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Summary 

Once it is recognized that irreversible thermodynamiq,is essen-

tiallya field theory in its definition of flux and force variables, the way 

. is clear to construct discrete, or network, representations of a wide 

class of irreversible phenomena. In this construction, many of the. 

powerful techniques and results of graph theory and network anaJysis " 
f 

, may be applied intact to derive,thermodynamic relations heretofore 
) 

arrived at by a more circuitous and less illuminating route. The network 

approach reveals the essential physical and mathematical assumptions, 

permitting a more intuitive and systematic analysis of quite complicated 

systems. 

One of the most powerful of the network theorems is Tellegen' s 

Theorem. Most, if not all, of the energy distribution theorems and 

, extremum principles can be derived from it • 

To illustrate the versatility and power of this approach, we derive 

several well-known inequalities in irreversible thermodynamics from 

, Tellegen' s Theorem. 
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1. Introduction 

Network analogs of dynamical systems can be constructed for a 

'. wide variety of physical systems. The success of such dynamical modeling 

is surprising considering the apparent basic dissimilarity between the net- (. 

work and the process whose dynamic behavior it imitates (Kron,. 1943, 

1944, 1945, 1946, 1948; Olson, 1958). 

Recently Roth (1955) and Branin (1962, 1966) have pointed out that 

the topological foundations of network theory are identical to those of 

the vector calculus. Thus most of the equations of classical field theory 

may be modeled to arbitrary accuracy by networks. 

This structural isomorphism between discrete and continuous 

descriptions gives new insight into the structure of dynamical systems 

and allows many of the results of network analysis to be applied in other 

areas. Meixner (1963, 1966) has also noted the strong formal simi-

larity between electrical network theory and irreversible thermodynamics, 

and has shown how the entropy concept in nonequilibrium states may be 

dispensed with in favor of free energy loss. In this paper we wish to 

emphasize the generality of the network approach and illustrate the ad-

vantages it offers in analyzing irreversible processes by deriving several 

well-known inequalities in a new and unified way. 

2. The Steady-State Criterion 

Prigogine (1968) and Prigogine and Glansdorff (1954) have demon-

strated that, for a wide class of dynamical systems, the quantity 
. 

J.X. ~ 0 in the natural evolution of a nonequilibrium system 
11. 

toward a steady state; the equality holds only at the stationary state. 
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For simplicity, the proof of the inequality is given for the case of 

one-dimensional diffusion of a single species (Degroot and Mazur, 1962). 

Consider a volume, V, in contact through semipermeable membrane $ . 

with two large reservoirs maintained at constant chemical potentials. 

Prigogine's theorem says that for time-independent boundary 

conditions, the quantity d P= r J. X~ 0, equality holding only at steady 
x Jt-

state. .Here J is the flux across a cross section of V and X = grad fl. 

is the driving force for diffusion, being the gradient of the chemical 

potential of the diffusing species. 

Then, dxP" ~:!'~t (\7fl) 

= r \I. (J ~)-S ~ \I • J = S J J, at at N 

V V av s 
V 

\I • J 

By the assumption of constant boundary conditions the first integral 

vanishes. Since, by conservation, an 
\I. J = ]t-

"" t 

S afl. an S afl. (:: ) 2 
d P = - -x at at an 

V V 

The condition that the constitutive relation fl. = }-L(n) be monotonically in-

creasing is a thermostatic stability condition, and is assumed to 

hold throughout the dynamical process. We then have 

d P = S 
x ~ V 

(~)2 ,. O. 
The above inequality may be denlOnstrated in similar fashion for 

any process whose energy rate may be expressed as a product of a 

solenoidal and an irrotational vector field (Branin, 1966; Penfield, in 

press). That is, the potential, fl., and the flow, J, may be replaced by 
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any quantities obeying Kirchhoff's Laws: X is the gradient of a scalar 

function and J satisfies a conservation condition'\] • J = q. 

The role of Kirchhoff' s Laws is not accidental in this context. It. 

turns out that KCL (Kirchhoff's Current Law) and KVL (Kirchhoff's 

Voltage Law) are physical restatements of the topological notions of 

homology and cohomology sequences (Hocking and Young, 1961). 

Topology deals with the fundamental connectivity properties of the space 

in which dynamical events occur. The very. same topological consid

erations arise in the derivation of the vector calculus and network 

theory, the former being the limiting case of the latter (Branin, 1962; 

Branin, 1966). From a practical viewpoint, KCL and KVL variables 

represent physical quantities measured in completely different ways 

(Trent, 1955; Koenig, 1969). 

The engineering terminology of "through" and "across" variables 

arose from the recognition that two types of measurements may be 

performed on dynamic systems: a conserved quantity "through" a flow 

meter, and a force quantity measured as a potential drop "across" 

two terminal locations (Koenig, 1960; Shearer ~ al., 1967; Martens 

and Allen, 1969). The flow variable is always contravariant and the 

potential covariant (Mac1ane, 1968; LeCorbeiller, 1950), corresponding 

physically to their extensive and intensive characters, respectively 

(Paynter, 1961), and topologically to their identification with the homology 

and cohomology sequences, respectively, of the linear graph represent

ing the system connections. 

The structural diagram in Fig. 1 illustrates clearly the relation

ship of the variables (Branin 1962; Branin, 1966; Desoer and Kuh, 1969). 

• 



• 

" 

-5- UCRL-19421 

The identities M T A=O and A TM=O are the discrete counterparts 

of the continuum identities curIo grad=O, div <:; curl=O which, in turn, 

are the topological equivalents of 0 <l 0 = 0 and,d 0 d = 0, where 0 is the 

boundary operator of a domain D and d thecoboundary operator, or 

exterior derivative. 

Now, consider how measurements are performed on V to determine 

its state. A discrete number of readings must be made along its length, 

which may be considered as port variables. That is, to any specified 

degree of accuracy, the dynamics may be modeled by an R-C chain as 

shown in Fig. 2. 

Since the network represents the actual topology, any statement 

concerning the network that invokes only the network topology, KCL and 

KVL, should imply an equivalent statement about the continuum case, 

or at least its behavior as measured from a finite number of terminals. 

Such a statement is Tellegen' s Theorem (Tellegen, 1952; Desoer and 

Kuh, 1968; Penfield,in press), which says that the "through" ·and 

"across" branch variables lie in orthogonal subspaces specified by the 

topology of the network only. Consequently, v T j = 0 = L vbjb where n = 
,...., ,...., /"IJ b 

number of branches. 
The proof is straightforward. If B is the loop matrix (containing 

all the .network topology), KCL may be written: Therefore 

T. T T. ( )T . v J = v B 1 = Bv 1. ,..., ,..., 

But KVL is a:v=O, therefore, yT j = O. Q.E.D. 

Since, for each t, ::: and 1 are in fixed orthogonal subspaces, their 

d· 
time derivatives v and :L must also remain in the same orthogonal 

crt 
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s-ubspaces. 
·T . 

Therefore, v j = O. 

For, any network of resistors and capacitors (say, as in Fig. 2), . 
ltjk v k + ~jk vk , + 1Jk v k , = O. 

resis. cap. ports 

The third sum vanishes by assumption -of constant boundary conditions. 

The constitutive relation for the storage elements, Ck , are 

assumed to be thermodynamically stable (Callen, 1960): 

Then, since 

. 
~Vkjk = - eft k (qk)j~ ~ O. 

Aside from the restriction of monotonicity on the capacitor 
, -. 

constitutive relations, nothing but the network topology and Kirchhoff's 

Laws (which are equivalent to conservation of charge and uniqueness of 

potential) has been employed. In particular, no statement concerning 

the nature of the other elements need be made. 

Note that the dual statement ~vk ~t Jk < 0 is not true for the above 

network, since ~t jk = qk' whose sign is i~determinate in general.
2 

Prigogine' s Theorem therefore emerges as a direct consequence 

of Tellegen' s Theorem and thermodynamic stability. 

3. Generalization 

Since the derivation employs only the topological character of the 

flow and force variables in the form of Kirchhoff's Laws, we may 

• 
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generalize the above inequality to arbitrary vector spaces. Any 

dynamical system with m degrees of freedom may be modeled by a 

network with m independent meshes.:3 The mesh currents, i, corre-
,.., 

spond to generalized velocities, and the mesh charges ~ == S ~dt are 

generalized coordinates. 

The purpose here is not primarily to construct equivalent networks, 

although once this can be done algorithmically the way is clear to simu-

late arbitrary nonlinear dynamical processes quite easily (Oster and 

Auslander). More important, in our view, is the insight obtained from 

graphical representations. In addition to the intuitive advantages, much 

of the symbolic manipulation and mathematical simplification rna y be 

performed before the differential equations are written (Karnopp and 

Rosenberg, 1968). Once the differential equations have been written, 

all topological information is generally obscured. In addition, the large 

body of existing knowledge concerning networks may be employed to 

simplify analysis and obtain new results. 

4. Chemical Reactions 

By this approach we can deal with the phenomenological aspects 

of chemical reaction dynamics.· It is evident that the flux and force 

variables employedt6·describe chemical reactions may be chosen to be 

"through" (conserved) and "across" (potential) quantities (Katchalsky 

and Curran, 1965; Haase, 1969). Therefore, the loose notion of 

reaction "network" can be made precise by the appropriate interpretation 

of the thermodynamic quantities. 
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Each reaction comprises a single degree of freedom in the 

dynamical sense (Duinker, 1968; Crandall!!. al., 1968), so that a reaction 

corresponds to a mesh, where the reaction flux J == 
r 

1 d~ 

is the mesh currenti , the mesh charge 
r 

v rk t 
qr == S irdt is the degree of 

o 
advancement of the reaction, ~ ;and v rk is the stoichiometric coefficient 

of species k in reaction r (Katchalsky and Curran, 1965; Haase, 1969). 

Since a chemical reaction is a dissipative process, a dissipative 

element must be included in each mesh. It is this branch that thermo -

dynamically characterizes the reaction in the sense that the free energy 

loss accompanying the progress of the reaction is equivalent to the 

energy dissipated in the resistive branch. 

Now the topology of a reaction network is completely contained in. 

the stoichiometric matrix,!:, which is obtained by writing the kinetics 

in matrix form, as illustrated in the following example. Note that the 

usual sign convention in chemical kine~ics (reactants -, products +) is 

identical to the usual sign convention for the loop matrix (Desoer and 

Kuh, 1969). The substances may represent irreducible subunits of the 

reaction, 

A+B~C 

C-D 
D+E ~F+ 

where v= 
[

-1 

I~ 
-1 1 

0 -1 
1 0 

... 

6 
or :z 

b=1 

0 0 
1 0 

-1 -1 

6 species 

= 0 or v n =0 

OJ] Three o reac-
1 tions. 

The topological graph of this scheme IS shown in Fig. 3, which may be 

constructed algorithmically in the following way. 

• 
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The definition of the affinity is ~:!::~ where ~ is the chemical 

potential of substance (branch) b. Since the affinity is a KVL variable, 

a +vf.!. is the expression for KVL for the associated circuit. Therefore, 

the resistor branch current j and branch voltage v completely characterize - -
the dynamic behavior of the reaction me she In analyzing the system, 

the loop matrix B has a natural decomposition obtained by taking the 

Ri as links and the remaining branches as the tree (Desoer and Kuh, 

1969). In this manner the link (or cotree) variables represent the 

thermodynamics of the reaction. Since with this unique partition there 

is only one link in each mesh, the loop matrix may be written immedi-

atelyas B~[Iivl r loops 
(reactions) 

r links b species 

Therefore, the graph may be drawn directly from·the stoichiometric 

matrix. 

The proof of the steady-state criterion follows exactly as before. 

Let R = link (resistor) index and c = tree (capacitor) index. From 

Tellegen' s theorem we have 

.T 
~ 

.T. = J v _c .... c 
= .TDf ( ). 

- Jc c ~ ~c 

where Df (q) is the Jacobian matrix of f(g) • 
. .....,c....., 

= 

Again, once the topological structure IS recognized, the proof pro-

ceeds independently of the physical nature of the variables, so long as 

they are "Kirchhoff Law variables. II 

This structural representation of chemical reactions offers several 

advantages over conventional representations. The topological relation-

ships and dependencies are immediately apparent. It is clear, for 
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example, that to maintain a steady state, branches A, E, and F must 
. . . . 

be source branches, i. e.; substances maintained constant by external 

reservoirs. KCL applied to each node yields immediately the integrals 

of motion, i. e., linear combinations of substances remaining constant 

during the reaction. A basic result of graph theory is that the node
: 

incidence matrix, Anb' is of rank n-1 (Seshu and Reed, 1968; Desoer 

and Kuh, 1969). Therefore the node -incidence matrix automatically 

generates a complete and nonredundant set of integrals. Reaction loops, 

or feedback, appear as dependent meshes, as in the classical Onsager 

triangle scheme shown in Fig. 4 (Katchalsky and Curran, 1965). 

It can be easily verified that Z Ai = 0 merely expresses the 

fact that mesh abc is the sum of meshes (reactions) 1, 2, and 3, which 

is evident from the graph. 

If any su"!?stance participates in more than two reactions, the graph 

must be nonplanar. This has no effect on any of the above statements. 

5.. Minimum Entropy Production 

In 1891 Maxwell formulated the "minimum heat theorem" (Maxwell, 

1892), which states that, for linear resistive circuits with constant 

sources, the flows distribute themselves in such a way that the power 

dissipated (i. e., heat generated), P, is a minimum. Since the circuit 

is assumed isothermal, dividing the heat, Q, dissipated in the re

sistors by the ambient temperature, T, we find that ~=~, t4e entropy 

production, is also minimum (Prigogine, 1947). 

An examination of this theorem reveals once again that the only 

requirements are the Kirchhoff Law properties of the variables. Thus 

the conclusions generalize to arbitrary thermodynamic systems whose 

variables are similiarly defined. 

II 

• 
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We first drop the requirement that the resistors be linear. We 
, 

then define two new quantities (Millar, 1951; Duffin, 1946, 1947, 1948) 

for each branch, the "content, " C, and its Legendre Transform, the 

"cocontent, II G: 

and 

.. ~ 

G = \' G ' 
~ k 
k 

G::~ = L G~., 
k 

Note that G + G"= P, the total dissipation. For linear constitutive 
... 

relations, G = G'" = (1/2)P. 

From Tellegen' s Theorem, jTv = O. Consider now a virtual change 

in the j's: jk"-' --· ..... -jk+ <5jk' subject only to the constraint that the 

variations also obey KCL. Therefore 

(j + oj) Tv::: O. 
"'" "'" 

By subtraction <5 j T v = 0, i. e., the variations are also perpendicular to 
"'" "'" 

the voltage subspace. T 
And so, G = v <5 J = O. Therefore, at steady state, 

the content is stationary. If, in addition, all the resistor characteristics 

are strictly monotonically increasing, then G can be shown to be strictly 

convex (Duffin, 1946, 1947, 1948); hence the stationary point is an ab-

solute minimurh • 

Alternatively, we could have considered variations in the forces, 

v + <5v, subject to KVL, and arrived at 

... '... T 
I5G'" = j I5V = O. 
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For the special case of linear resistors, theextremurn is exactly 

the minimum power theorem of Maxwell, OP = o(LT~b:U = 0. 

A resistive network with constant sources is always in the steady 

state, since it has no dynamic elements. A network with dynamic (energy 

storage) elements and with constant sources will be purely resistive 

in the steady state only. Hence, again, the steady state is characterized 

by the stationarity (or the minimum) of the content. As far as statiort-

arity is concerned, no assumption as to the nature of the branch relations 

has been assumed, so the theorem holds for arbitrary nonlinear, coupled 

systems. 

9. Stability of Steady State s 

Prigogine has also proposed the "exces s entropy production" 

0xP :=-L ojioXi as a stability criterion for thermodynamic systems 

(Prigogine and Glansdo:r£f, to be published). Intuitively, it would seem 

that variations about a stable steady state that effect a ~ entropy re-

duction of the system are not favored in a thermodynamically stable 

system. 

stability. 

Conversely, 0 P < ° should be some indicator of system in
x 

We can make this notion clearer and more precise by ex-

amining the nonequilibrium system par excellence, the electrical net-

work. For example, consider the chemical reaction network operating. 

at a steady state. 

In order to study the stability of the steady state, we may linearize 

about the steady state and obtain the small-signal dynamic equations, 

• 
Rq + Sq = 0, 

,...",.." ,-.w""'-J 

• -1 
q = (-R S)q, 

.-. 

v . 
I 

• 
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where R, S are real, sytnmetric, nonsingular matrices. If the resistor 

and capacitor characteristics are strictly monotonically increasing, it 

can be shown that there is a unique steady state which occurs at the 

unique minimum of the total content of the network (Duffin, 1946, 1947, 

1948; Desoer and Katzenelson, 1965). Furthermore, a simple Liapunov-

type reasoning (see pp. 816-820 of Desoer and Kuh, 1969) shows that 

given any initial state, the circuit will asytnptotically reach the unique 

steady state. It follows, therefore, that whenever the steady state is 

unstable, at least one resistor (dissipative process) must have a 

characteristic with a negative slope at the steady-state operating point. 

Now, consider the following facts: 

(j) ~ is an eigenvalue of R -1S if and only if 
,... "" 

/ 
-1 -1 -1 

1 ~ is an eigenvalue of (B-~) = S R. 
"" 

(ii) S > 0 by thermodynamic stability. Therefore S1/2 isa 

well defined, real sytnmetric, positive -definite matrix. 

(iii) Then S-1Ris equivalent to S1/2RS -1/2 by the similarity 
~ ~ ~ ~~ 

1/2 -1 -1/2 -1 . -1/2 - 1/2 transformation S (S R)S .. So S Rand S RS 

have the same eigenvalues. 

(iv) S-1/2RS -1/2 is congruent to 11, and therefore has the same 

index, h'e., the same number of negative eigenvalues 

(Martin and Mizel, 1966) • 

(v) The steady state is unstable if and only if the matrix = R -1S 

has at least one positive eigenvalue (Lefschetz, 1963). 

From these facts it follows that the steady state is locally unstable 

if and only if R has at least one negative eigenvalue. 
4 
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The rate of free energy loss in the resistors is 

P = jiIRbj ,....,.... ,.... ~b = resistor branch matrix. 

Using KCL in the form j=M Ti , we have 

P=iTMR MTi 
~ ,..." ,...,bl'"lJ ,..., 

• T • 
=q Rq, 

,.... --
where R= M R M T is the resistor mesh matrix (Desoer ahd Kuh, 

,..." ,..."b_ 

1969) and i = mesh currents. 

Consider any perturbation of branch currents and voltages about 

the steady state, conforming to KCL, KVL, and the local (line~rized) 

constitutive relations. If for some such perturbation 

cSt T cSv = cSj T ~b cSt = cs~ T ~o~ < 0, 

then R has a negative eigenvalue; hence the steady state is unstable. 

We have proven the following Theorem: 

(i) The steady state is locally stable if and only if for any perturbation 

-of branch voltages and branch currents about the steady state con-

forming to KVL, KCL, and the constitutive relations, 

6jT 6v>0. 

(ii) The steady state is locally unstable if and only if for some such 

perturbation, 

oj T CSv<O. 

This result may be obtained more quickly (but less precisely) 

by starting from Tellegen l s Theorem, v
T 

j = 0. ,.... ,.., 

I! I' 

• 
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: resis .. cap. ports 

By assumption of constant boundary conditions, the last swn vanishes. 

Inserting the (linearized) constitutive relations, we obtain the small-

. signal equations of motion: 

ojTR oj + ojTSOq - 0, 
"'-I ,...,b ,..., 

6~ T~6:! + ! [(1/2 6:!T~6+ 0, 

• d t? 
oqR ..... S: = - -:1f" r;. . "",,...,,~q U"L C,' 

where (f c [:!: (t) ] ~ 5(1~ 2) 6~ T ~6~ is the "s=all- signal energy" about 

the steady state. 

If the system is unstable, the trajectory initially moves away from 

the origin, 5~ = O. Tberefore&'c [5~(t)]iS increasing, at least initially. 

Therefore T 
oq Roq < ° 

resis. 
This reasoning, however, does not indicate what kinds of perturbations, 

OVk and ojk' are allowed in the search for a negative su.rri. 

The question naturally arises: What sorts of physical phenomena 

can generate dissipative instabilities, i. e., locally active constitutive 

relations? Roughly speaking, it corre sponds to the existenceof "state

controlled resistors. 1/ Since the network represents a conceptual 

separation of processes actually occurring within the same volume 

element, the state variables (q, v) will enter into the resistor characteristics 

in a parametric fashion. For example, the phenomenological diffusion 
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resistance in part Z is concentration dependent (in ~ ri~ , i. e • .)the 

state variable of the capacitance feeds back to modulate the resistor 

characteristic (Katchalsky and Curran, 1965; Othnier and Scriven, 1969). 

-:r;his is a familiar effect in many nonlinear circuit devices such as 

thermistors (Chua, 1969), where the thermal state of the resistor 

(heat capacitance) alters the operating point of the elect:ricalresistance. 

The identical phenomenon arises in membrane oscillators (Mauro, 

1961; Teorell, 1962), stirred tank reactors (Aris, 1969), and auto- and 

cross -catalytic chemical reactions (Prigogine and Nicholis, 1967; 

Lefever and Prigogine, 1968; Lefever, 1968). This generalization 

will be dealt with in a further publication. 

I" I 

,;. 
! 

~i 
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Footnotes 

1B is the mesh matrix M above, partition in a special way to be dis-
, ... 

cussed later. 

2By duality, L;vk ~t jK ~ 0 is true for RL networks, i. e., systems with V 

inertial elements and dissipation, but not capacitive energy storage. 

3With certain geometrical and dimensional restrictions to be dealt with 

4 

elsewhere (Oster and Auslander, to be published). 

Remarks: (1) One negative resistor does not imply R has one negative 
~-, -

eigenvalue. For the chemical reaction network, however, ~ is always 

diagonal; hence one negative resistor does imply a negative eigen:Value. 
/ 

(2) The above argument shows that if R has negative eigenvalue(s), the 

steady state cannot be stabilized by adjustment of the energy storage 

. elements. (3) The critical case (A = 0) is ruled out by the fact that, for 

our networks, R is nonsingular. (4) Since !3- and S are real and 

symmetric, A IS necessarily real. 

5~ is not the "perturbation energy" about the steady state iTI: 

sot, includes the "correlation" terms, since power is a nonlinear c . 

function. 

,-. 

, . , 
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List of SYlTIbols~:~ 

A defined on fig. 2 

(L affinity == - v t: -
B = partitioned mesh matrix 

C branch capacitance matrix 

d coboundary operator 

D diffusion coefficient 

D~(~~) Jacobian matrix of f(x) 

e defined on fig. 2 

c 
sma.ll signal energy 

G content 

". 
G'" cocontent 

i ,defined on fig. 2 

I identity matrix 

.L defined on fig~ 2 

J. thermodynamic flux 
1 

J reaction flux of reaction r _r 

0 

LD Onsager phenomenological diffusion conductance 

M defined on fig. 2 

N particle vector 

P dissipation 

q branch charge vector 

mesh charge vector 

Q = heat 

R gas constant 

R resistor mesh matrix 

UCRL-19421. 



~ branch resistance ITlatrix 

s 

s 

t 

entropy 

-1 
=C 

T = absolute teITlperature 

v defined on fig. 2 

V volunle of systeITl 

X. thennodynaluic force 
1 

a boundary operator 

!J. cheITlical potential vector 

-24-

v stoichiOITlctrix lllatrix (reactions x species) 

£ degree of advancement of reaction r 
r 
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AT 
e 

A 
.. 0 

A = node incidence matrix 

M = mesh current matrix 

= mesh current· vector 

= branch current vector 

v = branch voltage vector 

e = node to datum 
voltage vector 

Topological relationship between dynamical variables 

Fig. 1 
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Network realization of 1-dimensional diffusion 

Fig. 2 
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R2 

(a) CIRCUIT (b) TOPOLOGICAL GRAPH 

Graphical representation of reaction network 
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Fig. 3 
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A a 

c~--------------~b 

R2 

(a) (b) 

On$ager scheme 

Fig. 4 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission:' 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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