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ABSTRACT

We review recent work on narrov resonance models. We take the
point.éf-vﬁew that such models play a roie simiiér ﬁo_thaﬁ of the Lee
model'in quantum field theory, and that they cénnbt thérefore be .
directly compared with experiment. Ezamples of various.aspects of
these hodelg, including general self—consistency, and the construction
of amplitudes witﬁ extérnal cur;énts,are reviéwed and the related
,diseasés_are listedé A éritical discuséion of narrow resonance
phenomenolbgy is given} 'Aééociated questions which.seeﬁ to us suitable -

- for further study are discussed and summarized. -
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I. Introduction

‘Wé present‘here a review‘of recent work on crossing-symmetric
narrow resonance models. In the pasf year, such models have been the
subject of a burgeoning amount of research and we hope that our
exposition will be an aid to those.who want to acquaintvthemselves
with these developments. In our discuésion of the subject we have,
like Trotsky}améde no aftempt to disguise our peréonal prejudices, but
have instéad ﬁried to articulate them as clearly as péssible.

Iﬁ is our point of view that we are dealing here with a model,
such as the Lee mode%bin field theory, rather than with a theory
amenable to direct experimental test;. For this reasoﬁ, while we
accept attempts to use clues gleaned'from narrow resonance models to
generate phenomenological forms, we are sharply critical of contentions
that these constructions also embody testé of fundamental principles.

In our titlg‘ we have referred to the "narrow resonance model.
Although the Veneziano model is the best known example of such a model,

we want to distinguish it from the general class of narrow resonance

le
models. By the Veneziano model, we mean a representation of a

" scattering amplitude by a sum over a small number of terms of the form

r(m - a(s)) rln - a(t))

rm+n+p -als) - a(t))

We believe that this distinction is useful since much of the work we
discuss does not make use of that particular funcﬁipnal.form. The

17/r form iy a simple example of a crossing-symmetric, Regge-behaved,
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dval; ﬁarrowkresonance amplitude.and, as such, can be uéed aé a touch-
stone tb test broader theéfetical speculaﬁion..'lt is an interesting
problem to aetérmine_under what circumstances the Veneziano model and
the generalvndrrow'resonénce model beéome equivalent.

We discuss the narrow resonance model within the context of

. what we call the "nondynamical' assumptions of Lorentz invariance,

crossing symmetry, proper'statistics,'and consistency with the discrete
syﬁﬁetries, Furthermore, we assume consistency with internal Symmetry,
specifically isospin and/ér su(3). To a largé extent, our assumptions
‘concerning infernal Symmetries canﬁot be tésted within the conﬁext of
the model. Theré exists as yet no reasonable argﬁment which either
singles out a particular internai_symmetryvor gives any insight into
the mechaﬁiém by.which symmetries are 5roken. |

_?fédidtions outside the scope of‘narrow resonance models are
presumed tb rely.héaVily oh ﬁnitarify. bAt_the level of our ﬁresént
uﬁderstan&ing,rfhe divisioﬁ_of the properties'of SCétﬁéring amplitudes
into éétegbries iabelled "dynamic" and ”nondynémic“ is“oﬁly semantic.
In this ffamework unitarity is;generallyvassumed.to be a dynamic
property'which can be treated separately, and many active research
éffo?ts_ihy@lve attempts to "unitarize the Veneziano model in the
belief that unitarity.caﬁ be invoked at some laté stage to_extrapolate
from the narrow resonanée limit in a well-defined way. . Since the
narrow resonance Qorld is an artificially elegant one whose dynamiéal 
properties are made manifest by infinite strings of two-body resonanceé,
it lacks crucial features known ﬁo“be present in the physical World,
and thus such a unitarization proc;aure is bound to be difficult, if

not impoésible.
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'The‘pian of this paper is'as”follows: In Section II'we discuss
the propérties of the general crossing-symmetric narrow resonance model

(CNRM) fof:a four-body amplitude. In Section III, we illustrate many

~of the points touched on in Section IT using the simple Veneziano model

for g écattering. Readers unacquainted with this general subject
may préfet'fo read Section IIT first in order to orient thenselves.

In Section IV we discuss alternative narrow resonance models such as

_thdsé‘éﬁggQSted by Virasoro'and Mandelstam. In Section V we discuss

PCAC and:éurrent‘algebra in conﬁection with the CNRM. In Sectién VI

we touch.ah proposed schemes to évoid the‘narroﬁ resonance approximation
while reﬁéihing the other desirablé properties of the Veneéiano model.‘
In Secﬁioﬁ’VII we discuss the generalization of the Veneziano model to
N~partiélé amplitude§, the probléms of factorization, and the use of

the narrow resonance amplitude as a Born term in a perturbation expan-

sion. In Section VIIT we discuss high energy diffraction, the

Pomeranchon, and duality in the general context of the CNRM. In
SectioQIIX we diséuss attempts to form Reggeized Feynmén diagfams
contaihing closed loops; In Section X, we examine proposed bhenoménol»
ogiéal fdrms érising from‘the CNRM. In the final seqtion;.we
;ummafiZéFbur'rgmarks and list what we consider to be interesting
unaﬁsﬁeréd questions deéerving further attenfion. |

v fThe.cutoff daﬁe of our general literature survey WaévJulj.lS,

1969, and we have used PPF to construct as nearly-a complete set of

- references as possible. We have also tried to include more recent work

.which‘seeméd to . us relevant, and in the process we have certainly

missed papers which may be of significance.



' In'pur references we have used the following.systém. Review

afficleé;“bhysicS texts,'mathematics; texts, and journal_articles are
compiledtié.four'égparate lists in tﬁe bibliography; A few older
articles are referenqed in footnotes. If there ié a poséibility of
confuéion,_feferences to.review articles"afe markéd_(*). References
to books are marked‘w}th a dagger (T).: Mathematics and physics texts
are not distinguished in the téxt.' : Journal artiéles ﬁotvotﬂerwise
.referenéediin the text are liéted at the end of the - section to

: whichffhe& §re-re1evan£. In thé bibliograpby,_journal articles are

' cross,referéncedIWith the - section © to which they are relevant.

v

Y
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Footnotes for Section 1

la) Trotsky, Lev (1932) History of the Russian Revolution, translated by

Max Eastman, Univ..of Michigan Press, (Ann Arbor).

1b) In fact the parallel is quit.el striking.b Attempts .hz.zlve been made to use both
the Lee model and the nar.row resonance model phenomenologically, with
équ}ally convip_éing reéults. Narrow r‘esonanvce phenomenology is discussed

in Section X below. 'Fo.r. applications of the Lee model see Amado (1962, 1963,

1966), Amado and Aaron  (1966), Aaron, Amado, and Yam (1965).

lc) Veneziano (1968).
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1I. General Properties of Narrow Resonance Amplitudes. °

vIn_ this section we discuss c_erta‘in genéra"l features. of narrow resonance
models fof stroﬁg interaction s;attefing amplitudes. The reader lunacqﬁai'r'ited'
with the subjeét Iha.y '.f_ind it more convenient to first read section III ‘Where. a
specific model for mwm scattering is diécus sed- in _detail.

In Table Z 1,‘ we list a set of assumptions and propertieé‘whiclh con-
veniently outlinveé the discussion to follow. In this section wevw'i‘l'l touch oﬁ-'
the narrow resoﬁance' mo.del' s, conne‘é’cio‘n with internal symmetries, finite
energy sum rules (FESR), Regge behavidr, dualitvy, and the _interférence

model. The remaining items in Table 2. 1 will be dealt with in Section IIL
II. A. Internal Symmetry

The first four ''kinematic' assumptions listed in Table 2.1: Lorentz
invariance, and ¢onsistency with crossing symmietry, the discrete symmetries,
and Bose and Fermi statistics, will be taken as God-given. The assumption of

consistency with internal symmetry necessitates some brief remarks.

The procedure used in forming a narrow resonance amplitude is to first .

choose a particular internal symmetry and associated representation or re-

presentations, and then comnstruct the most general set of kinematic singulai{ity

free invariant amplitudes ( Williams, 1963) or alternatively helicity amplitudes

( Cohen - Tannoudji, Morel, and Navelet, 1968 ; Arbab and Jackson, 1968 ; Wang,

1966 ; Fox, 1967 ; Mandula, 1968 ; Jackson and Hite, 1967 ) consistent with

these and withfthe_other kinematic assurmptions.

-
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In general, there will be sets of solutions for each choice of internal
symmetry group and related representations, as discussed in Section III for
mr—~7n. The model itself gives no clue regarding which symmetry group or
representation is to be preferred; neither does it determine the number of
particles and/or conserved quantum numbers, nor the size and nature of the
- - . : 2b
breaking of the assumed internal symmetry.

Said in another way, the narrow resonance scheme is in some sense

v
'

éq'uivalei_lt- to an infinite set of linear relations between pole residues. Through
factorizatién, the pole residues are bilinear in the coupling constants or vertex.
functions. ~ We have, therefore, an infinite set of sum rules, and with the usual
choice of linear Regge trajectories, these determine the relative sizes of all
the coupling constants.

In order to make clear the limitations under which we are working here,
it is impdrtant to note thaf there are three further important queétions which
cannot be answered in the context of such systems: (A) What is the absolute -
normalization of amplitudes?; (B) How many prominent resonances are there?;

(C) Given the nature of the narrow resonance approximation ( NRA), at what

- point can one truncate the set of sum rules and still derive approximately valid

results?

In other words, in the context of narrow resonance models, it is not

possible to predict the strength of the strong interactions, the energy at which

~amplitudes become smooth, or to identify the set of resonances which deter-

mines the properties oframplitudes at low energies. The infinite set of narrow

resonance sum rules contains as a subset the relations considered by Gilman

and Harari (1968) and by W;ei'nberg (1968), (see also Cronstrom and Noga, 19.70)
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to which thé' same limitations apply. Under certain hypothesis about thg answerg
to (B) and (C) above, Wéinberg (1968) has _péinted out thét it'is poss_ibie to derive
,Liévalgebr'ai_c' st_atérnents_about the vertex functions invol_véd; The reader is
reférred to hlS paper, aridft.hat of .Gil'man and Hara..ri., for further de’tailis.‘ZC

Thé Quésfiog of the nature of the relations necessary to answer (A) -(C),

and to decide how a particular internal sy'n'lmetryv and its breaking occur, de-

2 d . . R . - ‘ R

serves further study.
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II. B. The Narrow Resoné.nce Approximation and Finite Energy Sum Rules.

-In th_e. Narrow Resonance Approximation (NRA), we consider scattering
amplitudes in which the familiar normal threshold branch points are absent and
the resonance p‘oles‘thodght to be present on the second sheet of the physical
amplitude occur on the real axis.

The possible dynamical importance of the NRA first became evident with
the cons‘c_ruction.of the finite energy sum rule (FESR) bootstrap ( Dolen, Horn,
“and Schmid, 1968; Mandelstam, 1968a; Ademollo et al, 1968;VSchrxvlid and Yellin,
1969; Loguno\_}, Soloviev, and Tavkhelidze, 1967; Igi and Matsuda, 1967).

The FESR' s pfovide a realization of the infinite set -of sum rules dis-
cussed above, and we review their formulation here. ze

Provided an amplitude satisfies analyticity and crossing, and is Regge

behaved, its discontinuity in v, at fixed t, DV( v,t), satisfies the exact relation

+N ‘ +N : .
3 f_NDV(V,t) 2y = 1 f~N {Background integral + Z(Regge cuts) +

> (Regge poles)} pdy (2.1)

This exact expression can be greatly simplified if we make the following rather
. 2e .
strong assumptions:
(i) .= (Regge cuts) = O
(i1) Background integral = 0
(iii) = (Regge poles) = Leaﬂing Pole only
(iv) Ima (t) % 0Oand Rea (t) = a + bt

(v) Dv(y,t) can be approximated by narrow resonances

With these assumptions, the relation (2.1) 1s truncated to read
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at+bt+n+l

LN D) vPav=p () N

_ : - ' 2. 2
N resonances a+bt+n+l (2.2)

Equation (2. 2) provides a consistency relation between the parameters of the

leading Regge trajectory and the prominent resonances, and is likely to be

valid ’only in the sense of a semilocal average, as illustrated in Fig. 2.1. The

construction of the FESR for wn=m+n { Adémollo et al, 1968) led Veneziano
(1‘968) to the form he suggested for the narrow reéonance model, and (2. Z)
yields the set of sum rules referred to above.

In'thé Iﬁodels we will discuss, (i), (iv) and (v) are exact statements,
and by ;lever choice of t anvd' N the background integral'(ii) can alsovbe
neglected. Statement (ii1) on the other hand does not hoid in these modlels
vsince there are nonleading contributions on both sides of the FESR. In par-
ticuvlar, the exp'i"ession giving the high energy behavior of the amplitude in
terms of an infinité number of Regge pole terms is, in general, only an
asymptotic expansion and not a corllverg‘ent sum. Only for af{t) = integer,
does the Regge series in the model converge. In thié case "'chere are a
finite number of terms on the right hand side of (2. l).2m

In thé exact relation (2.1) there are necessarily pieces which account
for high energy elastic diffraction scattering. As we will see in Section III,

such terms, usually lumped together and called the Pomeranchon, cannot

. 2f . . .
readily be accommodated in a narrow resonance model. This dovetails nicely

with the hypétheéis of Freund (1968a)and Harari (1'968_) , who eqiiate the con-
tributions of the Pomeranchon trajectory to the right side of (2.1), to non-
resonant background on the left. Since narrow resonance amplitudes have no

background, the truncated FESR (2.2) are popularly supposed to hold only
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for those ampl_i’tudes which do nét couple strongly to the Pomeranchon. This
assumption vhé.s. ﬁot been well explained, and at presén’c it has only}'a rather
striking empirical s_ignificanée.' ( Gilman, Havrafi, and Zarmi, 1968; Harari,
1969.)

Cléarly-, ‘there is an as yet unknown coupling betwveein the mystérious
nature of the Po’merahchéﬁ, and the answers to (A) -(C) above. In fact it is
a(‘reasonal‘ol'eb guess that the Pomeranchon is associated with the existence 'of.
the infinity'of the inelastic ché.nn'els, énd therefore is an essential aspect of
unitarity, \.ﬁh‘ichvis coﬁspicuously omitted from the list of assumptions in
Table 2.1 Narrow resonances on the real ax_e.s of the Mandeistam variables
violatéunita'rity, and we therefore are not investigat_ir}g a complete theory,
but a model With a serious flaw. One can, for example, compare the for-
mulation of the narrow resonance model with‘ that of the N/D model (Chew
and Mandelstam, 1960), which preserves elastic unitarity but violates
crossing.

In the authors' opinion, the unitarity violation of the narrow resonance
model totally precludes any practical applications whatsoever. This view is
nqt generaily subscribed to. For example, it has bee.n hypothesized by Chew
(1969), that Hmitations on narrow resonance models due to unitarity violation
can be avoided by using exterior physical inputs derived from other models.
We will ret}ir‘n repeatedly to the question of the realistic inter_pi‘etation of

narrow resonance models below.
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il. C. Regge Behavior.
We now turn to.the secondg.ry inputs and/or properties li-sted in T'ab.le. 2. L. .
.We will ins’isf that ‘t‘he, na‘rvrow .resona.mce .rnoa'e.l has -Reggle asﬂymp.tot.ic beha\;'ivqr
'by which Wé rmean that our amplitudes Eeﬁave 1ike - |

lim A(s,t) = B(t) s (t)

sl
t fixed ’

(2.3)
uniformly in the entire complex s-plane except in a direction along the 1i;‘1e of
poi,es _oh the real s axis. The éliminat'ion,df_one' diréctiéﬁ in“the-\coi’nvple‘x s-plane
'_ from the restfictioh of Regge asymptotic b'eha_vior .(Venezié,no, 1968; Pvfedazzi,
'1969) seems .to us a reasoﬁable resfrictioﬁ in view of the absence in‘_the vrno'del
v-of hormal thfe_ghold branch cuts.. Flg 2.2 >i‘11ustrates the asymptotic i)ehavio_r
on the physical vsheét of the s—pla',n..e for an amplitude with physical cuts, and for
a narrow resonance amplitﬁde. In tHi_s, picture a‘wedg.é around the real axis in.

 the narrow rés_onance model can 'be viewed as mimicking the properties of a
second, nonph:y‘sica,l sheet in the more rgalistié amplitude. .The physical region
of the narrow resonance ‘a.vn_)pli.tude can be viewed-'als the aréa above the upper

~ boundary -of this wedge, just as the physical region of an amplitude with cuts

'

is taken as the area above the boundary éf the cut.

As vfo.:r' If)rope‘rty-vz, cthe m.athem‘ati.cal.ly oriented reader. may have. al_réady V
obée;vea that the asyrﬁpfotic behvavilor (2 3) 'in. t.h‘e absence of cuts already i-e-_
qUirés that we co‘r;sidvelj amplitudes with an infinite number of péles._ If we '
write an gmpli‘cude wit':h a finite number of poles in the form

. .. N Ck(t)_
Als, t) = 1%~0

+ E(s, t) | I (2.4).
S-Sk .

2g

L,'
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where E(s, t) is entire in s, then the finite sum in (2.4) will have fixed power

behavior

. < "(?:>' |
N kT /e | ‘ |
E:O“ s—‘s'k | 5300 O(l/_ ) | (2.5)

in the asyfnptotie region. Picard's Second Theorem on essential singularities
guarantees tha’c .n(‘j'enti_re» function excepf a polynomial has uniform power be-
havior s:o thé.xt_; E(s,t) cannot exhibit Regge bevha‘.vior by ifself. Also, there
cannot beb can;:ellations between E(s,t) and a finite number of pole terms to
produ'ce the als.).rfnptotic" form (2 5).

“In orde r to have an infinite number of poles without an accumulativon
pbint in’thg finit_e plane we must have

Hm | sl = | N

‘and the aésumed identification of the location of the poles in the amplitude with

positive integral values of the s-channel Regge trajectory,

=k k=0,1,2,... (2.7)

CL(S‘k)‘ '

means we have infinitely rising Regge trajectories. (Mandelstam; 1968a) Con-
sistence with current experimental evidence [ cf. Fig. 2.3] suggests we should
consider linear Regge trajectories

a(s) = a + bs. | | ‘ : (2. 8)

II. D. Atonous Duality

) We wouid like to discuss the subject of "duali’cy"*in__t’er_ms of an amplitude
with polre_s in tw.o' channels, s and t, which is 'syrnnietric under t = s. .The
term; duality, was fi?st invented by Chew and Pignotti (1968) to describe the
observation Qf. Dolen, ,:Horn,' and Schmid (1968) that there exist intermediate

energies where some FESR's can be saturated on the left hand side by a few



e
dominant resonances,and on the right hand side by the leading Regge trajectory,
as discussed above. Controversy has arisen regarding the definition and appli.—
cability of ”dual._” and "intnerferenc;e ""'models. (Barger and Durand, 1968).
Most of the controversy is due to the ambiguities involved in dividing an am-
plitude with cuts into "'resonances'' and "backglfound" and the related diffi-

culties in measuring resonance parameters from Argand diagrams. (Jackson,

1969). The reader can consult, for the details of the arguments, Schmid - (1969a)

Collins, Ross and Squires (1969) Allesandrini, Amati, and Squires (1968} Jengo
(1969} Durand (19'68), Chiu and Stirling (1968); Donnachie and Kirsopp (1969) :
Henyey (1969).

Since NRA -amplitudes, by definition, contain no background, the situation

is much clearer and we can better understand the nature of duality. First, we

distinguish between two pdSsibilities. Suppose we write

Cw o) o e (s) | |
A(s,t) = 12(?:0 s;gk + E:O o gk + E(s, t) - (2.9)

where the sum over s(t) poles converges for all t(s). E(s,t) is a symmetric
function entire in both s -and t. Egquation (2.9) is the narrow resonance form
of the interfe_rvenc%e model, whe;‘e t-éhannel poles and .s-channel poles are |

~ added separa’c_ely as Wbuld be the case in a Feynman__‘ﬁeld theory. Zj(S_-ee Fig. 2.4)
This contrasts with what we will call Matonous " duality (Sivers énd

Yellin, 1969b), where

. 00 gk(S) : ' ‘ . .
A(s,t) = = — (for a + bs < 0) - (2.10a)
k=0 t-¢ _ S - : :
. ) N k
and also )
A(s,t) = Z ' (for a + bt < 0) . \ (2.10b)
R k=0 s~ gk ) E : .

and there is no arbitrary entire funétion.. The sum over t-channel poles

Ty
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diverges for a + bt >0  to give the s-channel poles and vice-versa.

The c:.rucial point here is that the interference model form of Als,t),
(2.9), is not possible if we demand that the sum over t-channel poles, which
is assumed to bve entire in s, also have Regge ésymptotic behavior in s, as
in tZ. 3). This follows, as discussed before, from Picard's theorem.gh Even
if we. exclude a’wedge‘v,’ arg s ¢ (—:61, 6 ), from the requirement of Regge
asyrﬁptotic b'ehavior, the limitation of the sum‘ over t-channel poles to be
an entire function in s of finite érder and type prohibits the iﬁterference
model form. (Oehme, 1969a) |

Clear‘ly the only pos sib:ility is that neither of the two sums in (2. 9)
have Regge Behavior in s, but that they separately have some sort of com-
plicated behavior which cancéls to produce Regge behavior. This is pre-
cisély what happens in an atonous dual amplitude. In order to decouple the
channels and create a genuine interference model it ié necessary to gé be-
yond narrow_ resonances and introduée cuts. ( Jengo, 1969).

- We will illustrate the cancellation mechanism involved by considering

" the Beta function, B(-a(s), -a(u)) = B(-x, -y). W& will split up B(-x, -y)

just as do Lichtenber‘g’,‘ Newton, and Predazzi (1969),whose interpretation of

the results is diametrically opposed to ours. We have

B(—x.,:—'y) = f}) du u—x—l (l—u)._y_1 ,'
(2.11)

LN -x-1 ~-y-1 1 -x-1 L, -y-1
= fO du‘u T (1-uw) + f} du u (1—1%)
, = Bx(:‘,’ -y) + By (v, -x) , ' | (2.12)
S L (1-\) o 1o
" ZF'1 (-x, lty; .l—x,)\) i ZEfl(-y, I+x; 1-y31-N)  (2.13)

where Bx(p, q) is the incomplete Beta function and ZFI is Gauss'
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hypergeometvric function. The integrdl in (2.11) has end point singularities at
0 and 1 whi‘ch account for the x and vy pol‘es; the x poles are associated with
u = O; the vy 'poles with u = 1. Therefore Bx(—x, -v) contains x poles, and
is entire in y, while B (-y, -x) contains y poles and is entire 1n x.v

1-A

Now, restricting ourselves so that the complex parameéter \# 0 or 1,

we see that different choices of A\ amount to changing B)\(—x, -y) and
B, )\(-y, -x) by entire functions.
W'ritiﬁg out thve partial fraction expansion of B)\ we have
1 3 (N+1+v) | |
B . (-x -y) = — El{x, v;\ » 2. 14
)\( _Y§ON NX)F(Y)+ (XY) ( )

where E(x, y;\) is entire in x, and the sum converges for y <0. The sum
diverges for positive y to produ‘ce poles which are cancelled by similar poles
in E(x, y;\) ‘since Bx(—x,‘ -y) is entire in'y. ‘We therefc;re have a Whéle spe;trﬁm
of functions BK(—X, -y) 3 for different values .of N, which have the sarﬁe partial
fraction expansion in terms of 'poieg in s. Only one of these funétions, for

X\ =1, is atonous dual by our definition and Eq.. (2.10a), in that there is no
extra entii'e'.fﬁnction. The_ atonous d\ial function is th‘ej Bet.a functivon itself,
Bl(—x, -y) which céntg.ins cross channel‘poles which appe:‘ir.asv divergences in
its partial frac‘;ioﬁ expahs_ions. -

(-x, -y) has Regge be-

As !y! -~ 00  with x fixed (or vice versa) B\

havior in half the complex y piane.‘ “‘Which half it is depehds on whether I)\I

-x, -y) and B

is greater than or less than 1. The behavior of Bx( X (-y, -x) for

1-X

'asyr'npto-tic values of their arguments’ is shown in Figs. 2.5 and 2.6. As can be seen
there, for one of the directions y—+ 0, x fixed, BX(—X, y) has Regae ‘be-
havior, while B1 )\(—y, -x) has Regge behavior for one of the directions

x™ 4+ ©, vy fixed.
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a I;n. of‘hev:rv Wc:rds, the x .'poles. in B)\(—x, ~y) iead to Regge behavior in half
the y plane, while f:he. v pol\e‘s in Bl-)\ (-y; -.x)' lead to Regge behavior in half
the x plane} In the. nénRegge half planes, the two functions blow up exponentially.
In orde’r to get i{égge behaviqi‘ for both directions x"ioov, ‘y .fixed, we ﬁeed to
sum the two functi_oﬁé énd go back to B(—x, -y).  The th‘ incomplete Beté func-
tiq‘fns iﬁterfe:é in such a way that thé sum is Regge Behaved, exceét of course
along the lines of poles, aé dis'cgssed in Section II. C

Lichtenberg et al, Henyey (1969) and also Coulter, Ma, and Shaw (1969),

“identify the two pieces in (2. 12) with the interference model breakup.  We do

‘not believe that a detailed cancellation of the type outlined above, between two

termg, neither of which is acceptable as a physical amplitude, due to the ex-
ponenfial blow tip?' ' is in the spirit of the original interference rﬁodel _
(Barger and Durand, 1968; Bérger and Cliﬁe, 1966; Barger and‘ Cline, 1967.)
which dependé oﬁ splitting the amplitude up into two terms, in such a way that
Regge beha\}ior"ir.l x(y) is associé,ted with the. y(x) pbles only.

For one of the airections x=+0, y fixed, Regge behavior in x cannot
be decvoupled’ from the'_}; poles in the narrow resonance model. In order to
decouple thé Rg'gge behaviqr from the direct channel poles, it is necessary to

violate the narrow resonance approximation and introduce cuts. This is pre-

cisely what is done by Jengo (1969), in order to construct what he calls a gen-

eralized interference model.
The definition of atonous dual functions is not of course limited to
b : v . .
crossing symmetric functions of two independent variables. Partial fraction
expansions are the narrow resonance formulation of dispersion relations, and

the absence of entire functions is equivalent to the absence of undetermined sub-

traction constants.
stant
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Any function with poles in two independent variables which is determined entirely
by its partial fraction expansion in one variable is atonous dual.

For functions with poles in three variables, only two of which are inde-
pendent, the partial fraction sums are handled in the same way as dispersion
integrals are handled for dependent Va‘riabvlevs. For example, the narrow re-
sonance amplitude for a process such as mr—nmw has poles in s,t, and u subject

L 2 2 - . . '
to the constraint s+t+u = 3m + m % D. Here we fix one variable, say t,
: s

®

and write the partial fraction expansion

oo o0 [0}
A(s,t,u) = = v o2 (2.15)

k=0 s-§ 0 D-t-s-n

7
.

"The fun,ctipn “A(s, t, u) is saild to be atonous duql if there is no extra
entire function so that the poles in t ‘occur as divergences in (2.15). As we
will see in Sections VII and IX, thé concept of atonous duality can be readily
generalized to N-variable functions having the singularities of Feynman trees,
and to‘ftvmctionsv having thé singularities of Feynman loops. It is a'characteris-
tic common to all these prescriptions that the divergen_ce of the expression in
terms of one set va poles generates another set of poles. This is ind.icatgd
s.cherﬁatically in Figs.z 1, and 2.7,

Atonous duality, as stated, is a dynamical propgrty in that it places
restrictions on the form which the residues of resonance-poles can take. Not

all functions of the form I (p-x) I'(q-y) /I (n-x-y) have atonous duality. When

n < p+q-l, we can write

T (p-x) T (g-y) _ I (ptq-x-y)
r(l:l'x"Y) ,r(n-x—y)

B(p-x, q-y)

I (k-p+lix) 1
[ U l-x-
(n-x-y) -+ (pra-l-x-y) g, I (k+1) T (-p+l+x) q+k-y

1
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which, in terms of the analogy between partial fraction sums and dispersion
relations can be viewed as a partial fraction sum with subtractions. The sum

. ' ‘ 2
can be written in the Mittag- Leffler %(orm by noting

T(ptg-x-y) L(kzprltx) _ jyqrpen+ 1L (g-ntkelix)

I({n-x-y) - gtk-y atk-y
‘ {(n—x—y)- - (ptq-1-x-y) I' (k-p+1l+x) -(-1) arp-a I'(g-n+k+x+1)
" gtk-y }

(2.17)

where the term in cgrly' brackets is entire in v. |
We ‘cvanv_see that subfractions affect the content of FESR's by looking at
an FESR, (2. 2) ;, for the function I (100-x) I‘v (100-y) /T (100-x-y). Let [N-100]

be the greatest integer in N-100, then (2. 2) takes the form

T (100-y)  LN-100] 13y . L(00-y) _-iny N
sin w(100-y) E:O‘ F(k+l)  sinwny y+l (2.18)
T([N-100]+y+l) e (2. 19)
T (IN-100]) -

-

which requires N>10, 000 in order that the FESR be true within ten per cent.

This contrasts with the FESR for the beta function, I' (-x) I (_y) /T (-x-y),

T . +1
M ~ Nyl (ZaZO)

I ([N])

which holds within 10 per cent for N = 2, vy near zero.
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1. E. The General Narrow Resonance Amplitude and Its Equivalence to a

Sum Over Veneziano Terms.

We would like to comment on a very ’interesting discussion by Khuri
(1969) regarding the .constructionvof an absoiutel'y convergent series of
Veneziano terms.- Specifically, Khuri considers a function of two variables,
F{x, y); and assumes:

(i) F(x,v) ‘is.symmetr‘ic and meromorphic, with p_gle.s' at vy,

ii) F(x,y) has the (Regge) asymptotic expansion
y gg ptotic exp

, ~ - r - _ X-K
Foy) gae  TTO0 Zo (0 F a0 (229)
" fixed x

(iii) The co_efficients aK(x) in (2. 24) are entire in x. As x—N,

an integer, _ah(N) = 0 for K>N+1 so that .

d

a_(x) = Lkex) (x) | | ' , | (2. 25)

K I (-x%) K
(iv). As x=N, an integer, the residue of the pole in F(x,y) can

‘be calculated from (2.24) and is
o eptox

‘gNM T T(rN) %o a (N) -(*Y)N—K (2. 26)

in x and K

(v) There exist conditions on the growth of bK(x)

sufficient to guarantee fhal.’.c:it'hé_ series : ( o
7 K R L . a V . ‘ i .
— -~ X - J .FgK-X!r!I(-X‘} ’ : v o
Fix,y) s Z = C ' : : 2. 27 3
, v) X=0 J=0 Kk - F®+J-x-y) - : ( ) -
converges uniformly for some domain of x and is equal to F(x, y) there. ¢
The reader will notice the connection betWe’en Khuri's assumptions and
properties 1, 2, 5 and 6 in Table IL 1. Positivity of partial \A;idths, property

pu’rhb’éf 7, is inserted by conditions on the Regge residues, ﬁg (s), which are
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related to the bK -by the rather formidable relation

Coas EG 8 (s) [2a_(s)+1](-1)"
| K(X) _-‘g-..jzo rZID_O >(4q2_)an(s') cos TTO.n(S)
. T[-a(s)+j]  ,,2j-n  j-n K- |
) n- (4q97) bo 7 (-a)
¥ Tl Za (e riml Gon) - T @)

where x = a + bs, and a (s) = x - n. The important point to notice about (2. 28)
: n' - .

is that it invol\}es an alternating éeries\ so that the positivity condition is not

easily implemented.

Khuri attacks the following problem: Given a_(x) as in (2.25), con-

K
struct F(x, y) ‘a_sl' a sum of the form (2. 27). He has been able to find bounds
on the growth of bK(x) in (2. 25) in order that the sum converge uniformly
in x. In fact, for bo(x) the requirement is

| x|

|bo(x)|< M 2 (2.29)
where M is some fixed number.
In order fo ‘hav.e p'ositive partial widths, we also need a bouhd on the behavior
of bK(X) for increasing K. This remains as an unsolved but interesting mathe-
matical prob'lé.m. Khuri has reduced this problem to a study of the solution to
a certain finite difference equation. The réader is referred to his paper for
details.
Matsuda v(l969a) has attacked .this problem from a slightly different
;aﬂgle. He makes the usual kinematic assumptions, assumes narrow re-
sonan!ces, ahd 'alsé puts in linear trajéctories and the alla.sence of exotics;,_
cuts, and right-signature fixed poles. Positivity is not included. He then
shows that F(x, y) can be expressed as a convergent series in Veneziano
terms. However it is»not neceésarily true that the res’ulting sum Reggeizes‘

properly.
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Matsudav(1969vb) has also given an illustrative exaimple in this con-

nection. He takes

sty = T v yilxey ) (230)
(1-x) I (1-y) |
I (l-x-y)

which reduces to L , for x = 1.

For 0X< )\__{ 1, Matsuda' s exampvle satisfie‘s Khuri's requirements. .It also
has an exponential droiy fo'r. fixed x+y (If x.= a(s) and y = a{u) this would
be fixed t) | related to the abslence of exqtic states, and its leading trajectory
has positive widths. However, as we shall discuss further in Section IIL. N.,
there are good"'re;asons for believing that (2. 30) has an infinite number of
'nég.a;tive widths on r.mnleadir.lg trajeétories.

The positivity requirement is the crux of the prqblem. It can be
argﬁed, for example, (Sivers and Yellin, 1969b), - that positivity along with
the other requirements‘ of Matsuda (1969a) precludes the formulation. of
partial wave dispersion relations, since it seems to force the Regge residues
to blow up exponentially, Violatiﬁg the fi‘}_ced Jv bound of Jones and Tebli’cz
(1967). &

Addi't‘ion_al material relevant to this section can be found in Bitar
(1969b), Childérs (1969), Jaédb and Mandelbrojt (1962), Jacobs (1969),
Joshi and Pagnamen;céu (1969) , Kreps and Milgram (1969), Oechme v(l9_69b) ,

Phillips and Ringland (1969), Swift and Tucker (1969), and Wong (1969b).
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Table 2.1

Lorentz Invariance -
} C.rossinvg

P(huénaatic Statistics

Discreté Symmetries
Internal Symmetry

Dynamic - ' - Narrow Resonance Approximation

1. -Regge Behavior -
2. Infinite Number of Poles
3. Atonous Duality

"4: No Equivalent Interference Model

Secondary | 5. Even Sﬁacing of Poles
Input - 6. Polynomial Residues
And/Or 7. Positivity of Widths
Properties 8. Uniqueness

9. Wrong Signature Fixed Poles in J-Plane

10. Exponential Behavior in Exotic Directions

ll Nonexistence of Partial Wave Dispersion Relations
_ 12. Equivallence to Veneziano Model
' 13. Absence of 'Exotic'.Rescnanceé

14. Exchange Degeneracy
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Footnotes for .Secti'on 11
2a) Othevr theologies are possibie. See"for example the remarks of 'Che.w_’
in J'acob'and Ch'ewT (1964), and in ChewT(1964) . Calling crossing s.ymmcf:try
kinematic is Qlur' semantic choi'cev. | | |
vZ'b) this should be hedged sligbtly. See vthe remarks. of Schmi‘d e;nd Yellin.
(1969), Secti‘o‘n iII. |
2c) | We WOI:;.].d like to thank F. Gilman a;nd-S. Weinberg for very helpful
discussions rbegarvd‘in_g the i)oints rAais'ed above. -
2d) It has, for _example,r been hypotheéized by Chew (priva'.tévcomxﬁunicatioh-) N
that the nonlinear constraints of 'rmjlltiReggvé unitarity will fix the number éf
_mesons-in an internal symmetry multiplet. See Chew (196§) fo.r'fvrelated‘ re-
marks in tﬁis cOnnection.
Ze) The a_rg;lments_below are Vtavk'en‘ from Schmid and Yellin (1.9.69) and defiﬂe, |
the FESR in a rather st?"i_ct serisé which precludeé the pheﬁomenological ap-
plicationé of continuous moment superconvergence relations co’nsidéred for
example 1I3y Barger and Phillipé (1968) , Olsson (1967), ana Liu and Okukp
.(1967) . One ;)f.us (J. Y.) would like to thank K. Ramlan for emphas1z1ng this
point in a private communication. | | |
2f) See Wéng(l969é.) for én opposing view.
2g) We hayé .lrliedgedithe title of the list beca'uge several different, but almost
equivalent,v seéts of assumptions are in general use. This will be discussed B
fux;ther in Sections II. E. and IL?[. N.
| 2i1) See Titc}_lmérshr (1939), Section 8. 88.
2i) It is n.o't clear that nonlinear Regge_traj‘e.ctories' svhvould be excluded. ' See

Coon (1969) and Capra (1969).
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2j) In this’ connection see Abarbanel (1969)

2k) Discussiyons of the Mittag-—Lefﬂef theorem and its extension to furictions
of s.everal cbmplex variabies in the form of the first Cousin problem can be
found in Hormanderf (1.966) , Sections 1.4 and 5. 5; SiegelT(1948) , Chapter "II;
FuksT(l963) , Section 2\;5 ‘and the orig.inal discussic;n ofv Cousin (1895), Acta.
Math. 19, 1. Tﬁe‘ severavl complex -variable aspect of t‘_he problem makes the
'ci’,;erivation of fig’orou_s results, including positivity, nearly intractable.’

2}) We emphasize tk.lat the argumenté of Sivers and Yellin (1969b) lack the
rigor of those of Khuri and Matsuda. Thé -'Reggé resi‘dues for a spéciﬁc i

model will be computed below in Section III. J. There it will be shown that

the leading Regge residue has a form which yields the asymptotic behavior

‘ 1 3/2
‘30 (t) t=—=%0 47 ©

(4/¢) %) L exp(-a(t) 1n(4/e)),
and as t goes too along a wedge near the negative real axis we get an ex-
ponential blowgp. Since B 0(‘c) is an analytic function of t, aﬁd has an in-
finite string of zeros af a = —(3i/2) , -(672) -, Carlvson' s theorem tells us
this exponenj:ia_.l blowup must occ.:uf,‘ as pointed out by Jones and Teplitz
(1967).

Jones éhd Teplitz further remark that in-a theory with infinitely rising
trajegtories at least one of the following set of assumptions, considered in a
related contexf 'by Khuri (1967), must fail:

(i) E].“he amplitude Als,t) is analytic in the cut s plane and is béﬁnded
for fixed t by _ |

f{e) = cexp (|57
(11) Als, z). is bounded by f(s) for fixed z;.

(ii1) The Sommerfeld-Watson transformation of the partial-wave am-

- plitudes.a(J, s) exists, and a(J;, s) is bounded by f(s) for fixed J;
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(iv) a(s) and B(s) are .a'rialytic with a sbingle cut from s = 492};0 0,
a(s) is polynomial b_o‘und(‘abd,' and B(s) is pounded by f(s).
| ; In the mod‘el, (i) and (iv) v‘a..re satisfied by consfruction but th¢ fixed
z and fixed J. bo.u'nds in (ii) and (iii), and_ the B (s) bound in (iv) fail. (The.
amplitudes blow up exponentially for fixed z in the unphysical region. ) The
‘bad asyrnptotic.Behavior‘ofthe paz%ialsmave-arnplﬁudes a(J, s), in s, ex-
presseé%hefﬁctthatthe background integral, in the model, grows ex-
ponentially for large s and domina_tes the Regge series if one pushes the

usual Sommerfeld—Watson contour fo_ the left éf J‘: ~3.

2m) The presence or absence of satellite poles has led to considerable
confusion  in thé literature. For example, Chu et al (1968) attempted to
génerate a crossing symmetric quel with bnly one leading trajectory. As
was showﬁ by Dolen, Horn, and Schmid (1968), and somewhat more rigorously,
by Mandula andelans_ky (1968), this makes no sense, at viea'st in a dual
model. Mandula and Slansky .went on to attempt to prove that even with an
infinite family of parallel trajectoriés, a dual crossing sMetric model
could not exist‘.v) As shown by Goebel (1968) énd_ by -explicit construction

" by .Veneziano (1968), such a model does, in fact, exist.
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Figure Captions for Section II

- + T

2.1 Plot of the difference of m p and n p total cross sections showing evidence
for semilocal _dﬁa‘lity in finite energy sum rules. Curve II is the extrapolation
of the contribution of the p trajectory. Taken from Chiu and Stirling

(19_68)»..

2:2 An_alylti.q's\t_ructurve of an émplitud_e with physical cuts vs. a narrow re-
sonance amplitude. The physic;l ampilitude is power béunded on the physical
sheet, while the narrow i‘esonaﬁge amplitude'has.no sheet structuré and has
unbounded asymptotic behavior along the line of poles -l.lnless one goes a finite

angle into the complex plane.

2.3 CheW—Frautschi plot showing states lying on the degenerate p,f trajectory
used in the Veneziano model. The parameters of the resonances in the S, T

and U regions are highly speculative.

% 4 Comparison between Lagrangian field theory and dual tree diagram model.
In the field theory diagrams containing poles in overlapping channels are added.
In a dual theory the sum over poles in one channel diverges to produce poles

in the overlapping channel, and if both sums are added double counting occurs.

2.5 Asymptotic behavior of B, C(—y, -x) where Re ¢ > 1. The function has

Regge behavior as Re x — + ®, but blows upv exponentially as Re x — +9,

2.6 Asympt"otic behavior of BC(-x, -y) where Re ¢ > 1. The function has Regge
behavior as Re y = -% but blows up exponentially as Re y = +©, Note also the
é'xponential behavior as Re x = -% which cancels out a similar exponential in-

crease in B_

l_c(—y, -x), Fig. 2.5, so that the sum is Regge behaved in this region.
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2.7 Schematic sketch showing atonous duality as contained in the amplitudes

discussed in Sections VII and IX. The sum over poles in one invariant di- i

verges to produce a pole in a crossed channel. S ' i
’

.
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I1T. ThérNarrow Resonance Model for gnx Scattering

In order to illustfate the main featureé of the narrow resonance
world discussed in Sec. II, wé would like to studyv in some detail a
model of ﬁhis type for gnn scattering. This particular reaction>has
been sfudied extenéively from ﬁany poinfs of view, for exam?le usihg
'N/D, and current algebra. There are, furthermore, indications,
Mandelstam'(1968a) and Schmid (1948) that the xx interaction may

be roughly described by a narrow resonance scheme.

III.A Kinematic Requirements

The scattering process L is illustrated in Fig. 3%.1.
. (3

The constraints of Lorentz invariance, crossing symmetry, Bose
statistics, and isospin invariance can be satisfied by writing the

amplitude in the form (Chew and Mandelstam, 1950)

Mdcba " B(S’t’u)éacbb

ad adgbc

(s,t,u) = .A(s,t,u) 8,12, 4

+ C(s,t,u)d
(3.1)

where the subscripts stand for the charge states of the pion, Bab

is a Kronecker delta, .and the Mandelstam variables (s,t,u) have their

conventional decfinition in terms of the four-momenta

s = (o, +p) (3.22)
t = (p, 'DC‘)2 (3.20)
u = .(pa - pd)2 . . (3'2‘3)
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Unless otherwise stated, in the rest of this section we will

‘set mﬂ2 =0 so that s +t +u = Q.

We will find it convenient to work with the t-channel isospin

amplitudes
Cagt = B(s,6u) ¢ AGs,tu)  Cls,tu) (358
t N ' 7
Al = A(Syuyu) - C(S;t,u) ()'5b)
t ' . o
Ay," = A(s,t,u) + C(s,t,u) . - (3.3c)

Because of the constraints of crossing, the invariant

amplitudes in (3%.1) have the symmetry
A(S’tﬁu) = A(S,U,t) = B(tzszu) = C(u)tas) (5'h)

so that specification of any one of A,B,C determines the amplitude
completely. Comparing (3.%) and (3.4) we see that we can also determine
t t

the amplitude completely by specifying either AO or A2 . In this

section we will work with the amplitude A2t as our basic function.

ITI.B Eigenfunctions of the Crossing Operator

Define

/Ao

A ' (3.5)

ot
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and similarly for the s and u channels. From the remarks of

Sec. ITI.A, there exists a crossing operator, O, where
S t ' ;
X = 0x . , : (3.6)

The operator ¢ is composed of & numerical matrix and an operator
which switches s and t channel four momenta. The numerical matrix

is (Chew, 1961)

0 1 -2 :
1/3 1 5/3°, O

_ . ‘

Cot = Ot = 1/3 1/2 -5 /6 1 (3.7)
1/5 "l//g l/

7
[82
ny

where the rows and columns refer to the isospins in each thannel. If
we choose a function, F(s,u), as & trial function for the amplitude

A t, then by the remarks in Sec. ITI.A

N

’

//- %— F(s,u) + 5 F(t,u) + % F(s,t)\\

N

-,....//

- L R(t,5) - F(t,u) (3.5)
. ~F(s,u)

is an eigenfunction of the crossing operator © if F(s,u) = F(u,s).
It is not, however, the only eigenfunction of @ with eigenvalue 1.
A function F'(s,u) = F(t,u) + F(t,s) can also to be used for Agt,

corresponding to the eigenfunction
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/

p _ o N
/. 3F(s,u) + F(t,s) + F(t,u) \\\

= L Fuw) - F(s,s) oo (3.9)

| \\\\ CR(tu) + Fkt,s) »///

Choosing the I

. = 2 amplitude, F(s,u), so that there are no

- poles in the phyéical t region, we see these two different eigen-

functions of the isospin crossing matrix have, as might be expected,

different \SU(E) properties. The eigenvector (3.8) has an SU(2)

structure 3 @1 while, by adding (3.8) and (3.9), we get a solution

with no isospin 1 internal states

| 5/2
x® = [F(s,t) + F(s,u) + F(t,u)] 0 (5.10)

lt

which corresponds to 1 € 4. These remarks can of course be easily

extended to SU(3). For example, (3.8) corresponds to 8 € 1 while
(3.10) corresponds to 27 €@ 1 in 8U(3). The solution (3.10) is
inconsistent with the classification of the experimentally observed
low-mass resonances which communicate with the xx channel, (Rosenfeld,
et al.f 1969). However, if we have a solution with internal reéonances
appropriéte tova nonet scheme, we can always add‘a function of the

form (B.io) in order to iﬁcorporate high-mass, nonleading eiotic_

resonances.
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I1T.C. The Choice of Agt(s;u) _
| We will éhooseva baéic function F(x,y) = Agt(s,u)- (x = a + bs
~and  & = a'+.bu) which has the foliowing properties. |
(a) It is symmetric, F(x,y) = F(y,x), and meromorphic with
simple poles at x = l,é,--- and y = 1,2,
(b) It has Regge asymptofic béhavibr:.
lin  F(xy) ~ T - y)(=x) + cl(y)(__x)y“l ]

X —o00

fixed y (3.11)

(c) The residue of the pole at x = K, G(K,y), is .a polynomial
in y of order K.

(d) The residue G(K,y) has positive Legendre coefficients

+1 ' : '

wt o= 2 G(K, & +bu) B (2) dz 3 0 - (3.12)
where. z = 1 + 2u/(K - a).

(e) F(x,y) has no poles in the physical t channel.

Our choice for F(x,y) 1is

r(l ~x) rP(1 -y)
r(l - X - V)

Flx,y) = &g = g F (xy) -
| (3.13)

We conjécture (3.13) is uniqﬁe under the impositioﬁ”of conditions
(a)-(e) plus.én additional assumption:

(f) For m =0 and a = % the;émplitudé is zero along
l—x-—y:.l—2a+_ bvtv = bt = O.
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fhe general functional form [IT/T was first suggested by
Veneziano (1968), and the application to ﬂﬁ — g is due to Shapiro
and Yellin (1968) and Lovelace (1968). Lovelace first suggestéd the
connection of a = % with the PCAC-current algebra zero, condition (f).

We will return to the question of uniqueness in Sec. III.N.

III.D. Asymptotic Behavior
'The asymptotic behavior‘of FO(X,y) is shown in Fig. 3.2. To
compute the behaviocr in directions which cross poles we need an averaging

procedure. Consider for example

- 1im |X| — F(l - X) F(l - y) N ) N y . - vi1
fixed y rii -x-~-y) r(x - y)(-x)> + ol (-x) .].

(3.14)

This result arises from the well-known asymptotic expansion, (Tricomi

‘and Erdelyi, 1951).

r(z + a a-g-n . - . vr',
R o Lo P e
. n:o . . . . .
where
Co(a)B) .: 1
o (B) = 5 (a-8)a+p-1)

| a-8 - m ' n o n-m
¢ (0,8) = —L T (o - ) (o)

N
(3.16)
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However,. (3.15) is not valid if we travel along the negative real axis.

We must stay on a ray, |x| -w, arg x ¢[-x +9, x - 8] (8 >0) in
. . A
order to avoid the violent oscillations due to the: line of poles.)b

Taking t =1 -x -y; v = % (x - y): we see that for t

fixed ‘and . large Ivl

101 1 N
r(z +5t +v) r(z + 5t - v)

.FO(X)Y) = » r(t) - NS i

O]

. r(t) cos nv
lv,l-—)oo

(3.17)
which goes to zero faster than any power so long ds we.avoid the poles in
COS nv 'by taking the-asymptotic behavior along-a line a finite angle away
from the real axis. Using this result we can see that the isospin;.
amplitudés, (3.8), have Regge behavior for a fixed channel invariant
when thétvchannel contéins regonances. When'a-channel contains no
resonances, then the asymptotic behavicr in a direction corresponding
to a fixed value of that channel in&arianﬁ is expOneﬁtially decreasing.
Said another way, 1f an exotic ¥ channel has no Regge trajectdries to
| L0 ' '

'pfovide.. power behavior, then the amplitude falls faster

than‘any power asymptotically.

" IITI.E. . Duality: Pormulation of Dispersion Relatiohs
"?he,function"FO(x,y)' is dual in the following

sensef its asymptotic behavior is entirely determined by its residues

and the locations of its pol€és. Mathematically, Fo(z,y)

is represented by (Whittaker and 'w'atson,T 1929; Ch, 12: ex., 9)




r(x v) 1 ,
rgK)Jrr}({x) y - K | - (3.18)

[>T

=
]
fat

for negative x, and by

Ké; K +y) 1 N .
r(K)r(:;) X -k - - (3.19)

=
—

for negative' y. The sﬁm of x poles diverges at positive ¥ to form
thé sum of y poles. There is no additional entire function in (3.18)
and (3.19). Expansions such as these are the narrow rescnance formula-
tion ofvdispersion relations, and the absencé of entire functions is

related to the absence of undetermined subtraction constants. We will

e

refer to this particular'form of duality as "atonous duality (sivers
" and Yellin, 1969b) One may be interested in writing down the narrow
resonance analog of the dispersion relation in v. for fixed +t. Here

this isv(Whittaker and Watson,T 1929; Ch. 1k. ex. 24)

(2

S ' + t
Fo(x,) =Z (G ?Ei)p(t%

K=1

1 1

. +
%(l’-t)-K -,v+-:25(1-'t')—1<;
- ‘ (3.20)

y +

[E5N

again with no additional entire function.. From (%.20), it again is

clear that the amplitude falls faster than any power as !v| — oo for
fixed +t. »
Wé can easily check that (5.19)-diVerges at y =1 in sﬁch a way that

Fo 5% x/y- l:Recalling the definition of the Riemann ¢-function (EEF, 17.7)
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(=) = ) K . (5.21)

K=1

we have, evaluating (3.19) for high K. in order to isolate the

- 4 g
divergences,

[22] [oe]

NS, M PGS CREVRTICas)

/. T(Rry) x -k y-1 Z )
=1 k=1

¥ K+ xx? 4 0(x7))

o —(T{m-yw[gy(y-lwxl (- y) o) 5=
y-1 . : y-1
' (5522)

where we have used the fact that ((z) is analytic except for a simple
pole of_unit residue at- z = 1.
For a more detailed discussion of duality in narrow resonance

models the reader is referred to Sec. II.D.

ITI.F. Poles and Zeros of Fo(x,y)
It»is interesting to examine the poles and zeros of Fo(x,y)
over the Mandelstam disgram  shown in Fig. 3.3. Note that there are
no t-channel poles, that the poies are equally spaced, and that
equally spaced zeros enter which cancel possible double poles in the
double spectral region where s and u are both positive. There is also

the extra, PCAC, zero along t = l1-x-y = O, vwhich we will discuss below.Bd
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III.G. Angular Momentum Towers

| Note in Fig. 3.3 the ﬁlaces where a dotted line crosses a solid
pole line in the physical s channel (y~$‘%, t < 0). The number of
times & pole is crossed givés the order of its residue.  For example,
the pole:at X = 2 1is crossed twice, at-  t =0 and t = ~l1. The
'correspdnding residue has a factor (%t + 1), and‘sinée cos O is

linear in t, we have a tower of poles at x = 2 with angular momentum

O, 1, and 2. This structure is shown in Fig. 3.k.

III.H. Behavior of Partial Widths

We define

+1

H(N,Q = dz PL(.%) II:%);(: - E); (3.23)

-1

where z =1 + 2t/(N - a) .

The partial widths of the intefnal states in FO(X,y) are
proportional to H(N,L). In fact one can convince himself that
H(N,L) éio for all (N,L) provided %-§>a.$.l. Framptqnvand Nambu
(i969), have in fact given an asymptotic argument, including‘an error
estimaté;'that for a »1/3, the H(N,L) are positive for iarge N.
Numerically, up to rather high :N, it is straightforward to sﬁo;id
"H(N,L) } o_f(Shapirp, 1969; Wagner 1969a). Combining tﬁé‘asymptotic
argumént with thé numerical one, it is probably poséiblé to construct
a rigorcus proof of positivity.Be |

The first few H(N,L) are shown in Table 3.1. A convenient

formula for the H(N,L) may be obtained as follows. We first notedt
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ml.=FN+X. . vy
LN(X)‘ = F - = N(:duj> . (3.24)

The Gegenbauver expansionBg then yields

Mt /2 Z (20 + 1) 1 (us/2) B(1 + 28/s)  (3.25)

L=0

where .iL(z)- is the-modified spherical Bessel function of the first

h
kind,5

z\L+2m
= (%)

iL(Z) = I ) 2 5 ) . . (3'26)
% v :E: m!T(L + 5+ m) '

m=0
-Fof the Nth pole, we set s =N - a, so that

o ua *H(N a) , f_ . _
H(N,L) . = —T"T N<:du:>P o L(% M(N f a)) .
' ' (3.27)

We can ééhleve a qualﬂtat;ve underétandlng of how H(N L) behaveé as
a function of N and 1 by g01ng back to the deflnlng 1ntegral (3. 25),_
and flrst examining the 1ntegrand pictorally. . The_polynom;al, TN(X),

is of Eth order in x, with parity (—l) around thevsymmetrj poiht.':“
, 1 : , _

X = - §(N - 1), whose oscillations increase in magnitude as we leave

the symmetry'point.' A picture of" T8(x) is shown in Fig. 3:5.
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Clearly, TN(x) has N integrally spaced zeros, which for

a = %, are spread across the physical region in =z in such a way that

the ends. of the chain are at zy = -1 and Zy = 1 - Ea/(N - a). Since

the amplitude of the oscillations in TN(X) increases linearly around

x = - %(N - 1), for a = % and large N, we are effectively integrating
31

over the forward peak between z = z, and z = 1. * since PL(l)_t\l,

2
the integral is positive. Shapiro (1969) discusses this more fully.

As a - % becomes negative, the most backward zero moves into

the physical region and some widths become negative. If we use our

formula for H(N,L) in terms of i_ we see that H(2,0) = O for

L
a = % and this width is the first to go negative as a decreases.
Asymptotically there are no negative widths created until a reaches

1/3, at which point H(N,L)'= O for ‘N - L odd. This last point is

easy to verify from the formula (3%.27); we have

W) FF (o) (-2

a~>g

B : ! R L
and iL(z)-= (-l)L iL(-z). For large N and fixed L << (N)2, the N

behavior of the residues is approximately
. a~-1 . . )
H(N,L) ~~._~ N ~/log N (3.29)

I, fixed

N— o

corresponding to the usual Regge asymptotic behavior times logarithmic
Z L
shrinkage,?? while the I behavior for large fixed N -and L (N)2

is
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H(N L) N exp{- = log N} . - (3.30)
.. N fixed . . ' :
L>>1

A plot of the widths H(N,L) for N.= 50 is shown in Fig. 3.6 which
"1llust1ates the behavior (3.30).

The results above may be verified by usll’lgB (EIT ho1k(33,35 ))

1

o | 2k W
CH(N,L) S dz Jilen(l - £)2) Y
o | 2a '
N
e LS
~ o k. e—Nlong JO'[2L(X)§] Z Cj () %I
& s _"LE" 2
~ .-l e} e —r——
j<o
(3.31)

‘where Lj is a Laguerre polynomial and we have used5z (GR; 8.722(1))

(o) oo n(3252)1 NERE)

or L >>1 and 1 - z << 1. ;
‘The behavior in L is therefore that of a model ‘in which there
is an impact parameter which grows as s2 (up to logarithmic factors).

The largest H(N,L) lie along I ~ (N)2. Sivers and Yellin (1969b),

Drago and Matsuda (1969), and Oehme (1969a) all discuss this behavior.
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This model.has, as one might expect, no absorption in it... Partial
waves are roughly constant out to some maximum L, beyond which they

fall exponentialiy.Bm

ITT.J. J;Planérstructure
| Thé étrucfure éf the model partial Qéve amplitudes as a:function
of pomplex angular momentum is nearly the simplest'possible;. they have

poles iﬁ J whose.location chahges with energy in the I = O and 1

channels, and fixed poles for I =0 and 2. Part of this is clear
already from ﬁhe discussion of aéyﬁpfqtic behavior in Sec. III.E.
Since F(x,y) has pure moving power behavior, Xy_n, as x gets big
and for‘fixed y, there can be no J-plane cuts. Cuts wogld induce
something more complicated, the usual guess being a logarithmic

5

dependence. "1n fact, sincé F(x;y) has no signature in the .x or
Yy éhanﬁéls) there can be no right signature fixed poles'eifher"sidce
these would generate fikéd power 5ehaVior, %m.- This explains the
conclusion about the I = 1 partial wave.

As we have seen, however, F(a'+_bS,.a +.bu) has exponentially
decreasing behavior for Iv] :'l%(s -u)| »» at fixed t. This
amplitude is even (signatured) in v and therefore the only possible
J piane signularities afe (wrong signature) fixed poles at the
"nonsense’ points Jv= -1,-3,-5,-+- whikh would not affect tHe

- asymptotic behavior. These poles in fact exist, and contribute to the

I = 0 and 2 amplitudes.
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For illustrative purposeés, let us derive the form of the Regge

résidueé and trajectory functions. Using (3.19) and (3.20) we have the

expansions
. 00 . 1 .

£ S T(K +t +5) - o |

Al (V)t) = g Z - T l - T
. x=1. 1K) r(s * 2 vrs -t -k v =(1 - t) - K

(3.3%a)

Agt(v,t) _= vg ;E: ¥ o+ e) [ 1 . 1 3
e . I‘(K)I'(t) v_‘_v + %(l - t) - K v o %‘(l _ t) - Kj

(3.33D)

‘which we'can think of as fixed-t dispersion relations in v with a
disébntinuity-equal to a sum of Dirac delta functions. Proceeding in

30

the usual mannef, we define the partial wave signatured amplitudes

1 1 - T, T, Sy
a (0,t) = = dz qu(2)[Dy (,2) + D (%,2)] (3:34)
o o S o o e e
where z = cos 6, = %f’ and by D; we mean the left hand (v<.0).

5-function discontinuity of (3.33). We then get -

2 (7,t) = 0 | o G

2 2(0,t)

il
o

(3.35D)
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j::l"(K+t+§) .
) rx)r(t + %) % (é TR :) (3.%6a)

i
n>

a H(7,8)
K=1

a,"(5,t) = 2 z (-1)f LEL Y QJG CEZLY L G

We are looking for the singularities of a-l(J,t). Each term in

(%.%6a) has the fixed poles at negative integral J present in the
Legendre function, QJ(Z), whose analytic properties in J . are evident

from the relation (BHF, 3.2(5))

Mo

+

(=) = —= F%J L mG L
. = 2 - -
r(J + 2)( z)

IS
ot

. 5,1 '
s J o+ 53 ;5) . (3.37)

To see whether they are present in the partisl wave amplitude, we must
use the fact that the residue of the pole at J = -N of QJ(Z) is

-PN_l(z) to compute

. ’ . l -
: 'K + t + %)
N 2 2K - 1 1
Yi.(t) = 2g EE: T PN_l (} + ———?fi;> , (t + 5 < -N)

r(x)r(t + é-) 2

K=1
(5.382)

ng(t) = 2g Z L—;)(Kgilg(z)t') Pr_q (1 + ———--gKt‘ l) (t < -N)
K=t - (3.380)

Tn fact, YiN(t) = 0. This is shown easiest for the case N = 1, where

(%.%8a) becomes
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q?‘ r(k +t + %

L,y ' 1
(%) = 28 } —3 (t+5<-1) (3.39)
| 7 r®r(t + 3
-which wvanishes because of
QF* (K +t + %) r(p+1+t+ %) 1.
S Poe g DRT(E +3) r(P)r(t + 3)(t + 5) o
- (3.50)

This is in agreement with our comments above. Showing that the residues
of the other fixed poles vanish can be done'in a similar manner. The

situation ié different for the case of the I = 2 fixed poles where

o Tgl(t)"does not vanish. The residue of the first I = 2 fixed pole is

oc

o 1,y ., sin xt o T(-t)r{m + 1 + t)
T () = 2 = 2{: (-1) T(m + 1)
' - m=0

1

= 2g Ei%;&i du u (1 - u)—t_l (1 + u)-l
5 v - (3.421)

= Qgt E_t

The other residues of the fixed poles at wrong-signature (odd)

negative integers can also be shown to Ve nonzero. (Fivel and Mitter,
1969; Sivers and Yellin, 1969a; Allesandrini and Amati, 1969)’
We now examine (3.36a) and (3.36b) for moving singularities

which'appear as divergences of the infinite sums. Using the asymptotic
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expansion (3.15) for the gamma function and the large z expansion

of (3.37) we find

o _ 14 J + 1
o) (,8) ~ e (T —LLEL
Mg +5)r(t +3) &=
[ tdaa f45-0-2
Y <k °  +ox ye o (3.42)

which has a simple pole at J =t + %;: a(t), as can be seen from the

analytic structure of the Riemann zeta function.

) = ) K SR )
K=1

The residue of the leading Regge (moving) pole is then P

Bot) = g—f—g—ﬁ—%— (ﬁ-‘)o‘(t) | (3.44)
, rla(t) + 5]

* where (E)a = q?a is the usual threshold factor. Removing the leading

divergence from (3.h42) we find nonleadirg Regge poles, (satellites) with -

'residues
i 2.0-1
2
B (8) = &= dd ) (5.45
3 2,0-2 '
Bg(t) - gg a(a - 2)(q7) (5'A6)'
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gns . 2 . 3 (qQ)a-j ' :
(t) = gy ol +3-5a] = _— - (3.47)
3 2 1
v (o - 5) :
. oy " -1 5 .
In (3.b4),) the factor T (o + §) appears because of the
Mandelstam symmetry of ﬁhe partial wave amplitudes
| 1 1 .
a(-J - 5 t) = a(J - 55 t) (J integral) (3.48)
Mandelstam (l962§. Note that the trajectories begin compensating each
other ds we réach the level of the third daughter instead of having
zeros at all half integers. (If no compensation occured; Bn(a) would
contain the factor Tr(a + % -n).)
~We can check that the I = 2 amplitdde has no moving poles

by noting (@R,v9.522(22>

L)X xF - (25 1) e(2) . (3.59)

gt

=
It

1
Looking at the form of the I =0 amplitude we see we can

write it as a linear combination of__Al-(v,t) and A2+(y,t).'

a, (3,8) = Za,7(3,8) - 38,7(5,1) o (3.50)

- so that we have both fixed poles and mo¥ing poles of isospin 0, again

in agreement with our remarks above.
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-III.K. Exchange Degeneracy
From (3.50) we see that the I = O Regge tréjectdry, the f
trajector&,ﬂis degenerate with the: I = 1 rho trajectofy. .This is a
gene#al feature of nafrow(resonance models which have no resonances in
é parﬁicular channel. In this case, exchange degeneracy3g is éuaranteed _
by the abéence‘of resonances in the physical t region for.the_ Ivs 2

ha
amplitude. : g

IIT.L. Sum Rulés at t =0
If we use the formula (%.3%3a) for the I =1 amplitude at

t = 0 we.get the gan sum rule for this model: (Yellin,'l969b)

o0

r(x - %)

: . 1 .3 5 ‘
B = 2+ =+ ==+ e (3,—1)
" | zi;' F(%) r()(x - %) 5720 " 56 | 5

In (5;51);'the contribution of the (p, €) tower is 2, the f tower
yields 1/5; etc. Curiously enough, these contributions are in
qualitativé.agreement with the phénomendlogical estima£e §f Gilman and
Haréri'(1968).

Along t =0, Agt vanishes. Explicitly in (3.33b) wé See.the
factor f*?(t) accounts for this. This means that.fhévcbntriBUtion
of each:tower to the discontinuity in v "along t. =0 ;is zero{

- If we write out the I =2 discontinuity in v. f§f arbitréry \

t 'we Have up to an inessential overall factor



Dy(v,t) - Z(—l)K L 2 (sl + 5(1-1) - ) - ol + 21 - 1) - KD

b

:-%[Po(zs) - Py(zg) ] sly ) %).+ %[Pe(zs? - Py (zg)lsly - 5+ -

+ {Zs:~;2u7'v —-v} . (5552)

‘We see hefé; for example, that p .and .e. cancel each other at =z = -1,
t %10. If we translate this into a ‘statement about> the widths we see’
that putting in the (2J + 1) _factors and the isospin Clebsch-Gordan

coefficients, we get

1.2 2 - '
£ - 3x3 - 3 ‘ (3.53)

which is the same result one gets from the current algebra sum'rules.
(Gilman and Harari, 1968.) (See the discussion in Sec. V for more about

current algebra and the sn narrow resonance. amplitude.)

’-III.M. Finite, Energy Sum Rules
The usual I =1 and 2, finite energy sum rules (FESR'S) for
a Regge behaved amplitﬁde of the type we are considering, for .arbitrary

t, are -

- N

o

vdv Dgt(v,t) = 0 , (3.54)




where £  is the Regge residue with the an factor removed (reduced.
residue). Because even and odd spins have opposite signs in (%.52) we -
can expect an oscillating behavior with the amplitude of the oscillations

increasing with t, for t > 0. Choosing N such that

1 1 1
—§+K+-§t§Ni-’é’

[ef. (3.33a), (3.33%3b)] index K and by induction we get

"1
TErs

t + 1 +the highest tower included has

o
5 e = 3w REmt 0 (3:56)
‘
- N
= “av D, (v, )
-N
o r@slio) L (@ + L)oo =2
= F(N)F(Oﬁ)((}f + ]_) (Oﬁ + l) P(Of) [l + ——E—N—)_ + O(N )]

(3.57)
As expected, (3.56) oscillates as each succeeding tower is added, while

3r

(3.57) yields a sum over the contributions of the Regge trajectories.

1

IIT.N. Uhiqueness

'Atvthis point we would like to speculate on the possibility that
Eq. (5.15) is a unique solution to the rarrow resonance syu amplitude under
the dssumﬁtions, (a)-(f), of Sec. TII.CS° We have not constructed a proof

of this conjecture, but it is interesting to try to find a counterexample

in order to see how the various assumptions constrain the model.
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Except for éssumptioh (a); the narrow resonaﬁce approximation,
éll the'assumptions iisted are physical ohés. We will eXamine further
in Sec. VI, amplitudes which contain cuts and violate assumption
(a). We will sée there that it i1s possible to remove the poles from
the real axis keeping all other desirable properties. This has beén
.done by Suzuki (1969).

Aé.for the analyticity requirement, assumption (C), we can
argue thatvthe polynomialvresidue; G(K,y), must be of order K becausé

of crossing and Regge behavior. That is, as y — o, for fixed x,

o K . " v
. K,y ) .
lim giti%l = xy- X (3.58)

or else we will get the wrong set of Regge trajectories.

Requirement (e) comes in to eliminate representations with
~ poles in thrée channels as we will discuss in Sec. IV. If we relax
requiremént (¢) and attempt to break exchange degeneracy (Mandélstam,

1968b) the positivity condition seems to be violated.

Condition (b), Regge behavior, ik certainly necessary. If we

did not require Regge behavior,_wevcould‘have functions of the form

Fo(a + bs, a + bu) + Fo(a + Ei, 1+ 23'

5 (3-59)

where the second term has ali the same properties as the first but

leaves out some of the particles in the spectrum. Convérsely, we see




that if we tfy to vary the spacing of poles and zeros in the model, the
asymptotic behavior is no longer Regge-behaved. .(Bali, Coon, and Dash,
1969b)

The}positivity condition, assumption (d), prohibits the use of

subsidiary terms like

r(x -.x) r(® - y) (K - y) (P - x) -

r(x +P +M-x - y)+ FrK+P+M-x-y) (5.60)
which give an infinite number of negative widths?t (Shapiro, 1969)

The requirement, (f), fills a trivial hole in the positivity
requirement} Referfing again to Fig. %.% we see that ali the zeros
of FO except the one mentioned in (f), play the role of preventing
double poles fro@ occuring at the intersection of the x and ¥y poles
in the double spectral region, (x,y) > O. ‘Requirement (e)vtells us
that, exgépt”for the ?CAC zero at t = 0, the other zeros are straight
lines in_the,Re x—Rey'plahe. If we move the PCAC zero by an infinitesimal -
amount, then all widths chaﬁge only iﬁfinitesimally5 ana'we could
genérate.a counterexample,

t +oe
-t

£ -x) r-y) , , 0@ - %) r@ - y)
Tl -x-v) r(2 -x-y)

(3.61) -

where we must choose the sign of ¢ so that H(2,0) is positive since

Fo(x,y) =

for a =% and ¢=0, H(2,0) = O0.
If we try to Shift_the zeros around more drastically, positivity

is destroyedéd-For example, consider
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r@ - x) r( -y) ,  re-x) r(-y)

[1 + e(1 + %X)] FO(X:Y) . _ Tl -%-79) r(2 - x -~ y)

(3.62)

where the residue of the pole at x = N is now
y(y +1) o (y +N -1) - y(y +1)---({y +N - 1)

ey (y + 1) (y N - 2) .

(3.63)

No matter how small ¢ is chosen, there will always be a range of
N for which Ne is large and the second term in (%.63%) dominates the
first term.. The sign of the contribution of the second term to-the

width of a spih L state relative to the first is
COWNHLAL Ly -
(-1) sign (e¢) o (3.64)

\ » ; :
so that there will be an infinite number of negative widths either for
(N + L) odd or for (N + L) even depending on the sign of ¢. A

similar thing happens when We'qonsider t1e example of Matsuda (1969b),

r(1 -x)r@ -y) +, . . l-x-y,
1l - x-y) - oF (%5 S B r)

fIS(X,ys N) =
(3.65)

no matter how small 1-) is in this expression, we conjecture there are

an infinite number of negative widths.
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Additional material relevant to this sections can be found in
Antoniou, Bartl, and Widder (1969a,b), Atkinson and Dietz (1969),

Boguta (1969), Moffat (1969), and Tokuds (1969).
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"Table 3.1

Coefficients of the Legendre Polynomials Contained in

the Model wn Amplitude (3.13), normalized to L = N = 1.

t L

N - 1 2 3 4

4 1. 43

3 25/16 1. 43

2 3/2 25/16 0. 681

1 1 3/2 5/16 0. 759

0 1 0 5/16 0. 0785
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Footnotes for Section III
3a) The Ci(‘y) are given in (3.16) below.
3b) See in this connection the inte’restin.g éxample of Dolen, Horn, and Schmid
(1968), Sect. VI. C.
3c) This particular terminology was suggested to one of us (J.Y.) by Professor
Y. Ne'eman. Compare /(t3h.618€)xglx‘1?15.(s3i.oln9s) with those of Durand (1968). The in-
g.xj_.edient which_is absent in older treatments is the atonous duality statement
that everything is determined in the narrow resonance limit if one knows the
location of poles and their residues. This implies that the divergence of the
- series of crosé-cha‘nnel-poles generates direct-channel poles, and vice versa.
-1

3d) The zeros of the entire function E(x,y) = Iﬁ_](l—x)r‘ (1-y) F(x,y) are what

has to be fixed in order to prove F _ is unique. Unfortunately the mathematics

0
of entire functions of several complex variables is diffjcult and unkﬁown. In

this connection see  J. Korevaar and S. Hellerstein in Entire Functions and
Related Parts of AnalysisT (1968) .

3e) We are informed by G. Tiktopoulos that he too has constructed an argument |
similar to that of Frampton and Nambu.

3f) The polynomials TN(X) were first considéred by P. Appel, Compt. Rend.
‘_Q_Q_, 286 (1880), and by L. Poéhhammér; Math. Ann. 36, 84 (1890). They allso
appear in connection with the spin—matrix polynomialg '(Wiilié,ms et al, 1966;
Nelson, 1969) It turns out that the s wave widths are rela‘te‘d to the generalized -
Bernoulli polynominals.. See NielsenT (1923) and Jorda‘ni. (1947).

3g) Sge Watsonf (1966) ép. 128 and 368 ff. The original result is due to Bauer, "

J. fdr Math. 56, 104 (1859).

3h) WatsonT (1966), p. 77.
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3i) In other words each pole residue of Fo(x, y) has the typical angular behavior
associated with Regge pAole exchange. - See EdenT (1967), Chaéter 9 and Collins
and SquiresT(l968) , VIII. 6. The slope of the forwafd charge exchange peak in
Tr+1r’-'1rowro ébmp.ares favorably with typical experimental values for other
processes inputing a trajectory slope near l BeV—Z. | (Shapiro and Y'éllin,

1968; Shapiro, 1969.) This is so far the only ‘phehomenological success of

the Veneziano model. See Section X.

’3j) Coliins and Squ.ire‘sT (1968),_ Sect. VIiI. 6.

3k) Compare Blan'kenbecler and Goldberger (1962) and Kugler (1968).

31) Strictly speaking one should verify that (3. 31) converges, This can be
done by using the results listed in EHF, 10.15 and BuchholzT(l.‘)é‘)) , Chapter III.
3m) This behavior occurs in any rising trajectory model i:n which asymptotic
behavior is determined by moving J plane poles only.

3n) Rothe (1966); Oehme (1964) ; see also Trilling -(1970).

30) Eden! (1967), Sect. 5. 3.

3p) Fivel and Mitter (1969), give the following expression for the Bn(t) , using

the approach of Khuri (1968)

n 2a-2n y
B la) = g:ﬁ(-n = [%{g] (t/2) Zpg’.“(z%)
. 27 "I (a+3/2-n) P T (n—2p+’1)

.I'(a+3/2-n)
T (a+3/2-n+p)

where [n/2] is the integer part of n/2

where

s v ) -a~1
6 () = () Len/2 (2R T

3q) Arnold (1965).

3r) The peculiar form of the pole residues in Fo(x, y) leads to a special
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feature of the model which makes possible an ''exact " bootstrap. The point

' T (N+Y)-
is that -—j——j—

(N T (Y) is not only a polynomial of order '_N.l_in Y, but if y is

integral it is a polynomial of order y in N. This means that, for a(t) =
integer, a fiﬁité number of Regge trajectories confribute to thé.right hand
'side of the FESR, and we can calculate the partial wn widths by successive
,,{iterations of (3.57), using the various moments »". This gives a possible |
uniqueness proof very similar to the construction of Schmid (1969a).

3s) Much of the érgument of this‘ section have been developed by one of us .
(J.Y.) in collaboration with R. F. Dashen. “

3t) In connection with .thve positivity requirement, ther’e arises the following
problem. What restrictions are therg on the positions <ij the réots {xi\l} "
of the polynomial R

N - N
)\k , RN(x) = E:O )\llj Pk(x), are > 0? A not very useful constraint on the

N(x) of -order N, such that all its Legendre coefficients,

N, . . ...
{x. } is that the sufficient and necessary condition

1 x. xN
. N N
PO(XI ) .PN(X1 )
det
>0
N N
Polxy) Py

hold for all x >0, provided the {xiN} are distinct. Information about this prob-
:,_lem can be found in SzégoT (1939), ,Akhiez;er and KreinT (1938), and especially

Ma rdenT (1949) .
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3u) This bad'asyrnptotic behavior of widths comes from alté'riﬁg the fixed angle
behavior of FO(X, y) .~ We thank S. Mandelstam for pointing out to us the impor -

tance of,fixed'é.ngle behavior in the uniqueness problem.
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Figure Captions for Section III

3.1 The scattering process T T g

3.2 Asymptotic behavior of the function Fo(x, y) = T(1-x) T"'(1-y)
' r(l-x-v)

3.3 Poles and Zeros of Fo(x, y) = T{l-x) ' (1-vy)
‘ . T(l-x-y)

Poles are shown as solid lines, zeros as dotted lines. Except for the (PCAC)
zero along x + y = 1, all zeros serve to cancel possible double poles in the

double specti'al regioﬁ x >0, y> 0.

3.4 Chew-Frautschi plot showing mass spectrum of I'(l1-x)I'(l-y) . Note the
' o I(1-x-y)
absence of ancestors and also of the possible ghost state, of (mass) = -3, at

L= 0.

3.5 The behavior of 'T8(x) , the pole residue of the eighth tower in

'Fo(x,y) =

3.6 Width of resonances in the fiftieth tower as a ﬁmction of their

angular mom‘éntum s Lo



- 68-

XBL68!I-7150

" Fig.3.1

P




69

2 §
, f
A g
W\ 4 i j

N7 T |
[N/ Ty —

XBL702-2295

- Fig. 3.2



|
| | |
«70a : _ 1

————=7eros

Poles

pgle R

Base lines

_ XBL6SI-ISTI v
Fig. 3. 3 : . . . : a




-714-

Ancestral
region

X X X X X
| 4 5

_'stesaz-‘rzasa,



(10%)

T, (X)

72w~

—_—

e Range of integration_______
L L 1 [ ! | o

-9

-8

-7 -6 -5 -4 -3 -2 -1 0 |

XL 6811-7252




I'(50) (MeV)

10

O.1

0.0l

-73-

T T TTTT]

f

T TTTT]

I

T

T TTTTT

| Lo bl

el

gl

10 20 30 40 50

‘XBLEBII-T7I148

Fig. 3.6 ..



Sy '

IV. Modifications of the Four-Point Function

Most work on narrow resonance models has made explicit use of the

form

Cls,t) = = T (m-x)I (n-vy) . ,
m, n, p- r‘(mfn+p—x-y) mnp o

(4.1)
with a small number of terms in the sum. This is uéually done for simplicity
because the propefties of the Beta-function are relatively well known. There-

.are, however, other possibilities for the functional form of a narrow resonance

model which we will discuss invthis section.

IV. A. Virasoro's Representation.

An altver.ri‘ative to Veneziano's Beta function form was proposed by
Vira'soro,( i969a.) .Allthou.gh' Virasoro's model can be formu.la.te.d for other
amplitudes, (Hara, 1969; Viraséro, 1969 a), it takes its'. simplest form fér a
reaction suc_h as wrn—~7w where the amplitude is completely symmetric in
s, t and .u'.. Let x = a+'bs, y=a+hbt, and z=a+ bu. Virasoro sug-
gested usihg |
o) DR/ (/)T (-2/2)

V(s.;t;“.):'r xty, . xtz, . ytz
(- 2‘)* (-—2—)1"(— > )

(4.2)

This form simultaneously exhibits the poles in all three channels and has
definite signature trajectories only. The spectrum of poles in Virasoro's

model is compared with that of Veneziano' s in Fig. 4.1. The partial wave

projection, a(J,x), of Virasoro's amplitude has multiplicative ﬁxed.poles

which appear in the Regge residues at negative wrong signature integers

Y
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_ _ 2x T (x/2+1/2) T
B yirasorot™ = Elx) g T (x/2-D/2) T (x+3/2) (4.3)

- Z .
where D=x+y+z=3a+b (?mi)' and E(x) is entire. These poles there-
fore do not affect the asymptotic behavior of the physical amplitudes, but
appear only in the asymptotic expansidn of the signatured amplitudes. In the

Veneziano form, as discussed in Section III, a term like B(-y, -z) contributes

additive fixed poles to the .partial wave projection, a(J, x), which also sit at

the negative wrong signature integers. The fixed poles in both the Virasoro
and Veneziano representations seem to be manifestations of the Gribov-
Pomeranchuk pheénomenon (Gribov and Pomeranchuk, 1962) and violate uni-

. 4a o L ) ‘
tarity. A more complete theory would be expected to have cuts in the com-
plex J-plane to shield the poles. Once cuts are allowed, there seems to be
no way eliminating one representation in favor of the other on the basis the
properties of its fixed poles.

One property of Virasoro's representation which sometimes proves
inconvenient is the presence of poles in all three channels. Suppose, for
example, that one wishes to use the Virasoro representation for mwrn scat-

. . _ . . . + + :
tering. Although the intercept of the leading trajectory in the m 7 channel
can be made as negative as we like, we cannot eliminate the exotic poles in
this channel entirely. (Virasoro, 1969a) For reactions ‘where one channel
has exotic quantum numbers, the assumed absence of poles in this channel
can be used to restrict the number of Veneziano terms considered, and leads
immediately to exchange degeneracy. For example, in Section III we saw
how eliminating exotic 7 w resonances gives degeneracy between the p

and f trajectories. Since in Virasoro's representation, all ch'a'nnells contain
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poles, one cannot have this simple exchange degeneracy. This is one reason.
why-Virasoro's model was eliminated from consideration in Section III. N.
by requiring that there be no I = 2 poles.

i

Mandelstam, ( 1969&) has found an integral representation of Virasoro's

amplitude. Virasoro (1969c) and Collop (1969 have generalized the model to

N particles. So far as we know, there has been no t'horough examination of

’ . . s . 4b
- the factorization or positivity properties of the model.

IV. B. The Generalization of Mandelstam.

Mandelstam (19692) has found an integral representation for a narrow
resonance mod‘__el which has linear trajectories, polynomial residues, crossing
symmetry and Regge behavior, and which includes the Veneziano and Virasoro

- representations as special cases. The formula is

M(x, v, 2) = fo dndn N n_Y_Z(Z—X—n) ~ZTZ
1-) '
AR (A (B e

where the v, are arbi’crary and the range of integration, R, is the’trian.gle
n<l .)\'<‘ 1, and A\ + n > 1 E 7 | ' (4. 5)

shown in Fig. 4.2. The formula (4. 4) is a special case of

~

M(x, y, 2 f dhdn \7X7 | 0 Y 20 TR RO ) N (4.6)

wl;iere F()\, n) is assumed analytic in 'R with the exception of possible power

branch points along the boundaries of R. Ezézpanding F(\, n) in a power series

we can express (4. 6) as a sum of terms of the form (4. 4).
The infegral representation for the Virasoro ‘amplitudes (4.2) is a

special case of (4. 4) , with

D3)




<

T

T vpEvy - -1/2 (D + 3) | (4.7)

The Veneziano form appears if one or more of the v, are -1. The integral

then dlverges along one side of the trlangle and we find

1

11m (V‘ +1) M(x, Y, z) -y-1 dnd (n+\-1)

an A"
v, -~-1"3 fR

fg ax A oy Yt (4. 8)

. . o ‘ . . _4c
which is the familiar integral representation of the Beta function. For more
details of the properties of this amplitﬁde, the reader is referred to
Mandelstam's paper quoted above. So far, Mandelstam's amplitude has not
been extended to N particles, and the factorization and positivity properties

of its residues have not been thoroughly examined.

IV. C. Altering the Resoﬁance Structure.

Suppose we ask in what way the patterr;s of resonances shown in Fig.
4.1 can be modified. Mandelstam,{(1969a) has given a part‘ial answer to this
question.

Conéi’dér the function

Clx, y) = f du u ¥ 1wy 7Y 1[1.1;<1_u)]6 (4. 9)

I4

where is an arblt.rary constant. For & = 0 this just reduces to a Beta func-

tion. The fqr_rriula (4.9) can be considered a special case of

~ 1 -x-1 -y-1 ' | .
Clx,y) = fo du u (1-u) £(u) , , (4. 10)
where f(u) is analytic in the interval [0,1] éxcept for possible power branch
points at 0-or 1, Clearly C(x, y) can also be written a2s a series of the form

(4.1), with p = 0, by expanding the integrand in a power series in u (l-u).

By ch_obsing & in (4. 9) properly we can get various patterns of re-

sonances without introducing poles into the third channel. dFor-example,- ,

5= D +1 | | » N C S 0%
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can be shown to yieid the Virasoro pattern, Fig. 4.1lb, while
5 =1/2(D + 1) | ' _ B (4.12)
makes alternate trajectories vanish as in Fig. 4.3. In fact, using (4.12) we can
write (4.9) in t_hé form

C(x, y) |6 -1/2(14+D) = B(-x, -y) SFZ(_X’ -y, -1/2(D+1); -1/2(x+y), -1/ 2(x+y-1); 1/4)

- ozo_o (-n™ (1/2n(D+1) ) B(-xtM, ~y+M) | (4.13)

It is probably not po‘s'siblle to eliminate any more of the nonleading trajéctories
than is done in Fig. 4.3, In particular, although we have not ’been able to prove
this conjecture', ‘it does rlzot seem possible to produce patterns such as shown in
. Fig. 4.4 where al;cernate and odd signature trajectories have been eliminated. "
Strictly spéaking, of course, it is not possible to have Regge trajectories of
definite signature unless we have singularities in all three .Channels, so that
when we speak of the signature of t-channel resonances in (4.9) we arie con-
sidering théir contrib-ution to C(x,y) t C(z,y). Note that an elimination of any
one of the n = even tfajectories,. except n = 0, from the resonance structure
of Fig. 4. 3 would violate 5ana1y1:icity in the same way as the elimination of a
Fréedman-Waﬁ..g daughter. (Freedman and Wang, 1967;' Paciello et. al., 1969b;
di Vecchia et. al., 1969; Scheck, 1969) |

Finally we recall that wheﬂ dealing wi.th sums of the form (4.1), one
can have thé difficulty mentioned in Section II, in that fhe asymptotic form may
‘not extrapclate smoothly into the low energy region.. For example, iﬁ eq. (4.9),

lim ,, Clx.y) = (-x)7 T (-y) (4.14)

which is the same asymptotic form as a Beta function, I (-x) I {-y) /T (-x-y),
although the resonance structure is quite different. The function C(x, y) there-

fore does not satisfy an FESR of the form (2. 2) for a low value of the cutoff, N,

&
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See also Argyres and Lam (1969), Bitar (1969b) and

Balachandran {1969).
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Footnotes for Section IV
4a) The argument that the wrong signature fixed poles of narrow resonance
models are manifestations of the Gribov-Pomeranchuk phenomenon, and do not
represent' the potential scattering poles which begin to move as a coupling is
turned on, ié due to Mandelstam (1969a). As shown above in Section III, the
additive fixed poles in Veneziano's representation have energy dependent re--
sidues behaving as Z_.t. According to Mandelstam, the essential singularity
at t = - replaces the usual left hand cut, and Fo(a(s, ), a(u)), as far as t
channel effects, will be similar to the third double-spectral function. If this
is correct, fhree—particle intermediate states will produce cuts in the J plane,
in the lowest ofder in which they appear, for any reasonable unitarization

scheme.

4b) See in thi;s' connection the discuss_ioﬁ of Bitar (l969&),who discusses the
Lorentz-pole c'ont.ent of narrow resonance models in a rather transparent
manner. If one is to have a narrow resonance amplitude containing one Lorentz
pole only, its pol§ residues must be proportional to U’-N (l—vs/ZrnZ) for equal
mass scattering, where the Chebiytcheff polynorxiiél (EHF, 10.11(6)) 1s given
by UN(.CIZ.O_S q) = sin (N + 1) q/sin q. Apy finite number of resi-dqes in the PJ(z)

expansion of U

N
. 2. N 0,N+1 2
Uy (-s/2m%) = Z [dl T (8)] 7 P (2)
] J J
N .
=3 aVp
=0 J. ]

where cosh 5 = ~Nt/2m, and where in the.expansion' t = (N-a) /b, can be matched

with those of the usual Veneziano sum over terms like I'T' /I'. Bitar points out

PR e .
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 that if one tries to match the whole infinity of coefficients, dI,\I, the resulting

J

I'T” /I sum no longer is atonous dual. The reader is referred to his paper

for further details. See also Paciello et al (1969a), for arguments in a related

contéxt.
4c) See EHF, 1.5. (1, 2).

4d) There is a possible confusion in the papef of Mandelstam (1969a). The
term ”Venéziapo formula ;Jsed there api)lies not only to.a single I'T /T type
term, but also to ‘any‘vconvergent sum. Without this clarification it might
appear that alternate and/or odd signature trajectories can Be eliminated

only at the expense of breaking exchange degeneracy and introducing exotic

resonances. We thank S. Mandelstam for clarifying this point for us.
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Figure Captions for Section IV

4.1 Chew-Frautschi plot for mass svpectrum of (2) Veneziano representation;
(b) Virasoro representation.
4. 2. The region of integration for the integral represrentation of Mandelstam's

generalization of the Veneziano and Virasoro representations.

4.3, Mass spectrum for vanishing odd satellite trajectories, as in (4.9) and (4.12).

4.4, Mass spectrum in which odd satellites and alternate towers vanish. A nar-

row resonance model with this spectrum probably violates crossing symmetry.

L
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Section V. Current Algebra and PCAC

in the Narrow Resonance Model.

In this section we will discuss current algebra and PCAC in

terms of the narrow resonance model. Early work along this line
o % |
. was reviewed by Weinberg (1969).

We will not atfempt'a. complete discussion.of all the papers
which hé?e'appeared on this topic but will instead consi_derv the
specific 'eiamples.'of ™ andv N elastic svcattering. We will ask
to What e‘}i’iten.t simple narrow resonance models for these amplitudes
can be m_adé c.‘onsiste'ntvwith the predictions of current algebra and
of broken SU(2) ®SU(2) symmetry in the form of PCAC.

. As we ’sh'all. see, the more we require of our narrov.v resonance
ampAlitu’de_.s., tbe more diseases appear, and this again indicates we
are not d;ali:ng wi.th a fundamentally sound devscription c;f reality.

"We.‘.'make an. .o;g;é(ra‘ti.(a.n.;tl-distinction between current algebra and
PCAC By c;ﬁrrént algébra results we meaﬁ rela‘_.vtivohs ho-lding in the
limit of exact Su(2) @SU(Z) sy’mrﬁetry while by PCAé‘»"?é'sults_,yg
mean r-eiations whicl;. are model dependent ir;that ;chey .‘dy.epend o“n as-

‘suming a'_l')a'.rti‘cular form for the chiral symmetry breakiné interaction.
This distinction will be eXplained. more completely as we examine ™

scattering. Consistency of narrow resonance hadronic amplitudes with
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PCAC and current algebfa has been studied by Loveléée (1968)
Ademollo et al (1969), Kawarabayashi et. al. (1968), and Yellin (1969a,b).

In connectioﬁ Awith current aigebra and PCAC, the important
question- -arises of whether or not weak and electromagnetic form
factor.s of the hadréns can be determinéd, even in principle, from a-
narrow resénance modef’fa Our answér is that the behavior of a had-
ronic form factor, F(qz), with respect to its argumentjl, depends on
those aspects of. the narrow resonance model least'likely to be re-
| liable: factorization and nonl.eading trajectories. As we shall explain
below, this puts us in disagreemgnt with those workers who have, for
examplé,I derived a fo_fm for the pion electromagnetic form factor from
simple Veneziano models.

Moi‘e precisely, we believe that narrow resonance émplitudes
do not p?ovide a _defi'nitive re;ipg for making ar;. 'off-sheli cqhtinuation

. 2 !
leading to an exact form, with q dependence, for exdmple, for the

|
symmetry breaking o wvertices. :




V. A 7m Scattering and PCAC.

Following the arguments of Dashen and Weinstein (1‘9698.), if we
» insist on .a theory in which broken SU(2) @ SU(Z2} symmetry is relevant,
the mm scattering amplitude can be written

~

T(p.)

; ¢ A +BO§2+..., _ (5.1)
In (5.1), isospin indices are suppressed, ¢ is a small parameter meas-
uring the_ “strength of the SU(2) @ SU(2) symmetry breaking which is zero
ifthe‘vGold‘,bei'ger-'I‘reiman relabtior?}:{s exact, and £ is-a scaling factor

for fourfmbmenta such that pi.= gPi for some fixed Pi° Th‘e constant
‘BO is un.iversal in that it appears in any process mH —7H as the non-
B.orn contribution to the derivative of the crossihg odd piece of the ampli-

tude, evaluated at threshold for zero mass pions. In the case of 7w scat-

tering, where there is no Born term

0

i . t
_B_= d/dv Ay, t”s:t:u;V:O

=1/8nes ' (5.2)
™ ' | -
where, as in Section III, v = X(s-u). This is the current algebra con-

straint for wm scattering according to the distinction we made above.

Gae o

If we assume that SU(2) @ SU(2) symmetry breaking proceeds.

via the (%, %)- representation we get

¢ A =m"/8rt’=m’ B (5. 3)
’ it T T

0




which leaas td vWeinberg' s scattering Iength ratio é,o/az = -7/2. L E
(Weinberg, 1966

These conclusions are really very general; if the on shell =w
-amplitude is expanded as a power series in the Mandelstam variables .
about the pdint s=t=u= 0 and SU(2)@ SU(2) symmetry is enforced,
then current algebra implies that the constant term is zero and the co-
efﬁcient'of the linear term is a universal constant. Introducing a non-
zero pidn rr_iass breaks th'e. SU(2) @ SU(2) éymmetry and gives a finite

value to the constant term in the power series expansion. The value

of the constant depends on the particular choice of the model for sym-
metry breaking., For example, in the ¢ model (Gell-Mann and Lévy;
1960; o Dashen 1969), , the symmetry breaking piece of the | ’
Hamilfonian‘ transforms like (%, %) under SU(2) @ISU(Z) and gives the E(
PCAC pr_eéi_ction aLO/a,2 = -7’/2.,: (Weinberg 1966 ; Khuri 1%6). |

Now suppose we want to-make the narrow resonance model dis-

cussed in Section III consistent with SU(2) @ SU(2) vsymmetry.- We
first take m_= 0 and define the system by S L . ’

t, ol e L r(l-X)f(l-y)
AZ_('S, u) = gro(xs y) =g I(l-x-vy)-

U (5.4) o
where the ,noiati_on is that of Eq. (3.13) and the complete set of t-
-channel .is_ospin amplitudes is given in tefms of gFOv 'by Eq. (3, 8)..

To make (5.4) consistent with (5.1) when mﬂ2 =0 (and' € = 0), we want
the amplitu_des X; to vanish linearly in s, u .and t at the pc_int s =

u=t=0, By exarriining‘ (3.8), we see that the way to accomplish this.




-94a

is to insist that a = %, where a is the rho—trajectofy intercept,

X = ap(s) = a + bs. This givesin(5.4), 1 ~-x -y =1-2a - b(s+tu) =
bt so that ;che amplitude A;(s,u) vanishes aleng t = 0. Of course,
this result, ap(O) = -;—, depends on the choice of amplitude (5.4) and
is therefore not independent of the uniqueness difficulties of the
'ériginal amplitude discﬁssed in Section III, With the partigular zh
choice of.amplitude (5.4), the energy scale, b, is related to theé uni-
versal cons>tant of Dashen and Weinstein by

(B,)

o) model™ gmb. _ (5.5)

The next job is to introduce symmetry breaking, We will
choose to do this by letting the'intercept, a, vary. Letting & = a - %,
we have the result

5/2 : . .
= -Zg‘n'ﬁ( }1- 0(5 ) o (5.6)
at s=u=t=0., We therefore have

I (5.7

.Which can be compared to the usual PCAC result

(¢ 8/B0)3, 3y sym. breaking™ T ° S
Equating (5.7) and (5 8) we get the result of Lovelace (1968),
2 2, L c oy -
a+brnﬂ}—» gp(mﬁ) =3, SR (5, 9)‘

which also gua'rantee.s that the model yields the Weinberg scattering
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length ratio. a'o/a2 =-7/2 as discussed earlier. In order to make
more plausible the identiﬁcétion of.(5.4), with a =1, with the
SU(2) @SU(.‘Z) symmetric limit, it would be desirable to connect the
res.onance. spectrum and couplings of (5.4) with the maés spectrum
and with 'Fhe fnatri}; glements < Hlf Qa I'sz > of the axial charge
operator resulting from some independent approach. Whether.this

, . . e 5¢
can be done remains an open question.

i
E
0
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V.B Current Algebra and a Naive Model for N Scattering.

This process is more thoroughly discussed in Section X
where we deal with phe'nomepology. Here we ifxvestigate the most
naive chbiéé of narrow resonance a‘mpl‘itude and ask if it can be made
consistent with the restrictioﬁs of ‘PCAC and»current algebra.

We choose the amplimdes, A(i)(s, t) and B(:H(s, t), defined
by |

T(mw N-m N) = ulp' ){(A++ ¢B+)6ab+ (AT+@B ) i T, Tb} }u(p} (57 10) |

where the momenta are as shown in Fig. 5.1, a and b are isospin
) : 2 | 2 |

i i y - =1 R = = - R h

indices, Q = qa+ qb) s ={(p + qa) and t (qa qb) We choose

the invariant amplitudes to be

r(i-aN(s))ru-a () r(l-'c_?N(u))P(l-o{p(t))

(;.t) - P A C e
ATHs, 0 = g L@ e)-a (1) * r(l-a'N(u)-ap(t))'} (5.11a)
T(-3 (s)T(l-a (1) _ T(-@ (u)T(l-a (1)) o

(i) ’ _ N o p e : N p . ! _
A S oA Py R () B v e v )

' P N P

by a;nalogy'\yifh the =ww éavtlse, where we follow th¢ convenient notation
of Bgrgef and Fox (.1969).- - The "trajecto:y_” '&&(}X) is related to the
usual pucleon Regge trajegtory by EN(x) = aN(x)-% ar.ld‘ we insist op.r
TrkN amplitu'de be consistent with (5.} 4) so that 'aé(t) 'is the same .rho
trajectdry ‘,which appears in the wnw amplitude above. |

The model amplitudes {5.11) are mei‘ély a simple fi‘rs"tr choice.

: (4 _ A o
Note that A(") with QN—- ap has the same form as we would use for
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N

7K scattering after making an SU(3) rotation on the mw amplitude (5.4)
(Kawarabayashi et. al., 1968). . The usual asymptotic behavior is in-
(B

cluded, onl.y.' the B amplitudes contain the nucleon Born terms at

EN: 0, and the nucleon is therefore not parity doubled. It is important
to observe that there areno I = 3/2 resonance contributions in (5.11)
because:

)

aAs -2, (5.12)

s
A3/2(s, t) =

contains no v'vs'-chan'nel pole‘se Therefore, the model confains no analog
of the A(1238), I = 3./2 resonahce, which Vat this stage is ''exotic'' and
must be.'p'ut in by ha.nd. We will discuss this p'r<.>b1ern further in
Section X |
In vi‘ew of the absence of the A(1238) rgsonance in the model,
We may expect that something wil} go wrong with the Adler—Weisberger
sum rule, wilich gets most of its contribution from the A and associated
resonances?dlt is still interesting" to attempt fo make (5.1l) consistent
~with SU(2) @‘ SU(Z) in the same manner as the wm model.
Fblléwing'Dashen and Weinstein (19691b), * we find the analog |
of (5.1) for the transition Hjm —H 7. in the limit ¢ - d.

2'b

1 <_,- .>: <H | Tt v >
2By HZ.’“a(qb)lslHl’"agqa) Tap Yoy HZIT(Aa(qa)Ab‘qb))lHl

| Mg - > |
+q <H, |V (q -q ) |H (5.13)

apeabc

where the isospin indices are explicit, and BO is the universal constant
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of (5.1). The hat over the time ordered product Qf axial currents
indicates that it is formed‘in the usual way and then has its pion
poles removed., From (5.13) we see that the scattering léngths for
TN scatte.ring can be computed in the SU(2) @ SU(2) symmetric limit
in terms of BO (Weinberg, 1966) Defi.ne the amplitudes |

2

P8y 5oa®y, e MGl

(v, t)+ Vi (v, t) (5. 14)

where V= %;(_s-u) and M is the nucleon mass. For t = 0 this re-

duces to

#0280, 0 + LW, 0 (5.15)

Equation (5.13) then yields the Adler consistency condition (Adler, 1965a)

+
F( )(0, 0) =0, (5.16a) .
and the low energy theorem associated with the Adler-Weisberger sum
rule (Adler, 1965b; Weisberger, 1966)

(=) : .
v : . 2

= > 0 = - .. .

5 (Vs )!V:O Bl - 1/g,) (5.16b)

We now see if these relations can be satisfied with our simple narrow

resonance model (5.11) which yields

~ T(1-F () T{1-2 (0))

(+) o | -
Setting v = 0; (5.16a) impl_iés either
g = g, /2M | L (5.18a)

or

@ (0) =1 | | (5.18b) -
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Eq. (5. 18b) conflicts with (5.9) and we are forced to the alternative

(5.18a). Eq. (5.18a) implies that 'o?N decouples from the system

entirely for t = 0. Clearly this is consistent with {5.16b) only if
=1, , , (5.19)

(-)
Recalling that the Adler-Weisberger sum rule relates % (v, 0)]

€A

v=0
. . v . + -
to an integral over the difference of the total cross sections (cro-o‘o)
for char'g.ed zero mass pions on protons, we conclude that positivity

of widths must be violated so'rriewhere,. by the model, in order to have

: . . + .
=1 since the I=3/2 cross section, o, , is zero.

EA "0

We can check and see where positivity breaks down. Supprés-

sing isospin, the s-channel partial wave residues in (5.1l) are

+1 ' ’
=y Iy - .
[@()-K]a] 12(0,0) = § [ de{(P ()4 (2DRL(K, 00"
o : SK-—M S sK-MZ. _ v S
AP (2)-P (25 R (K, 1) + —m—RL(K, 1)} - (5.20)
Whgre EN(SK) = K .
R (K, 1) = v, ;_)(aN(s)-Kx_l.éN(s);K (5.21)
~ands
z=1+-2—(§+2ﬂ2):t.' O s

- K
Because ofv"the relation (5.18a), the F term in (5. 20) contributes
nothing. The remaining portions of the widths are 'p_r'oportiona'l to
, " _ _ _

=F [ az(l-z)[ P
1 |

K
L

H

[

L+l

(z) +.P'L(‘z)] i_K(.%H), ) 'j - (5.23) -
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where TK(X) = I'(x+K) /I(x) and we have used the relation (EHF 10.10(13,1k4)) .

1
L +1

P_(z) -P

L (2) = (1-2)[P} , (2)+P} ()]

L4l . (5.24)
Recalling tl'.xe” behavior of .TK(x) discussed in Section 1II, we see that
the forward peak in (5.23) éssentia.lly cancels asymptotically., The
physical region' in t is
| '-,KZ/(K+MZV)_<_ £<0 o | (5. 25)
Between _t.heylast zZero in» TK(%+t) at t=-K+ 1% and t = _KZ/K+M2
there is a backwarvd peak which is the main contribution to (5. 23), The
sign of the widths i‘s_then
svigl.'x (Hi_t_é_) = 7S | (5:2.6)
We there.;f.oré conclude‘ _fhé.t all trajectorieé in the model ar; parity
doubled and one pé.rtner of each pair is a ghost (has negative residue. ).
It is the"‘ e};isteﬁce of these ghost states which mgkes the Adler—
Weisberger sum rulg consistent wit‘h gi = 'lv in fhis m-odel.‘ Clearly
we can t_].’.jyl to escai;)e Vfrom gi =1 by adding‘ ﬁerrhs to (5. 11) which con-
tain thé : A _.traj_ectory‘, It is ‘possible to remove the first ghost trajectory
or even .t_he flI’St couplé of ghost traject.:ories' fro£n the modél_ by adding
more tefmé. Thié is wh-a’c is done by those ’a.ut_hor:s \l'avhose fits to 1_:his
amplitude we will discuss in the }‘)henomenol"ogy section, (Béfger andll '
Fox, 19‘6:9; ‘Love.lace, 1969b; Fenster and Wali, 1969; Igi ancél Storrow,
1969), bn the groupcis .'thatvghost problems 6ccurring on lower trajectories

can safely be ighored within the approximation of the modél, We do not
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believ-e that adding extra terms p.rovides an attractive solution to the
ghost—p'ar}ty doublet problem, because the model does not distinguish
leading and nonleading trajectories in any way, aﬁd ghosts inevitably
remain, at the least, at the second satellite level.

-

With respect to this situation Fenster and Wali(1969) make the -inter-
esting point that if one works with a narrow resonance amplitude for
TN - 7N in a circle in s,t,u space with center at the origin and with

i " Z . . ) . . - .

a radius of a few (B€V) , and further if one allows enough secondary
satellite terms to banish ghosts from such a circle, the resulting Ba
has a negatiire sign.

We will see in Section VII that ghost trajectories also occur
when we try to construct a self—consistent narrow resonance model
for meson-meson scattering, lending credance to the view, (Yellin,
1969b), that any attempt to construct a completely selfconsistent theory |
without an infinite number of ghosts will have to go outside the frame-
work of thev_narrow resonance approximatiori. The ébove'simﬁlified
discussion of xN. scattering is very reminiscent of the isospin-factored .

current algebra theorem of Chang, Dashen, and O'Raifeartaigh (1969), who
show that _saturating current algebra relations with I =1 one particle
intermedi'a,t_e states leads to equations which are either physically

‘trivial or deeply diseased.
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V.C Off Shell Behavior in the Narrow Resonance Model

In this subsectién we comment briefly on the‘mass éxtrapola—
tion problem for the reactior} PH—»P’_H’ , where P and P' are pseudo-
- scalar mesons énd H and H' are érbitrary hadrons. The point we
wish to make is that it is not correct to trivially continue an onshell nar-
row"rev'sona'nce amplitude for PH—P'H', containing infinitely rising
Regge tr.ajectories., off shell, introducing no off éhell dependence on q‘2 and
q' 2? the (mass)2 of the external pseudoscalar lines, Among the authors.
who do make,this trivial continuation avrve Suura (‘1969), Cronin and Kang -
(1969), Oyaﬁ’agi (1969), Frampton (1969a),Jengo and Remiddi (lé69a),
ai Vécchia and Draéo (1969), Arnowift et. al. '(1969) and Geffen (1969), and
their ‘re;ults are used in ahother context ’by.Fre_un‘d (‘1'9693..),_ It is our S |
opinion féhat one cénnot obtain form factors like‘ Fﬂ(t) ;fr.'omfhe off shell
conti‘n‘uation of a simple Vgneziano form.
Sp_‘ec.ifically, we would like to argue that one canné;c trivially. ‘cém- ’
i:Jutve' | | |
o < H| JH(X)IH'> o “(5.,27)‘_" ‘.
the métrix‘ elgmepf of an axial or vector .c#i‘rent between ._gi{?_en hadronic
states, by‘u‘;ing the c;n shell form for PH-P'H' direc.:tl_y as a model fo.r.
the soft meson off shell dep‘endence of - |

2 2 2 2,2 2 s B b
M_ @t q;q) = (q_-m )q -m'")<H' !T(D&(X)Db(O) | > | (5.28)
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where D(x) = BHAH(X) is the divergence of the axial current and

(a,b) are internal symmetry indices. For example, we cannot use
a Veneziano form for P P'-+PP' to calculate the pion electromag-

netic form factor Fw(t) or the K form factors F:!;(t)°

£3
In the next section we will see that if we construct directly a
form for (5.27) where one current is linked to a hadron amplitude,
then it is neceséary to include npnti'ivial q2 dependence.
The reason théf.'the. trivial off shell. ;Qntiﬁuation of Mab is
preclude‘d is that if there is no q2 dependence, the Bjorken limit
(Bj‘orken, 1966), which for ‘P = P' and forward scatteripg is qo—»oo

at fixed q, becomes also the Regge limit v —» oo.

‘The usual derivation of the Bjorken limit uses the Low equation';)e

da

Mab(qo" Q= f 351

which her e reduces to a di.spefr'sion r‘elat‘idlj.l_i‘nb v ‘fo_r flxed t, I one ‘

takes q0 —»oo f1n‘_(5,29.)v, inéer‘ts (5.28) ai.ld..intérchaf‘;iges‘ t'ixe' qo' limit

Wiﬁh the‘i'r»it.egral., one gets a series in c}ec:reasing‘ ingégr;l~ pl§wers of 9
-n

N_[_ab:.gl s %o I - - {(5.30)

and each of the coefficients is proportional to linear combinations of
Fourier transforms of the commutators

e . T. {[ DX0),(8/0x) D]} . (5.3

I;n Mab(qb,g) o (5.29) 
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If Regge tréjectoriés are linear,as they are in the Veneziano model,
we can alvk../e.l-ys. pick t negative enough that the leadingb trajectory lies
lower than (spme arbitrary negative integer) -K, we can compute
.the first K of the . and the intercharige of the qy -« limit and the
integral 1n the Low equation goeé through,

T;he én are proportional to the fesidues of right signature
fixed polés (and/or Kronecker-§ singularities) in the J-plane of thé two-
cur;‘eﬁt_ amplitude. Unitarity forces such objects to have zero residue
on shell, ’But in general one expect's them to exist off shell where the
usuai unitarity restrictions do not hold. If we do not introduce a non%
t;iviél q2 dépendencevbutvcontinue the on shell narrow resonance
model di-rectly,_.then the cﬁ will éll varﬁsh, and we will have none of the
expected right signature fixed poles because the original amplitude does
not have 'ghem.

'i‘his does not -quij:é lead us to arcont;ra.diction_. but it does tell
"us ‘that the Ag'ommutators {5.31) are extrevmely stfa.nge ands’ipgular ob-
jects ar?d-fhat th_e absorptive part of (5.28) is nonZeré purely by virtue
of the fa’qt that it is given by an infinite suré 6ver the Cnv’ not é finit;e-suri‘.i;»_
In other vvvof‘ds, the Cn‘b are analyticb funqtions of t if thé the(;ry is local.
On the-pther.hand we can showvby the argument abovepthat they vanish
in s‘oméz_n.e.ighborh-ood 1n t. Thérefore they vanish e\:é’riry}hereesf

i‘hese problems do not occur for the J:la'ssi-calb PCAC and cur-

rent algebré. calculations of the mw ‘and 7N S-wave sc';_‘at’terﬂing 'l'engths-:
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or the ww. or wN current algebra sum rule, because these involve

the knowledge of the chiral symmetry bfeaking tgrms at discrete

points only, (Dashen and Weinstein, 1969b) while the procedure dis-

cussed above would determine them in a neighborhood. If one could B
cvomputve the‘v’d'eta.il'ec’i behavior of form factoré this would impiy a

knowledge of £he 'dynami;:s of chiral symmetry breaking far beybnd'

the usual current alge.bra.-PCAC cé.lculations, and such a stép .is

hiéhly urﬂikely without a corresponding increase in the depfh of our
understandihg.

The main conclusion we reach from arguments such as tvhoser
outlined above is that the burden of proof is on the person .who pro-
poses an off-shell continuation of the Veneziano model to shéw that
the chosven_{ q‘Z dependence is reasona.bl.e. Wit}_}out detailled supple-
'rnentary ‘as sumptions,' the narrow resohanqe mc‘)dél‘ does not itself

»conta-in-info‘rmation about off shell behavior.

.
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V.D Construction of Narrow Resonance, Dual Amplitudes with

External Vector Currents

Ii is p‘o‘s sible to make additional assumptions about the fofm |
of the amp'_l.itude for the interactiog between hadrons and currents.
This hés'be’en done by Brower and Weis (1969a, b) who investigate the
quesi_:ion of‘.con'structing current amplitudes consistent with the
Veneziaﬁq rr‘i‘odel‘, and whose arguments we follow. This construction
depends critically 'upon.fﬁe'broperties of the N-particie Venéziano model
to be disé:x;ssed in Section VII, particularly ifhe pi‘operty of factoriiation,
We will"co'_.nfine.ourselvés here to sketching out some of the require-.
ments and difficulties.

vW'e assume that the one-current ampiitﬁde, Vp(q,‘ pi) shown in
| F1g5o2& - has the following prépe'rties.

N . L '
S ) . o 2 v5g
(nb),’. Regge behav_101" in all‘ 8T (-pi+pi+1+ . p»f() B

. (c) . vhis rrggx;dmoréhic in qz" and the 81’ w1th51mp1e poles

vfor'lthe positive. real values of the associated inv“yériav.r_it':s.
(d) 'I;he_ fesi'_d_ues of peoles in S aTe polynomié.ié _of'finit_é ofde'l;"
'_i"n the overlapping variables.’ The rev_sidues' of pbi“és IJ'.n‘ qz: are

»pr.oducts of a vector meson sc.att.eﬁng andplitudé t'i‘i'n'evs.‘the strength '

of the current-vector meson coupling.

(e} -The equivalent dispersion relations in q - and the Sik have -
. o C 1 . .
no subtractions.

(d) Factorization holds, so that the residd'e:éfva;ny' pole »ixi' Sik is
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a product of some Vp' with a purely hadronic séattering
amplitude. _ ' _ ' |

Thér,é are several imp‘ortant points to be made about this list, . - i

n’

The residués of poles in qZ (Vector meson-vector current couplings) . - 3

are arbitrary. To fix form factors it is necessary to consider ampli-

tudes with more than one external current. Itis notin general true

that

. _ ) q q Vv . ) .
C Vulep) = Z B (g, - V) AP | (5.32)

pv 5
9

where AV is a purely hadronic on shell amplitude for a vector meson
interacting with the other hadrons., This is because in the dispérsion

relation in q , if the number of hadrons is greater than 2, there are ’ .
singularities in q due to the singularities in the Skt Explicitly, -sup-
pose N=3, and fix s and t. Then a singularity in u at uy ‘gives a.
- | 2 2 -

- v 2
+s5+t-m,-m_ -m_, o |

1 2 3

contribution to the q dispersion relation at q = Uy

Assuming a form like (5. 32) is a common error and one. must therefore
read the literature.with care. We can always collect all terms from

the dispersion integral in g involving a given vector méson, and make

g
o
i
I
o
|

it

that q dependent object, “AV in (5.32), an off shell continuation. In
order that there is no singularity at q2 = '0; ‘which wfould violate (a),"
we must hAav..e the condition

| 2. 2 o | .
Zp g AY(q,p.y =O(q g -0 . - - (5.33)
n n yon 1 ) : :
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To construct the one current amplitude, Vp(q’Pi) we need to

know the amplitude for a vector meson coupling to N spinless hadrons

which will be given in Section VII. Let us call this function BLN)(q),

where the q dependence comes from writing the amplitude as a func-

tion of the .*pi with q determined by eneérgy-momentum conservation.

5k

() The amplitude we want is then, suppressing the n dependence of
B .
(@) | o ('z) , mrz1 [ aq, ] )
vV (q,p) =2 g (q g B
n i L °n vmlzl_qz Wy q2 +

() © (5.34)

where 'z:gn(o), = 1. TIn order to satisfy (a) we will need

q“BLN’m) = 0(q%); ¢°=0. | (5.35)

As showr; by Brower and Weis, (1969b), Bardakci and Mandelstam
(1969) and Fubini and Veneziano (1969), by making a simple restriction

of the :Regge trajectoriés; we get o _ - :

q BH(N)(q) 0. = T (5.36)

The r'es-ti'i‘cv:tiobn is th‘at the ffaj..ectory for. a current and K

adjacent hadrons be the same as that‘ for the K .hadroné ‘alQne. To in-
vqétigate the amplitudé, (5.34), we neéd to']-.-z'riow the propéftiés of the
pgrely l;l'adréni.c,ampli.tﬁdes and those willbe discussed in
Sect—ionv.VI»I.’ ; | | | |

(£)

We would now like to construct two current amplitudes, Mpv

with the following properties: (See Fig. 5. 2b.)

) _

(a) q, M " -
B L T

(5.37a)




e

~ V (gq,+q,) o .~ (5.37b
m p.th—»Opql i) | )

4

a MY - o(g? (5.37¢)

SOy % !
and similarly for q5-

The currents are assumed to have isoscalar and isovector components o

(B

so that we can form the even and odd isospin combinations, M, and

the Compton amplitude M(YY).

(b) Regge behavior in all variables except possibly those over- v.

lapping the two current cha.nnel.
(c) Same as assumption {(c) for the one current amplitude.
(d) The resi__dpe of a pole in qzl is a one current amplitude for v o
the pfoductién of a vector meson.

(e) Same as. (e) for the one current amplitude.

(f) We have two types of factorization as shown in Fig. 5.3 asb,

hadroﬂi‘c ‘fa-cto'rization and current factorization. 'Thé fo’r.m‘ factors inv
fhe two Cu:_rrent éystem a_,ré now no vl_on'ger arbitr'ary 'but'v"a"._"rveg.‘dela;‘.ermiri'ed X
.‘ by cu'rre__‘n‘tv f.actor;lzation,‘ - Up to the reqﬁj?vremepfj(v_f)_ .the f6rr_ﬁ factofé are
un;:onst:aihed and this again er‘nphasizes”\v;vhy we a_.‘re.‘ sO uneasy abéut
the f{o_»rm.faict'or‘ computations discussed 11;1 vV.C. C‘u_l‘zl"r:eni.: factorization_
will lres’ti‘ic_:t the.for'm‘factor-s but it depe'ﬁds’ in. an e's‘s__.entiavi ‘way on the

‘properties of nonleading trajectories.

;
>
|
‘|
.
-
o
.
S
‘e
.
|

)

i

|

i
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To construct the two current amplitude, we note that for non-
adjacent currents we can enforce the conditions on the trajectories
as in the one current case, so that MMV gets contributions from diver-
genceless terms like
2, . 2. (N) :
. B I} \ 50 3
Flq,) Flq,) p~V(ql 9, (5.38)

(N)
By

mesons interacting with N spinless hadrons. The current algebra

where B (ql, qZ) is the hadronic amplitude for two nonédjacent vector-

structure is completely determined by the amplitude with adjacent cur-

(N)

i (ql, qz) for the inter-

rents. If we construct the hadronic amplitude A

action of two adjacent vector mesons with N hadrons, and form the

tensor
| q, 4 q, 4 |
.. 2 2 Ch S vy fp%ey
ey 3g) = Fla)) Fe)lg,y - = aile, —E5) (5.39)

where m is the mass of the vector meson, we have

' (N)

13 M - 2, .. M 3
119 q C|.LV = F(qz) Clli‘n;lo q. A (5. 40)

9 0 1wy
and simi'l"ap‘rly for q,: 80 that the divergence cb'n.dition_ at zero 4';m0mentufn o
is also satisfied by C}J-V . Furthermore

¢ (5. 41)

ql; CHV: 0 f.Or _qzl = m
as reqli‘i?z.':édvby (d).
’fo finish the construction we must satlsfythe ‘cii’z;‘i'.en_t';vmlgebra’
divergen‘ce condition (a). The method W‘hich w’o%kvé is to add a term

'DMV to - CHV which completely cancels all non-Regge pieces and aléo_
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cancels the divergence everywhere., Then one adds a fixed pole
term, (FP}HV, in the twovcurrent chapnel, éuch that the conditions
(a5 are satisfied, and we have
M, =G, +D  +(FP) . (5-42)

In practice, it is not possible to cancel the non-Regge terms com-
pletely, nor do the nonleading t.rajectoriés factorize. Nevertheless,
it is interesting to examine the detailed properties of the simplest
MMV’ for‘ Compton scattering of virtual photons. An explicit construc-
tion has .b_eer‘l given by Brower_, Rabl, and Weis (1969) whoée arguments
we folléowrb.elow.

We consider the process

VE(qy) + np)) = V) (a) + 7(p,) | (5.43)

as picturgd in Fig.5.4 where the V's are c(v)nvsevrved vecto; currents
which-méy .ble both isoscalar or both isovector. [ G parity forbids t'he.
v iso»scalé.r--j—isovector transition, ]

In ordinary space fhe amplitude for this prbce_Ss_ is Va symmetric -
sééond pank téﬁsdr MMV’ ;:yhich then h‘asv.teh» indepé#deﬁf .corﬂponents.

. . ‘ ; ' e e e R
In isospin space the vector-vector transition is just like w+ 7 - 7w + 7

S 0.0 0
and the scalar-scalar transitionis like w471 - w + 7w .. C.
EXplicitly, the scalar-scalar amplitude,. Spy, can be written

S}LV Spv(s ) S_Hv(s u)+SHV( s) | (5,44)
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where S;J«V('s.’ t) is like Fo(x,y), in that it has poles in s and t, and

no poles in u, though.it is not necessarily symmetric in its arguments.

The vector meson amplitudes M(I) have precisely the form given in

Section IIT for the mx amplitude with no . I = 2 resonances.

M (Q)z -2M (us)+—3?-s' s
(Y

py o 2 Ty

M P om (st) - M (tu) (5.45)
wy MY ppt :

M oy (us),
My Ry

We define the three independent four-vectors {P = %(p1+p2), ql,qz}
as in Fig. 5.4 and define kinematic singularity free invariant amplitudes
by

M =M M
- Og}w_*-.

P P+ P+M
8% pVMZqZP.V

1 3L Yy
T M9, 9, Mgy Pt Mgy, ap t MOP g,
+ MSqZH qZV+ ngm 9, ‘- (5. 46)

We now give for reference the complete set of narrow resonance

M, given by Brower, Rabl, and Weis (1969):
M (st) = 2F(aD) () [a Bl-a ,l-a)Hl-a)B(l-a 2m2 B(2 ) -F(t)
Tor S T AR IRl e T e ey @) Bll-a . -a)] -2my Bl2-a , -a)-F{t),

,Ml(St) = -zLF‘(qiv)F(q2 )B(—a.s, Z—art){ %F(F)['B(-QS, Z—Qf) + ;; 1. |
-:Mé(st) = —M3( st) = 4F(q12)F(q2‘2)[B(-,as,_lfat.);%.B(jds, Zfat)] o
1

o
S

1

- 'mzy(t)[ B(-a_,2-a,) +

M4(st) = 4F(q1)p(q22[ B(l-a_, -a )+ %B(-as,_Z—qt)] —F(t):[-';B(jozs,rZ»at?—f- Z';]
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i 2 2 : E =
"M5( st) = ZF(ql)[ F(qz)"l] B(l'a’s, l'at):
2 2 _
» Mé(ét) = ZF(ql-)[ F(qz)—l] [ B(l-ozs, ‘qt)'%B(l-a’s, 1-a’t)] s
M = 2F 2 F 2 171 B(1 'l
o 2 2, _
-MS(-St) = ZF_(qZ)[ F(ql)—l] [B(l—as, -at)-%B(l—as,l-at)] s
M ) = B2 F(q” iaz ‘ | .

1 2 2 ' :
+--2— F(ql)F(qZ)[ asB( -ozs, l-at)+(l'—art) B(l—ozs, —at)]
my; .

-[ F(qlz) + F(qzz)] B(2-a_, -a); o (5.47)
| - 2F(q° %) B(1 1
MO(U.S) - F(ql) F(qz) ( 'au’ "as)’

' 2 2. -
Myfus) = 4F(q)) Flay ) Bloayr-eg),

" , 2 2 .

M,(us) = Mj(us) = 2F(q,) F(q, )] B(-ag,l-as)—B(l‘-qu, e )]
2. 2 e e '
M(us) = 4F(ay) Flay)[ Bll-ay,l-a)-Bl-ay, e )], : e
Mégus) = Mé(us) = M_(us) = Mg(us) = Mg(us) =0 o '_ v(5v,-48)- ‘,
where ‘

Flx) = ———— , (5.49)
% . |
2

mv i

-mV is the common I = O {w) and I=1 {p) veétor;méson mass, and

1

|

| - !
B is the beta function. The units have been chosen so that the tra- L " 1
jectory slope b in i
. |

@. =a:+bs, S (5.50)
i 1 i , _
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is equal to unity. The Mi(tu) are obtained from the replacement’
s <1 and an overall sign change in MZ’ M3, Ms,v andv M7; this
.corresponds to the substitution P, <P, in (5.46) and (5 .47).

We mention briefly the following features of the amplitudes
_ Mi(xy):

(i) They have the correct kinematic behavior, e. g.. , no
ancestor trajectories,_ correct helicity-flip factors, etc.

(ii) There areb simple poles corresponding to physical particleé
in the variables s; t, and u. The corresponding _1eadir_1g Regge tra-
jectories aré, for the t-channel, |

GF) = ot 2N,

even signature - fo[ I
. + - '
‘'odd signature - p[1(1)],
1e €0y ozt =14+ (t-m,\?;); and for the s-channel and u-channel,

even signature - w[1(07)],

odd signature - - ?[ 0 (1M1,

2

i.e., @ _=s-m, g =u-m, where m is the pion mass. -
. u . . : :

. 4‘(i-ii) At qlz = mé' they reduce to the chr;'esponding aii;plitu%iés
for vector mesons iﬁ .thje véimple N-poiné bet_a-fuﬁctibn_model, vto‘ be

. discuss’édin Section VII bélqw. |

(vi'v)_b_ The éur‘rent algebra divergence cprildi.t';ons;‘

%Y

WMD) = 4RO P, S .'_-(5,.'5;?_

g, M, ) =0, i=8,02, . (5.52)
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are satisfied exactly.

('_V“) The sum rule of Adler (1966), Dashen and Gell-Mann (1966)
and Fubini (1966) |
jp quhafl)(s,n qf, qu ds = -8m F(t), (5.53) »

-0
is satisfied exactly.

(vi) There are the following pathologies, as can be seen from
(ii) and (iii)‘. There is a spin-zero ghost of imaginary mass in the t-

channel. The Al’ w, and A trajectories are absent. The pion has

2
an exchange”degenerate spurious O-(l+) trajectory pértner in the s
and u cha_hnéls. There are ghosts with imaginary coupling constants ‘ f
on nonle,adihg trajectories, and factorization is not implemented for
nonleading trajectories. The fbrm factors are still not constrained.
: '(Vi_iv). ‘The J plane structure is as follows. Thv‘e'.v(-Re.gg'e) moving
poles .are_listed in (ii). T};e terms F(t) B(—as;.l)“ = F(t)/( -as ) -g.eneft‘ate
in the.sl:ac':hvannel (from F(t), singe zsdct) fixed ‘polesv a-’.‘c J =‘-1\.I (Nzl,.Zl, 3. _-.').
In the t-channel there are fixed poles at J =1,0,-1,-2..., \;vher'e the
- J=1 poie gives the sum rule (5. 53)l. {(Bronzan ert‘:. al., "1967'; Singh, 1967).?T
Last th.er.e are t-channel Kronecker 6 singularities at J =l and 0. |
(vDAoesc'*»._h and Gérdon;l968}; Gross and Pagelé,'1968$;_ - o '. o ,
Tobrlefly sumr.narrize the situatiori, v‘vevséé vthavt 1tls possiblevvt& .
impose a'.‘ number of generél‘requirements on thé %/i'rjtu'ai Compton ampli—-_

tude. However, several difficulties appear which will become even more
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evident when we discuss N point functions in Section VI1I. These
difficulties, ghosts, unwanted trajectories, lack of factorization of
nonleading trajectories, are difficulties which are inherent in the

. ' .5 < v
narrow resonance bootstrap, In addition to narrow resonance struc-

~ture we now have made a model for the off shell continuation

) 4 ~ _a X b x -10Qx
ifdx <p, [ TVEE) V(- Plp > e
=M (P, Q. q) - . (5.54)
ﬁ .
where
Q= 3q* q,)5 a = 2q;-q,). - o (5. 55)

Now we cankas'k three 'qu.evstions about the additiénal current
algebrav.ﬂ:‘strvucture, which ;:an 'be answe;‘ed by'exgmining' MHV:
(a) What are the vector current commutation relations ?;

(b) I;-Iowdoes the amplitude behave fof large OZ?; (c) Are the form
factors coﬁstrained?

With respect to (a), the time-time, time-;sp_a.'ce, .and 'space—I
space qomr_nutation relations, as is well kn.ovs}r‘l, | "(Adler and Dashen,T ‘
1967) ére on different .footings..

| | Specif'icvally.,' si.nc.e‘;x/e havé forcéd M}.W to obé*} the éu;"x'ent
gl_gejvbra‘ di\.rer:g'ence conditions

(1)

"y (9, q,) = V (q+ q,) . o (5.56)

9y, M
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(Even)

, = 0 (5,517
Hp (ap qp) (5.57)

for all ql,'qz; the commutation relations ( Gell-Mann, 1964a),

5(x)[ Valx), VE(O)] = e, V(%) 6°(x) (5. 58)

hold for theé time-time, and time-space piéces.,
Thverev remain the space-space commutators. To study these
we will use the BjBrkén limit IQO! - 00, Pp. s qp; fixed. (BjBrkén,1966)

Very much as in Section V. C above, the isovector-isovector amplitude

gives'__
M 2Ped fd3x S
194 Q0—>oo - .
(o) . n S . -
('i) . 8 n a X b X
° e < it o= . - bt >
ng:o Qn+l ' pZ’d-l(ax 0) V“(O, 2V 0, 2 )!pl’c

0 , | | o
+ polynomial in QO. : (5:59)

The procedure for computing the spa'ce'—spacé commutators is

now clear. We take thé BjBrkén limit for the model .M}izil)’ the

amplitudev'antisymmetric in (a,b) and (c, d),' and pick out the space-space

piece: of_fhe coefficient of L .
. QO

;The ampli't'udes {5.47) and (5. 48) ‘conta;in. two types of terms‘,

S : o1
Regge terms like B(-as, -'at) and fixed pole terms like pomlit In
terms of QO, we have

2

0

_ 2 N 2
a =s-m = Q + ZQOPO—4t - Q -Zg-g _

2

C o= QV' ""2:' + 2mvy o , _ (v5. 6Oa)4
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- 2 2 1, A2 ' .
a, = u—‘mTr = QO - ZQOPO t-Q + 2P0 (5. 60Db)
= ‘QZ - % - Zml/
. ' . £(t)
Regge-like terms behave like QO and will therefore not
contribute to the fixed power Q(—)n terms in (5; 59).
Following BjUIrkéﬁ (.1966) we define
= (1, 0) (5.61
n, (1, 0 _ , )
and take q = —é{_ql—qz) = 0, For this case, (5.46) reduces to the form
I\;I P,O)y=P P F.(Q2 V) +{(P Q +P Q .)F(Qz V)
_HV(’)—p.lll ’ peov v ol T2 ’
+Q Q F (Q2 )
W9y FalQv
> ,
o+ gw_F4(Q s V) , (5.62)

Whe.r'e v= PQ/m (m = mﬂ)a '

FIer (5.46) we see the Fi are related to the forward limits of

the 'Mi by

F =M0. S o T — (.5_'63)
- “‘Cn.on»ti_nuin»g to fqllow BjBfkén’Sv a_rgum.éntsv-,‘ it is éonVe_ﬁient to .

‘define
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2
F(Q%,v)-F|(0,)

o

A%y =

2 2 - o
AZ(Q , V) =.r3(Q » V) ft‘

o 2 _my 2 .. 2
.~ ALQ ,b") —QZ [ FAQ L, »-F (0, 1)] + F,(Q ,?)

' 2 2 2 2 2
v,A4(Q » V) -—F4(Q V) + Q F3(Q ,V)+mVFZ(Q » V)

| Ao('V) =_F1.(o., v) | | (5.64).

so. that

' 2 2 . 2
_MHV(P,Q) = A(Q »{Q PHPV—(PQ)(QHPV-%QUPHH(PQ) gpv} ;
2 2 2 o
| + AL(Q ’_V)(QH QV—gWQ J+A,(Q ,v){QHPV+ PHQV—gHV(PQ)}
A

2 o :
N A AL . (5.65)

Now, if we take the divergence of (5. 65) we have

QHMW-PV[A3Q +myAO]+ QuA4 - . {5.66)

= 0, Furthermore,.

and the divérgence condition (5. 52) implies A4

AO(V)', whose fixed pole term is the one in M does not.contribute to

1,
1/9, in the Q,~co limit. This leaves A;, A, and A,. Inspecting. E
(5.66) we see the utility of the form (5.65). By using the diverg.encelsess"'< a _'i
t - -(P 4P . : '
ensor‘s. QP’ QV ,ngQ an_d Q PIJ- ‘PV (PQ)‘(PP- QVfPuQM,)t(PQ) g}W. we
_:put all téf’ms which affectv_,._the:time-time and time;space commu‘t_avt'i'_on 5 |

relations into A

o B R

we add a cont,ri'bution to A. we can therefore chan'g_e_'the space-space

2

commutation relations arbitrarily much, without affecting (5.'66) or
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(5.58). In the original form (5.47) one can verify that the limit is
proportidn_al to

QO(MW(S;t) - Mw(u,t»)_) Qg;oo F(t)[n#PZﬁ VP}JL -(nP)nvm]

which has no space-space piece, and therefore gives the so-called
field alge'bx:a commutation relations. (Lee et.al. 5.1967) .- On the

other hand by adding a term like F(t)| B(-a'S, 2-at.)—B(—as; 1}] to AZ”

- L3 . 3 | '
we can 1nsu§'e that QO A2 Qg" ooo’ while already. Q_OAl Q;—» ooo’ a.pd
QZF( QZ)Q'—» oo S @ SO that A, gives everything and we get . .

Ft) [ nP +n P - (nP
(O n P+ E (n)gpv]

(5. 67):

instead of (5. 67),s0 that we have the quark model ‘commutators (Gell-Mann,

19643)

6(x0)[ Vai'(x), V]?(O)] =1i8..¢ VC_(O) 54(;{)

ij "abc
: 'We discuss briefly th'e behavior of MpLV as I Qz|—+ob, ‘which is

relevant for inelastic electron scattering and electromagnetic mass

differences. According to BjYrkén (1969), as Qz—f‘-oo, with _‘.s'_;
A o

fixed, the electroproduction structure functions become dep_erident on

p alone.

vOn the other _hland-, this is not what happéﬁs hei‘e at all. Be-
cause .ofA1.:‘i'.1e‘na.ive nature of the model, ‘the ter;ms in F(‘a‘.s', ozt) vand
F(ozs, at) are Regge beh_aved in QZII aﬁd 'th.e- F(as, au-) terms_,. with their

wrong signature nonsense fixed poles, have an exponential dependence.

.

(5. 68)



118-

Alternatives to the model above have been proposed by

Sugawara (1_969)‘, Ohba (1969), Bander (1969), and Ademollo and

.Td‘el Giudicé.(1969), None of these cures the basi.c pathologies dis=

cussed above, nor is it likely that anyone will find a satisfactbry , .
non adhoc model for deep inelastic electron scattering, since this

is closely tied to factorization of nonleading trajectories.

Last we reemphasize that constraints on the form factprs

have not yet been found, and these too are associated with the

properties of nonleading trajectoriesns‘]’ >3
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.Ad_ditional material relevant to this section can be found in
Abers and Teplitz (1969), Ahmad, Fayyazudin and Riaéud_din (1969), de
Alwis et al (1969), Amati, Jengo, Rubinstein, Veneziano and Virasoro
(1968), Brandt (1969), Brower and Halpern (1969), Cooper (1969),
Costa (1969), Drago (1969), Fugisaki (1969a,b), Freund and Rivers
(1969), Goldberg and Srivastava (1969), Hsu (1969), McKay and Walter

(1969), Osborne (1969), Savoy (l969),chhnitzer (1969) and Zee (1969).




| 5a)

5b)

5¢)

5d).

5¢)

51)

5g)
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Footnotes fovr Section v
Iﬁ connection with the self consistent determination of form
fvaétors, see Dashen and Fraatschi (1966a,b) and S. Mandelstam,
.1.966 ’i‘okyo Lectures in Theoretical Physics, Benjamin (N.'Y.),
pp. 14-16,
M., L. Goldberger and S. B. Treiman, Phys, Rev, 110, 1178
(1958). \

One possible way to characterize the spectrum, at least in the

w-m case, is to note that it has the £  degeneracy of the

'Schrtidihger hydrogen problem, so that it is a realization of
an - SO.(4, 1) representation,

See Adler (1965b), Section IIIL,

F. E. Low, Phys. Rev, 97, 1392 (1955).
Compare the discussion of wrong signature nonsense point

fixed pole residues in Section IIl,

Discussions Qf the:J plane proper_tiés of one éuri‘ent ‘amplit.ude»sl
w111 be found in Dashen ‘a1"1d' Leé (1969), | Da‘shen a.ndvf"fautschi'
(.'1‘9665,‘1:)),‘ Ma._ndelsfam (l963a, b,c)‘,; Rubin‘s'tvein.,"»'Vene.z-ivalmoaand “
>’.’vVirasoro <l968); C T ’5 .D;avsheri“a'.vnd L"e.e' sﬁggéste& '
| #hat fixed polés' in one currerit a.mplitudes wou.l.d most éaéilj} .

o appear in backward photoproduction of pions, The data of

R; L. Anderson et.al., Phys. Rev, Letters 23, 721 (1969),: 'v

i
"
.

|
g

|

!

!

i

|

I

o
o
o

1

A
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ibid, E_l_, 479 (1968) for backward 1r+_ photoproduction do not (at J = %)
contain evidence for a fixed pole. Neither does the bac.kward>
wq aa;ta of D. Tompkins et.al., Phys. Rev. Letters 23, 725
(1969), The argument of Dashen and Lee is an illustrative one
takén.'directly from .potential scattering, a.nd we wiil summarize
.it bjrieflyvhereo
| Consider the T matrix element for
Y+A-X+Y, Te/ VRNE) ‘ei~1E°£em,g ¢A(£)d3£

where k and ¢ are the photon momentum and polarization;

o~

and L}JXY i.s the "outgoing wave,. The statement of Dashen and
Lee is that if A is a ‘composi‘te object lying on a _Régge trajec-
tory, T will have no fixed poles., . They argue as follows., The
analytic strﬁcture in £ of the paftial wave afnplittides associated
with T is détermined by three factors:

(1) Jﬁ from the photon's p_lané wave expansion;

G Yy,
(i) ¢,

The'sphericai Bessel function j_ is enﬁre in £, The out-

b4

- going wave tLJX can be shown to be equal to the strong inter=-

Y

action S matrix, S, times a factor entire in £. "The £ behavior

" of LP_A 1s not directly relevant. ‘However, if A is élementary, SO".V :

, and therefgré in T.

has a fixed pole, which then appears in QJXY
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5i)

5J)
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If A becomes composite, in field theoretic lénguage the wave

.function renormalizer Z- 0, A sits on a Regge trajectory,

S'd has no fixed pole, and neither does T, This leads to con-

dition (b) of the text,

This seems to have been first noted by S. Mandelstam,  See

Brower and Weis (1969a), footnote 29.

As is probably evident at this stage of the proceedings, this

statement is by no means noncontroversial,

Some of the alternative models mentioned above have ""good"

“large Q behavior, in return for which they acquire other

undesireable features. See Brower, Rabl, and Weis (1969)

for a discussion.

]
N
o

|
o

|
‘i




-123=

5k) vStrictly speaking, in (5.32)-(5.34) the sums run over a set of
afnplitucigs’, one for each veééor meson state, including the giant
degeneracy due to factorization. In practice what happens is that only
one family qf these objects is used, one at each (mass)z, and their am- °

plitudes satisfy (5.36). The treatment of this problem therefore has so
far been unsatisfactory. Some additicnal information may be found in

R, Brower and J. Weis, MIT preprint, to be published (1970).




Fig.

'5.2a

5. 3a
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Figure Captions - Section V
mN scattering.
The one current amplitude for N external hadrons.
The two current amplitude for N external hadrons.
Hadronic factorization.
Current factorization.

Kinematics for virtual Compton scattering.
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VI. ALTERING THE NARROW RESONANCE APPROXIMATION
' AS'pointed_out in See. II, the single most unphysical character-
istic of the narréw resonance model is the presence of polés on the real
axis of the Mandelstam invafiants and the abéence.qf,ﬁhysical norﬁél
threshold cﬁts. We have diécussed the interpretation of the nérrow
resonance limit in terms éf FESR'S and we now want to é#amine methods'
of extrapolating away from the narrow fésénénce limit‘to obtaiﬁ the
properties df physiéal_amplitudes. vIn making this extrapolation we
would like to preserve as many of the desiraﬁle properties of the-
Veneziahb:mbdel'aé possible. For example we wouldAwant the finished
product to have Reggefésymptotic-behavior and crossing. 'Céftain other
.properties.of the model cénnot hold.exactly‘when we have physical
amplitudés, and'we‘are interested in how they are altered.
v if we do ndt ~ have nariow~resonanées, tbe Regge trajectories

can no.ibnger be exactly linear, but we would like to maintain a
situation where the real part of afs) is approxiﬁately linear in
those regions_where parficlés have been found empifically'to lie on
straight_lines in Chew-Frautschi plots. We fhefefore assume that the
tréjeétory functions satisfy a onCe—subﬂracted diséérsion felation
(Cheng and Sharp, 1963): |

Infofs' )]

._»I'oz(-\s"). = a"r.bs’ +% ' 55 g =57 'ds'(so - s)

5o

(6.1) -
and‘thaﬁ in the low-energy region, the contribution of the integral is

small.




view of the role of dispersion relations in the derivation
of FESR's, we would also like to require that there exists a region
.. where the amplitude is completely determined by an unsubtracted fixed

variable dispersion relation

_ ~Y ' e
¢ ' 1} Im As,t) du’ i ;' Tm A(s,t) .
Als;t) = = | Houeo o v R Tt
A - 530 o (6.2}

This assumes‘a combination of aﬁalyticity and a power bound.énd is the
generalization ofvﬁhe'concept cf atonous duaiity discussed in Sec. II.
“If the amplitude satiéfies an unsubtracted dispersion felationy
queStions concerning resonance dominance of the discontinuity, the
bconjectures of Freund {1968) and Harari (i968);and'the neglect of
Regge cuts in the.FESR's canfbeaiscuésedéfter we have consfructed a

model for the continuation away from the narrow resonance limit.

VI.A. Complex Trajectories and Ancestors
Attempts to insert complex trajectories directly into the
Veneziano model (Roskies, 1968; Paciello et al., l969bL generate Pinite

total widths for the resonances but also generate an ihfinite tower of

spins at each resonance mass. This is because the reésidue of a pole ' _ N

in s, in the model, is a polynomial in a(t) rather than being a
polynomial in %t itself. In general, the integral of PL(Z) times -
some complicated function, not a polynomial, is nonzero for all L.

Resonances with spin greater than Re «(t) are called ancestors.
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Another problém is thatbthis simple procedure gives ali poles
at a given mass the same total width regardless of the elastic width
predicted by angular momentum projections, For example, if we give a
phenomenological width to the p-trajectory in the simple gy amplitude
discussédjin Sec. III, then the ‘e resonance will have the same total

width as the p in contrast to the partial width ratio

rasticl) Terassic®) = 3+ | (6.3)

l-‘eil_;':\,st_:'Lc elastic

This degeneracy of total widths makes it impossible to calculate
meaningful phase shifts from this simple approach. On the other hand,
the ancestor problem is not necessarily fatal since the coupling to

these high spin states is usually small.

VI.B. Kv-l\/.la_‘_tfix and Crossing

Clearly, if‘wé intend to take seriously the elastic widths for
résonanées predicted by thé Veneziano model,_wevmust hévg a_method of
displaéiﬁg'tﬁe poles from the real‘axis which depends on ﬁhe angular
mOmentum_étructure, A simple way of doing this is thé K-matrix method
suggésted by Lovelade (1969a). Lovelace suggesfs thatvﬁe interpret the
partialea&e projections of the Veneziano model, aI(J,t), és the |

KFmatriX'elgments,bf_the physical partial wave projections, fI(J,ﬁ)u o

A0 - VaI'(J,tJ): e (6_.-’1;,)“.
- 1+ p(t) a™(J,t) ,

Elastié'unitarity gives the imaginary part of p(t), in a channel with

masses. m, and m

l 2
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: 4t - (m -m )2
In p(t) = - e (6.5)

) 3.
t - (ml + m2)

and the real part is chosen by assuming p(t) satisfies an unsubtracted
dispersion relation so that

m
2 2 e
(m,” - m;") gn(=) . 2
1 2 my’ a(ml + mg) t -

Re p(t) = : :r[t- = s

N
S e

(6.6)
This method essentially givés ali resonances in the model a*ﬁotal‘width
equal to-their elastic width and can therefore be pfesumed to be
approximately correct below the first inelastic threshold.

This may.be an improvement over simply inserting compléx trajectories

in the Beta function but the predictiohs cannot be completely reliable,
even beloﬁ the”first elastic;fhreshold,if crossing symmetry plays an
imporﬁant role; -If‘the original narrow resonance'aﬁplitude hés crossing
symmetry tﬁén the K-maﬁrixvform destroys'this property asbcan be seeﬁ

by Lretélling that‘amplitudes satisfyihg exact'elaétic unitarity, and

therefore contalnlng no productlon processes, cannot simnltaneously satlsfy

- w
. - -~
- . [

analytiéity and'cr'bssi'ng° (Aks, 1965)




In:fact, crossing symmetry plays an important role in deter-
mining the low energy resonance parameters of the un system, so thét
the low energy K-matrix phasé shifts predicted by Lovelace (1969a)
cannot be completely consistent. We will return to this question in
Sec. X where we discuss phenomeﬁology.

| Arbeb (1969) has also proposed a unitarization scheme based on
the form of the Veneziano partial wave amp litude. He finds unitary
thresholdvcbfreCtions to the reduced résidue function of the leading
Regge polé. These corrections destroy the crossing properties of the
model sd this method has the same drawback as the K-matrix scheme ahd
is subjecf to the same criticism although the details of the scheme
are different.

Balazs (1969) and Atkinson et al., (1969) have
taken an approach where the lowest pole in the Veneziano model is
replaced by a finite cut with a unitary discontinuity. This is used
as input in an N/D calculation where the faroff singularities are
given b& the unmodified Veneziano form. ‘The method is moreAéomﬁlicated
than the K-matrix approach but it is not clear thét it is an improvement;
Mdre wdrk ﬁééds to be done, with' the emphasis on. including coupled-

‘ channel§ and maintaining crossing symmetry.

VI.C. Smearing
A1l the attempts discussed above to unitarize the Veneziano
model are'based on rather traditional methods of calculation and

emphasiZe'the low-energy, elastic unitarity region. Of more immediate
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interest. are models invented by Martin (1969) and by Suzwki (1969)
.for extending the Veneziano model away from thé narrow resonance limit
. while maintaining crossing symmetry and polynomial residues. These
.methods are not, in themselves, unitarization schemes but are ways of
rembving‘the outstanding,single nonunitafy property‘of the model, the -
zero-width resonance.

Martin treats the 5-function discontinuities present in the
Veneziano model with a standard convelution procédure‘familiar in
distribﬁtiqn theory. He ﬁakes the Veneziano amplitude for gy
scattering;_Eq. (3.13) and smears its trajectory slope with a testwj
funcfién,v @#(x), which is positive and vanishes at the end points of

the integration.

1

Folest) = | gl ool te )l )

*o.
For a suitable @(x), the poles in.Eq. (6.8) are displaced from the
real axié’ohto the second sheet. Martin'svamplitude ddeSvnot_have
purely poWer behavior. Insfead, the asymptotic behavior is modified by

a logarithmic factor ihdicating the presence of a cut in the J—plahe.

Since it is almost certain that a uniﬁary'amplitude contains Regge cuts,

this typé'ofibehavior is certainly not. undesirable although, for
aesthetic,reasons, it would probably be preferablé if the leading
singularity in each channel remained a pole, and cuts only appéared in

nonleading order.
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The location of the resonance poles in Eq. (6.8) is given by

the effective Regge trajectory
afs) = a + b(xo + ir)s (6.9)

where x. and T are determined by the form of @(x). This effective

o;
trajeétory is not real below threshold in s, but the amplitude (6.8)
has the correct threshold behavidr éo that this 1s not necessarily an
objection to the smeared férm.

Huang (1969) and Bali, Coon, and Dash (1969a) have developed
slightly different smearing séhemes. All these approaches share the
flaw that thevtotal widths continue to be the same for all resonances
of a given mass.

Sﬁzuki”é approach‘to generating finite width resonances is
most conveniently éxpfeésed in terms of the integral representation

of the Beta function. TIf we introduce the complex trajectory function

[see Eq. (6;1)]

a(s) = a +bs + As) | (6.10)

1

into thebamplitude in the form

1

Sy - | an XD g e des(0)E(2)

(6.11)
where f£(0) = 0, £(1) = 1, we find that in order to insure Regge

behavior for ls| -, arg s €(&, 2x - 8), and to guarantee the absence

of ancestors, we must restrict
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AR * )
48 |— o0 - ' .
on lst sheet

i

ha .

and require that all derivatives of f(z)v vanish at z = O,1. . . v -
n
d
4~ £(z) -0 . v (6.1%)

n
dz Z=O,l

xWhile Suzuki'sbquel tackles the large unitary violations caused
by the physical sheet poles, in contrast to Martin's approach. it does
not intioduée J-pléne cuts but maintains pure pole behavior. Again, it
has the flaw that total widths arevdegenerate. There is an infinite
class of functions which satisfy the.consfraints (6.1%) and each of
them geﬁéfates a'slightly differentvrelation between the pole parameters

and the discontinuity across the cut in the amplitude.

B D g T R e

S T
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Footnotes for Section VI
6a) This function can be thought of as the limit

BZ(M,M)

Cf(z) = lim
_ T B(MH)

where B 1s the incomplete beta function. See Suzuki. (1969)

for a more thorough discussion of the derivation.



~138-
VII. The Narrow Resonance Bootstrap

We would like to review attempts to construct a self-consistent set of:
narrow-resonéhce, hadronic afhplit{xdes. (Mandelstam, 1969b, c, d; Bardakeci
and Halpern, 1969) Tile progrém for this bootstrap scheme is as follows:

(a) One constr'ucts an infinife set éf atonous ‘dual, crossing symmetric,
narrow resonance, Regge behaved arﬁ.plitudes, for arbitrary numbers of ex-
ternal particles. | o

(b) One impovses self consistenéy’ on the system, in the form .of fac-
torization of pole reéidu'es. |

(c) The émplitudes constructed as in (a) and (b) are treated as Born

, - ~ Ta
terms of a complete theory. One attempts to escape from the unitarity vio-
lations of the narrow resonance m.odel‘by forming a "Reggeized pei‘turbation
expansion'' of diagrams containing closed loops. (Kikkawa, Sakita and
Virasoro, 1969)

In'this section, we will discuss steps (a) and (b), »limiting'ourselvesA
to a system of mesons 'only; Mandelstam (1969c, d) has extended the dis-
cussion t‘o b‘aryons a‘n'd we will commént briefly in Séc_. VIIi on some peripheral
matters aschiate'ci with that probiem. .We will return to the'details involved..v
in step (c) in Se'c. IX.
| In o'rde‘r to clé.rify What”is involved in ix.nplement'ing‘(a) and (b) we wbuld
like to pose thé _foilowing unsolved problem, '\%/hich we will refer tq‘as..the”

”inside‘-_out:side " problem. As emphasized in Sec. III, the general strﬁctﬁre
of the narrow résonance ﬁpdel_ for nn=mm is suchvthé’c the amplifude can b"e
r,ep’fesen’ceci_by,an 1nf1n1te sum over Feynman tvx.'eer diagrams in 2 giv.er_xb éhannel

as in Fig. 7.1 and Eq. (3.18 ).

-
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L. 2
The amplitude contains internal states labeled according to (mass) ",

K, and angular momentum, L, whose coupling tothe wm system is given:

’ L _
by [Ci]'a,. where czi is defined by
' K
0 o K ¢ P_(cosf )
Flx,y) =z 8Ky . s = L L x (7
- K=l x~-K =1 L

=0 x -K

The i'néid'e-outside problem is poséd as follows: Treat all internal.
states in (7. 1) as external states, and foz;m all pos sible N-point functions
consistent with the original mm amplitude. For example, the nm=mm am-
plitude contains an internal p state (K= 1, L=1). We can try to form
amplitudes for pr—pw and pp—pp consistent with mm=mm, and so on for other
internal resonances until the systerﬁ closes and ali states appear externé,lly
and. internally for 4 external lines, 5 exterpal lines, etc. ... . If we could
solve this prbblém we would have a set of N-poih‘c fun;:tion consistent with
(a) .ahd (b) ab'ovér, containing all narrow resonance poles symmetrically as
tree poies,' and as 'extern,alvsc':vattering states.

The in.side—ouf:'sid‘e problem has not been solved but preliminary work
seems to ind"ica;té that the particle spectrum will not be free of negative
residue stvates (ghosts) so fhat we wiil have to abaﬁdon the positivity condition
used in Sec. III._ in 6rder to find any splution at all. The e;;plicit ansatz of "
Mandelstam (:19’6910) and Bardakci and Halpern (1969), which we will discuss

. bélow; .sat_‘yisf_ies'k conditioné (a) and (b), but it he_ither so‘lve;s' c;)mpl.efely an
'inside—oﬁtside' problem pér excludes .ghés’_cs.

The Méndelstam—Bar&akci-Halpern_ ansatz is formulated in terms of
‘the quark _m;dell. It has the following pathologies:

(1) .Ail t.z;aije_ctories ére parity doubled, one partner being a.ghost.

(2) Tllf.i_el;e;is an infiﬁity of trajectories With abnofrnal C -

(3) The = and p mesons are degenerate and the system does not .
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choose the Goldstone SU(2) @ SU(2) realization.

(4) Factéfizatién leads to an exponential degeneracy of the lower
‘lying trajéctories.

(5) The model requires undbserved trajectories.

(6) The structure of the .re‘sultant ampl.itudes leads to an»indefi’nit/é/
metric, and to two different infinite families of ghosts.

Disea‘s_e's. (1), (2), (4), and (5) are probably intrinsic to the nafrow re-
sonance boqtsti‘ap. Diséase (3), which ruins soft pion applications, may be a
particular'propérty' of this.é;llsatz only. It would be interesting to see if the in-
side-outside pfo‘blem allows a solution With m >m_ ‘and' m_ = 0. Diseaée (6)
‘arises, as we é’hall éee below, from the half-integral spin'of the quarks used
as meson bulldlng blocks, plus the rather ad hoc constructlon procedure, and
also from the forcing of factorlzatlon

- The actual construction procedure is to separately solve the problems
of internal .s.ymmetry, ord_inary séin, and orbital angular momentum, and then
.~ present the final result as a product of three factors. This procedure enables
one to carry thféugh (a) ,.and (b) in a manner which is'i,ntere»sti'ng and illustra-
tive, but probably unp‘hyvsvical. r].,‘he separation of the spin and Qrbital factors,
in particular, vd.c.)‘e_s not Qc_cu; m aﬁy known set of Féyx}_rnah'_.dia:g.'réms', say in
quantum elevctro_dyr;amics, and z;e.s:ults in an',indefinite metric, as in (6) v;dbove.

, Speci;'i‘cally, “we é_dnsider a ZN point function,. where the external lines
repr'esent N qﬁarks Ia;rid N antiquarks and write the total am}.)litu“:de

Aon T TonSoan Boan . - (72)

where T, 'S and B are the isospin, ordinafy spin, and orbital factors re-

% . _ v _ o _
spectively. The resulting mass spectrum can then be classified by SU(6, 6) @
Tc

0(3) and the vertices by SU(6)W..

|
i
i
|
L.
I
)
i
i
i
|
.
H
b
i
1




-14 f=
We willxconsider here only thé meson bootstrap, in which thé. amplitgde_
AZN can be thoﬁght of in the form of Fig. 7. 2? in which each'jquark—antiqﬁa?k
pair forms i\hto a _m.eson and at the end the quarks are thrown away leaving the
amplit.ude. we waht. The extension ,t;) baryons has been consid_ergd by Ma.ndelstam

(1969¢), and for a discussion we refer the reader to his paper, andto

that of Oleslen (1969a).

VIL. A. The SU(3) Problem
The original solution of this problem was gi§en by Chan and Paton (1969)." |
We will follow here thé arguments of Bardakci and Halpern (1969). .'Ea.ch ex- |
- ternal line in Fig. 7.2 is to be associated with a quark wave function Whicﬁ fé.g'.
torizes as above into.- im;ernal symmetry, spin and or._bital. pit.ac‘es. | Choc')s'e.SU(3v)b- '
as the infernal syinmetr;r a_;nd céll that part of the quark §vave fuﬁctién x (i), .\.yhere _ ‘, '
1 labels the ciu;.:ks.  We willicon's‘.ider vmesor‘xs only and will ‘force the.'p.a'rf:iclle'_s
to trans'f.orm‘ as leosg ﬁride,r SU(3) with 3 and E being.the quark and a;nt.-iquark
’ representations.: 1f v?;e'form the quark-antiquark 3 X 3 matrix x (i) x+(i-) \'&e “canv
write . . .
ot - £ oo, ey
in terms ofthe ‘n.inev)\a' s of Gell-Mann (19»61) . |

-Now, .defining the coefficients

(c), = x @) 0 ) x(zim) S (7. 4)
where _thére is no sum on i, the isoépin factor is
Tan = TrAE (G 00)y) | SR (7.5)

The choice of indices in (7.4) tells us that (7.5) is cyclically symmetric in the

hadron labels i. Atamesonpole  (C ), = 1, and all this boils down to
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= lﬁ A — 7‘ 6 |
TZN ‘ Tr[iz'l a } . ( )
i
.th ' .
where the i meson has SU(3) index a ..
 The expression (7. 6) factorizes properly because of the identity be-
tween arbitrary SU(3) matrices

o Tr(an ) Tr (x;B) | | (7.7)

8
Tr(AB) = =
) a
which just tells us that the SU(3) amplitude can be written as in Fig. 7. 3.

Now we pass to the spin pféblem.

VII. B. Spin Structure
We take for the ordinary spin wave function of the quark. the Dirac

spinor u(i).. By analogy with the above we define

(s ). =w(2i) (T ) u (2i-1) : - (7.8)
where the Fp are the 16 Dirac matrices, and the spin factor becomes
s =1 sy (03 @9
: =Tr . , : .9)
2N D=1 PPAC P ' : ( )
In (7.9) the trace is over the Dirac space. the meson ''propagator' is then
=85S BB+ (V) (Vv 7.10) -
$,=8,8,+P P, +P P+ _(VH) 1(VH) 5 (Vu)-l(yu) 5 (_ 10)
L@ (u),-(Aa) (A |
(©),0), @A), @),

which contains the following set of trajectories:
G N e el -
0" (s) , 0T (P), 1TT(V), 1TT(V) .1 ()
and 1+—(K)‘ :
- where J =~ ‘“labels the quantum numbers of the lowest particle on.the tra-

jectory. Let (qv) ! (2i) - qV(Zi-l)' and m be the quark mass. Then

14
(e (V,); = 0=(a,),(U,); SRR (o8

(q,),(4,). = 0 . - | S (112)
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We use the usual names {I" }= {S, P, T, A, V}and the associated quantities

j—k, I_J, —\_/, E are defined by

(A ), =U(2i)y y U(2i-1) = (T ), + —TL P. (7.13)
[ " - pET 2 T
1 | . _
| (T_*“’)i = \/;2' [“‘l};)l (V,); - (@), (V) +ie () p)i_} (7.14)
(VV )i - '\J q.Z ‘ (Tpv)iﬂ ' ‘ . (7.15)
— L 1 2m | - v
P, = — U(2i) v 4, U(2i-1) = T7S— P, o (7.16)

p : . .

To complete the argument we need the identity in Dirac space,
Tr(AB) = £ Tr (AT.) Tr(I' B) (7.17)

. P P P :
projecting out definite spin.s as above. This object is found to contain the tra-
jectories listed, plus two more which do not explicitly appear in the 4 quark
amplitude:

(a) an 'ex'travpion trajectory coupling as vy 5q/q’
(b) an abnormal scalar trajectory coupling as 4/q, arising from the
divergence of:the Yy term: , : ' v
Co -t - g (a)d(a)
‘ Explicitly writing out (7.17), with vy = _ .
P y v g (7.17 WM (A

Tr(AB) = Tr(A)Tx(B) + Tr (Avg) Tr(vgB) +Tr(Av ) Tr(y*PB) -

, we have

- Tr(A-d(A) /q(A)) Tr (4(B) /q(B) - B)

YoV YV
(A 2 BA P
ST Ty ) Tl B

+ Tr(Ay d(4) /a(A)) Tx(y (d(B) /a(B). B)

- Tf(AUHVqV(A) /q(A))

(g (B) /q(B)- B)
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- Tr(Ay 5(rpwq”(A)/q(A) ) ’ :
s .

)

.). Tr( 'Y

5O‘Mq)\(B)'/q(B)- B) ' o o (7.18)

where we imagine we have a. scattering process with two blobs, A and B,

connected by an internal line carrying momentum qH(A) = - qH(B) , with -

1

. . ,
q(A) = q(B) = [qZ(A)]? = [qZ(B)] ® being the mass of the object exchanged

between A and B. The decomposition (7. 18) explicitly resolves the ampli--
: PC . _ '
tude into pure -J ~ pieces, where J = 0 or L

Now to finish off this discussion we want to identify the ghosts. The

- proper Feynman vertices (Bjorken and Dreil, 1969)- for the particles under’
jconsiderati'onare, for. 5, P, V and A:
‘ : : 2 v
-1 v S -
{-id/a}, {vgvgd/a}l, {-ily, -qd/a), o a/q}

and {v—l(YS_VpL ) q}J.Y 5¢i/q ), -i YSG},qu /a} : (7.19) : .

If we squar"e ‘the phase factors and compére with (7.18) we have the final list
of trajectories shown in Table 7.1. ‘'As can be seen thére, an infinite family -

 of ghest trajectories has appeared,

There are two.m and two p trajectories in this ' model. In principle;
they are identical pairs.v If we introduce two mixing angles; ® and @p, into -
X NS T v ™ :
the system, there is a choice of @ﬂ and @p, used by Mandelstam (1969b), -

which turns out to force precisely SU(6)W symmetry for the meson-meson-.

meson vertices.
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Table 7.1

GHOSTS?

Yes

Yes

Yes

Yes
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VIL C. The Orbital Factor

(‘ To c_omj;l"ete the .dis cus sion :we need to find an ampiitﬁde which will ééx.'vev
as the orbital‘factor in (7. 2). This clearly is the same problem as the con-
struction of a 2N point functi‘o.n for scalar particleé sir;ce the spin has been
factored out as above. We will now discuss the problem of directly gen-
eralizing Veheziano' s four pafticle form (Veneziano, 196‘8) to M particles.
The solution .o’f this problem yieids an amplvitude, BM, which we will use in
(7. 2) for M = 2N.

The structure of the orb.itallproblem is more complex than thev spin
and internal symmgtry problems because many nontrivial constrain;cs are in-.

| vglved. The first step in its solution occurred when Baxfdakci and Ruegg
(1968), and Virasoro (l969b)generaliied Y.enezia.tno'é model to five pé.rtiéles.
Chan‘(l969‘)v,. ‘Goebel and Sakita (1969), and qua and Nielsven?(1969) then ex-
tended this form to the case of N éxternal [.)a‘rtri:cles.

To discuss this generalizatidn we restrict attention to an idealized
system of n‘eu‘.tra.l bosons which can i_lqtérvbe"ianteirpr.'etéd as spinless quarks .
for the purpose of the boqtstrap. This system is defined by one parent Regge v

trajectory;, the lowest meinber of which is a massive.particle of spin-parity

P +

J; = 0. The parent trajectory is therefore restricted to have a negative
intercept. We will first explain the concepts of planar diagrams, overlépping
channels, and the necessity for particle ordéring. Next; we<will construct

B an explicit, nonunique, example of-an=N-particle narrow resonance am-

N!
plitude. We will examine the multiRegge lirhits of BN and its factorization '
properties: é.nd, finally, discuss its use in the bootstfap scheme mentioned .

" above.

(i) Planar Channels, Overlapping Channels and Tree"Diagram-s‘

‘
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To define the rnodel. for the scattering of N. of these si)inless particles
we are going to construct functions with the singularity.str.uctulre' of planar
Feynman tree diagramé. That is, plana.r diagrams with threé pai;ticle \.rer-
tices and Without iﬁternal loop‘s. Fig. 74 ~shows fhe different Feynfnan tree
diagrlam's which.wiil be present in the model for a given ordering of five par-

" ticles. The ordering of the particles is cruciai ‘s’inc‘e for a gi\?éﬁ ordering,
planar Feynfna}; tree dia;gr'a.rl;ls can be .convstructed with .poles in each éf the -
pla_n.ar' Mandelstam invariants

5

= . + ...+ :
55 (piw“p1+1 , pj) . (7. 20)

but planar tree diagrams do not have poles in such nonplanar channels as
(p. +p )Z' (p. +p, + P )2 or (p. + p. , )2 To have poles in nonplanar

2 57 7 W10 T30 Y4 i i+ 2 ‘
channels we need diagrams such as shown in Fig. 7.5. These diagrams can
be made planar _.by changing the order of external particles. Complete cross-
ing symmetry for a sysfem of 0_+' parficles démands singularitiés in all these
channels and this sugg‘e_st's we make the decorriposition

Hn-p 't

s ey Do) = p> B.(p.,...p. ) (7. 21)
! v N non equivalent N 1 N : :

permutations”

T(p

| (b e i) |
where cyclic and anticyclic p:ermutatior'ls of the ordering of the particles are
c_onsi_de_réd eqﬁivalent. All available channeis will be plénar in one of the

.Qrde.rings in (7. 21) ..aridv.T(pl, ;‘ pN) w‘iil .be»cémpletely crossing symmetric. "
In analoéy to.-the case of the féur pa.rticle amplitut.ie'discussed earlier,
we want the .resid'ue of a pole in a channei invariénf, Y‘S.vij’ ‘to' be a .pélynomi.a_l
) : S : :

in the "overlapping variableé which are related to the cosine of the scattering

angle in that particular channel. The enumeration of these 'ovevr‘la.pping variables
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is not cvomplevt'ely straightforward for the case of N particles. Basically,
oirerlé.pp{ng variables are those Mandelstam invariants in which Feynman
tree graphs cannot have simultaneous poles. For éxarhple, for a four-

point functio_n.b_oth t tand ‘u overlap s. 'Another definition of overlapping

variables involves the use of dual diagrams. These dual diagrams have

nothing to do with duality as preached by Dolen, Horn, and Schmid (1968), -

nor are they are same as the duality -diagfams of Harari (1968) and Rosner

diagrams are those discussed, for example, by Eden, et. al. f (1966) in . i

connection With Feynman diagrams.. They are constructed

from Feynman 'dia,grams by enclosing each.Feynma‘,n vertex by a polygon,
éach side of which is identiﬁed with one of the lines entering the vertex.
“Fig. 7. 6._illus'trates the one-to-one corresponde.n.ce of the diagoﬁal lines 1n
these dual di“ag‘ijams' with tiqe Mandelsté.fn invariants. Variables aré theﬁ

said to be overlapping if the diagonals corresponding to them cross.

i
3

(ii) The N-Point Function B

P

.. We now turn to the problem of writing a narrow resonance function

which has poles in all the channels, (7. 20), which are plahar for a given
ordering Q‘f the external particles. Defining the linear trajectory function

(7.22)

v a.=a+bs , L
) "u,-h"",:_ - . 1J . 1J ) .A,‘-“’ . w o &
we want a géneralization of the integral representation of the Beta function v ':.
g 1 -a, -l -a -l
U 12 : 23

; .S
]

which we will identify with the 4-particle sca’cte'ringvarnplitude. (Veneiiano,

(1968) with which they share a confusing nomenclature. Rathef, these dua_l"

1968).
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In analogy to the situation in the 4-particle model, the integral repre-
sentation for the amplitude, BN, can be c..onstructed by considering an inte-
gration variab:l_e, xij’ ""conjugate " té thevtrgjectory a.ij . We guarantee that
there are no simultaneous poles in overlapping variables by requiring

x..=1- == xg o ' ' (7. 24)

Wl?ere P is the set of channels which overlap Sij' Any set of N - 3 non-
ofrerlappiné va_riab‘les can&oe choseﬁ independent.‘v The most convenient set’
of independeﬁt variables corresponds to the poies in the multiperipheral
diagram, Fig. 7.7a.

u =x.-(j=2 -+, N-2) o - (7. 25)
In terms of the u,, the solutibri of the constrainf equation (7. 24)v is given

by(Chan and Tsou, 1969.) )

l-u, ...u. ) Q-4 ,...u, o
X, = By =1 i (7. 26)
ij (l-w, ~..oomua, ) (1-u +v.u) )
S i-1 j-1 i. ¥ '
- 7d
and the N-point function is then given by
s . : fl' N-2 e —aii_l
B (p, :: p.) = Coqp du (1/3) I ox,,. (7. 27)
N A LY, ] Vicy 2
where
_ j-i-1 . |
J, = I (x..) _ (7.28)

L SR

This integral representation&-of the BN

function clearly indicates that
it is invariant under a cyclic or anticyclic parmutation of the particle indices
and that the only singularities of the function are poles at integral values of

Regge trajectories aij' ‘A convenient form for discussing the other properties

ogB

N which combines (7. 26) -(7. 28) is the recursive definition (Bardakci and

Ruegg, 1969 )
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= d du u,, ... 7. 29)
BN(P1 PN). fo : U, .. dug IN (uz_ ‘.l-N—Z)Z (7. 29)
where _
- -1 - -1 _A
I ( N N A S
N ‘P2’ rUNZ2 T W A“z ' - u,u, (
. - Z,N—l . ~
{X (1 - uz uN_Z) : IN-l (u3’ H uN-—Z) (( 30)
and '
A= oy - - q- / C(7:31
i] (aij ai+1,j) : (ai\,j-l @i j-l_) | ( )

There is no claim that the form (7. 29) is a unique solution to the problem of the
N-particle narrow resonance model. The complete problem of ﬁniqueness has
not been solved but, in ahalog';r to the case of the four particle amplitude dis-

cussed in Section I1lI, it is always possible to multiply the integrand in (7. 29) by

an ar»bi’crary fghc,tion which is symmetric under a cyclic perrﬁutation of the

channel invaria;nts and well behaved in the region of integratioﬁ, the pole struc-

3 | L Te

ture being determ_ined by the end point properties only. -
T.he 3N(N-3) channel invariants which appear in (7. 29).are not, of

course, all iﬁdependent for N > 6, but the model is presumed to hold for the

physical amplitl.idev when th;: rriom_entum cons er\)ation' and mass shell constraints:

arg,\_used 1:.0 r_educé the independent channel invariants to the usual numbér

3N - 10. A‘s‘ d'iscussed'in Seétion V, this feature is of great importan‘ce when

we try to cons;:ruct amplitudes for‘external currents.

(iii) Properties of BN

The Regge asymptotic limit of BN can be checked with the aid of (7.29).
A new ingredient enters when several kinematic variables go to infinity t-ogether.

This is called the multiRegge limit. (Bali, Chew, and Pignotti, 1967) For ex-

ample for B, we can consider

6 .
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| 5,3 P 834700 S,g | N (7.32)
’_SIZ’ 513> S;, constants B ' - (7. 33) ‘
and
s, /s,,= -« ~ /s__ = -k_, constants. N
23 34 "24 20 534 %45 %55 T ~H3 constants (7. 34)

Making the .change of variables (Bardakci and Ruegg, 1969)

1-u, =exp {z fa, i+1} (i=24) | | (7.35) -

= 1+ 2, L. ;
1/a1,1+1

taking the hig”h energy limit under the integral sign in (7.29) in the form

"’?(: exp {0} | (7.36)

. N
lim 1+ 0:)
a- 0
~and making use of the high energy approximation Ai' roa,. we get
' o : -alz.‘]l d, -1 -a, -1

- 2 . %13 Gg 7 13 14~
B6~(—a23)7 .(.-9.34) , (-a45) g dz‘zdz:,)dz4 z, T zy z,
' o ) -z z z. .z z_ 7z =z
‘ ' 2 3 34 2 3 4
. - —_— . 7.37
exp{[zz+z3+,/,ﬁ2 + o " Tox 1} - (7.37)

23

- We can also see that the contribution of each trajectory to the multiRegge
limit -factorizes separately by writing (7.37) in the form

' | %2 . . “13
B6~ I‘(_-alz) ["0.23] 'V(al?_’ a3 KZ) T( —a13) [—a34] (7.38)

14

. , ; I'(-a -
V(o 304 %5) Tl-a),) [-ey4]
v The function, V(a,a',k), which can be identified Wi.t'h the vertex for two

Regge traj‘ectories (Reggeons) and an extex"n;al pole is then

.. ' , - zZ.Z_ . -
1 1. _ . : ‘-a-1 ~a'-1 : ' 12
1 - ‘ v LT , - ' .
V(G.’G. ’K) r(_a) l—\(_a ,'-) \fo dzldzz Zﬂ ZZ exp { [Z1+Z2+ K ] } o
(7.39)

The variable (-1/k) in this vertex function is identified with the Toller
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variable (Toller, 1965) of Bali, Chew and Pignotti ‘(19-67) . “Dependence upon the
To:,li‘e'br variéble was often aésumed to be absent in earlyI st.udi.e-s ofytvhe ‘multiR‘egge
linr;it and the Veneziano model was among the first to predict a definite depen-
dence on this _vra.r'iable.v This dependence has not been verified phenomenologi;
cally as yet. (Tan and Wang, 1969; Barshay, 1969) |

The mulfiRegge béhaviqr of BN given by (7,’ 37) does not necessarilyv
guarantge that the"complete amplitude, (7.21), which is a sum over BN_' s, Will '
haye the pvrbper Regge behbévior. We must also show that’ BN is expdnéntially
decreasing when we fix a nonplanar channel invariant in which it has no 'p'olés,b-' ‘
just. as was the case for an exotic channel in the four-pount ai'nplitude in Sec. IIL
Fo;i: general N, thé nature of—,thé constrainté which reduce the nur;’lber of .var—._' -
“iables from %N(:N-3) to 3N—10 makes prdof of this property difficult and we are
nét 'a\x}ar._e o'f the existence d_f vany such vproof. See the disc;lssions of Zakr_zewski' '

" (1969) and of Bialas and Pokorski (1969).

(iv) Factorization and Projections
Faéto,fizé.tion of the leading trajectory insures that

1 B (b, ...p.) = e P oP)B. (Ppp..-. 7.4

im e, NPy Py Bjﬂ(p1 P Py ‘N_‘J(plvpj py  (7-40)
a. .

1j~—~0

< ) . . . .

'wh;irch can be verified by noting that in the limit uj-'O,r the integrand in (7. 29) -
separates into the appropriate factors. We can also project out couplings to
ir.e_s,_ohances of nonzero angular momentum on the parent‘Regge trajectory in -
order to define amplitudes for particles with épinﬂ. (See Campbell, Olive and
Zakrzewski, 1969; Bardakci and Halpern, 1969) For example, in the 6-point

function, the residue of the pole at a,, =1 can be used to construct the in-

12

variant amplitude for the coﬁpling of the spin-~1 pai'ti_cle on the parent trajectory
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to four scalars. Using the notation of Fig. 7.8 with Pt = p;" + pfg' and

ap3= a+b(]?’f p3.)2, a.p4= a+b(P+ p‘3 +p4.)2

we write

PHAM(P’p3";4’p5’p6') - prp'[pm_ BS(a‘pS’,apél’ @34 %45’ " 2b(p3'p5)
- | +P4g35(ap3—l_, Qg F340 G4s -2b(p;-p.))
) ' :
| T Psu s (o 3-L ap‘.l';I’ @340 %45 -20(pyPg))] NG

where B5 1s the five point aim?litude of (7.. 29)with the order of tile variables
given by that integrand, and certain tfajectories lowered as indicated. More.
comf)licated spin projections can b.e'made with the aid of the series represen-
tation for BI\'I, found by Hopkinsop and Plahte (1969),’; For example, the seriés_

form for B
: z

k 24 ' : :
(-1) " | I )B4(a34, a45+ k.) .B4(a12+k, a23)

o
u

e
2

S

U‘v

t
"8

(7. 42)

where z24.= (124

- a - a

34 23

can be used in conjunction with the expansion of the Beta function to yield
B

K+l 224) (“23 y(a0a 45tK)

e e
By(pyopg) " R0 To, (-1 (x L /] e rx+L (7.43)

This illustrates explicitly the Feynman diagra‘mv :.structure and the c-oupl.ings
“of the.model aﬁd'pan be ﬁsed to verify the génerélizatiqn of atonous duality |
(Section II) appfopriate for the ,5-pa“r‘.cic1e form. -Theée‘ co'nsideratior.ls of
factorizatiq@ are relévant to the prob.l;arﬁ of uniqueness. Alfhough (740) pro-
vifdes some coﬁstraint there still exis’ts .the 'pés sibility of multiplying the |

integrand in-(7. 29) by a function which preserves the factorization property.

The class of such functions has been discussed by Gross (1969) .
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SQ far we have just discussed factprizatipn in fe;‘rﬁs of (1_ead:in.g behav{iorz-
and 'péles on the‘ leading trajectory. Since factorization can be thogght of as a
form of single-particle unitarity which can léad, in principle', .to ifnportant |
cohstraints, it is interesting to try to extend the factorization property to par-
ticles lying on daughter tréjectories.-
At t'he; da_ﬁgh‘cer level, simple factorization does not exist.

Instead, it has béén shown by Fubini and Veneziano ‘(1969) and by Bardakci

“and Mandelst'a;n;l (1969) , that in order to preserve factorization, the lower
‘lexéels must become degenerate so that fhe resid’ue of a pole can be egpressed |
as a finite sum Qf factors which does not depend on the number of external lines.
Because of the cyclic syrnmétry of BN,. we need only e‘stablish‘thirs ~_property _va1' ,
one channel, sij' Looking at the integrand in (7.29) we sge fhgt only a certain
number of factors con‘gain thve variable uj.»» ‘We make the constraint i<j<k and
let I ( K Py ) be those factors in (7. 29) whi.ch involve only variables in the left

half of Fig. 7.9 a.nd I ) pk) be those factors which contain only variables on

2%
the right half. 'If we then lump all those facf:oi“s'- \%/hich;ha‘ve aJny uj dependence

1nto F(u u ' P, su ,p. ), we see that we can write the residue of the pole in

k' Tk
: o | 1 8
= d ’ » P. - -
R f 1I dui. w Il(ui pi) Iz(uk pk) — on F(w;u p ukpk)
0 i<j<k ' o w , w=0
- ‘ (7. 44)

The function, F, can be written in the form

o0 r , :
F=exp { I [PYppupm) B (pauy.r) + ()] ) - (7.45)

r=1 171 1 2 k’ k v

where ¢ is a constant and P;’ (P;) is a four-vector depending only on the

variables P, and ui (pk and uk) . The derivation in (7. 44) can be verified
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by expanding F ina power series in w and isolating the term with power

w?‘ The number of factors depends only on the functional form of ¥ and

4

not on the sp.ecif.i'c form of P. (P ,u,, r) and, therefore, does not depend on the
i i

1
number of external lines. The number of different factors can be shown to
equal the nun’ibér_ of ways of ch-bosing nonnegative integers fm to-satisfy
the partition equation.

= m-f =n S : - (7. 46)

mmi=1 . m :

For 1é;r"ge ‘'n this number, dn, increases approximately as

d ~ exp {2n Nn/b } . | (7. 47)

- : ‘ 1.

so that the level degeneracy increases exponentially with mass. Curiously
~ eniough, this is the same sort of structure predicted by Hagedorn (1968) on
the basis of a thermodynamic model which treats hadrons as bound states of
each other, interms of a statistical ensemble depending on a universal tem-
" perature. It is interesting that two very différent_ models which lay claims,
however tenuous, to bein.g bootstrap models should predict the same sort of
degeneracy in the hadron spectrum. (See Krzywicki, 1969). There remains
the problem of exposure of this prediction to experiment. However crowded
the experimental hadron spectrum may seem, ~(Rosenfelq et. al., 1969) there
is.:as yet no évidence for this sort of multiple structure. If this type of de-
generacy really existed, resonances would have décasr modes whose properties
depended on their production mechanism, and we are not aware of experimental
evidence for the lack of simple factorizability of any known resonance. These
‘questions can be' circumvented in two ways. One can claim that experirhents.
‘have not yet probed energies at which these features become prominent. It then

becomes necessary to revamp the basic notion of wh\at a particle is. Alternatively,

we can ignore the properties predicted by the model for lower trajectories on the

.
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ground that these t.rajectories are mimi¢king the effect of background in a‘t'r'ue.
amplitude. Since many of the _10Werﬁtrajectori-es have negativé residues, thus
_ providing.a set Qf,ghoét states entirély distinct from those asso.ciated with, the
spin structui;e discussed in Séc. . VIL B. ,:’the‘latter approach‘ tempora.ril;f avoids
c;)nf;contation ._with the difficultiesv_Ya's:sociatc.a'd with ghosts, at least those of this
second kind. N'vevither of thesééscapes appeals to the authors, and in fact we'
see no reason to believe the detailed rvevsonance ép‘ectrum of the model either
S g
at the parent or the daugh’cer level.
There -éxist identities, ca;lled Ward identities by Fubini and Veneziano'
(1969) -wh_ich indica.te tha'.t‘ certain linear combinations of the states counted in
(7.46) correspond to functions which are total derivatives of one of the u, oru,
.5q.that the‘ intggratibn in (7. 44) caqées the co_htribufion o.f thése states to vanish.
. The total reductioh in the deg,erieracy, (7. 47’)',' for large n caused'b_y these
ide,ntities is négl'igible, but they can be used to show, fqr instance, that some ’
_states which have n'egati\‘re.rlesi'dues '(Igho'stsg) éJi;e compensated by similar poles
) with'_posi.tiv.é fe s’.i.au'e:s. (*Fublnl andVenez1ano, ;:19“6.9”;:”-/?Bardakci and Mandbelst‘am,
1969) |
_ The level 'structur:e. of fhe Beta functiori"_t;:);‘ﬁ h’és been studied exten-
sively in t_er:ﬁs of a ]lrlarmor;{ic oscillator hnodel, Suss]'z(hin'dv (19692,b), Nambu (1969),
| L has been - | 7g

and an opefa_tor formalism Meveloped by Fubini, Gordon and Veneziano (1969) . -

%

’Ijﬂese studie‘s é,re suggestive in that they 'indic':.ate a connection bétweén the model
and infinite'-éompo'nent field tﬁeories and they may provide a connection between
_the negative r.esidue states and ofher features, such as asymptotic behévior »c_>f
the model. In partic_ulér-, -the operator formalism can be used to isolate vertices

between the factorized excited particles in the model. (Sciuto, 1969; Stapp, 1969)
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It can also be used to invent twisting operators (Amati, Bellac and Olive, 1969;

Caneschi, Schwimmer and Veneziano, 1969) which can be used to define the
' , , o and Chan,
signature of internal states. (See also the discussion by Hopkinson/ 1969; and

Zakrzewski, 1969, on sig.natur.e’.)
As discussed by Gross '(1969), these factorization considerations have.

some bearing on the problem of the uniqueness of the BN. The number of levels

s

increases, in gencral, When the integrand in (7. 29) is multiplied by a function

f(u .,

PURRIRe 3). but remains finite for a large class of functions. This suggests

that the level structure, given by (7.45) is in some sense minimal (Olesen, 1969a)

but the situétion is not completely clear.

(v) An‘ Important Simplification
For many applicatidns, the full form ch BN is'unnecessarily compligatéd' :
and it is desirable to use an approximatién invented by Bardakci andvRuegg (1969)
in which allvfac'tors in the integrand in (7. 29) containing more than two uj' s are
'onirlitted.
| Q__ uiui;lui+2--~ N 1in (7. 29) - (7.48).
For large N this can simplify the integrand in (7. 29) considerably. Fdr ex-

ample, in this approximation we would write the six point function as

~a,,-1 -a._ -1 -a -1 -a,.-1 -a, -1
N 12 13 14 23" 34
B6 _.f duzdu3du4u2 u, u, , (l—uz) (1—u3)_ ,
~a, -1 -2b(p,-p,)+atbm -2b(p.,~p.)+atbm
45 2 "4 3 %5
(1—u4) : (1—u2u3) (1-1131.14) -
(7.49)

which is a goéd approximation of the original 6-point function in the multiRegge
lithit, (7.37) and can be used in schemes based upon the multiperipheral con-
cept as discussed by Chew and Pignotti (1968) and Chew, Goldberger and Low

- (1968) .
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Applicatibn to the bootstrap problem

in (7.1} ita’
N in (7. 1) ‘as the orbital

To finish the bobtsfrap problem, . we will use B
- factor. »Fr.on')’-what we have said above, this is a self consié-tent choice in the
sense of factoriz_atioﬁ provided one is Wiliing tvo live with the exponential de-'-
generacy of the lower levels. |

To form a four point function in the bootstrap we need to consider A8,

the four quarkb - four antiquark amplitude pictured in Fig. 7.9.. . Rather than’

repeating the det.ails of'previouvs arguments we wiliL. very briefly show how A8,

| v v
breaks up, following Bardakeci and Halpern (1969).

The spin and SU(3) parts of A_ factorize easily, as seen from Eqgs. N

8

(7.6) and (7.16), and we focus on the orbital factor Bé . Suppose we check

that B8 breaks up as in the tree diagram Fig. 7.9 . As we have discussed

. above, there are problems associated with the factorization of the lower tra- .

jectories. Suppose we focus on the leading internal trajectory.
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Then it can be shown that

: 1 _ul(d) w(7)
B y - Z I H i 2 ? ‘4
g8~ % Toa By (pprypyppy @ BT

3 Ps» Py Py Pg) - (7.50)

"where - indicatés (7.50) holds only for the highest internal trajectory,

. . 2 N : ’
ag = al (p1 -;--p2 + p3 + p4) 1, and BZ(J) is the amplitude for the coupling -

~of four scalar particles to a spin J object. The symbol @ indicates that

J)

, répresented by u(J), have to be dofced into each
other. For additional det.ails the reader is réferred to Bardakci and Halpern
(1969).

| For reference, we-éive the form of the triple-Regge vertex obtéined

from B; by Misheloff (1969). Let the momenta be as shown in Fig. 7.10,

with
a0 o L0, Q.o |
K, = 2oL K = =230 K, = %13 (7.51)
gy B %, C . Oy

The asymptotic form of B, as Is - with K,, K, and

KC fixe@ is
B (-0 ) “12 (<255) %56 (o) L k) (7.52)
6 = | 127531255 6’ 22 %p>

where

3 - - Oqpml Gggml -0y -l
G(le’SBLL’S56; KA,KB,KC) = d.vldvgd.v5 vl 2 .vVB ,

v,V V.V v_V
12 Yo' s l}_(ma)
n %3 K
Additional material relevant to this section can be found in Amati,
Bellac and Olive (1969), Barshay (1969), Delbourgo and Rotelli (1969),
Dollop (1969), Freund (1969b), Frye(1l969), Kugler and Milgrom (1969), and

Landshoff and Zakrewski (1969).
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qutnotes for Sectioﬁ VIL

7a) There is a ‘d‘ifference afnong the pra..ctitiOnersb as torwhether,orie takes

the N point functions to be Bovrn terms in the geﬁerbal‘sevnse or>ix.q the‘ spe-
'cificv:‘ field thedrétic sense. For-'the doﬁbting- group, which includes the authors,
who look upor'i. the poles of the narrow resvonance.amplitudes as bound ‘s.tates

neither meaning makes sense,.

7b) The reader may find it instruvctive to consider in this connecfion the result
of trying to bootstrap thé bound states of po_sitrohixim in this manner, keepj’mg'
only Feynman diagrams with multiphotoﬁ exchénge, just as in the éikonal ap—'v ]
proiimation. ;)‘f Aba;-banel ana ﬁzykson (1969), Chang and Ma (19_69) and Levy 3

and Sucher (1969).

7¢c) In vothe'r words we have a spectrum generating algebra. See Dothan,

G(ell—Mann,. and Ne'eman (1965).

'7d) The singula"‘r‘it.y structure and asymptotic behavior of B, were first dis-

5
cussed by A..C. D.i‘xbn, Proc. Lon. Math. Soc. 2, 8 (1905).
7e) Presumé_-bly the factorization properties and therefore the degi‘ee of de-
generacy change rather radically if one changes the integrand in the above
fashion. See Franipton (1969v).

o . ' ‘ .n_umber e
7f) The quantity dn is called the partition/by Fubini and Veneziano (1969).

See their paper for further ‘details.

4
{
{

7g) The second set of ghosts-in the orbital factor and its association with an
indefinite metric are best seen using the oscillator operator formalism of = -

Fubini, Gordon, and Veneziano (1969). The problems associated with these

ghosts are presumably identical to those encountered by Lee (1969) and Lee.

and Wick (1969) .
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In terms of the operator formalism, the field operatdrsisatisfy

the indefinite metric commutation relations

R I S

The timelike oscillator operators therefore create infinities of both -

inormal and ghost states,
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Figure Captions for Section VI

7.1 Narrow resonance four point function for mwr—~ww as sum over Feynman tree
graphs with definite internal angular rnbmentum'. ' - , : 1
7.2 Quark coi.l‘ten’c of the narrow resonance ansatz of Bardakci and Halpern .
(1969). The solid, external lines are quarks, and the dotted lines are quark- o
antiquark bound states (mesons) which form the internal states of the system.A v ,

7.3 Factorization of SU(3) factor, T__, in (7.2). The dotted lines represent

2N

_the internal meson states in the narrow resonance ansatz.

7.4 The five different planar Feynman tree diagrams possible for a given
ordering, 12345, of five particles. : : b

7.5 Example of a Feynman tree diagram which is non'pl'anar for the ordering

12345 of the external particles, because of the pole in (p3 + p5) . The diagram Y
would be planar if the external particles were ordered 12435,

7.6 Dual diagram for N point function. The external lines represent the -

skeleton. The two diagonal lines represent the channels Si4 = (pl+p2+p3+p4) 2
¢ 2 o ,
and S, N-2 ° (p2 + ... ‘+ prZ)_. . 'S1nc_e the dl_agox}al.s.,m?oss, the channels they

i

represent overlap each other. Examples of channels which do not overlap
s, . include V(p + p.,) z and (p. + p, +p,) 2
14 2 37 5 6 7

7.7a) Multiperipheral Feynman diagram for an N-particle amplitude. Internal

poles occur in the channels s s

127 %137 SiN-2

S

12’

7.7b) Dual diagram for (a) showing that the channels s do

137~ °IN-2

not overlap. For each channel, s, , we introduce the integration variable, u_,
' J

1;
to define thé ihtegral representation of BN.
7,‘8 An illustration of the process of finding the pole at a,= 1 in B6 in order

;
to construct the amplitude PHAH(P, P32 Pyr P pé) for the coupling of a spin one

particle to four scalars.
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7.9 The residue of a pole at a + b(pl+ ... P.) =n can be represented as a
: J

sum of terms i Ck(p1 ....p.) e Dk(pj-l-l' .. pN) where 'Ck depends only

onp,...,p. and D . As can be seen from the diagram, we
. 1 ) J 3 . .

bn . Y e o o
k °% Py PN
ate restricting attention to only one ordering of external particles in making
this decormnposition.

7.10 Vertex function for coupling of.particles on the leading trajectory of spins

N JZ and J3,. as computed using B

1 6
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XBL6912-6412

Fig. 7.3
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(c)

Fig. 7.4

(c)
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Fig. 7.9
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" VIII. Narrow Resonances, The Pomeranchon, Exact and Broken Duality, and
Exotic Resonances.

In this section we will discuss the absence of high energy elastic diffraction
phenomena in dual, narrow resonance models,: _the consequences of exact

duality, and the presenéé of exotic resonances.

VI1II. A. The Pomerancﬂon and E‘xoti’é:Resc‘)nanlces. - : \
| Our narrow resonance a'mplitﬁde, in its present form, cannot describe
elastic high energy diffract'ion sc.at't;ering. We Wiil' show vwh')‘r this is below,
using the example of mm scattei’ing«.. Trl-aditio'nally (Chew aﬁd Frautschi, 1961; '
Frautschi, Gell—Mann, aﬁd Zacha‘ria'sen, 1962), these phenomena have been
associated with a Regge trajectory called the;Pomeran‘chon. However, as

has been recently pointed out with increasing fréquency, it is not at all clear

from the available data that such a description is appropriate. (See Trilling,

.1979)

)

According to the Pomeranchuk conjectures (Pomergnchuk, 1956;
Po‘meraqchuk and Okun, 1956; Pomeranchuk, 19 58) at high energy, elastic
cross sections are _'s_upplo*sed to become independent of isospin.

For the mrn isospin amplitudes, (3.8 ), this fhéa.ns that

1
X%(s,t) = 1§ £(s) | | (8. 1)
=0 1 _ :

Because of our choice of SU(2) solution, with no I=2 poles, (8.1) does not

hold in the modél described in .Section III and instead we have

(8.2)

To see what is happening, consider the usual invariant amplitudé decomposi-

tion, (3.1), for the full nm ainplftude._ The isospin amplitudes are given by




r A°
s
s 1
X = A = (8. 3)
S :
AZ
s
In order to have (8.1), we need
lim - | A o o :
gm0 B = 0»’_C/B.— O:‘ .' | (8. 4a)
t=0 '
To make this result independent of channel we also require
Clim -__B_ ' _ . ‘
;. uTe A = 0, C/A=0 ’ ' ' (8. 4b)
i .8=0 '
lim - A -
= oo C =0, B/C=0 | ‘ (8. 4c¢)
u=0

- Focusing on the s-channel, we can see what the trouble with implementing

(8.4) for _thé narrow resonance model is.  The invariant:amplitude B(s, t, u)

is symmetric in s=~u so that

x"

4

‘(8. 5a)

= OO

oo

(o - '
{a'nd similarly

1 _
1§ f(u)
1 ) , .
1 E f(s) - . (8. 5b)
1 o R

§ - o

Xs Yo
8=0
t 1
X o é-l (8. 5¢)
.S: 1

In the § channel, B dominates in the forward ‘direct'i.on é.nd C in the back—
ward directic.)nv. We can draw a Mandelstam diagram with the asymptotic be- |
.haviqr for the B amplitude superimposed as in Fig. 8.1

Nowl suppose we want té make a narro_\%/ resona;lée model for ﬁw*ﬁw
‘with no I=Z Ipoles and with the Pomeranchon included as an ordinary Regge

~trajectory, so that
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X s, { 1} a(t) 14+ eimo gt |
g l§s P g_(t) [— 1. (8. 6)
fixed t ¥ 1 P sin ma t) |

Accordingv to the narrow resonance rules, the ‘direbcti.on._s‘ marked P in Fig. 8.1
are to be associated with t-channel pole's, while by excluding I=Z\polves. we know . i
B hasno s or u channel singular:_itie's and the directions marked "0" in Fig.
8.1 therefore indicate an exponential falloff. ' » b

Nc su'cvh i‘neromorphic function exists. In voz"der to get the Regge 'bé-_
havior, (8. 6) ,' we must have an infinite nufnber of poles in either.the s or u

channels as discussed in Section II, or we must go beyond narrow resonances

and introduce cufs. (Jengo, 1969)

resonance
Therefore, in order to have a narrow/Pomeranchuk tra]ectory we must

allow I=2 poles. This has been suggested by Wong (1969a)who also pointed out

that the I=2 trajectory may have a large negative intercept, so that the exotic

poles (I=2) appear at arbitrarily high mass. . We do not find Wong's suggestion

particularly attractive, because it does not seem to solve any problems as-

sociated With the'Po‘meranch'on in cla'ssical R_egge pole treatments. (Fox, 1969;

Jackson, 1969 Berger and Fox, 1969 Trllllng, 1970) We will discuss this

f‘urther in Sectlon X.
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VIII. B. Exact D'.L.lality‘

As poin£ed out above, the narréw re.sonance model slatisfies atonous
duélity, in th.é sense that the infiriité sum of poles iﬁ one cha‘nnell diverges to
pl_'i)duce cross Chénn‘el.poles. This form of exact duality, in which amplitudes
c;m be repré'sie'nteci as Reggeiied sums of Feynrﬁan trées, necessité.tes the
presence of _“..exqtic” resonances, in certain baryon-antibaryon annihilation
channels. (W'e"cviefine the followingvas exotic: mesons outs%;ie 1l or 8 in
SU(3); baryons not .belé'rigin'g to 1, 8, or l_(L or having baryon number
larger than oh_e. ) The neceséity for the appearance of exotiés was first
pointéd out by Rosner (1968). |

We wiii- discus s‘. belo§v meson-meson, meson-baryon, and baryon-
baryon scattering, and will indicaté the general form that self consisten’c
s(glutions to fhev‘SU(3)' érossing problem vmus_t take. Readers interested in
more de.tails are referred to the‘ discussion of Rosner (19l69b) , Rosner,

Rébbi, ‘and Slansky (1969), and-Mandula et al (1969) . |

The rn_ogt elegant w‘ay to see exotics are needed is to use the duality
diagrlarnSB(a)'f Rosner (1969a) anci Harari (1969), which are. pictorial ways of
writing SU(3) crossing matrices for N point functions whose legs transform
like 3 or z un‘der SU(S) . In the u.sual l‘anguage, .each line in a duality diagram
.represents an acé-quark (Gell-Mann, 196Lb; Zweig, 1964), and if we look at 2N
péint functions having N external quarks and N external antiquarks, v;1e can
decide, for ‘N ‘meson scattering, which eigenvectors of the S'U(B) crossing

matrices with eigenvalue one, are allowed.

In terms of the discussion of Section VII, it is alwajys possible to write
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an N point function as the' sum over product.é 6f an internal symmetry fa.ctor |
and an ordinary space factor. Ip VII ';ve went even fafther.and factored the
ordinafy spin piece into orbital and spin terms. This last factorization is not.
| required byéﬁy?hysical principle, and probably has nothing to do With}b reality.
From the duéiity diagr‘am poinf of view we conéi&er the ‘internal> symmetry
f;ctor only, Aanvd this is perfectly legitimate. |

The quarks in duality diagrams therefore have SU(3) quantum numbers
only. Mesons are formed from quark-anfiquark pairs and appear in nonets
[3 @E =1 ®8)]. Baryons are formed from quark tripleté. [3@3@3 =
168638 G)lg] In _Fig.’ 8.2a we show duality diagrams for the scattering_ of:
meson nonets M + M =~ M + M As can be seen in Fig. 8. Za,a'nonet‘eigen-
vector of the SU(3) crossing matrix exists, having QQ pairs intermediate in _
every .chan'nél.. In other words it is possible, from the internal symfnetry
viiewpoint, to build a completely self éonsistént narrow resonance worid out
of meson nor'let.s alone,’ a>ndv in fact this is what we discussed in Section VIL

For _ﬁleson—baryén scattering, MB ~MB inthe s and u channels,
MM - BE iﬁ.’the t channel, we want a solution with [1®8 ®8' @10] in s
and u, [_1_@ §_] in t. This also exists, (Roy avnvd Suzuki, 1969; Mandula et al,
1969) and so faf exétics are not required. Dualify diagrams for the rneso‘n—
bar;ron p'roce.séi_are showp in Fig.- 8."2b",~vc;

Cohsider now 'baryon;baryhﬁ s‘catteri'nAg“, BB - BB in the t channel,
B_é - BB ih the s and u channels. If resonances appear in the t channel
they will be exotic ones with baryon number B = 2. There is as yet no de—

finitive experimental evidence for the existence of exotics and we therefore
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may want to eiiminate such objects?CFor the scatteriﬁg Qbf oct.ets (06"’ 00 in t,
- etc) this is possible to do without reacﬁing any .contradiction with the
MM—=MM and MB-=MB amplitudes. Trouble, however, érises When we tfy-
to,-:, lf»orce out .e:.};oti‘cs in the octet—decﬁplét (OD—~OD) and decuplet.—decuplet
(DD"DD) channels. (Roéne?, 1968; Roy and Suzuki, 1969; 'R‘osr.ler, Rebbi, and
Slansky, 1969.) The absence‘of B = 2 exotics in the decuplét processes re-
sultsbin exoti-c rﬁésons in the OB”_O—IS and DB"’DB cha_x;mels. -

One can reach this result either by _dr'awing duality diagrams for
BB—BB as in Fié. 8.2d4 or by .di‘rectly using the SU(3) crossing matrices.
(Rebbi and Slansky, 1969). - | |

Roughly', what is happe'ning'hére is 'as follows.” The relevant Clebsch- - -

" Gérdan series for the processes with decuplets are (de Swart, 1963)

|

w
Ul

|

- 8010 @27 ®

f—

0R10=1080 27 @6

Excépt for véry péculiar circumstances - such as when vscatter'ing self

adjoint représéntations. like:8's - tﬁe ‘crossing matrices will not be diagonal in
o 8d . v , ‘ :

a single ’representation. One expects to have more than one representation
appearing vas iritermediaté st;é.te in a gjven éhapnel. This makes it very diffif
cult to elimiﬁate, exotics if, | as in 8 @ E above, theré is only one anmal're-
p'i‘esentation available. Either E or _2_7 must 094991:;3;.__( Rosner, Rebbi, and
S‘ilans‘ky., 1969) In 10@ E it turns out ';hat 1_:},1\4e 1 does n<;t hélp and that there ‘
is no way to elimiﬁate _@Z o |

.Ther(a.v is alyvé.ys the escape from this situation considered in the wn

case above. We can try to force the exotics to appear at very high mass, by

making the iritercept of the leading exotic trajectory large and negative. We
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have been unable to construct an argument which eliminates this possibility,
though we are strongly suspicious that one exists. We can only say at this
stage that (a) such a situation is ugly because there is no way of telling at

what level exotics appear; (b) the introduction of exotics solves none of the s

difficulties of classical Regge pole phenomenology.

In terms gjf duality diagram" exo’c..ics appear in baryon-baryon scat-
tering becau_se it is topologiéally impossible to construct a béryon—baryon
picture havir.lg'only QQ inthe s and u channels. States containing an Qa
must appear; Freund, Waltz and Rosner (1969), have suggested a selection
rule, constrﬁéted along the lvines of a pbrevious sgggestion ovaipkin (1966), }
Wl%;ich limits exotic states to QQ QQ resonances coupling to BB systems. We
are ;kepti§ai that nature has chosen such an arbitrary construction.

Mandelstam (1969c) has suggested that exotic states can be iﬁcor—
porated into the narrow resonance model by making the intercepts of trajec-
tories a quadratic function of the total -quark number (-qua;-k.plus antiquark
numbér) . - This incre.ases the degeneracy of the level stru.cture. when we try
to factorize ‘é}l‘e pole residues, as discussed in Section VII. (Olesen, 1969a)
The degene'iacy is still exponential with the mass but, in termé of the ana'lo'g.y
with Hagedorn's statistical vm'ﬁd"éf, (Hagedorn, 1968 ) the temperature is
higher. |

4.1Ns 6.2Ns
e e

+ wast> . J . . (8. 7) - . . ) .
one 0 trajectory exotic trajectories

For the reasons given in Section VII, and to be discussed further in XI, we also

find Mandelstam's procedure unattractive.-
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There are additional undesirable predictions of exact duality we have
already touched on in Section VII. As we s:‘;w there, certain unobserved tra-
‘jector.ies arise. For example, from pp or pmn scattering one deduces the

. - _PC --
m trajectory must have an I= 0,J =0 degenerate partner.
Because of its {rarious disabilities outlined above, we believe that
duality must be broken, and that this breaking will be associated with high
_energjr elaéticdiffraction, the existence of baryons, and the nonexistence

of exotics. We will discuss SOfne ways duality breaking could occur in the

next section.
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VIII. C. Breaking Duality

For the reasons discussed above, we believe duality must be badly

broken.in Naturé. '~ We will discuss here an iﬁterééting se’miqua-ntitativ‘e
(isug.gestion ‘of how this .comes about, due to Mandula, Weyers énd Zweig ’
(1969a) .

As bointed oﬁt.by Schmid and ’fellin (1969), in order for the. FESR
boo’ﬁstrap, de‘f.ined in Section II, to wdrk, thve narrow resonance ap)p_fox’irha-‘
tion and the parémete'rizatio"n of the amplitude with Reggé poles; .must have
overlapping regions of va'lidity; Resonance saturation requires small 's

(or cutoff N) >, while the Regge assumption requires s large. In order for

~

<s<s_, where s

2 1

the scheme to work, we require s to be in the interval 51

is the minimum value for which the Reggeization is good, and s, marks

2
the maximum value of s for which narrow re‘sonalnc;es' saturate the FESR.

Mandula et al hypothesize that 5, should be associated with the posi-

tion of the threshold in quéstion, while s, is related to the point at which

inelasticity sets in. . Fixing s,

'in this way follows from the notion that the
nonresonant ba‘ckgroi‘lr‘xdvin theFESR i‘eyp'vrde's;ve:ﬁts the contribution of the
Pomeranchon (Freund, 1968; Harari, 1968) and that the Pomeran(;hon arises
from the 'p.i-_ese-nce of the iﬁfihity of inelastic chanﬁelé. As ‘fa'-r as s, goes,
it is by no»ﬁeans self-evident th;it the Regge series fai.ls to make s,ense_be-v_ ._
"low threshéld, but if we accept the ln\/'[a1_1éul<'_:.\.et al g.u“e'ss that it does not, we’
have a pé?tial explanation for the difficulties Wit.h BB channels d}iscus‘sed

— 2’““ -
above. In BB—~MM, using these ideas, s 24MB , and s, is probably near

! 2

2 ' L '
1 BeV , so that there may be no overlap at all, and duality is maximally broken.




-183~

We have been rather cavalier above about ignoring exchange degeneracy,

and concentrating on SU(3) quantum numbers only. For example, in the meson-

P - PC =4,
Co17(p) and 7 ¢ =0 (n)

meson and mesoh-bal"yon cases the usual J
S y - . ++ - :
trajectories must be accompanied by 2 = (f, AZ) and1l (B) partners in order

‘to achieve selfconsistency. Further details regarding this can be found in the

discussions of Mandula et al (1969a, b) and of Rosner, Rebbi, and Slansky (1969).

Ad_ditional work relevant to this section can be found in Kato et al

(1969), Neville (1969), Schmid (1969b), Schwimmer (1969), and Yellin (1969c)
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Footnotes forfSeci_:ion VIII

8a) We emphasizé that these duality diagrams are _r_i_g)_tlthe dual diagrams con-
nected with the sihgul_arity structure of Feynl;nan diagrams.

SP{ Caution 1s necessary in interpreting duality diagrams so as to give definite
results regardi_ng SU(3) crossing matrices. For example, straightforward’
symmetrization of quark 1in.es can easily lead to incorrecf.conc.lusions; We
are indebted to J. Mandula for poi‘nting. this out to us.

8c) There is some recent experimental evidence in favor of the existence of
exotics. Hov@zévef this evidence is inconclusi\/;e. See the review of R. D.

Tripp (1969), Sect. VI, and also Kato et al (1969).

Sd) In fact it is quite possible that, except in trivial cases, it can be shown

that crossing matrices for an arbitrary Lie algebra have only the diagonal

i
1

element nonzero in a particular row and column pair,
8e) Mandula et al (1969a, b) obtain the hierarchy mentioned above and diverse
other results by,reduclngthe problem to a set of bilinear cq__r;st;gint*_s on
couplinvg constants similar to thos~e ob;ai’n;bie b? uhsinvg 1;he N/D me’;ho‘d
(Cutkosky, ._196;3_)‘, .a' Z = 0 field theory (Kaus and Zachariasen, 1968), or a
straight narrow resonance model such as that discussed in the present work.
These constraints suffer frém the same limitationsg disc_;us\sed above
in Section IIA aﬁd do not possess a unique solution. Mandula et al make
agvery ciever choice of solution, in order té obtain grdss agreement w1th ’.
experiment. (For alternate solutions, see Capps, 1969.) Since these re-

lations could equally well be obtained by using the assuvmptions outlined in

Section II. A., the justification of these results awaits the construction of a

model which does not suffer the grievous pathologies of the narrow resonance

model discussed in thé text,
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Figure Captions for Section VIII |
8.1 Asymptotic behavior of the invariant amplitude B(s, t,u), defined as
in (3.1), fo‘r mw scattering, as required if the Pomeranchuk limit (8.1) is

to be satisfied.

8.2 Duality diagrams for (a) meson-meson scattering with nonets in
both channels; (b) meson-baryon scattering with baryon exchange in
one channel and meson exchange in the other; (c) meson-baryon scatter-

,“ing with barVon exchanges in both channels; (d) baryon-baryon scattering

k!

showing meson exchange in one annihilation channel and exotic qqqq ex-

change in the other.
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' IX. CLOSED LOOPS--REGGEIZED PERTURBATION SERIES

An attempt has been made to generate a theory which takes the
tree diagrams present iﬁ the simple Veneziano model and uses them as
Born_terms'in a perturbation seriés. This approach is motivated by
the factofization properties of the Veneziano mddel discussed in Sec.
VII and a bit of field theory folklore commonly known as the "tree
theorem3" -Briefly,the tree theorem states that in a perturbation theory
with f%éﬁorized_péle iésidues, upitarify‘éums which involve a complete
set of.twé_particlé intermediaté can bevpgfformed by combining two
externélxiégs of a tree diagram to fofmva ldop% (See Fig. 9.1)
'Only‘oné.set'of'iﬂtermediéte states neea Ee summed{ A _common terminolqu
is thétﬁthévloop is "éewn together“.from tﬂe fréé diagram. (Bardakci,
Halpern;iéﬁd Shapiro, l969) If it convefges, a‘perturbation series

based:pn7éuch factdriZable loops will produce a uﬁitary, though not

Qs

necessariiy correct, S maﬁ?ix.
. ‘In this sedtion,JWE would like £0 diséués;the,conétfuction _
of a éimplq square graph‘fromvthe N-particle ﬁarqu‘reSonance amplitude

and examine some of the difficulties which occur when we try to enforce

ﬁfactorizéﬁion,at the daughter level. We would aiso like to mention
briefly:fhé'construction of diagrams with twisted loops and éxamine.
some Qf ﬁheir properties. | |

Reggeized, duval, closed loop diagrams suffer frém the same
maladiés which affect the N-point functionsdiscussed in Sec. VII.
Furthermore, as we shall see below, in trying to form an amplitude

with cioSed'loops, the loop integrand itself, which is defined by an
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" infinite product, diverges at one corﬁer of the integration volume.
Mandelstam (1.9694) has suggested this difficulty arises because of
the exponenfial"degeneracy'of loWer trajectories discusSed above ih
:Seé. VII.-_This points up again what we have emphasized repeatedly
above. Each additional reqﬁirement imposed on narrow resonance

amplitudes thus far has led to further complications.

IX.A. Cbnstruction of the Sguare Graph

- To illgstrate the techniques involved in the constfuction of
functiogs.with internal loops we wiil form the integral fepfesentation
bf an amplitude with the singularity structure of a simple square
graph. 'in analogy with the approach diécussed in Sec. VII, we
associa@e with each of the internal lines in Fig. 9.2 an integration

' variable uy (3=1,2,3,4) and tentatively write the amplitude in the

form
- ’ N [ TR £ g . -a-1-b(k+q )2 | -a-l—b(qu +q )2
S(ay-+-qy) = -8 ‘J d'k duy du,du,duy vy VL ST
0
. 2 2 ' (9.1)
-a-1-b(k-q -a-1-bk ‘
X v ) w 6luy, 95) |

where the form'of' G(uj, qj) is to be determined by factorization.

When we go to the pole at.

(k) = a + bk° = c N }. (9.2)

in (9.1); factorization requires that the residue be expressed in

terms of the appropriate form of B, Eq. (729). Similarly, when
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we go to the lowest poles on the other ihternal legs we want the amplitude
to be‘expressed in terms of the tree diagrams for these .configurations.

We therefore get the form

s ' 2 ’ ; 2
- : hjoh ~a~1-b(k+g, )" -a-1-b(k+q,+qg.)
S(ql'”qbr) = -g j-d kj d_uldu?dULBduLL u 1 u,, 1?2

,{ u5'a;lfb_(k_q"*)2 uh‘a‘l“_bkgt(1ful><1—u5)J’a‘l‘bs[<1—u2><1-.uu>-ra'l‘bt
X [ ) (Lmug) (Law ) (Lo ypesb(srton’)

¥ [@-uuu,) (1muu, )]b(emv‘t)

Y (et ,) (Lo LG RECEN (9.3)

e 2 2 ' SN .
where q,” =m", (ql + qg) = s, (ql + qh) = t{ and‘ a(s) = a + bs
is the unrenormalized linear input Regge trajectory} At this point
we still have an undetermined function H(uj, qi) which must satisfy

the constraint,
H(us, q;) = 1, when any us = 0. ' (9.4)

This is the result of Kikkawa, Virasoro, and Sakita (196Q)."They point
out that the 1ntegral over the loop momentum can be done if a Wick
k2 . 9b

rotatlon is performed to reach a region where is negative definite.

The asymptotic form of the function iSchen found to be
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, { ' dx. dx_ n x, fn x
L a+bt 173 1 3
g ~ =g F( -3 - bt)(zn s)( bs) ——— exp { -t ———(——-y—4
§— ~o, : ﬂng X, X _ fn xlXB
- 40 13 ,
X L0 =)@ - x) PR )T
x V;v_ 1 X Xy }a+5t_(x X )—a-l} (9.5)
L - - : -0
) g o) - x5)2 173 J _
~ :-guf(-a - bt)(4n s)(—bs)a+bt<Z(t) o (9.6)

§— -

which, to second order, gives the heW‘output Regge trajectory

.oc_. (t). = a+bt+g [(t) . : - (9.7)

It is péésible therefore, that we can maintaiﬁ crossing symmetry and
'_Regge behav1or in a perturbation theory of thls sort where internal
states 1nclude an arbltrary number of. 1nternal ioops ’ Polklnghorne
(1969) has dlscussed the 1nterpretatlon of this renormalized. Regge
traJectory, whlch has a nonzero imaginary part and glves poles on tﬁe
* second sheet of the Mandelstam variables. |

-Tﬁé.reader will note that the integrand of (9.3) é&n”be:a;f?~’i~
expanded in a power series in the u‘j and tbat ﬁhe-divergence of
this serieé at the.other corners of the integration volume produceé
@he different Feynmén graphs indicated by Fig. 9.5.

Our derivation so far dePends only on the form of the ampliﬁude

Bg for JP.= 0" bosons and does not take into account the couplings
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to spinning particles, both on the parent trajectbfy and on daughfer'
trajéctories, which éan be projected out of the Veneéiano model on the
basis of the factoriiation of Veneziano and Fubini (1969) and of
Bardakei and Mandelstam (1969). If we go to a pole at a(kg) =n in
the integrand of (9.3) and require that the residue be consistent

with the couplings of the faétoriied states in.Eq. (7.23) and (7.2&);"
we get a further constraint on the form of F(qﬁ,qi) in (9 5) This
has been done by Bardakeci, Halpern, and Shapiro (1969). (See also the
note added in proof to‘Klkkawa, Virasoro, and Sakita, 1969:) They |
show that complete factorization of this type involves replacing each

simple factor in (9.3) by an infinite product

nq-a-l-bs’

uy (o 2u5uh) ] |
(9.8a)

nja+5(s+t—m2) 

(9:80)

_(l - uguB

(uluguBuh)

/ etc}

and inéluding another infinite product which has a form vwhich depends
upon'the linear dependences or Ward identities among the factorized

states in (7.24). - . ' L
n=1 ' : . ’

When we put the infinite products into the integrand, we

encounter an -alarming problem. The infinite produets diverge at one
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If we arbitrarily remove this piece of the region of

corner of the integrafion voiume. (u =, = 1). ‘
integration, the iﬁfinitevproducts do not affect the asymptotic
behaviof; (9.4), of the function as Re s — - but we get some
exponentially increasing asympﬁotic fofm in the Re s > 0 region which
depends_oh the volume removed. This divergence or

exponential increase appeafs to be due to the large number of daughter
states present in the factoriéed forﬁ (7.45) and Mandelstam (1969d)

has cenjectured that it is necessary to do some sort of renormalization
to miniﬁize the'importance of these lower trajectories before enforcing
| factorization, in order to get a finite resu?t.

This simple discussion of a square g;aph illustrates the
techniques which can be used to write amplitédes with a single planar
loop. .The extension to a larger number.of e%ternal particles, honequal
- intercepts and internal symmetries can be reedily constructed:

 The défiﬁétion.of.the form ofatheaequarengraph&has«been»
recently redone by Amati et al. (1969) in terms of the operator
- formalism of Fubini, Gordan, and Veneziano (1969). Since the levels
of the”hérmohic oscillator operaters in this formalism provide
' eonvenient labels foi'the factorizedﬁinfennal states in the model,
this calculation verifies thatlgﬁeﬂigdp;ié‘r%aﬂ&y'éonstructadaféem“a“.
unitary sum. For example, using this method 1t can be explicity seen
that the linear dependenceslserve to remove unwanted internal states
from.the unitarity sum. The calculatioh‘reproduces the resﬁlt of

Kikkawa, Sakita, and Virasoro (1969) and of Bardakeci, Halpern, and

.Shapiro (1969).
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IX.B. Twisted Loops, Non-planar Diagrams, and Regge Cuts

" Once we start considering internal loops, we are led to Feynmen

diagrams which have twisted loops or are essentially nonplanaf.
Experienéé with sums of Feynman diagrams, (see C. Risk,*l968 for a
reviéw;bf.the asympﬁotic behavior'of sums of Féynman diagrams) suggesté
that functionsvwith a nonplanar singulafity structure will have a more
complicated asymptofic behavior. Tﬁéy may, for exémple, have cuts
rather than poles in the J}plane. | |

Kikkawa, Klein, Sakita, and Virasoro (1969) have classified
the variéué nbnplanar diagrams related by duality,i(seéwFig.b9wh)

and have shown that the reasoning which led to (9.%) can be repeated

’

to formulate a recipe for constructing functions with cut singularities.

.Kikkawa (1969) has taken a simple exampiévof a function with
a'nonplanar loop Without the complication of the infinite products and
has'sh&ﬁn fhat itvpossessés an.asymptotic behavicr which dorrequndé.
to a Regge cut. .This result makes plausible a gonnection between
this model and sums of Feynman diagrams. It also indiqates that if a-
convergent perturbation series based on the Veneziano model could be
ﬂformulaued, it would probably contain Regge cuts, which seeﬁ to be
‘desirable from a phenomenologlcal v1ewp01nt (See the review Qf
Jackson, 1969)

Thorn and Kaku (1969) have used the harmonlc osc1llator

formallsm of Fublnl, Gordan, and Veneziano (1969) and the tw1st1ng

operator of Caneschi, Schwimmer, and Veneziano (1969) to perform the

e e

i

G
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unitary sums present in a diagram with one nonplanar loop.  Their

- result agrees with Xikkawa, Klein, Sakita, and Virasoro (1969).

IX.C. Ghosts, Factorization, gnd Divergences .

'Thé divergences present in the square graph'of this_moael due
to the infinite products make the interpretaticn of the results very
difficult. Olesen (1969b) has shown that by adding more trajectories
of nonleading intercept it is possible to remove the diveréences’in -
the squafe graph. This appears to be due to thc large number of negative
rcsiduevstates (ghosfs) which are added by this procedure. The method

does not appear 0o be‘extendable tc graphs with more complicated
singularities.
| The infinite products present in noﬁplanar loop diagrams
diverge at various places Qithin the integration volume. It is not

possible to remove one specific chunk of the integration volume which

-

removes divergences from all types of diagrams:®"
To interpret the results of this model we need a renormaliza-
tion scheme apparently several orders of magnitude more complicated

than r‘normalihatiogﬁin%qgantgp éiégtrcdynémics. Much_effort is being

o Wl T e

féxpcﬁdéd tomsciéc.fﬁis bfoblem, and various calculations are being

m;de on the assumption that a renormalization scheme wili be found.

In particular, an effort is ceing nade to construct‘functions containing
more then one internal lcopd The possibilities for-progreséive compli-

,cafion seem endlecs;- What is lacking is a substantive clue that this

épproach has a réasonable chance of describing, rea;isticélly, hadron

‘physics.
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Because of the presence of ghosﬁs, associated with thé ihdefinite
metric rising from the orbital factor structure of-Sec._VII.C., it is
even quite plausible that the theory can never be made unitary and
analytic at the same time. .

The prototype theor& of this kind is that discussed by Lee
and Wick .(1968) and Lee (1969). The point is that in each order of
"pertﬁrbation” theory, the ghosts in such a model are likely to lead to
negative cross-sections. Whether or not this is actually the casé here
needs tb.be checked. We suspect that it is, and that the pfoblem needs
to be avoided via the methods of Lee. If this problem is present, then
the probability that the wﬁole method is af all rele&ant seens
infinitesmal.9d o

See also the work of Green (1969),'Susskind (l969b), and

'Thorn_(1969),

N TRTITEE I 4 ey R R e 310 TR B NN T e ST e e T T pr—



9a)
9b)

9c)

9d)
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detnotes for Section IX
See fhé remarks at the end of Sec, IX.C for speculation'about
whétfcould go wrong with the perturbation series,
This rotation is performed formally without taking into account
any possible contribution from \ké\ = oo,

Whether the absorptivé‘part of thé'box diagram blows up exponentially

as B8 —& +o00 is not known. Since all known renormalization
. i . ) ' .

procédures‘do not‘affect.absorptive parts, such an event would
have Calamitous implications for the future of this theory, No ..

one has yet discovered a way of properly deforming thé contour of.

. the loop ‘integral in (9.3) so as to perform the calculation directlf;

An-indifect‘computatidn'may be possible by examining theitotal
width‘bf a‘state qhvthe parent trajectory as a function of its mass.
We are indebted to R.F. Dashen for pointing out to us the possible |
connectiog»between the narrow resonance_bootsfrap and the model

of Lee'and Wick'(1969), Tha# diseéses of'this,kind'can_occurv-

in every'order has also been noticed by D, Amati,



9.1

9.2

9.3
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Pigure Captions for Section IX
Faétorization relates a diagram such as (a) ﬁo.a diagfam such as
(b) where two legs represent identical particlgs with opposite
momehtum.
Befinition of variables invoived in defining the square-graph

amplitude of Kikkawa, Sakita, and Virasoro (1969).

Different corners of the integration region, (ul’u2’u2’uh>’ in (9a.1)
I - .

pfoduce different Feynman diagrams. The singularity structure in
(a) is produced at (0,0,0,0), a diagram like.(b) comes from
(0,0,1,0), (c¢) comes from (1,0,1,1), and (d) from (1,0,1,1). No
diagrams are produced at (1,1,1,1) and this is the corner at wﬁich
the infinite product, (9;9), diverges.

Non-planar diagrams classified by Kikkawa, Klein, Sakita, and

Virasoro (1969).
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X. PHENOMENOLOGY AND RELATED MATTERS

In this sectionrwe will discuss various aépecﬁs of thgrqueétion:
Is there aﬁy experimental evidence which lends support to the idea that
the narro&,resonance model is an approximate description of reality?
In particular, are there any pieces of the model which could ‘reasonably
be used instéad of or in addition to the already available multiperipheral
model (Chew,Goldberger,and Low, 1968), the strip model (Collins and
Johnson, 1969), or the absorptive Regge model (Arnold, 1968)? See
Jackson™ (1969) for avreview of all these models and their épplications.

'With'certain_qualifiéations, our dnswer to these questions is
no.. in.this Section, we will explain this ‘conclusion by diSCussing

specific examples.

X.A. Existence of Subsidiary Trajectories

fSuppose'ﬁe do not ﬁorfy about factorization_and ingtgad_»-
concent?ate on a specific, isolated interaction. As discussed iﬁ |
Sec. IIT, the narrow resonance model predicts an infinife set of
resonance'towers, each tower being a set ofvmassldegenerate étates
with spins‘running from zero‘up to a maximﬁm vdlue, a(Mg), where M?
is the tgﬁer (mass)2 and a(x) is the léading.Regge trajectory. The
quél for‘the féur point fuhction predicts the elastic width of eéch '
state in fhe towér although, in view of the fact that unitarity isi
violated in the model, we aré uncertain how seriously we ﬁay interpret

these elastic width predictions.
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Cohsider.again the’ n  Narrow resonance amplitude discussed
in Sec..IiI. The model contains a 0" resonance (the €) degenerate

with the py, with a partial width given by

1

(10.1)

I
12
RO

Sinse this resonance would be quite broad, its existence depends
on the gross beha&ior of the phase shift, 800(5),>from threshold
upvto_one GeV. The € resonance has been invoked in thé past fof
varioﬁs-reasons and its status is still controversial.loa Without going.
into detalls, we conclude the existence of a resonance w1th the
predlcted propertles does not contradict avallable experlmental evidence,
nor is, such an obgect strongly required to fit ex1st1ng data.

At the mass of the _fo, the model predicts that a JPv: 1

'partlcle (the p') exists with .

EE_":_?T_E: 1' : _ ' . 1(:10._,2‘)
pomm o
aﬁd thaf.if a 07 state (fhe e')  exists, it”does nst coubie to the
e system. The predlctlon (10.2) is in disagreement with experlment
In Flg lO l we. shOW'the data of Crennel et al (1967) for the process
TP —aﬂ+ﬂ_n and for g p - %1 7p. There-lt will be noted that the
pq, fb, aﬁd go appear in the T invériant ﬁaSS'plot, but that
there is no signal st a1l in the "n° invariant mass distribution and
the f mass, thoﬁgh the o~ vand g~ show up.nicely. This does not

directly test (10.2) because the_dsta measure
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a0 ("N = p'N) I(o" — nn)/T(p' total)

“and the production mechanism may, for some reason, be small. Jackson
and Quigg.(l968) have suggested a way Of.estimatingAthe production..
They point out that the absbrptive one pion exchange (OPEA) model has
proved réliabie for computing production by pions. Treating the p'
as.a heavy p, the OPEA calculafion should give a reason@ble estimate
of the relative producfion cross sections. for p' and p. The ratio
Qf o' to 0 evenfs in.the data is not more than l/lO.v Combining
this with the OfEA estimaté;:and assuming tﬁe o' is mosfly elastic
we ha&e-ﬁhé.fairlybreliable upper limit

FA'"an“ < 0.13 . ' (10.3)

p—> T : :

nearly an order of magnitude away from the;ppediction (10.2).
Corroberation of ﬁhe 1imit (10.3) can be found iﬁ the reactione,

10b ' .
(MeClellan et al, 1969)

YN — nnlN.
| Since the existence of the p' has been predicted by the quark
‘model (Harari,* 1968) and has been invoked,to fit eléctrqmagnetic fom@‘
factors (Wiléonf 1966; Cofdesband 0'Donnell, 1968; Balachandran, Freund:
. aﬁd Schﬁ@acher,'l96h) and charge exchange polarization (Barger and
-Phillipé) 1968), the abseﬁée'of this resonance eﬁbarrassesaétheré
besides the proponents of the Veneziano model. But this is beside‘the .

point, a narrow resonance model is certainly no better than the resonance

spectrum it predicts and the use of this model for phenomenology will



continue to be suspect unless a p' resonance is f'ound.loc The only

escape is to assume that the p' 1is very inelastic. If the ' had a
total width hear.l GeV there would be no conflict 5etween the production
data and (10.2). |

Thebexistence of meson toﬁers-is strongiy dépeﬁdent.on the
validity of semilocal duvality, and in generai results in the ébsence
of backward peaks in elastic.scattering procésses having an exotic wu
channel. A soﬁéwhat”@bre optimisticzvieW'Of the experimental situation
can be found in Barger and Cline (1969b), who discﬁss ﬂ+ﬁ-, .ﬁ+K_;

K'k™, and TN elastic scattering.

Foi the meson-meson processés considered by Barger and Cline,
there is‘some doubt, which we share; that:the daﬁa actually exists.;'oa
The.usé of NN elas%ic_scattering; on’thé othér hand, does not suffer
from this ambiguity and Barger and Cline propoée ééveral'methods for
detecting mesen towers in this reaction. .Their'compilgtibn of the  pp
and pnr data for dU/dQ up to a center-cof-mass energy of 2;5 GeV isg - )

' : : S
shown in Fig. 10.2. The evidence fof the tower structure is inconciusive, ”
but the approach is interesting and deserves further invéstigation..

As we discovered in previous sections, an attempt to construct -

&

' . . S -
narrow resonance amplitudes for processes with more -complicated

crossing structure than that of sn — nx - leads:to trajectories with negative -

widths. Also, in processes with nontrivial helicity crossing matrices

there is nb.compelling reason to restrict attention to simple one-term

formulas, so there is no unigue daughter structure to discuss.lOd'.Oné

~thing we can say 1s that a large number of daughter states must exist

H R .
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if we are ﬁo maietain the concepts of resonence dominance of absorptive
parts and Regge behavior which first led us to investigate narrow

: fesonance models. A possible'fationalization for-the'failure to find
such daﬁghters is the interpretation that lower dauéhters in narrow
resonancevmodels actually represeﬂt_background in the phjsical amplif
tudes.- (Bardakci, 1969) This belief is behind the statement frequentlyr
'foundvin'the literature, “Tﬁe model can'only be believed for parents
and first daughters." (Lovelace, 1969a) Thisbinterprétation of the:_
p;edictions of narrow resohanee models is in striking contradiction
‘with thé;philosophy of the factorizers and Born'termersl(Fubini aﬁd
Veneziano; 1969; Bardakei and Halpern, 1969; Bardacki and Mandelstam,

©1969) discussed in Secs. VII and VIII.

X.B. The Process NN — 3r
- Théfprocess §h —9n—ﬂ_ﬁ+ has been compared with the Venezianco

 model by Lovelace (1968), Berger (1969b), and Altarelli and Rubgnstein

(1969): i
Lovelace suggested the use of a two term formula’
rl1 - a(s;)] o1 - afs,)] rl - a(s;)] il - ofs,)]
8 1 2 - 1 . 2 (10.4)
' .pf; - a(sl) - a(s2)] _ ri2 —‘a(gi) - a(se)I : .
with a‘phehomenological Regge trajectory
' ) ' ﬁ . - L2 L ’
q(x) = 0.483 + 0.885x% + ic(x - ,)«tmnr)2 o(x - hmﬁ:) B (10.5)

and with (p =Py + 7D, + ;)
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2
sy = (p+p)

;o sy = (e *+pp)° o - (10.6)
where bl _and p, are the h—mémenﬁa of the two n~ mesons. Since
the trajéétory (10.5) has an imaginary part, the poles in (lo.h)>aré.
no ldnger;on the real axis. Alsé, their residues are ﬁo longer poly—
nomials iﬁ the crossed—channel_invariant,but the ancester problems |
associated with this property are not too serious for this pafticular
»application. |

The ﬁlausigility of the form (10.k4) :arises;.from‘the assumption
that 5h annihilation procéeds through the singlet state so the initial
system aété like a heavy pion. Then (lO.h).can be considered as
arising frém some sort of mass extrapolation'of oné ieg of the =g —;ﬂﬁ
system.; | |

Lovelace set £ = O and fitted the ﬁ+ﬂ-' and w5 mass .
distributiéns. Berger, aﬁd Altafelli and Rubinstein pointed oﬁt
indépendenﬁly that this fit did not match the angular‘diétributidn in .
the o 'and. f regiéns. Berger took B and Yy in (10.4) to be‘free.
paramefers and found a best fit which is compared in Figs. 10.%-10.6 to‘a.
fit.usihg:Lovelace'sbparameters. Berger's fit is somewhat of an improvement
although Altarelli-and Rubinstein»iaké 3 more terms.than/igo.h), and having
nine parémeters, do slightly better.

Thé claim that such fits provide evidence for the Véneziano_
>model is debatable. As7Berger points out, it is not clear how the

details of the model have entered beyond the fact that thé nr  system

contains a p, an T and a large s-wave phase shift.
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Jengo and Remiddi (1969b)and Altarelli and Rub-nstein (1969)
have also cénsidered the annhiliation D — 37 where the Dalitz plot
is not so well known. Using Bizzarri's (1958) eétimate of the conversion
factor 5@-_>a11/§h —all, Altarelli and Rub:nstein reach rough
agreeﬁent betﬁeenvthe experimental and theoretical véiues of

- — o + -0
n Vs pp Fs T W

o (1=1)

' Jengo and Remiddi alsovdiscuss'the total rates using Lovelace's

original form, B = O in (10.4). They compute

— + = - )
R = E(P; L i 2 — = 0.7 | (10.7)
rlpp(Tsy) — 5w =
which conflicts with the theoretical calculation of Altarelli and

Rubinstein and also with their phenomenological éstimate

R = 1.6

X.C: K-Matrix Unitarization Procedure

From the arguments in Sec. X.A., the nn. narrdw resonance
model'Caﬁnot be believed‘in the region of the ¢ mass; but suppose_
it can bé believed below the  f. That is, suppose we believe in the:
e and  € resqnances"predicted Ey fhé model. vCan‘the.model be
nimproved”.by-a”simple Kematfix_unitafizati;n in order to give a
believable set of phase shifts?

Lovelace (1969a) has éugéeéted that this procedure will give -

consistent phase shifts and his sugzgestion has been applied by Wagner
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(l969b)to the process an;;nnN' and by Roberts and Wagner (1969) to
zh decay ~Lovelace himself (Lovelace, 1969Db) has applied the method
to a coupled sr-KK system and compared the results with other semi-
experimental analyses.

Recell that.the K-matrix formallsm essentially enforces elastic
unitarity 50 that the low lying resonances predicﬁed by the model are
given a total w1dth approx1mately equal to thelr elastic w1dths ‘The
procedure destrovs the crossing symmetry of the amplltude so the phase
shifts cannot be completely consistent. To see this, we assume that the
o I =1 t-channel amplitude satisfies an unsubtrected dispersion
relation, so that we have the on-shell form of Adler's ﬁn sum rule

(Adler, l965a)

6(28.-5&)-—11—-6-—"/ —hm)

K Teag(n0) - 9as(n0) + A (,0)] . (10.8)

This felation may be more recognizable to readers in the form

(2o}
. m . ) < dy .
L = <5/ - =1 [0 (v) - o)) (10.9)
T 2m T
i
where 6ab_= U(ﬂaﬁb —9ﬂaﬂb), Now in the Veneziano sx formule,

EQ.(3.13), with zero mass pions o (0) = 2, aé(O) = 1, the sum rule

can be writﬁen'._
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L = nL{p) ' (10.10)

where L(p) is the p-contribution to the right-hand side of (10.8)

If we‘takeb ap(O) = 0.48 and use the physical pion mass we get
L = 1.05 ¢ L(p) . ' E | . (10.11)

Finally, normalizing by teking the o width to be 112 MeV, we get

-1

L = 0.108 m& . On the other hand, Lovelace's K-matrix form giﬁes_

L

]

O;l5vm£nl (quelace, 1969a). This ' discrepancy betﬁeen Lovelace's
result end the current algebra.result casts suspicion on Lovelace's low
energy phase shifts since the corrections to the current algebra value
arising from mass extranolatlons are expected to be equal to or less

than the error in the sum rule for ﬁN'-scatterlng,.whlch is a

En
10% correctlon.loe o
Tﬁe sum rule (lO 8) prov1des a rather dellcate rest of er0351ng
symmetry. .The cros51ng propertles of the flrst feW'partlal waves can
be improyed to_a certain extent by an 1terat10nlprocedure in such a
ﬁay td'ettain d modified setvqf 0 and ¢ paremeters. This has been
done in several ways for the region below'l GeV in gy scattering by
Tryon Ql969a)and by Morgan and ShaW‘(l969);, Theee modified phase
shifts can be-plugged into (10.8) and the calculatioﬂxeee 6e repeated.
Tryon_(l969b)has done‘this‘Calculation and obteined a Value:df
L = 0.118 mﬁ"l or I = 0.128 mﬂ—l' depending on whether or not a

coupled KK channel is included. This calculation indicates that

crossing symmetry is importantveven at low energies and dramatiies the
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danger of using phenomehological forms which violate it. The situation
is summarized in Table 10.1.10F
There have been attempts to use the K-matrix procedure to g0

even further and fit off-shell behavior. For N — xxll this has been

done by Wagner (1969b), and Roberts and Wagner (1969a). Wagner's fit to

7N — nxN uses.one pion exchange and depends on a modification of the K-matrix

procedure, the off-shell partial-wave amplitude being given by

(I) ) ga I(off)

R 1+ 73 ga (on)

(10.12)
P 2 ” ' o 2,

where by aﬁoff(s,q ) We mean the amplitude for s — nx(q”), one of

the exterhal legs having qE % mﬂg.. Wagner'assumes_that the constant,

: 10
g, in (3.13) is replaced by &

~v(m_ %)
g e - (10.13)

and uses, to compute partial wave amplitudes

t = - i(s - 3m_ 2. g? —,hlészllignl cos @).  (10.14)

&mmmms(m12!3)wmmt
to . & rather arbitrary prescription and in fact in order to flt the

dgta Wagperlls forced to introduce a subtractlon.constant_1nto pgi)
for 2 = I = 0. Because of the arbitrary nature of the assumptions
involved,we.dé not believe that Wagner's fits embody a test of the.
underlyith@odei ér even of the XK-matrix pfocedure. The Kematrix'
procedure haé also been dpplied to th decay by Roberts and Wagner

(19690). We have similar objections to this calculation, and will not

discuss vau decay further here,.




Table 10.1 xx Scattering Lengths (Theoretical)

' Source

. L= _%(2&0- - '5a2’)

- /s

Remarks :

h . o '
~ Adler” 0.10+0.01/m - su(2) & su(2) and Goldberger-Treiman
T relation
Weinbergb - same -7/2 Broken SU(2) & su(2) via (3,3)
representation
Tryon® O;lli0.0l/mﬂll u =7/2 Unitary, Crossing Symmetric Numerical

Morgan and Shawd

Oth Order Veneziano® '

Lovelace If

' TLovelace TI (Tryon)® .

Lovelace IIT
(Morgan and Shaw)

d

%

9

5

o.lofo.01/m“3_f’

O.llt0.0Z/mﬂ
O.l5/mﬂ

0.12/m
O.l}/mi

O.ll/mﬂ

'-1h.5

Procedure

Numerical unitarization of fixed t
dispersion relations, Input rp = 120 MeV,

2 ° 0.
% (mp) = -207, m = 764 MeV, 5 in o

region.

‘Error from uncertainty in rho width.

ao/a2 undetermined

"K Matrix" procedure, coupled sx-KK
channels. :

- Numerical integration of ILovelace phase

shifts using sxnx sum rule., Upper value
coupled channel, lower uncoupled.

Numerical unitarization of fixed t-
digpersion relations using Lovelace
8,  in p region and aoz(mp).
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S.‘Weinberg, Phys. Rev. Letters 17, 616 (1966).

E. P. Tryon, Columbia University preprint (1969), to be published.
D. Morgan and G. Shaw, Columbia University preprint (1969), to "
be published. .

E. P. Tryon, private communication.

c. Lovelaée, Proc. ANL Conf. xx and gK Interactions, May, 1969,

‘p.,562.

Taken from I,. Gutay et al, Phys. Rev. Letters 23, 431 (1969) and

D. Cline et al, University of Wisconsin preprint (19469), to be

published.

Error estimate from assuming the error in the xn extrapolation

< the error in the xN sum rule.

=T

Error arising from inherent uncertainties in numerical procedure.

Ség text of ¢ above.

Error arising from uncertainties in input from semiphenomenological

analyses of reference g.
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X.D. Meson Baryon Scattering

In this section we discuss the phenomenology of N and KN
scattering from the narrow resonance point of view;. As we have pointed
out at length sbove, narrOW‘resonancé models are extreme forms of |
pure'Reggevpole models, in the sense that in physical -regions, high
energy behavior is governed by moving powers, with residues of definite
form. We can theréfore expect that any difficulties already present
in c¢lassical Regge phenomenology will continue 1f we try to use narrow
resonance forms to fit data,‘ As we shall see below, this is precisely
what happohs.

'The relevant work is by Berger and Fox, (1969), Igi (1969),
~ Virasoro (V196'9'c), Amann (1949), Igi and Storz'-owb (1969), Fenster and
Wali (1’969), Pretzl and Tegi (1969), Inami (1969), and Lovelace (l969b).
'GenerallyﬁWe will follow the arguments of Berger and Fox.

~ We will examine the following questions:

‘(a) How are the narrow poles to be smoothed over?
atonous
(b) To what extent is the/duality property and the satellite
structure reflected in the data?
(c) Can parity doublets be eliminated, so that the narrow
resonance spectrum is ressonably related to reality?

‘ (d) Regge residues in this model, as-we have discussed above,

take the form'

P ()

o (@) = (PP I (10.15)
F(OC -n + 5) :



with the usual_threshold factor ahd Mandelstam zeros multiplied by a
polynomial in «. How does this agree with the data?

. With respect t§ (a), a completely satisfactory way of smoothing
over thé narrow poles doeé not yet exist. In fhe iiterature, this
question ig usually finessed byvchoosing a cqmplex frajectory; since
none of the "uhitafizationsﬁ mentioned in Sec. VI has been useful in
making détéiled fits.th | |

As for questiOn (b), the satellite strﬁcture has proved s
great roadblock to taking all details of the model seriously, since,
as emphasized above, there is not even one known fesonance which can
unambiéuoﬁSly be idegtified as‘lying'on a satellite trajectofy.loc: In
Table lOQE,fwe show.a computation‘by’Berger and Fox. of the widths‘bf
the tower of étates degenerate with the £(2030, 7/2+), arising from
twd différént narrdw resonance solutions for KN‘ séattering, which we
wi;;‘disquss below. Berger and Foi.tried tq idenfify some of the states
in ﬁhié”ﬁéwef with.the‘SU(B) partners.of Known' resonances [e.g., the
5/2+ with A(19lo.,' 5/2+), ete. ] which have been classified in the
gquark gbdel. (Harari,*i968; Mbrpurgo,*l968). For solution A, in
Table 10.2, the width of the 5/2+ state is clearly un?easonable.
In the_other solution, this width has become positive at the exXpense
of making the s wave huge and creating a d wave ghost. As discussed
in X.A. aboVe, probably one needs to rationalize éﬁay ;atellites if
one insisfs on using the model phenomenologically, either by sajing
theytreallygrepresent.background, or by insisting they arise from.local

duality and that duality is badly violated in this energy region.
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Tﬁeiquestion of parity doublets, (c),.is again a difficult one.
In Figs. lOu7—lO.K)we show a fanciful version of Chew—Frautschi.plots
for most'ef the preposed baryon‘resonances. Parity doubling_is not
much inveVidence, while generallj, as has been known for a long time,
(Gribov,_l965; MacDowell, 1959) resonance models for processes with
-external epins generally have ali trajectories parity doubled, as
diecussed ébove in Sec. V. |

As pointed out by Berger and Fox, one can always add subsidiary
terms te cancel parity doublets alongvthe leading'trajectoryf‘ however,
if one attempts this for the lower trajectories the Regge behavior of
the amplitude will be lost.

As.for guestion (d), ﬁhere is an important difference between
the residﬁe functions used for fits, for example, by Ba?ger and
Phillips (l969)v5ﬁd Barger (1969) and those found in the Veneziano
model. 'Inlthe former; exponential dependence iS’GithGé introduced
explicitly, or implicitly by fiddling with the "scale factor," Sq»
while in tﬁe.narrow reeonance model ther"scale factor" is constrained
to be bj;, where B' is the universal trajectory slope and residues
‘are determined up to a polynomial, as in (10.15).

 Since the Regge residues in thelﬁodel are no longer a{b;trary,
we'can reiate asymptotic behavior alongvthe fixed u direction to
‘the baryon trajectories as shown in Fig. lO.ll. Berger and Fox found_
fhaﬁ the Veneziano parameterization does not provide an accurate
extrapolation for the A. trajectory. Further,’thougﬁ ﬁhey found that resi-

o
by the model to backward data, this was at

dues.of statesamthe N _, ‘ZBMZS’ and»-Aa_AY trajectories were.related well
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the expénsé of including rather large contributions from nonleading
terms. 'As shown in Table lO.é, for KN scattering Berger and Fox
find two types of solutions. Thevsecond solutién, (B), has_fairlyv
good resonance widths, but a huge s wave, too large by a factor of two.

Solution (A) has bad widthé. Berger and Fox find the best fit

aA(u) = 0.09 + 0.9 u ' (10.16)

r(u) = [lo,(a) - %J (35.2 +56.0 u + t(u)é‘f - M J[29.4 + 35.8 ul}

(10.17)

for the A extrapolation. This is shown in Fig. 10.12 where it can
be seen that the coefficients of u and u5/2 abbve, indicative of
' 101

A to grow too rapidly at large {uI.

large'subsidiary terﬁs, cause Y

Finéily, théré are the ciassiéél difficulties ailuded to_ébove,
associétédhﬁithﬂhigh energy ela;tic diffraction,vdiﬁs, and.-the so-called
”crossover zero”, e wili comment brieflyvon_fhisbéituatioﬁ and refer
the reader:to_Berger-and Fox for furfher details. |

_ The experimental_data suggest that the meso%-bar&on nonspin.
flip amplitudes A', have a residue zero at t = 0.2 (.GeV).2 associated
with tﬁé py w, and A, ‘quantum numbers. (Rarita et al, 1968;
Dass, Michael, and Phillips,‘l969; Dolen, Horn, and Schmid, 1968;,
‘Michael-énd Dass; 1968). The evidence for the TcrossoVéerphenomenbn comes
from  DP, np,v'and Kp elastic scattering.

HFﬁrthermqre; the data for‘ 1P - n°n suggésts the B(")'

amplitude has a zero at ap(to) =0 [t = -0.6 (GeV)E]. Now if the




system is exchange degenerate, (ap =0 =Q =0 @) -all the A'

w A

and .B amplitudes should have a residue zero at 2 = 0. This is easy
to guarantéé in the narrowvresonance model because theie is a convgnient
factor f-l(a) running around. Unfortunately fhe zero in A'(-) at
t = -0.6 (Gev)® is not observed. |

Similarly, the observed zero in A' at. t = -0.2 (GeV)2
associated with the w, implies by exchange degeneracy, an accompanying
one in Bf. This is éttractive for several reasons; it allows one to
ekplain-the'lack of shrinkage in scattering as due to a sign change in
~ the f—Poﬁerénchoh interfereﬁce term at b = -0.2 (GeV)2 and it.is
consistent with the duality arguments of bolen‘, Horn, and Schmid (1968)
who asgsociate the crossover zero with the zefos of the Legendfe
polynomials of the proninent s-channel resonances in np‘ énd Kp
vscattering; The unfortunate difficulty with this solutién is that,
by'factdfiZation, it leads to an unobserved'Zéro in the B amplitude
aﬁ t = —O.EL(Gvei/')g° .The absence ofvzeros:is.to,be_associated with
cuts, which destroy factorization. The siﬁuation is illustrated in
Fig. 10.13.

As we have emphasized above, ﬁhe Pomeranchon can be included
here onlj at the expense of also ' aving eiotic resonances (Wong, i§69a),
Berger;and4Foi try to do this, but their resﬁlté‘do ﬁot.convince the
authors tﬁat thié is the.way things wofk. One‘is fofced,to try to
fitvwitﬁ arhigh slope Pomeranchuk trajéctqry which tenﬂs to genefété)
too much éhrinkage and does not fit différential éross-sections wéll.

In xp scattering, Berger and Fox were able to get a reasonable fit:
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with a high slope Pomeranchoﬁ. This is shown in fig. iO.l@;
Difficulties arise for . Kip - elastic scattering. There is too much
shrinkage .and %g (X p) - %% (k'p) is not well reproduced. This is
shown in Fig. 10.15, for a Pomeranchon slecpe of a% = 0.85;

In conclusidn, it is not possiblé to fit meson-baryon elastic
scattering data with a simple sum of Veneziano terms. ‘Furthermore,
even if one is allowed the freedom éf employing arbitréry numbers of
such terms>a reall& satisfactory fit has not been obtained, and this

is probably due to the presence of contributions from J-plane cuts

which are not included in narrow resonance models.

X.E. Processes With Five External Lines
We will make some brief remarks here about usihg functions

l -
of the B. type (cf. Sec. VII) to fit experimental data for production

>

reactiohé;
| Attempt; 6f this kind have been made by Pétersbn and Toranisf

(1969), for Kp _}n+n'A,‘by the Chan group (Chan, Raitio, Thomas;

and. Tofnqvist, i969) at CERN for various charge states of the process

KN - nKN, -and by jones'and Wyia (l969a;b)ﬂfof‘tﬁe variou§: channels of

1N — #xN' and for the process where all five lines are scalars.

This work ordinarily begins b& picking - complex trajectofy :
functiénsvwhosejparémeters yield a reasonable fit tb the masses'and
widthe of the prominent resonangeé. Havihg made such a choice,,one
can expécﬁ that, apart from normalization, the variogs angular
distributions will agree roughly with the experimental data, but thét

the finer structure of secondary resonances will be rather poorly
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described just as in the phenomenological fits to four particle

processes discussed above.lOJ

_ ‘First.of all, we define Variablesfas in Fig. 10.16 for the

process VABi—eIEB, all particles being scalars. Experimentally

(Bartsch et al, 1968; Oh and Walker, 1969) it is observed that one can
parameterize the doubly—differential cross~-section for AB — 1 + N,

N being a collection of N hadrons, by

2 -b(s )| t-t,]
&0 N 0 :
a-g"aja = A(SN) e (10.18)
LN .
r t =+t. and for small s, where s. =P °, t = (p, - P )2
near -k =% A A NTw ST MaT 1
and ‘to is the forward limit of t. Empirically, b(sN) has little

or no resoﬁance structufe; and is a monotonicaily decreasing fpnction,
while ;A(SN) shows the effect of resonances.

| In thé'five“point~case;-Jones and .Wyld (1969a) have made the
intérésﬁing obsefvation that even‘if the subene;gy,, 525, is small

o - ' ' : : 2
the Bardakci-Ruegg function B_. yields, for large s = (PA + PB) 3

5

a smobth and monotonically decreasing b(sgB). ‘As - shown by the

following argument, due to Berger (l969a,d) this follows from the
multiperipheral nature of the sum over Feynman tree graphs from which
B5 is constructed.

For s laige with respect to the invérse of thévuniversal _

slope, B. takes the limit (Bialas .and Pokorski,'i969)

p
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a(ty) B
B5 ~ s 1(—a(tl)) B[oc(s23), a(tg)] ’
')(f gFl["a(tl)) -a(SQB); _a(tg) = a(525); “E_] ) : (10519) .
w
where s and ti are fixed, s is large, and B 1is the ordinary

23 12

- Beta function. The first two factors in this expression yield the

usual exponential forward peak in 1

1 while the Beta function does

the same for the distribution in ¢ The hypergeometric function is_

o
slowly varjing'over the kinematic region of interest and.essentially |
plays nb-role. This mééns that. B5 approximately factors into the
form fl(fi)- fg(tg)’ with the £, d?opping exponentially with
increasing argument. Using a straightforward phase space_argument
(Berger, l969a;1)‘it can theﬁ be shown that the resultant. doubly
differential cross-section has the reguired béha&ior (10.18).

Jones and Wyld (1969b) have also examined the problem of
fitting the' Eh f95n data using functioné of the B5 type, rather
‘than the BH'S of Lovelace, Beréer, aﬁd_Altarelli ahd Rubdnstein,

10d

discussed above. Neglecting the nucleon spiﬁs, ‘they:find no reascnable

fit to thé data, is.pqssible if one inserts the measuredfparameﬁers of

“the p and f. The experimentél fits (Anninosret‘ai,.l§68; Foster
A_etﬂal,’i969) lead one to 5elieve the data cannot be it with real .
p' and f parameters unless some complicated inte;fefence occurs&l |

The function B. dis complicated but evidently not in the correct
. ’ ~ .

manner.
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Additional material concerning narrow resonance phenomenology
can be found in Bose and Gupta (1969), Capella et al (1969), Gunion

and Yesian’(1969), Gutay et al (1969), Pinsky (1969) and Roberts (1969).
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Table 10. 2. The partial wave analysis'of the resonance tower, tnvder
the F17(2030), for two narrow resonance solutions for KN scat-
tering of Beréer and Fox (1969). The kinematié factors have been
evaluated at the pole position pfedicted by the theofetical trajec-

tories. Listed is rel (MeV}).

Solution (A) Solution (B)

3 %P+ TP P, P

1/2 15. 7 8.9 21. 0 52.5

: 3'/,2‘ 2.7 8.3 -18.3 -5.9

5/2 |-0.3 9.0 5.7 5.0

| 7/2 0.2 | 8.9 1 2.2 29.9




[ 4]

«225m

Footnotes for Section X
10a) See the many and conflic’ting experimental and theoretical excursions in

Proceeding‘s ANL Conference on mmw and nK Interactions, May 1969.

10b) A discussion of the experimental situation vis-a-vis heavy vector mesons

can be found in Diveboldq< (1969), Sect. IL 4.
10c) A contrary opinion may be found in Haram (1969)

10d) Evidently a simple narrow resonance parameterization of a process with
nontrivial external spins is precluded, if one simultaneously tries to eliminate
exotic resonances. One of us (J.Y.) would like to thank Professor Lorella

Jones for a helpful private communication regarding this problem.

10e) The same objection evidently applies to the Padé appro.xima.te method of

Basdevant and Liee (1969).

10f) Though the“ discrepancies listed in Table 10.1 are not large, they reveal
that the K matrix method does ndt_add to our understanding of the low energy
mr interaction. Quite to the contrary, in comparison with the Ot' » order

Veneziano term and its resonance parameters, it seems to detract.

Gompare
10g) This form factor effectlvely reggeizes the pion /the form factors of

the absorption model. (Tackson and Pilkuhn, 1964 Ferrari and Selleri, 1962)

We will diSéﬁés the q = t distribution further in X, E. It should be noted that there
is no evidence in nature for reggeized plonso(Berger, 1969a)

10h) _Alternatlvely one can ignore the fact that there are real poles in thevphysical
regions and use the narrow resonance pole residues as paralt'neter's to be fit with

empirical elastic widths. This is what was done by Berger and Fox.
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10i) The various workers in this field do not seem to agree on just how bad fits
to the reduced resid‘ue function and to backward elastic scattefing data are.
For example, while Berger and Fox achieved a fair fit to m p backward
scattering using an elastic A(1238)v;/idth a factor of two too small, Fenster
and Wali (1969)_ u.sed the correct A(1238) width aé input and found a do/du, for

m p at = 9.9 BeV/c, a factor of 2000 too large. : ¥

Plab
Generally, Regge fits to M~ p backward scattering have been rather poor,
due to the viclent change in the effective experirmental reduced residue from

u =0 to the A(1238) position. Examples of such fits may be found in

V. Barger, Prdc.b Coral Gables Conf. 1969, to be published.

i
is
t
§
i
!
i
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10j) With respect to the B_ fits of Chan et al we have the following

5
additional comments.
T:h'e réactiqns studied were (A) K+p "Kow+p; (B) K p »Ron-p;

(C) = p— KOK-p,. all of which are related by crossing. Chan et al con-
clude that, :‘us'ing the same narrow resonance formula and only one free
parameter, it is possible to give a '"good global.descr_iption” of (A)-(C)
over an energy.r' range of 2.5 to 13 GeV. ‘ We are in cofnplete disagreemenf
with this interpretation of their results.

Thé comparison of the Chan et al phenomenological form with
data is e'ssé'nt.i.ally in four parts:
(l). Energy dependence of total cross sections; (2) Mass spectra; (3) An-
gular distributions; (4) Momentum transfer distributions.

: Our general ’comrvne.'nt on these compafisons is thaf what agreement
is achieved is actually input, and in each case that one tries to make a real
 prediction, one contradicts 1.:he data.

With respect ‘touené;rgy. dependé«znace“A of total cross sections we have

the fo‘llovwi‘n.vg comments. Aﬁ high energies, say pi_,ab > 4 BeV, the model
is conétruc_ted to be .doubly peripheral.  Once vect01; rﬁeson exchange is
input, as it is By Cilan et al, the amplitude will Reggeizé with the vector
meson tfa_.ject'ory dofninating and the high-yhe-nerkgy' dependence wiil ge correct.
At low energilas, the predictions badly undershoot the data for (A) and (B),
and the 'sha.g.)e, though not the normaliéation, agrees for (C) . At low energies
one expects kinematic factors due to spin and phase -spéée fo becomev important. .
The phase space factor will be especially significant for the heavy final statev

~in (C), while spin factors are éx_pedéd to play an important role in (A) and (B).
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According to E.. L. Berger (private communication), if one extrapolates to

loW energies, phenomenological four pojnt fits at high gnefgies, using the

.asymptotic form of the kinematic spin féctors, one badly undersﬁoots the

data, just as here. Since tﬁe phase space factor is ekpgcted to dominate.at

low energies in (C), the shape agreerﬁent there is not surprising. le
Chan et al further achiéve a rough agreement (within a factor of-Z)

for the relafive normalizations of (A)- (C). We do not consider this agree-~

ment signiﬁcavnt. The total cross sections for (A) and (B) vs. (C) involve

a factor of = L . A crude argument yielding an order of magnitude effect

_ 20
of this kind is as follows: Suppose (A) and (B) proceed via Kp - K*p and
K* - Km, while (C) proceeds vialinp - Azp and A2 -~ KK. ’fhen we crudely
expect O'A/crc to be proportional to T’ (A2 - KK) /T (AZ -~ mp) ~ 1/10, since
the reactions are otherwise similar. In the work under consilderation vector
exchange vd.ominates, a total AZ width of 90 MeV is input, and presumably
one is corxf.ectly_tak_fln'g account of angular momentum barrier and phase space
effects, so that A2 - KK Will be properly suppreésed with respect to
K* - K. |

With respect to the mass spectra, as we have mentioned above, gen-
erally the pfaxjnir}ént resonance on each reievan’c trajectory is.treated cbr—
rectly. On the other hand the second resoﬁance on each léading trajectory .
is not well pfedi’cted. In fact if one examihes the rhany plots of mass spectra
given by Chan et al, one discoveré over a dozen spurious (unobse.rved) re-
sonances in the theoretical curves. Furthermore, several of the curves, for

the exotic Kp channel, have no resonances at all, and one is therefore ef-

fectively comparing theoretical and experimental phase space. We should
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also point out that each of the six relevant trajectories

(~<.o - Aé, K*,' Na; A, A, Y:;) is parameterized with 6 covhs.tants; making
a total of 36'pérameters“fitted Vei‘y i'o-ﬁghly-to experimental rﬁasses and
widths. It is therefore not at all clear that the claim of a one parameter
fit is really fair.

With respect to the angular distribution comparisons we have the fol-

#

lowing cofnrrient’s. In the reactions (A) and (B), the ?redicted éngular' dis;
tributién for K*i production are quite reasonable as are the att distribu-
tions in (A) However, this has nothing to do with the details of the narrow
1'eéohance model, but in fact follows from the Gottfried-Jackson thebrem ’
(Gottbfri/ed and Jackson, 1964) which gives precisely these distributions for
vector meson and A  production through vector meson exchange. [ The
J‘ackson and Treiman-Yang distributions are sin29i and l-cosZg respec-
tively.] - An inferesting discrepancy appears in the Jackson angle distribu-
tions in sz< ‘p.'-r'bduct,ior‘l* in_(A) . Though the forward distribution.roughly
fits vdatavt,"' t’h‘e'ré is a di'sagree‘me;ﬁyt»"a‘,’t.. b,'a.-”c:kwa.v.fdf-‘a.;@gl’e;s” which.becomes pro-
gressively worse at higher energies. The agrgement at forward angles is
due to an input choice of constructive interference between the & and K**
bands in the Dalitz plot The disagreement at backward angles is a real _
failure of the model and pr-obably results fr‘q{n a spurious unobserved 1~
satellite s’caté accompanying the K** (1420).

Last, we come to the distributions in momentum transfer squared, t.

Here, the disagreement between model and theory is sfriking. One finds

‘the data contains a substantial forward peak, indicating the presence of a
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large ‘nvor_x spin-flip amplitude. Chan et al effectively set this amplitude
to zero in their original formulas. If the data and theory are plotted

versus t -t . the disagreement becomes completely apparent.

n)
One of us (J. Y.) would like to thank E. L. Berger for an ex-
tensive and informative discussion of his work, which resulted in the

remarks above. We would also like to thank V. Waluch for many

helpful discussions and access to his data.

e

i
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Figure Captions for Section X
10.1 Pion-pion mass distributions and Legendre polynomial coefficients for

mN=1rN at 6 GeV/c from Crennel at al, (1968 ) . The columns are, from left

i

. - - - - + + +
to right, for m p=™m7 7 n, T p~w w p, W p~T T n.

10. 2 A compiiation of all available data on backward herhisi)here pp elastic
scatteriﬁé data é.s a function of the cevnter of mass energy of the NN system,‘
as taken fr.om Barger and Cline (1969b). The data in t};e S region é.re from
b. Clir.le', J. English, D. D. Réader, R. Terrell and J. Twitty, Phys. Rev.
Lett. _2_1_, 1268 (1968). and the data in the T region from J. Berryhill (private
- communicatien), W A. Cooper ét al, Phys. Rev. Letters 20, 1059 (1968),
Z. A. Ma,-I‘v). L. Parker, G. A. Smith, R. J. Sprafka, M. A. Abolins and
A, Rittenbe'rg,‘ Vienna Conference Report (1968). J. Lys, et al, Phys. Rev. |
Letters 21, 1116 (1968). |
An e.jreball curve is drawn through the data. A recent counter experi-
ment covering the mass region of 2000-2400 has observed a sharp ‘dip near 2100.
(B. C. Barish, Bull. Am. Phys. Soc. 14, JA3, 1969; A. Tollestrup and F.
Lobkowicz (pfivate communication).) This dip is schematically included in
the curve drawn thl;ough the FT_N vdata to indicate the pos siBle separation of the
S and T "tower ' regions. According to Barger and’.Cline, the narrowness
‘of the fine sfructure observed 1n the S ' "tower"' may reprﬂesent.narrow re-
sonance states but might also come from lbvrqader resonance -stai;es W!,hich‘a-re' .

'
3
1

cutoff on the lower side by centrifugal barrier e'ffectvs in the NN :s_ys[tem.



=232~

10. 3 Invariant mass distribution for ' from ) n=u w w . Data taken from
Anninos et al (1968). Theoretical curves are those of Lovelace (1969b) and
Berger (1969a).

10. 4 Same as Fig. 10.3 for invariant mass distribution of T,

. ' 0
10. 5 Distribution in the Dalitz angle, defined by the inset, for events in the f

mass regionin pa=mw m T . Experimental and theoretical curves as in Fig. 10.3
10. 6 Same as Fig. 10.5 for p mass region.

10. 7 Fanciful Chew-Frautschi piot of known N, A resonances. Data from Barash-

Schmidt et al (1969).

10.8 Same as Fig. 10. 7 for A resonances.
10. 9 Same as Fig. 10.7 for & resonances.
10. 10 Same as Fig. 10.7 for = resonances.

-10. 11 4K+p | backward scattering data as taken from Carroll et al (1968), Abrams
et al (1968) ,l Cline et al (19617) ,. Banaigs et al (1969), and Baker et al (1968).

The dashed curve is solu’cion (A) and the solid curve is solution (B), both‘ of
Berger ana Fox (1969) . The dot-~dashed curvé is' computed dsing the expressions
for the A and B amplitudes of solutionv(B) ) keeping the leading asymptotic
ter‘m only. As is apparent, in this approxiﬁation with oﬁly the leading Regge

trajectory, ‘ome underestimates the empixiical do/du bé.dly at the lower energies. .

10.12 Reduced residue function for A_ trajectory in mN scattering. The pheno-

)

menological reduced residues were computed in terms of total widths and masses

of resonances setting the scale parameter s

0 equal to the inverse of the tra-
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jectory slope. The size of the brackets comes from varying 50 between 0.9

2 .
and 1. 0 (GeV) ~ and moving the resonance positions between the values

M " The resonance parameters are taken from Rosenfeld '

r
resi res/4.
*

et al (1969). The x at Na = 0 indicates
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the value of the reduced residue obtained by Barger and Cline (1968) from

T p backward- elastic scattering fits. The dashed curve is taken from Igi (1968).

The dot-dashed and solid curves result from two possible Veneziano para-

meterizations of Berger and Fox (1969).

10.13 Two pdssible theoretical forms of the A' amplitude (solid line) in meson
‘baryon scatt_ering. Situation (a), in which one predicts both the ''crossover"

| 2 ' 2 .
zero att = -0.2 (BeV)  and another zero att = -0.6 (BeV)~ is forced by
duality. Situation (b) arises because of factorization. Thé dashed curves

represent the result of including cut contributions or secondary trajectories

in order to obtain agreement with experiment.

10.'14 Classical Régge pole fité to TT‘—p' elastic do/dt data by Bergevr and Fox
(1969) showing effect of using high slope Pomeranchon. The total (P+P' +p+p')
cqntribution is the plain s.olid line. Contribution of the Pomeranchon alone. is
the solid line with x's. The P' contribution is given _é..t the lowes‘t energy in
o.rd_ér.to show how its.residue Zero moves as '9,]'9 _"is,ﬂa;lte,rxe_-,d. Data frorﬁ Coffin

et al (1967) ‘and Foley et al (1963, 1965). More details can be found in Berger

a‘.nq Fox (lé69) .

N _,‘: . + . ) ) . ’
10.15 Data for K-—p elastic scattering, taken from Foley et al (1963), Orear
et al (1968), and Aachen—‘Berlin-CERN—Imperial College-Vienna collaboration-

(1967) .

10.16 Kinematics for five point amplitude.
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Compilation of Backward PN Elastic Data
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- XI. cOﬁdugionand:Epuaph

Work on narrow resonance models can conveniently be split into
thre.e stages:‘:‘the break in orI four point stége, thv'ebdog fight or N-point
stage, and the breakout or unitarization stage.ua'.

At th“e' brve'ak in and dog fight stages, the model is, even théugh
phjrs’icall? u;iapplicable, rather simple and beautiful. The N point ampli-
‘tudes can be characterized as functions having the singularity structure
of Feynman tree graphs, and possessving multiRegge limits. Evidently,
provided we also assume asymptotic exponential falloff wheﬁ subenergies
in which resonances are absent are held fixed, there are general unique-

b e general properties of N point

ness s‘tate‘me‘nts which can be made.
functions w_h'ic:h are forced to have tree graph singularity structure and
multiRveg'ge behavior has not be.en fully elucidated and deéerv'es further
investigation.

The following questions regarding four point.-functions also seem
to'us to deserve further study:

,v (a) ’vCan uniqueness, in the nm prok}'lem, bé rigorogsly related to
the poéiti’Vity of resonance widths? :

.(-b.). Is it possvible to find a gengral, sifnple, w'éy to parametrize
four point :av;‘rlnplitudes in 2 narrow resonance manner, for processes with
arbitrary vext:ja._rl'r_lal vsp'ins, évgn if one requifes thev elimination of exotic

trajectories?

(¢c) Beginning with a particular mw amplitude, and making all
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internal .pole'é écattering states, avnd vice versa, can one find a closed
selfconsistent set of four—point amplitudes?
(d) .Is it possibie to prove rigorously that nonlinear narrow reso-
nance mass vformu.las necessarily do not lead to full Regge behavior? %
(e) Ina narrow resonance model for ‘b.aryoxbls, is it possible to
escape parity doubling? le
As we discussed above in Section VII for the N point functions so
far inventebd, it is pvos‘sible to fdréé factorization, provided one is willing
to accept degeneracy of satellite tréjectori.es. The minimal such degeneracy "
" seems to .be' that of.the statistical model of Hagedorn (1968), and neces-
-sarily seems to involve ghosts, which can be associated, via the harmonic
oscillator operator formali"sm (Fubini, Gordon, and Venéziano, 1969) with
the appearance of an indefinite metric.
The role of internal 'symrhetry in the N point narrdw resonance
model is so far ill understood. In Se_ctior-l VII we have discussed straig.ht-:
forward atterﬁ;')ts to combine the narrow resonance model Witvhv'the quark
model assuming that amplitudes can be sep,arafély factorized into orbital,
spin, and internal symmetry parts. This séems unsatisfactory and it
Would‘ be vilv'lteresting to know if the narrow resonance 1;r1_ode1 r‘eallyvfor_ces ’
amplitu.xdes to have this artificial decomposition, whi.ch ;esdlts in ghosts,
parity doubiing, and extra unobserved tréjectories, all associated with
the spin piece of f;he factorization..
With respeét‘ to the N point or dog fight stage, Vth.e following éuestions

seem to us of interest:




~253

(a) Can one find a narrow resonance N point bo_otstrap consistent

11d

with the Goldstone realization of SU(2) & SU(2), with mi =0 and m >m_?

(b) In what sense is the N point model unique?

(c) Can ovne find a solutic;n' fo the inside-outside four-point question»‘
(c) above, valid 'for N p'oint functions? -

Th'dugh h'arrowvresonanc.e amplitudes are conceptually extremely
useful, there are general problems with using therh phénomenologica‘tlly.
These moael amplitudes have linear trajectories with a universal slope,
in agreement Wifh the empirical result that known Regge trajectéries
appear to be appfdximately linear with slopes of around 0.9-1.0 '(GeV.)-
However, the satellite trajeétoriés in the model do not correspond, in
even a r-ou-"gh’:‘wa'y, to anything anyone has ever observed. Furthermore,

if one attempts to force a narrow resonance parameterization, say to fit

data for meson-nucleon scattering, the resulting expressions become

prohibiti\}ely"complicated, no iess so than thé ’fi'na.l-ehxp,neﬁs sions in classical -
Regge polé fits. vIn fact, since a narrow resonance parameterization is
the extrkeme éase of a pure moving Regge pole model the difficulties- associated
with such clas silcal Regge fits are made eveﬁ more evident in th1as co'ntext..
This is in accord with recent‘suggestiohs (see éspecial‘.I)CrIF';)x*' 1969) that
cuts in th'e J’_Vplane are present and empirically significarit.

: ‘If o:n'é is less ambitious," there are several intéres’tihg.features

of narrow reésonance models that can be separately comparéd against ex-

periment.
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The fifst of these is the general qu’estion of the validity of local
duality, which would imply, ;alof;g a direction invthe Mandelstam plane
correspo'n’di‘r;'g'- to an exotic channel, an oscillation of the amplitude, due
to the cancellation of exchange degenerate trajectories in other c:hatnnels.uf3

There is as yet no definitive test.

Secondly, N-point functions can be represented as a sum over

Feynman treevgraph‘s and théy therefore acquir‘e.a’ml_il_tiregge asymptotic
behavior with a ﬁor;ttrivial dependence on the Toller angle, arising from
the structure of the model R'feggeon—Reggeon—resonance vertex. So far
this de.penvdvence has not been checked experimentally, and it would be in-
teresting t§ do: so.

Third, severai models beside the narrow resonance model predict
the exis_tence of secondary trajectories, and to‘test f'of these, one must

devise a way of performin'g detailed partiél wave analyses at medium

'energies i'r;-o_rdei" to find out Qheth‘é‘r o}' not knows _i'es'm;xé.nc_e,s,.cpntain,,
several resbnating components of different spins.'

Four'th, in the narrow resonance fnodel, traj:evctorievs effectiv.ely'
become lin‘e_a.r in mass rat_hgr than (mass)z_ és one ‘goes to~higher energiés,
an.d it woulAc_vl_ be very interesting to see whefher or where iinear (mass)z‘- "
spin relnatiohls" ‘br'eak down experimentally.

Laét, there 1s an interesting test of one basic"featur:e of the narrow
resonance model that acfually work's. | I.fv the inve..rée slope of Regge f_fa._

L . -1, . ' o . '
jectories, b °, is actually a universal scale parameter as in the model,
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one would e':s’{pv:e_ét that the observed slopé of diffraction. peaks in N and NN
high e.nerg'y. éhafge exchange scattering could be rbughly computed, keeping
only the le'a..:-‘di.hg Regge trajéctory. .This turns out to be t};e case {Sha-

piro and Yellin, 1969, remark Q) and in fact is a speci'alizatioﬁ of the general

observation of Veneziano (1968) that both narrow resonance amplitudes and

data fall eprn'entially for fixed cosf).uf'

From the point ofvview‘of the authors, the bre‘ak out stage has fxot
occurred as yet. Thus far, attempts to unitarize have gone ih two direc'—
tions: ad hg’)‘c modifi_ca.tion of the original formulas, and utilization of the
factorizatio'n.'prope'rties of the N-point functions to generate a perturba-
tion series 'w_'ith iterative unitarity, of course including closed loops.

The ad hoc modifications seem doomed to failur‘e precisely because _
_tﬁey are advhoc,‘ and the physical complications involved in constructing
unitary ampllitildes due t_Q;_the nonlinear nature -of the gnitarity equations,
and the .i_i;n;fvinvity ‘omflirrlela’-s“ti.c:":_c:’hgpnels v%(hié‘l};bgp,upl',e-.fthro?ug’h_ugitarity, seem
to us to réégire a morephysic’al and systematic approach.

It ijs‘h_'a'rd to visualize how the perturbation appr‘oach will cure the
unphysical pathologies of the original N-pboiﬁvt narrow resonance amplitudes,
unless eac'hv‘itera.tion produces very large;orrections,‘ Aft_e__i-'.rériormali— '
zation,‘ the v-s.‘a'tellite traject_oifies must plunge into dvisvtavnt regiéns of the |
complex-j'-pl.ane while leaving the leading trajectories with reasonable
properties. The neceséity for large corrections a.t ea.c'histage of the itera—'

tion procedure creates a danger that the procedure will not be stable and

will not converge to a well-defined answer. Because of the nature of the
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problem, the pérturbation series approach is going to be investigated no
matter how ferﬁote the possibility of success, and we therefore prefer

to maintain an attitude of contemplative but extreme 'skepti'cism. We
would like, howevver, to emphasize that the following three quéstions in
this connevc;tic.m require answers: (a) Are cross—s'ee:tions positive in each
iterativé or'dér‘.%l;g(b) ‘Is there any qualitiative argument which would lead
one to believe that the leading aﬁd satellite trajectories behave as sug-
gested"abcl)\}ve?\; .(c) In what sense and at what iterative order will duality
be broker’i?‘

The basis of our skepticism vis-a-vis the iterative approach is
| that, .at least in the planar graph case,duality is being. preservéd at each.
stage of the.itera'tiv;e procedure in the graphical sense of Fig. 9.3. Since
exact duaiify seems to be in conflict with experiment, one might su-ppo'se
that .the’vbvréakol.lt s'tage will be associated with a phyé'ical principle which
tells us how'dﬁality is broken and at the same tirﬁe gener.ates ‘Reége guts,
Pomeranéhbﬁ effects, and gxotic resonances.

Ohé of.us (Yellin, 1969d) has receﬁtly égggested a way to interpret
the narrow resonance scheme which is essentially -orthogo.nal'!:to that of
the iterat;rs, and includes a .dual_ity breaking mec‘hvanism. In this approach,
one supposevs that the hadrons are buiit out of quarks interacting through B
the exchange of an equally fictitious harmonic oscillator quantum, the
~oscillon. (This type of.iﬁteraction is chosen in order to havevinfinitely

rising trajectories in the narrow resonance limit. )
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The narrow resonance fnodel then consists of amplitudes in which
quarks interact in a relatﬁized pbtential, with closed quark loops being
forbidden, aﬁd the narrow resonance poles are to bé treated as bound
states.

In this 'app.roaéh, it is evident. that whatever the Oth order ampli‘—
tude may .be, it is no Born term, containing as it does all orders in the
qu'ark~quark‘— o_scilion coupl’ing. Furthermore, if one generates bound
states by summing all crossed ladders in the éscillon model, the.re is
no re"ason“to expect that all 'clouplings of the resultant bou’ﬁd sfétes to
each other «will factorize without the int_réduction of additional deg’enevr‘a-_ B
ciés.

If one takes the QED analogy somewhat seriously the last point

 could conceivably be checked. One is instructed to take the 2N-point

function for N electrons and N positrons, with only multiphoton exchange,
and make alel‘ couplings of positron bound states to each other factorize.
While the c’o;hplete theory, including closed loops, will factorize perfectly,
one woul.dv su‘s‘pe'ct that in this truncated Yersion,- it is inappropriate to .

attempt to factorize and the result of forcing factorization will, at the

‘minimum, lead to a'large but finite degen‘éeravcy, just as in the narrow

_ resonance bootstrap.

There is a natural way of introducing duality breaking into such

~a scheme. We merely start adding in diagrams with closed quark loops,

which, according to conventional wisdom {Mandelstam, 1963a, b, c) bring
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in asymptotic behavior typicél of cut structure in the J-plane. Though
this picture is helpful in guiding one's mind towards a workable alterna-
tive to the iterative approach, it has the failing that rules for. computing

anything do not yet exist.
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7

: . . 11h
We conclude with the following:™"
The whole process is a lie

unless, .
crowned by excess,

it breaks fdrcéfully,
one. way or another,
‘from its confinement —

We will it so
and so it is
past all accident.
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FOOTNOTES FOR SECTION XI

lla) Field Marshal Montgomery, Earl of Alamein (1956), El

Alamein to the River Sa.ngro, Hutchinson and Co. ’('_Ld'ndoh) pp. 13, 16 ff.
One of us (J.Y:) would like to thank Professor Y. Ne'eman for suggesting
this analogy with desert warfare.

11b) In this connection see Khuri (1969) and also the very recent

~work of Tilftopoul'l'os (1970)
11';:) See Caf'litz and K'isvlinger (1969)7. |
lld)"' See for éxa}mple the work of .Kern.an aéd Shepard (1969) on
i .
T p - TT+A.—"..‘
lle) W’e thank G. F. Chew ‘fox; emphasizing the importance of |
this vpoin.t to us. |
11f) 'SGe Or.ear, J. (‘1964) Phys. Rev. Lett.  _1_31, 190.
11g) It is not Rnowﬁ whether ‘the v;.rious ghosts in the iterati‘ve
.approachb lead to'negative cross sections in e.\_fei“y iterative order.

Some problems in this connection have been discussed by Lee and Wick

(1968) and Lee (1969). 

11h) Williams, W. C. (1962), "The Ivy Crown,' in Pictures from

Brueghel,v'New Directions (N.Y. ). -
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