momentum distribution, namely 

(4.16) 

we obtain 
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In Eq~ (4.16) p is the density operator for the grand canonical 

ensemble., and in Eq. (4.17) 

(4.17) 

P t = UpU t (4.18) 

One observes that Tr [p t b t(~) b (~) J is the quasi-photon momentum 

distribution; The quasi-photon momentum distribution has been calculated 

earlier (for the two diagrams .in Fig. 1, as well as for a Coulomb 

correctiori ),6 and, on the basis of Eq.(4.17)i t~e result is in accord 

with our·lowest-order results for the true photon momentum distribution. 

We see that Eq.(4.l7) is, in lowest-order,equivalent to Eq.(4.9); 

this. suggests that the pair-Hamiltonian is a useful choice. of unperturbed 

Hamiltonian for a perturbation theory of interacting radiation and 

18 . 
charges. Moreover , Eq. (4.17) provides the· formal relation between 

the photon and quasi-photon momentum distributions; however, this 

relation is riot as useful as it may appear, since it is now necessary 

to construct a calculational scheme f9r evaluating the las.t. two terms 

in Eq.(4.1'r) [note that these terms are inherently (2,0) and (0,2) 

structures]. Finally, we observe that the infrared divergence does not 
.16 .. 

Occur in the quasi-photon representation; thus, ·in Eq. (4.17), the 

. infrared divergence has been relegated completely to the factors 

II 

I 



• 

-21-

V. DISCUSSION 

A principal goal of this investigation was to determine the 

importance of- the complete photon self-energy analysis on the calculations 
I, 

of the properties of photons i~ a fully-ionized gas. The most interesting 

result of this study is the ph6tonenergy-momentum relation given in 

Eq.'(3.34), and we note that the form of this expression is determined 

primarily by the analysis of the (2,0) and (0,2) photon structures; thus, 

these structures, which have not been included completely in any of 

the priorinvestigations,3-7 playa very significant role in determining 

the dres$_ed photon energy. 

The expression for the momentum distribution in Eq. (4.8) also 

has certain features not observed before, since earlier calculations3- 7 

did not include the self-energy analysis of (2,0) and (0,2) structures 

and since some of these calculations6,7 were for the quasi-photon 

momentum distribution. It is recalled that the noniterative result in 

Eq. (4.5) was important in determining the result in Eq. (4.8). At this 

point, we remark that a complete understanding of the properties of 

photons in an interacting system (as considered herein) cannot be based 

solely on the quantities which we have investigated, and additional 

functions must be determined. In particular, knowledge of the dynamic 

structure factor is of extreme value, since this can be used to under-

stand the modes of propagation of photons and also the related 

lifetimes. 

In Sec. IV we have indicated that in the photon momentum 

distribution the infrared divergence can be extracted by means of a 
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Bogoliubov transformation,but that it will be difficult to calculate 

t~e resulting expression. Since the infrared divergence is of electro-

dynamic origin, it would be more pleasing to analyze this problem on a 

more fundamental level. .Thus, we are currently pursuing the infrared 

problem, along the lines initiated by Kibble,19 by using a nonseparable 

Hilbert space for describing photon states. 

As a result of this investigation .. we conclude that the new 

formalism in I .. in addition to performing a complete self-energy 

analysis, is much simpler in practice than its predecessor.
2 

As a 

direct outcome of the simplifications introduced by the new formalism, 

it has been possible to sum certain important infinite series to all 

orders. Another'important feature of the theory in I is the counterterm 

technique. 'It is apparent that the technique is particularly well-suited 

for investigating the self-energy properties associated with single 

particles or photons (as opposed to collective excitations); examples 

of this type of self-energy problem are provided by mass-renormalization, 

. 20 
the dressed photon energy and the one-particle problem of MG. The 

Coulomb and infrared divergences seem to be less susceptible to a direct 

application of the counterterm technique. 

The connections between the line factors in I and single-particle 

. . 21 
Green functions have been established recently. Thus, starting with 

the line-factors in Sec. TV .. we could now calculate the normal and 

anomalous single;;'particle Green functions for the equilibrium fully 

ionized gas-- such calculations have not yet been performed. However, 

in the present paper .. we have observed consistently the ( t - t )-2 1 
21 temperature dependence established in the Green function theory. 

~I 
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APPENDIX 

Tn the calculations of this paper nb use is made of the explicit 

expressions for the (1,1) graphs of ()rder 2 
0;-o in Figs. 2 and 3, since 

(after mass renormalization) they are much smaller than the other 

contributions which are taken into account. On the other hand, if the 

expressions for the graphs in Fig. 2 areexarnined, it is found that 

(before m8:ss renormalization) these expressions diverge for large 

photon momentum - this is a manifestation of the ultraviolet divergence 

of quantum electrodynamics. The need for mass renormalization occurs 

because in_the Hamiltonian the electromagnetic field associated with 

each charged particle is separated from the particle so that bare 

particles interact with the total electromagnetic field. Since it is 

meaningless from an experimental standpoint to separate a charged 

particle and its associated field, it is clear that the separation 

mentioned above must be a mathematical convenience and can be of no 

further consequence. The mass-renormalization technique developed in 

I is designed to replace bare-particle masses by their-experimentally 

observed masses. Below, we outline how mass renormalizatioh is used 

to cancel the ultraviolet divergences in the graphs in Fig. 2 to 

obtain the finite contributions from these graphs. 

The mass-renormalization procedure developed in I is quite 

straightfonJard; however, since_ some skill may be involved in applying 

the technique, we now. indicate how one approaches the selection of the 

mass-renormalization counterterm. Thus, following I, we combine _ the 

. kinetic energy of the bare particle 

I! -

l; 
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and the mass-renormalization counterterm 

so as to achieve the correct single-particle kinetic energy: 

Above, M (0) 
a 

11M (0) 
a 

is the bare mass, Ma is the observed mass and 

(A.l) 

(A.2) 

(A.4 ) 

As noted earlier,5 the kinetic energy in Eq. (A.)) is to be quadratic 

in k so that Da .must be independent of k. Then, the identity in 

Eq. (A.4) is used to re-express the ,bare masses in the interaction 

vertices in terms of Ma andDa , which in turn determine, Sa(k). 

Next, we combine the diagrams in Figs. 1 and 2 as follows: 

cX(l) 
1,1 

J{(2) 
1,1 

+ J{(4) 
1,1 

+ X (5) + 
( 1,1 

+ .xeS) 
1,1 

(A.5 ) 

(A.6) 

By relabelling, one can'extract a factor J(i~{ in Eq. (A.5) and a 

factor J{(2) 'inEq. (A.6);in the remaining factors in Eqs. (A.5) 1,,1 

and (A.6) it is possible to select the quantity Da to cancel the 

ultraviolet divergences in these terms. We state the result: 
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This defines a . counterterm, Eq. (A~2) ,which ca~cels, through order 

2 
etO ' the ul traviole.t. divergences· everywhere in the theory. In order 

to obtain Eq. (A.7) the following identities (relating to the angular 

integrations) are useful: 

where 

8rr/) . , 

8rr/3 '. 

~. is the sum over polarizations of the photon wi th momentum 
'-(...4· 

. II 
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FIGURE CAPTIONS 

Fig. 1. The two generalized master (1,1) graphs of order CX
O
" 

Fig. 2. The six generalized master (1,1) graphs of order CXo 
2 which 

'contain ultraviolet divergences. 

Fig. 3. The remaining six generalized master (1,1) graphs of order 

2 
CXO - these graphs do not lead to ultraviolet divergences. 

Fig. 4. The four generalized master (2,0) and (0,2) graphs of order 

CXo' 

Fig. 5. "The diagrammatic form of the series in Eq. ,( 3. 21) for j = 1, £ 1. 

Fig. 6. The diagrammatic form of :the series in Eq. (3.21) for j = 1, £ = 2. 

Fig. 7. The diagrarnrilatic form of the series in Eq. C3 .21) for j = 2, £ = 1. 

Fig. 8~· The diagrams which, in lowest order, are equivalent to the 

.' pair -Hamiltonian approximation. 

Fig. 9. The diagrams considered in the calculation of the line factor 

in Eq. (4.5).' 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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