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ABSTRACT

We extend the résulﬁs of a group-theoretical
éﬁalysis of the t <0 muitiperipheral equation to the
case t =0 for pairﬁise equal masses. Using variables
discussed in a previous paper, we diagonaiize the equation
in the BCP model with respect to the 0(2,1) group and
relate the solutions to the equation so obtained with the
solﬁtions obtained after diagonalization with respect to
the 0(3,1) group. Poles in the 0(3,1) partial-wave
ampiitude giye rise to the expected sequence of daughter
poles in the 0(2;1) partial-wave amplitude.

At general momentum transfer, we estéblish factor-
izafion at the 0(1,1) poles in the decomposition of the

BCP amplitude, and present further simplifications to the

‘ diagonalized equations'based upon this model.
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I. INTRODUCTION

The recent group~-theoretical analysisl-B'ofvthe multiperipheral

equationh_6 with respect to the 0(3,1) and 0(2,1) groups has

_ provided a natural framework in which to investigate the constraints

that-unitéfity‘imposesvupon'the residues and tréjectories of the Reggef
daﬁghter.family near t = O. ‘In fhis paper, we éhall examine some
preliminary?prOblems in this direction.

Since different sets of variables have been‘used to writebthe ‘

6,1

t =20 and t <-02’5 equations, it is important to study first how

fhey matchvin,the limit ¢ 5‘0. Moreover, if we take the BCP7 ﬁodel
for the produéﬁion ampiitudes at t =0 ’as. CD did, it is essential
to transléte_this.model in the t <O varidblés by keeping the non-
leading powers invthe asymptotic expansion. |

The BCP variables, used by CD énd MMl at t = 0, are essentially
the-parameters of the 0(2,1) groups which preéerve‘thé mdmentum transfersi
in the multipéripheral chain.‘ The t < Oi variables,g’5 which we shall
éall "£hree—dimensional BCP variables," arerihsfead:thevparaméters of

the little_grqups of the Loréntz three-vectors k, associated with each

upper and lower momentum transfer Qu I by the formula
. : %

1 1

valid in a Breit frame of the overall momentum transfer Q. - Since ‘the
most important contribution to the phase space comes, for t sm&ll,

from spacelike g's,B we shall often refer to the three-dimensional
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BCP variaﬁles as "0(1,1) variables"” and to.the poles iﬁ the respéctive
Fourier transforms as "0(1,1) poles." | |

In fhis language, the pufpdse‘of fhis paper is (a) to establish
the factérization at the Q(l,l) poles in the 0(1;1) deéomposition of the
BCP model ét general momentum transfer, and (b) to use the three-
dimensionélVBCP-Variabiés gt t = O; giviﬂg.a_relation between the
O(2,l)Iand O<3,l)‘décompositions of the incomplete absorptive part of
the scattering ampliﬁude. | ‘

The‘lattei,relaﬁion; which_is_ﬁodél-dependeﬁt, gives, so to
spéak, the eigenfuncti6ﬁs of the Regée daﬁghtér poies in~termé of the
ones bf the'Lofentzvpoles,, Tt is therefore similaf-to the dff-shell
vrelafion fouﬁdB fof‘thé Bethe-Salbeter equation. As we mentiéned
before, thét would'be thé natural starting point for the dynamical
study’of'dérivatives and residues of the daughter sequence near t = O.
However, we have hot éxtended our anélyéis further_ih this direction.

The Q(1,lj expansion of thé BCP model for‘the production.
amplitudes:has béen‘éiven in MM2; .WevderiVe a simplified form of this
expression and of the resulting multiperipheral equation in Sec. II,
and we shoﬁ-that to eéch Regge pole.in the BCP expansion there
corresponds an infinity‘of integrally spaced 0(1,1) poles-with
factorizable résidues. |

| In Sec. III, we také the t = O 1imit of this équation for

pairwisé eéﬁal masses and relate the incompleté abéorptive part in
this iimit with thaf of the t = 0 equation of CD. This relationship

then implies a connection between the 0(3,1) and 0(2,1) decompositions

O
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of the respective incomplete absorptive parts, from which we can derive

the eigenfunctions-of the Regge poles in the daughter sequence from

that of a given Lorentz pole.

In Appendix B we also simplify the diagonalizéd t =0
equation of }MM% using a technique similar to that developed by CDM
for. the tv< 0 equation. In Appendix D‘an-AFS—type.model is treated

as an example.
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II. THE t <O EQUATION FOR THE BCP MODEL
We begin with a review of the three-diﬁensionéi and four-
dimensional BCP variables, which we have indicated schemaficaliy for
an internal segment_of the.multiperipheral,ladder in Fig. 1 and for
the end of fhé ladder in Fig.'E. The three-dimensional BCP variables
(cf. CDM énd MMg), COnsisting of the x Dboosts q; and y boosts
gi,'bﬁild up the 0(2,1) trénsformations ai; définéd recursively,

a4 = %4%%a o (2.1)

while the fouredimehsiohal BCP variables, for the lower amplitude,
consisting of the z boosts q,; and 0(2,1) transformation

€4

— » ! : 3 —~ 3
i f‘rz(“zi) bX(EZL) rz(in), build up the 0(%3,1) transformations

2,5 defined recursively,

8,441 = %pi%i8p 141 (2.2)

An analbgous set of four?dimensional BCP variables is defined for the

‘upper part of the ladder, which we'distinguish:with the iabel us

Qi Bui? etcil The 1n1t1al transformations ay and éﬁO are defined
respectively in terms of the initial 'z rotation ¢a and initial
PO Lo R ey ’
rotatlon T, '_rz(¢a) ry(BEa)’ :
%~ ¢a’ :
(2.3)
a[/o = rza )

LA
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A similar set of variables defines transformations at the other end
of the ladder, and we obtain theftransformations‘ bb and bzb defined
in CD, CDM, and Md> and- Mf: '

by = Aty

| (2.4)
P = 2 nn%, a1 e’
where Tpo = ry(sz)rz(¢b).
MM2 have given the Lorentz transformation, which relates the

three-dimensional BCP frames (i,r), in which

-[0,0,0,(—t)%] b

L R
L 1 i ,
in = [O:ki)oywi - §<’t)2] ) . (2-5)
| - l. i. ‘ :
QUi = [O)kiﬁoywi f E(—t)?l ’

and Qz,i+l and Qu,i+l lie in thg xzt plgne, to the four-dimensional
BCP frame (4i,r) in which

Qg‘

- 1 . . ‘
g1 = [O)O)O}(-tzi)e]‘, : (2‘6)

i%l lies in the tz plane. The transformation consists in a

y rotation €

and
nd 9y, _ '
., which brings Q, ., in (2.5) to the form (2.6),

£,i7 _ 4,1 . :

1 1

s followed by an x boost h

v/
y i+l°l2 Similarly, we can transform from the frames (i + I,E)' to -
, , v | -

i3 which removes the x.  component of

Q



-6- o _UCRL-19A17

(¢ 1 +1,8) by a y rotation: Qé i+l followed by an x boost
N .. , ’ N ' .

f;li+1' The parameters of these Lorentz transformations may be
3= - .

calculated in terms of ki’wi’ki+l’wi+l’Mi’ and t,_or equivalently

in terms of tﬁi’tuiftz,i+l’tu,i+l’Mi’ and t. The formula for

e . 1is simply

£i
_ | 1
. _ -+ ]
sin 6,. = ki/( ti) _
| . | (2.7)
Loyt
cos 0,y = [wy - 3(-£)21/(-t;)%
while f  | : aﬁd ho . depend-upén all of these Variables.l3
te,in Ty _ \

Analogoﬁs‘variables are defined for(the'upper’half of the ladder. Thé
fact that the‘ f's1 and ‘h's adjacent to one rung of the ladder
depend onlyvupoﬁ.thé Lorentz’scaiars associated with the-rﬁng is
cfucial tovfhé factorizapibn condition. o

v'. At'fhe'ends of the ladder the above approach must be modified
with 6 being feplacéd by:the z - boost uZa-'and h by the y
rotationf Béa,'as indicated in Fig} 2. _From'these two figures one can
now réad 6ff the impbrtaﬁt identitieé relating the three- and four-

dimensional BCP variables:t

(a) o 8y = Ty LBy o= oy Cvys
a1 o
(®) €53 793 9 500 = Py Yy Ty i (2.8)
, -1
(c) : 81 = Yga %1 % Py
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The Toller angle w,, = is fixed by formula (2.8a)

_ b Vet He i+
in terms of»‘ﬁ ,Q 417 and four sets of ki and W, however, to leading
order in exp !C | and exp |§ l| the dependence is reduced to the
varlables?  sgn Ci’ sgn €i+l’ ki’ Wi and ki+l’ Wiqe In the same
approximatioﬁ, it is proper £o consider the depeﬁdehce.upon the Toller
angle as residing in the multi-Regge vertex function, and the reduced
kinematical dependence then forms the bésis for a simple factorization
of the regidués as functions of the k's and w's. In general, however,
the Toller angles aré not convenient kinematical variables for t < O.
They have,-in effect, been replaced by the extra‘set of momentum-
transfer variables.

The procedure for the 0(2,1) diagonalization of the t <O
equation given by MM2 and CDM begins with a decomposition of the
unitarity integrand with respect to the 0(1,1) group paramefers £,

We shall concentrate upon the 0(1,1) decomposition of the lower BCP

amplitude and later will combine lower and upper amplitudes to form

:the unitarity integrand. We'begin with the BCP amplitude for the

production of N particles:

S . ar, |
(N) - ~ i% ., D7, () Gzomop (ty) | (2.9)

m My ee m
mN+lmb Yi’zi’pi a 0 1

(t }-1

rl Y Y Y. b s
N+1 b
ﬂ (g 6,50 (8,,) G D° (r) ,
17 74ympyt 1 by Pre Py 00
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where

-2-1 B R B
C;Z = Um 'C?mm’ Um' ’

(2.10)

.
#l

(4 +m+121)/(-4 +m),
and C;Z" is Tollef'$15 O(2,l)_rebreéentation function of the second |
kind. For thé ioﬁer~amplitude m, is the z compbnent of the spin
of partiéie' i in thé frame (z i r) for ’i“:Il,---,N %_l, and
sama, H mﬁ descrlbe the splns of the initial partlcles : Congervation

of hellc1ty ‘requires that

G = 8

fmp ~ m,Z-p Gmp ) (2'11>

If we usé the formula

A P Aoy 7 0=l O -
Qe ~ ) p ) Qe o ) (2.12)
ST -3k - . '
for g = afCh which is valid term by term in an aéymptotic eXpansién of

- both sides. in exp. lel, and the O(l 1) decompos1tlon of the. CZ

1 functlon, glven by (A 51),

I+

Y

0 - Z S S o) (e
B ~ 1n=0 | ,' o |

T=

we may write
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~

A, e - Zﬁg,m(f) orhlam 0) @(rC) B ), (2
whefe
O _ -
Dp,nT(f)’ = Z: » (f) VJ,nT ,
- o J
(2.15)
Big,ﬁ(h) - }j WQ )k kz(h) :
‘ k

Equation'(E.lM) expresses the decomposition of an 0(2,1) contribution
in terms of a series of factorized 0(1,1) contributions, and is valid

as an asymptotic relation in 'éxp |¢]. If we substitute Eq. (2 1)

into. (2.9), we obtain the 0(1,1) decomposition of the BCP amplltude,

a 31mp11f1catlon of an expression already glven by MM

) -im f, amy , BISAC R
M _ R e _Um 0. T (Ea’wa’ kl,wl? e N (Tlgl)

Y. 2’10
i’
m A ' v C (a.-n,)
1 25\ ™Mol g1 £ ).
X U, 1’T1’n2’ 2(kl,wl, ky,u,) € 252
mN+1 b | ' o -im By

(k

SE ) e ,  (2.16)
N+1’TN+l’mb b7b |

W
n+l’ n+1’"
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where we have omitted the sum over Y for the sake of clarity. We have

defined

| | . g N ’\a’ . t N ' 1%
Ul;l’,rsnv,rv - DnT,B(h) Ggmpv Dpv,ny,ry(f ) . (2'1()

£,p'

‘We shall now apply the aboﬁe results for the decomposition of
the production. amplitude to the{decompoéitioﬁ of the.unitarity.integrand.
In writing the unitarity integrand with the BCP form (2.9) for the
produétionlaﬁﬁlitude,.one,mustVUSe éare in summing.over the intermediate
particle_helicities_'mi. With fhe convention adopted above, which
giVesza simple forﬁ (E;lO)vfor the conservation of helicity at the
vertex, the.helicity.of pérticle ’i ‘1s measured with fespect to different
axes for the.lower and ﬁpper amplitudes (see Fig. 1). For the lower
amplitude, iﬁ is measured along the z axis in the frame (p i, £), a
rest frame.bf particie i,'which is related to (£ i, r) by a =z boost

‘The corresponding frame for the ﬁppef amplitude (p i, u)

17

Vz,i' |
differs from the frame (p i, £) by a y rotation, which we designate by '
Xi‘ (That orily a y rotation is required'is most easily seen by observing

that the sequence of transformations v -1 h -1 9__1 e, h v does not
' v ' S u u /2

affect the y component.) Naturally, this rotation is zero when +t = O,
since in thisvlimit the frames (£ i, r) and (u i, r) are equivalent.
. . » : L , . 2
The rotation Xi depends upon the varlables ki, LIE ki+l’ Wiyo My

and t,18 and therefore introduces no new complications for the

factorization condition. " To sum over the intermediate helicities, we
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must therefore insert for each intermediate particle the function

s
D.° (x), and sum over m
m,m, S v

Aintermediate particle.

and mu,’where s 1is the spin of the

A

£

If we now apply the decomposition (2.16) to the lower and upper
amplitudes alike and'combine the intermediate particle helicities as
prescribéd above, we obtain the O(l;l) decomposition of the unitarity

21

corresponds an infinite sequence of 0(1,1) contributions, the first

integrand. To each pair of Regge trajectories « and aui’ there
of which factorizes directly, the second of which is a sum of two
factorizable;tefms, and so on. The degeneracy comes from the "cross
terms” in the product of two series of the form (E.ih). The meaning of
this degeneracy becomes clear when 1t is understood that the product

of two (;7 - functions may be represented asymptotically as a sum of Cz

functions,

A= =1 * o Avey -1
[aj E (C)J {ajgﬁé (C)] ~ Y C(a,a,,vs 3,53,,3)

u u P
: v
~ —(au+a£-v)—l
OO () clogayvs kg k) (2.18)
where
¥ - _
Clogs0pv5 Kpoky,k) = vgk,kz-ku Clays0psvs kyskp) 5 (2.19)

1

and simiiarly for C'.l9 Each _(:z function in the series contributes

' in turn a single series of factorizéble.O(l,l)'contributions via
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(é.l}),beginning with the ferm exp[!t](a + oy - v)]. Rather fhan
working with.Eq. (2. 16) directly in the unltarlty 1ntegrand we adopt
the follow1ng strategy, which makes the connectlon w1th the t =0
formalism more transparent. We substitute Eq. (2.12) in Eq. (2.9),
expressiﬁg fhe'upper and lower BCP amplitude in terms of the Cié (£)'s.
Then_we ébmbine.the upber_and lower,émplitudes to form the unitarity
_integrand. If we then apply»formula (2.18) to the product of upper

and lower (27 functlons at each llnk -the result is the follow1ng

ﬁnitarity 1ntegrand:

z(N) u(N)* Oy _lma¢a' JgrTy
~ , e U“, (E ,k 3 w ,k)
. . om g Ta’a 171
N : am— a“l

, Ja?Jb ‘ : v

s | |
X aalg (C) U ( Wyo l’ Wg;k )a 2 (CQ

YN+1‘] -im B

: X kN l,mb 41 kN+1 Bprlp) e 70 | .(2'-20).

where we have lumped. together into f' the sums over Tﬁ,'yk; anda v

and have Written at each link

. = Q. +0., -V (2.21)

The vertex functions are (see Fig. 3)
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oo -
Ukj" (w)k5 W ;k.) = C(a ;GE:V: k k k)
‘ Ju’qz’ku’kﬂ’mu’mz
u- u S
D, , (h.)) G Do (£)1 D (%)
X ” kuz v ﬁu upu Pydy mumz
:Pu
R a, ' a' ‘
‘ (h ) G ' D (f ) C!(Q',Oﬁ',v';j',j',j') )
X | éZLT‘_ kgzz v Ezmzpz pz g w e u’“s
i
- (2.22)
: JosTy T, yd o
with similar expressions for U a’ 'l and- U N+l b .- "We have put
'ma =my - W and m = mﬂb = Moy and the sum over Jg and Jy

includes'the‘usual channel spins at the ends of the ladder.
If we apply the 0(1,1) decomposition (2.13) of the (;7
function to Eq. (2.20), we obtain the form of the unitarity integrand

‘required by CDM for the 0(2,1) diagonalization of the multiperipheral

equation. We deflne, accordlngly, the 1ncomplete absorptlve part
-Bl nt (a) and its partlal-wave projections biY£T; For a discussion
a’ a

of the dlagonallzatlon of the 1ntegral equatlon, see CDM and MMg

After dlagonallzatlon the equation reads
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/‘EY’ 1 /‘ZY' ' ' t l
bm;’n o (k W ) (O)bma,n'T'(k ,w')

+ Z fdkdw%‘“ (kw) UnTnT(kw, k',w)
TﬂlT. o .
X Famyerfa, @) s (@:23)

where the index n refers to thevd(i,l) cohtributions resulting from a
- A . : :
single"ay,"The function. d -is described in CDM. The vertex function

U is defined through Egs. (2.13) and (2.22):

W' . . T TY' ' Y-' o
UnT;n”T' B Z'», WnT,kakj"_ Vj7;n’T" P (2.24)
v . ‘k,j' . . .
. L agy R e e BT : .
- The funetions b are related to. the functions . b appearing
o mo,nT - v _ m_,nT+ |
in the modified 0(2,1) expansion.(3.8b) and (A.k5) by
gy fhewiewla e minle w1 - tloy - m)l L,
ma?nw+_ . ' _ r(2¢ + 2) m, ,0T ?
(2.25)

which follows from Eq. (4.14) of CDM.
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III.' 0(2,1) AMPLITUDES AT t =0

We have shown -in Sec. II that the O(? 1) and O(l 1) expansions
of the productlon amplitudes are equlvalent as asymptotlc serles in the
parameters exp’]@[, connected with the subenergies. At t <0 we
have also defined, through the'unitarity'integral, the inéomplete
absorptive pa?ﬁ' B;" (a3 k,w), a functidﬁ of the overall O(S,l)
transformation a, ?or the nth O(l l) "daughter" of a given angular
momentﬁm dy;: aYu + aYZ - Vv, resultlng from the addition of the upper

and loWer Regge polevcontributions. At t = 0, the incomplete absorptive

part can be defined either as a function of the 0(2,1) transformation a,

i

or in terms of the 0(3,1) transformations au-: a a. They are not

2
the same function in different variables because they are constructed
by splitting off different factors_from the_compléte absofptive parts,
depending upon whether they are derived from a factorized 0(1,1) or
0(2,1) expansion of the unitarity integraﬁdf By using the explicit

form df these expansions, we shall now derive a relation between the

two incomplete absorptive parts, which eventually will give the relation
between O(é,l) and 0(3,1) partialfwavevamplitudes.

' =g at t = 0, the Clebsch—Gordan combination

Since gz = g,

of upper and iower amplitudes is Simple. Following CD, we assume

' J ay. ~-0_ -1 YT,
N) a 1 11 1’0
7S 2 - > D% )R ). (g) R L2(t,b)
amb rnamO a mO 1 amoml 1 ml 1’72

m. .
1’Yi

Ty 1b ' Jp
X RO (tg,) D ()

, (3.1)
Myl ’
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and we'defiﬁe thé»incOmpletebabsorptive‘bart Bé_mfkg,t) as in CD, by
removing the lasf factdrs_ RD" in the uﬁiﬁari£yvintegréi. If we compare
the'above.expansién_of the unitarity iﬁtégrand with thatvobtaihed
vdifectly from (2.9) using (2.18) we»see,_ﬁy matching terms in fhe
asymptotié1§Xpansion;ﬂthat A ,v

:._ | ;vil — ._i E S

Sﬂﬁ‘pr'Yf = j:::> e ,az,v, £38,,8)

Ay ﬂz,pu,pz,m

. \
X (G e A CARLCYTAE 15 W5 ) - ) - (3.2)
.X  Bympy © T4 D, ’ z’ 3 PyoPys ? . -

where thé.fagtor aép; follows from (2 11) and (2 19) (hellc1ty
éonserVatioh){. oh‘ is. short for aru; etc., and T _;s short for
{T Yz,v} A _
| The O(l l) expans1on of (5 l) can be obtained from (2.12) and

(2. lB),and we. get

| | v - - -im .¢' ,a'r ¢, (a -nv ) '
N | zi T151 %
lM(a‘Z’bl N ¢ 2’1" 1(}_11’w v e _Y BREEX

Tong Ty
| n o wt(a,mny)
y male - 25\ Oy
X Up- Tl,n (kl’wl’kE’WE) S 9<T2§2)'7'
Y. b - -im ¢
= N+1 7 :
Up - (eyyp¥yen ) @ ) - (3.3)

nN+er+1’mb.
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where

= Ny 18 A SR )
Un’f’n'T' - Z nt, (h) R Dp,n"r'(f ) . - : ()").
o P ' '

| vEéuation (5-&) af£ér'substitution of (3 '0) is to be compared
with the expfession (2. 2&) after substltutlon of (2.22), in fhe liﬁit
-t = 0. W1th the present procedure we flrat combine thée upper and lower
Cz-a-l(fgh) in the Clebsch—Gordanfsequenoe and then factor the functions
Ba(h) for asymptotic t's, whereas in Sec. II we had performed the same
opefationé-in opposite order. The equivaleoce ofvthe'two procedures
and the:equality of respective t = O residue fonctions énd absorptive '
parts folloQ from the property of the coefficiente C _and C' |

schematically shown in Fig. 4. Hence we conclude that
Un’l.’,n"[’ = ‘UnT’n’vT" ) .
Looking at the expansions in Egqs. (3.1) and (3.3) with (3.4).

in mind, We see that their equivalenoe implies thatgo K

N Y L T -
(sin @) B mv(aGh) E B, ,nr(a) DnT m(h) . (3.5)
a a
. nt .
R . L - 21
where the factor sin 6, = ki/(—t)2 comes from the phase space,

and use has been made of the relation [Eq.>(2.8o)}

& = u ™t aoen | | (5.6)

and of the fact that ua =1 at t5='0 for pairwise equal masses.

Note that, if we parameterize
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a = rng, reco(3), n=B (W), gco(2,1),
a = ¢.n 3 2 ¢ = RZ(¢)’ nE BX(n) P £ = By(g) )
' - ' (3.7)

qu (%3.5) is valid as a relaﬁion betweenvaéymptotié serieg in e1§l.
This follows.from Eqs; (2.12) and (2.13) on which (%.3) is‘based, which
are &alid in the same asymptotic sensé.

| Haviné derived the relation betﬁeen inéoﬁplete absorptive
parts, we nbw proceed to reiaté the partial-wave expansions. Consistently
~with the asymptotic méaning.of (5.5).we shall perform some'manipulations

on the 0(2,1) and‘O(BQl).deCompoSitions in order (a) to express the

l.h.s. and r.h.s. of (3.5) in terms of the residue functions bakM

£

and ba which are the meaningful quantities in the asymptotic sense

,nT.

and whichfcan be directly deduced erm the diagonalized equations
(B.15) and (2.23), and (b) to extract the h dependence of the l.h.s,

consistently with the r",h.s.22

Problem (a) is solved in Appendix A,in which we prove that, for

Z

asymptotic g and g,z) we have2

ico »
~ ~ N - ’ AM =M ~ ’ .
Bm m(a) : : ']r afx] bas Dj m xysm(a) ’ ' (3.8a)
a a a .
: M,s 0 ‘ S :

1 . : vz - R ' - ) —ganT' .
Bm ,nT(a) - fdl‘ﬂ] bm ’nTr Dm N’ Tr(¢q) € @(Tg) s
& . 7 - | a a’ n (3‘8b)

‘»
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where we have. dropped the index Y;'We'haVe'defined 'anT’E ;r(a -n)
. and
M ~
) D ' = MM o a-1,~ -a-1
DJ m ,asm(a) J m_ Es o' (r T]) U ' C] (g) Um ,
. -
(3-9)

and s = * is the label of the two C(2,1)'s

reduction of the 0(3,1) group.gJ
Problem (b) is solved by noting that
|t |

(3.7) in (3.6), when is asymptotic, so

g = fEh,

where f €

(3.9), we obtain the right h dependence

o o o
=AM ‘;— M nt o
Dj m ,asm L_a J m, 3Qs, nT(¢nQ) ¢ Dpz m(h) G(Tg) » (5.11)
where
M i} M
vjm;as,nT(b) - jm,as,m' (b) Vm ,nT
. m’
i .
= 27 lim - AM ' ( .
| x o [m @) jm;as,w(b)}, (5.12)
y | o e O | .

nt.

and the last equality follows from the definition of v

(a.50).

0(2,1).25 Then substituting Egs.

which occur in the
with the parameterization
is

(3.10)

(2.12) and (2.13) into

in the form -

m',nT t
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By.making use of the group multiplication properties and noting

S

that 6, Ky,gh and * £ commute, we: obtain »
)\M . &

D, ) ao

Jama ;GS,&H( )

o 2 Jﬁi[ﬂ] Dj mé;zs',ma(I>lea,ur(é) Dzs’,pr;as,p+(9> ’

| | T )

and going to the residues at the poles p = anT’ we' get

Dj m 308, nT(¢ng)

B | ZE:: ;[d[ZJth (ﬂs"ja)}*iDﬁ (¢ﬂ) Dzs o LT308,n7 (G)¢ 
S';r . a - ) L ’
(3.14)

where the K functlon is written in Toller s 2 notatlon We can now

substltute (5 14) into (3 11), and then (%. ll) and (5 8a,b) 1nto (3.5)"

to get the flnal result

b
bm nT(k w)
J :
XM kM M
) , .
(sin ) E d[x][K (Es g )] (t)DES,’a “ ;as’m(@),
. , nT+
M,s,s' -
s
(3.15)
. N RS | .
where bma,nT = bma,an’ and the (-) amplitude can be obtained by the use

of the conjugation properties of CDM [see Eq. (A.1)]. An expression for

BXM(Q) can be obtained from (3.12) and (C.6).
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Equationv(5 15) solves the prdblem.of connectinv the solutions

of the t =0 dlagonallzed equatlons with respect to 0(2,1) [Eq. (2.23)]
and to 0(3,1) {Eq. (B:15)]. When o, KM ~ has Lorentz poles at = i\,
z ' '

the singularities of bm nt come-from the pinchings of the ) contour,
- T B

and it is evident from Fig. 5 that they may occur at. 4 = xor— n -1
and at the symmetric positioﬁs £ = -xoe+ n. Actually, only the sequence
_ v y ' : : .
f =Ny -n-=-1 can occur in b - , because this amplitude is,
0 m_,nT’ "

according to CDM, analytic in the r.h. £ plane."Itris‘possible to

show that this is true for Eq. (3.15) by the methods of Appendix A,

~ “which are briefly summarized here, for the convenience of the reader.

Whenever we have a summation of the form

\~ oM | |
2_.4 ,/db\] fﬂS)J g«j)gs 2 | | (5.16)
where f2§ j transforms contravariantly under conjugation with respect
2

to 0(%3,1) [poles at A = -£ +n and XN = £ + 1 + n] and ggMﬂs
J

covariantly [poles at A =4 -n and A =-(£ +1 +n)l], we can

replace the s summation above by

M MM [ A, =M M =M mn, M, M
Po 85,4 [Bz ST A e I R

where aE%M’G BﬂxM, aﬁd U. M has

zeros in A at the position of the poles of g

A are defined in Appendlx A and BZ

MM It is clear,
therefore, that the first term of (3.17) has no ¢-dependent poles in A,

while the second has poles only at ) = z -n and A= -(£ +1 +n),

Jsts ) B

26
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'

We now apply this result to the s' summation of Eq. (3.1%),

with @™ L™ ana o™ o™ DM we note that, in this case, A
Ay =M - = + ino . . }\\M ' | ] 7
fj,£+ has poles at X = mxo coming from bas , and does not have
the poles A =4 -n in- BXM because of the (+) character of the "
function - Dﬁ-a+_occurring in its induction construction [see Eq. (C.£)].
s : )

The first term of Eq. (5.17), which has no é-depéndent-poles in A,

cannot give riéé to poles in £ in the 1.h.s. of (5?15).7 The

éingulafitieé in the plane ofhthe'sécond term of (3.17) are.illusfrafed

in Fig. 6. 1t is clear that the only possiblé pinchings afe between

A= -(£ +1+n) and » = Mg and-tﬁisvimplies the above stated result.
Thé'Reggé—pole‘eigenfupctions, which .can be calculated by this

method in terms of the Loreﬁtz—pole eigenfunction, are useful, in principle,

to thain“dyﬁamical quantities such as derivatives of the Regge family

at t = O. :Note.finaily that thé relation bétween the total absorptive

parts which follows from (3.15) is model—iﬁdependent and is,. of course,

- » v 5
the same .as the one obtained from the general group-theoretical <'3.1f1a.]_ysis.‘7
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APPENDIX A
1. Conjugation Properties in a Noncompact Basis
It has been shown by CDM that the  (r = -) partial wave

projection of BO pz is a linear combination of the (r = +) function
: ) . .

-and the function with / replaced by -4 - 1, through the relation

2 A S|

B.. = B K B r{=2)/r¢(z + 1 A.1l
O,}J.’ 7 U- O;H+ BH O)U—‘*ﬁv ( )/ ( ) ) ( )
where
an"; _ cos iy ' 5 £ _ "
TR cos nf ’ w {-u - £) T(p - 2) cos &
(A.Z;)

Equation (A.l) is a consequence of the eguivalence of the representations

Dg and D-z_l, which, in the mixed basis, may be expressed as follows,
-£-1 _ 2N y/
I E B W (A I L ¢ I (a:3)
. I.Y

: -
. ‘ . . et
where; as in Sciarrino and Toller, 2

U £
m

r(£ +1 + m)/r(-4 + m) (A.4)

and Y is a unitary matrix in the r basis,

(A.5)
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By inspectidn, one finds

, S Y E "3 :,A 2y * ' :
R C I A 8, = am,h" (4.6)

With g =T in (A.E)'the'expression reads

e " x4 g - : )
Km)“r' = 2' (Um ) Km,,ur'" TI“ JUT ) . i (A- Z)
: r' . ‘
whére
; C4 X ) : B
Km,“r = (Kur’m) = Dm’ur(I) . , (5.8)

Analogdué relations hold for the 0(3,1) g?oup in the noncompact 0(2,1)
-basis; where fhe eqﬁivalenée is between the represehﬁations (»,M) and
v(-k,-M).  Wé Shall shoﬁ that thisveqUivalence_leads to a simplification
of the.O(j,i)'éompleténess,relafion in this basis. Instéad of (A;Q)

wé ha?e | | " .

DMy ST g NIy M oM
'Djn;Zsm<a)i o E: (Uj ) Djn;ﬂs'm(a) stﬂs ? _ (4.9)

S'

where Toller has defined

u M : (4.10)

()
ju
.+
>

29

and I 1is unitary in the s Dbasis. . Sciarrino and.Toller25 have

discussed the function
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NIy

- AM Cosy
Ky (6553 0) = (D5 (A.11)
“and have obtained the identities
. A, M N Mem o, M,
(a) K_m ’ (‘g;S;‘J) = (') Km ([/:SS J-) 2
Y M jom . h, M, . '
(b) K e,-58) = (TR Mg, 5) (a.12)
M . g1 . 4 . M .
(e) K (-2 -1,853) = U~ Uy Ko (B85 3) 5
which follow directly from the integrél represenfation
' o -4-1
M Loay o L ’é sy h-1 Jrat v :
K. (E,i} q) = 2(25a +1) (cosh ¢) T (67) dtM,m(b) d cosh ¢
1 ,
- (A.13)
where
tan /2 = tanh t/2,
(A.1L)
cot 87/2 = tanh £/2 .

In addition the K function has orthogonality propérties,.

implied by the identification
Kk M(2,55 3) — (,8,m]3m) ,  (aas)

which follow from group multiplication properties of the D functions.

We shall make use of the property

2
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i

Y K Mess ) M sty )17
j

B 6(5,;") . (A.16)

Combining (A.9), (A.11), and (A.16), we obtain the following expression

for r:
' (Y M T =AM N . RN U
5(¢,2") Torgs = _Z[Km g (?,s; 31K TSty 3) Uy
' J (A.17)
From (A.léé)b) it then foliowé that
oM, 26 WM
VALY (-) Toy
RY = ; o ‘ // , (A.18)
SR \\ AM 2e M - .
| NIpg - (T | |
where, és in Sciarrino’and Toller,
S 2e NEYE
(")- = (") .
Furthermore, from (A.12),
LoaeM L \2e M L1 .
Toy = '( ) ) for a'=1,2,
M 2¢ AM :
'Fl,_g_l = (_) Flz ’ . (A.l9)
M AM
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If'we define

Mo MM/ WMy ¥
o = mny TR
_. (4.20)
M My * ’
- so that
>\.M . * . >\,M >\M _* >\,Mr -./\.; "NI ‘;* )\M *
»[Jnsﬂ,-,m( R LA CO R I P A COR I M B
(A.21)
then from:(A.l9) we conclude that
>\.',—M - M"I
‘ az - .O‘,@ 3
A-Mo 2 M
By = (=) B8,
, (A.22)
M, \2€ M
o, = ()7 e,
M WM
Bigr = By -

In order to continue the foregoing'relations to values of £ and
corresponding to nonunitary representations, we make the replacement
£ - -4 -1, » — =\ 1in expressions involving the complex conjugation

of the functions K, ', &, and B. Thus
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>\-M> oM ' o v . .
.<o(z = a—ﬂ—l s <"

. . (A.23)
. >\.M ")\)M -
@z ) = P o

To conclude our summation. of general properties of the functions « and’

B we observe that the unitarity of I implies the following important

30

relations:

% =Yy
(A.24)
M2 MM
1= (o) = B e
" We non propose.tc show that
_ M- , e
l - (a ) - .Bg~ By = o (A.25)

whenever x‘=.t(z'fll + n) or A = t(-z‘+ n'), i.e.;vat the "kinematical”
ﬁoles of the representation.functions; We show in part 2 of this
Appendix that thls property of al produces the necessary cancellation

of the klnematlcal poles in the 0(3, l) completeness relatlon The

proof of (A 25) makes use of the fact? that K (E 53 3) 'has poles

at A+ £=n and A - £ -1 _vn [see (A.13)] but no other poles which

move in A as.a function of £. Sciarrino and Toller have defined the .

residuesvat these poles
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Lim (£ -n+n+l)K M, 5y = ow MR (A.26)
2——) AeD = -1 J ’ '
from which it follows:[see (A.12c)] that . T )
1im (£ + »n - n) K >‘M(ﬁ +3 3 = #Uh_%+n UMan_l wjm*Mh .
L— =)\ S '
(A.27)

 From (A.9), (A.11), (A.12b), and (A.18) we obtain the relation

-As=M R
K ? (E:+5 J)

AMp AM .y =AM Ndmm o M
Uy IR T, 3) 1T+ ()T K

(A.28)

If we require that Eq.'(A.28) be consistent with the left side having

poles at- -\ - £ - 1 = n and -x + £ =n it follows that F-X’M or

1,-£-1
P;x’% 1 or both must have poles at these points. Let us denote the

=AM . -\M
re31dues by Tin and Ton

we write the residue of (A.28) for both signs of M at -x - £ -1 =n:

in each case. With these definitions
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w -X’_M}
Jm
MM, AM . M Gem o n,-M oM
= Uj [Km (,ﬂ,i—,J) rl ’? + (_) Km_, (‘?)+")J) rgn ? J b
(A.29)
W. -k,M,n
Jm
\2E L AMpo A, =M, SLM L §em . A,M N oM
= () MR TN, 4,0) v T ()TN R N, 5) v, T

-

where we have used (A lO) and (A.19). Sciarrino and Toller have given

- the 1dent1ty ’

W.

)\’ -M,l’l
Jm '

(_'),j—m+n W AMn
mo

 (A.jO)

With this 1dent1ty and the orthogonallty property (A.16) {with (A.12b)]

we conclude that

rlg“’M/fgn“’M O NS (a.31)
Consequently,nfrom the definition (A.lS);
1im (@ M)? - lim  ( 1 > l/r2 M) ¥ oo 1 . (A.32)
£— N+1l+n z—§x+l+n
By the'éamé methéds one may verify that (Af32) holds for v-x + E.= n.

From (A.23) and (A.2L) it follows that (A.31) is also valid in all cases

when A — -x, which proves (A.25).

4

4

vl -
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2. Asymptotic O(B;l) Deeompoeition in a Noncompact Basis

~In this part re derive an expenSien of the incomplete abeorptive
parf in terms of 0(3,1) repreoentatlon functlons, which is s asymptotic
in the sense.of Sec. II. From our final formula (A.41) one may also
obtain a eingle expression for the leading O(j,l) éole contribution.

Into the completeness relation for 0(3,1) partial waves,

B (a) - b d[k] d[z:l BZS)m jama&ES,m(a) . (A.BB)

we substltute the following identities, derived from Eq. (A.21) and
the deflnltlon of B>\M
->\" -M

*
soom (Uja.x,M)

M AM%M o5,

£-,m ,ﬂ z+ m o

(A-Blr)

RUBE o m)

AM, ¥ X, -M | o AM
. D.
Ja a;ﬂ-,m ( )

J m ,£+ m J

.

J m, 34+,m

The integrand then reads, schematically,

xM)*] + B xM' >\, Muma xM) }

Mop My Lo Mo e

(B£+ 4+ SR Z

Ao =M =, M

iy * M M %, AMy K M,
P e O M e S G NG N e

+ [B £+.

(A.35)

By making use of (A.22) and (A.23), onevmay readily verify that the

terms grouped:hlthe first set of braces are the same as those in the
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b

second after replacing (X,M) by (-x,—M).- Consequently, we extend
the limits of integratibn over A\, and keep only the first two terms

in (A,55)£

’ o _ A+l ‘ -%+ioo . .
5 S SR | N\ \aM M
B (a) = E: afal alel + % )B g "M
mam . C / . . v : ) VZ+’M Y
- M -joo E

1
2=k"

M S, M AM
+ U, D.™? : .
L da gyt ]

M XM (2)

)( [Bz : J ma;£+,m_ (a) az. (A'36)

Wetnovarocéed to shift the contour of integration in £ 1in

M

(A.36) so as to collect the residues at the input poles of-:Bﬁ+ 0
: By,

at £ = ay_ and £ =-a,- 1. If ve write a =rug, where r= 0(3),
g = Rz(p) Bx(é)_RZ(v) € 0(2,1) - and n 1is a z boost, then .

M Sy £ :

m'

and we seek an expansion of B -(rng) as an asymptotic series in

‘cosh {. Follow1ng Toller,l)’25 we first write. -

o, Ye) = . 0 ¢ v G e T (ase)

and then substltute (A 37) into (A 36). By making use of identities

for the reflectlon £ —a-£~— 1, we obtain
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-%+iwv " . ' )
: ‘ M -\M
o alel + j{: Bp+.m Pe

~deieo L=k

: MM =M AM =, -M M | |
X{BE D'jama;“’m(a) .+ Uj Djama;E+,m(a) ‘a;g, } s (A.39)

‘where

";)\M : ‘ _ v %M ' g -4-1 -7-1
Djm;zs,m(a) = /. Djm;gs’m,(r;ﬂ) Uﬁf C;?mfm '_(g) Uﬁ .
“m' , _ o v ~ (A.LO)
The partial-wave amplitude BN

.has a pole on the left-at £ =«
L+,m - .

in additiqn;to A-dependent kinematical poleé. The D function

contributes additional'x—dependent poles and also contains "nonsense”

poles in Z arising from the a function in (A.hO).l?

However, when the
£ contour is shifted to the left, the first term in the braces in (A.39)
contributes a residue only at ¢ = . The kinematical poles are

cancelled because of (A.25) and the nonsense poles are cancelled in

" the usual way by the contributions of the discrete series. The

kinematical pdles in the second term are not all cancelled. However
the residues- of these poles_are regular in A and, since -

-X‘, "'M B ‘ >\M

D£+ £+

- vanishes exponehtially as Re A —a—cp,il they give -
vanishing contributions to the )\ integral.
The upshot of this analysis is that, aéymptotically in g,

we may simply replace the integration over. / and summation over the

discrete series by the pole contribution at £ = ¢, as follows:
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e “1 | . ;

o - E WM SAM | | - B

Bmam(a)_ ‘/’ d[XJ_bas Djama3a$’m(a) |
M',S’O ' ’ ' _

+ico -

3 | W [ M = 5 M
— | Z d[}\] bOH-' Ba [Ba Djama5o‘+,m(a,) + aa%jama;a—i—,m} .
M J-ie '
(A.L1)

Equatién (A.41) is also suitabie for bbtaining, for n large, '

the_asymptofic‘contributions coming from dynamical singularities in IX

o BML  shifting the A contour to the rightBl_for the first term and.

to the left for the second, we see that the a-dependent poles in ) of

the first term are cancelled as before, whereas the second term has no

such poles on thebleft'and no dynamical poles in b+KM, either. Except

for an additional complication one would replace the integral over. X\

AM

+ of

by a sum over the residues at the Lorentz singularities of ba

the first term only. The complication is that in‘general it is possible

32 tnat are absent in baSKM. It can

AM

that ‘aKM_ has extra poles in X
be shown, from argumenté based on the abséncevof such poles in DZ—

and ba_XM in (A.3L4) that, should such extra poles occur, they must be

AM

cancelled by contributions from similar poles in Bd in the first

term in the braces.. This circﬁmétance has afprecedent in the Mandelstam-

32-3k4 o : , o

Sommerfeld-Watson transform.
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3. 0(1,1) Decomposition of the 0(2,1) Representation Functions

- Note first that manipulations analogous to those of subsection

2 can be performed in the case of the 0(2,1) expansion of B, nT(a).
If we parameterize
a = g%, ¢ =R, 0= B, E = BE),
' (A.L2)

and substituterthe conjugation relations_(A.l) and (A.3) in the Q(E,l)

expansion.
: . - .—%—%ioo +ico
Bm,nT<a) B §: ' afe] (-1i)dp BnT ur D ur(a , (A.L3)
r "% ~1loo
we get
—%-4;100 +ico .
3 P . £ -£-1
Bm,nT(a) = dlz] (-i)du BnT,ur BM
_.é._ioo. —jioo
ﬁ,‘-z-l 4} -ut
)( [ VI m LL+(¢n) iju+(¢’l) Um }e . (A.4L)

The first term in the integrand has the fZ-dependent poles in the yu
£ -£-1

"plane cancelled by the factor BM B , whereas the second term still
: : . T v

has the'poles u = +(~£ + n), but their residues are analytic and
well-behaved in the r.h. £ plane, so they give vanishing contribution

£

to the integral. Therefore, the asymptotic series of (A.kk) in el

is simply obtained by picking up the contribution at the "dynamical"
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pole u = ~-t(a - n) = anT, which is nonvanishing only when TE > 0.
We have finally
5 - - :§
B (a) ~ £ nt’ ;
SmnT Z_ d[z] bm nTr Dm o Tr(ngn e o(te) .(A_g#))
here bz | are the.residueé”of"Bz at the ole = Q
v m,nTr nT,ur P 5 W= nT’

We want now-to obtaln the 0(1, l) decomp031tlon of the function

nglmn G- l(C), whlch occurs in the productlon amplltudes (2.22) and

.(5 1) as 51ngle Regge—pole contribution.
factorlzat;on’at the 0(1,1) poles.
Wé_start.fromvfhé relation
S +ie o '
a0 = Y | thax
— r J-iw o

which follbﬁs’frdm the definition (A.8) of
2 o |

The main purpose is to prove

e‘“S,Kﬁr o (A.46)
, . .

thé:tfaﬁsformation functions

Km'pr; Aftef subStitﬁtion of - the conjugation relation (A.7) in the
form (A.1), the r.h.s. of Eq. (A.46) can be written in the form
- £ ol = =f-1 =£-1
o+ Ut E U, , (A.47)
where
~+ico : :
- =51 _ -2 1 £ L ~4-1
e N G l)du (6,7t - ot g
) ~ieo - i .
X '“C. e x4t (A.48)

u+m
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Note that the flrst term in the 1ntegrand has no £~ dependent poles in
the . plane,”as usual. The second term has only the poles p = i(z -n)
coming from Kﬁ e By dlsplac1ng the u contour either to the right
o J

or to the left. according to whether ¢t 2 0, and neglecting’the‘baokground

.integrals,’we get

vta Aty Ao -E: vi M) gy Wﬁr Loa o (a9)

m mm' m m,nT
: e
where

vt = o¢  lim [u + f(z -n)] K’

'm,nT : v v v LA ’
p— -7(£-n)
. (A.50)

R £ 4 -8-1 -5-1

wnT,m' e [‘au B“, ‘KH‘{",m" my ']HZ-T('Z—H) »

.Since the asymptotic expan51on (A. h9) contains only the powers

(exp ]CI) », we can identify ag with Toller's C:Z and we finally

get
o~ egel 8 g =gl -gel
-(:me" CE T _Cg;m" Unr
| ve T gy ! | | (A.51)
= 7 m,nT e . g nT)m' .) ‘5
nt '

which exhibits the factorization at the 0(1,1) pole contributions.

For convenience of the reader We'quote finally thevresult55
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| APPENDTX B
0(3,1) Diagonalization of the t = O Equation
We present here a,simplified form for the diagonalized t = O
equation of‘Mueller and Muzinich.l The éimplification\parailels the

method of CDM for the t < O equation.

©

Rather than using the Andrews and Gunson E functiony"> for

the‘BCP amplitude, we prefer to use the (:? function (2.10) of the

text. We require the 0(2,1) decomposition of Toller's (;Z function,

which reads,

-4 -1 -4,-1
‘Qmmv () = ale,1 X o (29,85) D, (g)

N ke | -
‘ }: K, (4,,k%) D “"(g), for Re s =-1-c, (B1)
k+

where the (5? function and the D functions for the continuous and
discrete series have been given by ‘I‘oller.15 - From Andrews and Gunson's
formulae (3.3), (2.1), and (7.12) we find that with d[£] = n(£) das

?

1.
for m > nm",

r(e, +m'+ 1) r(m + ¢, + 1)
X '(E ’ ) _ 1 U1 - 2
mm' V710727 T B n(zl) r(zl +m + 1)

r{m' + Ly + 1)
(221 +1)
X (7, - (5, + 4, + 1)

(B.2)
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and for m<<m',

- Kmmv(’elng); K-,-m,-m'('gl’£2) '.

A property of ‘the K function which we will find useful may be deduced

from‘the'orthogonality relationship between two D functions -and the

éxpression'given by Toller:
‘mm

"where

That‘property is

o . -2,-1 | B
‘11m vam,(zl -ve,zg) N o (-1 - 6,32).Um, >
t——>O+,.v . - _

= S(ﬁl,zé) ;o (B)

> 0, and Re zl = Re 4, = 5

2 2

"where Im Ei >0 &nd Im £
We have defined

%+ioo _

d[zl]_6(21,z2) f(el) = f(ee)' .

Nb—‘

o e = g e » vt g e v T (m)

b
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With this form for the decompbsition of the C;? function and
the form (3.1) for the unitarity integrand, the t = O equation as

diagoﬂalized by . MMl reéds
1 _ ‘ m ’ s‘ . i ‘ ' .
S."(t ) L= v (O)bﬂ'm's'(t ) + d[,@ + dt sinh q

}\M ‘: i v !
:X ‘bﬂms (t) Rm'(t’t ) q » A8,

‘where

£'n's

zms,m DR IONE SCERREERI) (8.6)

n

is the amplitude of MMl, and ‘we have suppressed the Y index for the

moment. Recall that57

[o¢]

= ~d cosh afd
: +

Mom (a)] (cosh q + sinh gq cosh a)x—l
,

X d+M,m(a') for q >0,
(B.7)

cosh a' = (sinh q + cosh g cosh a)/(cosh q + sinh g cosh a)

and similarly for the other representation functions (cf. MMl).
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Because q is always positive, the d function in Eq. (B.5)
vanishes for s' = + and s = =. As with the <0 equation, the

system of equations in s reads

M K M
+ ++

COaM AM
_b+ = (o)b+', + b

~ (B.8)

M M |
N GO - fe
As in Eq. (A.1), one can make use of the equivalence of the representa-
tions' (A;M) and (-x,-M) [Eq. (A.9)] to reduce the second equation
to the form

‘:">\.’-M - -'}\."'M 4 b ’-X’—M K

b M
+ (o) + + - :

b : - (8.9)
Therefore only the -first eéuation in (B.8) is needed. to détermine the
iocations'of the Lorentz poles! VWe shall hencefofth restrict ouf
attentioﬁ £o this equation._ |

We riow wish to present a scheme for shifting the £ contour
in Eq. (B.5) so as to collect only those residues arising from the
input Regge poles: As the equation now stands, we are prevented from
doing this by thevpreseﬁce.of x—dependenf ”kinematical” poles in £

in the function b, which lie on both sides of the contour. They

AM

-appear at the samevlogatlons as the poles of ’d£'+,z+,m

in 4', which,

from Eq. (B.7), appear at
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2! = -N + n 3
. . (B.10)
- v ‘ -4' -1 = -=x+n,’ for n = 0,1, - . :
“« A The two sets of poles are additive with respéct to each other, as may

be seen by substituting Eq. (B.3) into Eq. (B.7). This offers the
possibility of writing b in Eq. (B.5) as a sum of two terns, éach, of

which has only one set:of singularities in' 4. We define

. . [' —%+iw limﬁ . ’ )
A >\M - . Y )\M by
! me Bt , an(4) + LJ bﬁm+ KMm(Z’z)

/L g L=kt

vfor Re £ = -

o=

- €. ‘ (B.11)

This function has kinematic.al poles at Z + ) =n but none at
—-Z_- 1 + X\ =n. Moreover, because of Eq. (B.4), .
M A M -£-1 AxM Y/

b, = b, T+ U Y petm % - (B.12)

Substituting Eq. (B.12) into (B.5) and the result into Eq. (B.1l), we

obtain

ANy L MM - .
bz'm'(t ) = (O)bﬂ'm'(t ) + 2: d[ﬁJ +v‘ dt sinh q

g S (e ] -

b, M 1 Ly M -]
X Py (&) [k (= -1, -£ - 1)] R (%,8") dz,gm,v(q ), (3.13)
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where

M » ‘-'l
dzlzm!(q )

[0}
5 . -4'-1 L, s 3 A AL
= d,cosb a a+M,m»(a)-d+M,m(a )(cosh q‘+ sinh q cgsh a) .
o | S : (B.1L)
. A M L o o
We have constructed bﬁm so that it has j-dependent poles in £ at

-A +n (i.e;;_in the r.h. £ plane) only. It also has poles and zeros

Mm in the separation (B.12). These poles'and

contributéd.by a
zeros cancel poles and zeros in the weight function n(@) in the usual
'way',l5 and the_resuitdnt E-plane.singﬁlarity struqture of the intégrand
in Eq. (B.iB) is indiqated in Fig. 7. . If we shift ﬁhe contbur.to the
left;:wé cbllecﬁ the residués at the nonsense poles.at

38

£ = -l,-EQ{--,-N. These cancel the contributions of the discrete
series, as usﬁal, and we are left with the contribution from the

“dynamicalf pole at «a. In terms of the values at fhe‘dynamical poles

A
b M the equation reads
ANM g M ANM
b (t') = [ A b (%)
o mi | .(O)awm %p
' v A R |
x B () DY @, (3as)

e

. ' o ‘ ' A M
from which an m-independent equation for ba MM:: 5: ba m“M can. be

L4 m

obtained, having as the kernel

¥
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sinh q }: RmTYi(t,t') &;M o (
- et

~-1

a ) . o (B.16)
m 4 ' .
Dué to Bqs. (B.12) and (B.6) the residue functions baShM
39

appearing in the modified completeness relation (A.4l) are given by

' : -0_-1 Yor '
M AOM Ty T AM oY
b, = }: {baym + Uy b—ar-l,m U, . (B.17)
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T APPENDIX C>-
AvRepresentation Function Needed“in the Text
We derive h;re'an integral representation for an 0(3,1)
representation function required iﬁ Eqs. (3.12) and (3.15) of the text.
That functibn.is the matrix element of a y rotétion in the noncompact
0(2,1) basis:

-i68J

Dm | (9) <E'S')|J'r’|e _ y|£s,pr)

ﬂ'S',u”T'BZS,ur

1

L= . v> - >\M i : .
- 6(” }J-) dz‘zs.i’es;urtr(g) . . (C'l)

‘The index é = + represénts the,required doubling of the 0(2,1)
basis and the index r = t the analogous doubling of the 0(1,1) basis .
for the repreééntations of O<2,1).‘ | |
The_prbéeduré for constrﬁcting matrix elements of the Lorentz
group in the 0(2;1) basis by the method”qf induced representations has
been summarizéd'nicély by MMl, who gi?e fufther_references. We sﬁall
méfely skefch:those points which must be altered iﬁ their treatment
for thesé>s§ecial representations.
Thevparameterizatién of'thé O(2,l) elements appropriate to the
baéis réquiréd is

gy = em(-if7,) exp(-ia k) exp(-inK)., - (c.2)

where 0 < @ < by, -o< a_ < 4w, and -o <)\ < +o spans the group.

‘Note in particular that both signs of . a, are required here. The
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mapping on g induced by the rotation © leaves ) and ¢ unchanged.

The mapping on a is

s cos 6 exp a_ - sin

s em(al ) =

(C.3)

eI Ras aeT I
N o

s sin O exp a + cos

The mapping on the elements in the Hilbert space ?Q/ = J('OM & ;(13—M

is

“M) ymﬁ (e,),8_(e. 3
.

]

,

t

where .gé, = exp(-i¢JZ) exp(—iaé,KX) exp(—ixKy) for a!, as defined

S X, eya) 9, D S M gen, e

in (C.3). We have defined

(n); _ Ve . \ A-1
S (@,as) = (s’ sin © sinh a_ +s's cos ©)

X ©6(s' sin 6 sinh a, + s's cos Q) . (c.5)

We use, as a basis for the Hilbert space ?6! , the representations
of 0(2,1) in the mixed 0(2) X 0(1,1) basis,‘desdribed in M and

CDM:



<g+,8_|34,ur>

<g+’s_|ﬂ*’ur>
In this basis we have,

o : (o)

a ,
£'s' ,bssur'y

+o0

i

—co

.d sinh a
, s

-L48-

£
= {DM,pr(g+)’ O} b)
£
- [O) -M,pl"(o-)}

from (C.4), the final result

A * (\) .
[ds}M,ur’(as)] XS’,S(G’aS) d

B
sM,ur

UCRL-19417

(&) . (C.6)

S
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APPENDIX D
v _ AfS-Type Model as an Example
It has‘been.shown in CDM that the unitarity model of Fubini
and collaboratorsho (AFS-type model) can be described easily with the
three-diménsional'BCP ?ariables. Analogous treatment holds in the tl=
case. Sinpe‘spinless‘particies are exchanged, the-kernel of the

multiperipheral equation isvg-independent (o, = O throughout, and no

T
Clebsch-Gordan coefficients are needed); and it contains the off-
3
)

shell g-g cross section Ke(ch q) = Ag(ch q. as a factor replacing

. the © function which appears in the single ladder approximation.

The t = O equation can be obtained from (B.l5)L_¥l noting .

that, apart from the factor Kg(ch q), we require

~ -0, -1 '
e T I :
Ry Cj?oo (") —> (¢ -u%) 7, (D.1)
'. . | GY{GY,—.\O ‘
and since C;(OO-a-l(g).% 1 as a -0, we have
i%s t 1 2y=2 .
RV (t,6') = (&' - u%)™" . | (D.2)

0

Substituting (D.2) in (B.15), and noting that

: [o o]
A 0, -1
a M)

| : A-1
000 ¢ = dx(cosh q + x.31nh q) -

1

= exq/x sinh q , - ‘ _ (D.3)

0
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we get the’equatibn

0] - . o ,
OHE) = (g (Er) ¢ tat DM(t) VMt ) (8 - p0)TT, (D.b)
where
yN Y - s Y Y ey AN,
vH(t,t") = sinh q 4 cosh q A, (cosh q) e"*/x sinh q ,
) Zo(t)t')
2y = (bp®™ -t - t")/2(tt7)2 ,
| (D.5)
sinh q, = (s -m™ - t)/em(-t")2 ,
S o 2y-2
(O)b (t') = A2(51nh qO)(t - u ) .
Note that ;%}“= bx,vbecause b_lx = 0, since aOOO = 0.
The 0(3,1) expansion now reads
1o . ‘K
B(a) = d[x] . "D "(a) = , (D.6)
L. O N N .
where
bx' = b+X ,
| (D.7)
A _ 20 S Y
D+v(a) = DOO;O+,O(a) = D_ "(a)
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Sin¢e‘ h in Eq. (3.5) is an 0(2,1) transformation and « = O,
the relation between the two incomplete absorptive pafts is rather

trivialug

e

(20) = Ba) , | | (0.8)

and the indices m and n7T are not needed. [More precisely,

B(a)

)} BOT(a)h5 contains both (+) and (-) 0(1,1) poles- ]
T : v

y/

The partial-wave amplitude b~ = is then easily obtained,

‘ bO+,+
either by direct application of group theory to (D.8), or from (3.15)

in the limit o = O. We have

v’ (x, w) EE: .j- x](Kf , OO) b x(t) d NG N (D.9)

b3

where the relevant functions, according to (3.17), are

A A0 , |
Ay (G) “'_Dz+,o+;o+,o(9) ’
(D.10)
N A
dysn (6) = dprs (n - 9) .
' | L bl
From Eq. (C.6) we get the explicit expression
‘m' )
A o L. . A1
dy,y (6) = =« dx i QZ(lX) (sin @ x - cos 9)
cot ©
| ) . , . |
.2 () (£ +1) (sin ©) 2+1 N ,
=2 T4 + x + 1) sin n(n - £) Cyog-rlcos ©) - (D11)
yhere C.Y are the Gegenbauer functions.ui

n
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After the manipulations of the end of Sec. III we can explicitly
calculate thé Regge-pole eigenfunctions. fK(t,@) of the Kth daughter :

£ = A

K 0 "K -1 'corresponding_to a given Lorentz pole of eigenfunction

fo(t); The result is, apart from inessential factors,

R | (g + )ik R S
£ (t,0) .« f.(t) : (sin 8) ™~ ¢ (cos ©) .-
K o 0 F(.].'._E) (!‘._54')\ ) : K
' 22 272 0 '

(D.;e)

Note th;t,the'odd daughters are absent becauée,'due‘to (D.7) and (D.10),
vbﬁr is evén.underf 0 «on -0 (w « -w). Note aiso that (D.11) gives
a result similar to fhe Bethe-Sélpeter calculation8 when the initial

. particles'are put on-shell. The latter circumsfance explains why onlyv
amplitudes éyen in the rélative energy W are obtéined in this single

case.
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For the sake of economy, we use the same label for a one-parameter

transformation as for the parameter itself.

We have set to unity the arbitrary initial Lorentz transformations,
mentioned in previous approaches.

Our notation differs from MM°. Our h_, is their u. ' and

2i i i
i+l +

our fzi is their uk'i+li;

‘Note that in this way we specify the frame (£i,r) completely

with no.arbitrary z rotation left, as in CD.

We have, in terms of the lower variables,

1
_ : -+ 2 a3 :
cosh hﬂi = k; o sinh qi/[( tz,i+l) sinh qﬁi]’

1
. H
cosh fZ,i+l

n

ki sinh qi/[(jtzi) slnh qu]

It would appear that the first two identities, viewed as equations

‘rélating the various boost parameters, do not>always have a

solution. Indeed, When"uéi £0, t, =0, v, =0, the first

equation cannot be solved.. There are two reasons for these

apparent difficulties. The first has to do Qith the assumptions

about the sign of t . and kig. For ki2 <0 .(time-like three

momentum) and t,, < O we would replace Ci with'a z rotation

o

£i
‘with a 2z boost. Equation (2.8a) would then read

§; and 0,

£y O3 Byy = by Gy

portion of the 0(2,1) group. However, as discussed in CDM, space-

Vyio which spans the necessary remaining

like three-momentum transfers span the most important part of the

phase space for small t, and the whole rhase space in the limit
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t -0 if one adheres to the définition (2.5) in this limit. The
second reason for the apparent inadequacy of (2.8a) is that our
prescription for'going from the threeédimenéional to the four-

dimensional BCP frames does not leave room for an arbitrary =z

_rotation in the four-dimensional BCP frames. This restricts the

choice of the BCP 0(2,1) transformafion.

M. Toller, Nuovo Cimento 37, 63; (1965).

Note that, although 'formulas given in the text do not depend
fofmally on the choice ofvtﬁe basié for the repfesentdtion _
functions? the actual eipression for (:Z' QfJCourse.dOes,
Formulas (A.3), (A.51), and (A.52) are written in Toller's
conventions. Since‘the CQ;(Q) is evaluated for a y boost, it
differs frém the expression given by Toller by a factor im—m’.

We are indebted to Michael Misheloff for assistance on this point.

' 2 ' 2
o tui) g Bt M) pagm by M)

)

2M.2(t'- t
l .

cos . =
Xl

i o — L5
2 2
Nty ) MLt

'The coefficients. C and C' are related to the vector'addition

éoefficients for the representations of 0(2,1). [See Kuo-hsiang

Wang, The Clebsch-Gordan Series and the Clebsch-Gordan Coefficients

of 0(2,1) and sU(1,1), Lawrence Radiation Laboratory Report UCRL-
19306, August 1969.] For practical applications involving a few
- leading terms, they may be obtained directly by comparing

~asymptotic expressions for (;?.
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Em m(a@h) is the same function of a = abh as the CD incomplete
- v

absorptive part, but éatisfies avdifferent integral equation in
which thé variables gq, 0, ¢ replace .a, J,.E, and ;.‘ The
reason is.that in’the bb integral equation the integratioﬁ over
Ei fepiaces the sﬁmmatioh over intermediate helicities, whereas
heré it ‘has beén performéd ex?liéitly. The equivalence of the
two equations can be proved by noting thaf, due tovhélicity
conservation, thé”equation satisfied by E(a@h) is invariant under
tﬁenéﬁbétitﬁﬁioﬁ_bﬁ —ahB;. H' —ah's‘, f! —aB-lf' ‘whére g and
é'. are z rbtations, and that an exfra iﬁtegration over £ can
therefofe be added. This invariance permitted an arbitrarinesé
with respect to;z rétations in the'definitién of the CD frames.
Thé Volﬁme eiements';dt-Sh-a d§q 'and dk dw dt are aﬁbfopriate‘
for the infegral.équationsvafter the factors (—t)% and k are
remo#ed frdm'the.réspectiﬁe incomplete absorptive parts that géme

directly'frdm the BCP expansion. For a-giveﬁ va, B and B . are

therefore normalized in a different way; hence, the factor sin'®e.

Since h depends on the variables k, w, k', w', this is needed’

. in order to have a relation involving only one set of variables,

k and w.

Equations (3.8a).and (3.8b) are §alid as asymptotic expressions

ch E ‘and elgl respectively, where g = RZ(;) BX(E) RZ(:).

The notétion is as follows (see Refs. 1-3): The O(Bél) representa-
tion functions are labeled by (A,M), which specifies the unitary

representation, by (j,m) for the O(3) basis, by (¢s, m) or
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: (Es,pr) for the 0(2,1) basis. In the last case, £ specifies.

the 0(2 l) representatlon for each (s = +) of the two_classes
of 0(2 l) cosets which occur in the 0(3,1) gfoup, and (uz) refefs

to the two classes of O(l l) cosets in 0(2,1), w1th a given

.elgenvalue (- 1p) of K .

A. Sciarrino. and M. Toller, J. Math. Phys 8, 1252 (1967).

We assume x < 0, so-that the completeness relation is properly

0
convergent [ef. (A 33)] Note that, due to the conventions of’

M

Toller (Ref. 22) and MY for the A plane, B__ has a pole at

A = ;xb, and is well-behaved in the 1.h. X plane.‘
M. Toller, Nuovo Cimento 53A, 671 (1968).
The restriction. 7> 0 in CDM can be removed by choosing the

eppropriate sheet in continuing to 1 < O.

That PKM must be independent of m may be verified by putting

a —»ag -in (A.4) and using the irreducibility of o’

Explicit calculation from (A.9) gives, for M = O,
10

7 “sin n4/sin T

2

A0 .

B, -r(x) o+ 1)/[r(e +1 + 1) r(x - £)]

The properties (A.23-25) can be explicitly verified for these
expressions.
We follow here the conventions of Sciarrino and Toller (Ref. 25)

and MMl for the sign of A in the induction construction of the

->\’ -M

representation in the mixed basis. This implies that Dz+

is well-behaved in the 1.h. A -plane. Note that this convention.

s opposite to the usual one for the £ plane.
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36.
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38.

39.
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The eXpiicit expression giveh in footnote 30 . has such poles at

integer yalues of x. They correspohd to the_half—ihteger yalmes

in the £ plaﬂe.' At’such yaiﬁes ba+XM has a symmetry analogous

to, the Mandelstam (Ref. 3k) symmetry, and called "gemel symmetry

by Gatto and Menotti (Ref. 55)

S. Mandelstam, Ann. Phys. 19, 25k (1962).

Gatto and P. Menotti [Phys. Letters 28B 668 and 29B, )93 (1969)}
NG,

have studled this symmetry in the case «a = 0, where ao = O,

and therefore the poles at the 1ntegers ‘do not appear in our:

expression. When a #£ 0, the absence of such poles in b _K can

be used in Eq. (A.34) to prove the gemel symmetry very easily.

Equation (A.52) is obtained from the complex conjugate of Eq. (a.20)

of CDM after multlpllcatlon by - the phase factor 'exp(iz m). The

reason .is that Mukunda's convention for the 0(2) bas1s dlffers from

Toller s. We are now using Toller's basis, whereas we used,Mnkunda s

basis in Eqs. (A.19-20) of CDM. [See N. Mukunda;‘J. Math. Phys.
8, 2210 (1967).] | |
M. Andrews and J. Gunson, J. Mafh} Phys. 5, 1391 (196k4).

We keep the conventions of Sciarrino and Toller and MMl for ﬁheA
sign of A (see Ref. 26).

N - min(]ml,lMI) for .mM >0 and N =0 for .mM~< 0 :(see
Ref.[15)} |

In the 0(2,1) case, we were able to remove the kinematical poles
from the incomplete absorptive part explicitly by factoring out

a B function. Since we have not been able to do the same.in the
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0(3,1) case, we do not have an expression analogous to (2.25)

A o :
relating baKM to ba+kM

(B.14) in (B.17) to relate W

. Hence in practice one must substitute

A
N to 'bakM, although we believe

the relationship is not fundamentally a dynamiéal one.

D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26, 896

(1962).

The t ; O equation can be obtained directly in a much simpler
way :[see S. Nussinov and J. Rosner, J. Maﬁh. Phys. 7, 1670
(l966)].v_Here_Qe want simply to show how the « = O- limit is
reached with our formalism. |

The absence of the factor sin @ of Eq. (3.5) is consistent Qith

the form of Eg. (D.}) and of Eq. (L.12) of CDM.

o _.0
O,nt ~ "O,n1 ~

From Egs. (A.50) and (A.52) one can verify that vV
Bateman Manuscript Project, edited by A. Erdelyi (McGraw-Hill,
New York, 1953), Vol.. I, Egs. 3.7 (31), 3.3 (13), and 3.15 -

(L).

‘Ref. bk, sec. (3.15).

noO
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FIGURE CAPTIONS
Fig. 1. Conneqtion between t <0 and  t -~ 0 frames in the middle :; ’ '
- df the-éhain. Oniy the.loWer t =0 ffrémesAare shdwn. The ‘.

‘t <0 frames éreAshown,héifWay betﬁeen upber and lowér
momeﬁﬁa. lThe notation‘isvdefined in tﬂe téif.

iFig..E._ Conhection between t:<.C and .t.= O frames at the left eﬁd
Qf the chain. | - |

Fig.-5~:'Index summatiqn ééheﬁe_fgr the expreééioh of therresiQuérin_
Eq. (é.ez). | o

Fig. 4. The property of the Clébsch-Gordan coefficients used in the

v.text. |

Fig..5.v Lbcatioﬁ of the‘poles in the A plane for the integration of
Eq. (3.15). We hQVe shown with small ciiélesvthe péles
qqming from basz;.and with Qfosse; all_other polesf

. Fig; éy Locaﬁion’of the poles inithe A bplahe of'Eq.b(B.i5) after

substitution df Eq. (3.17); | |

Fig.:7. Location of the poles in the £ plane in the integration of

Eq. (B.13).

' "\\
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: '

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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