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‘ABSTRA.C’I.‘ a
bThe'quantum'stétisfical theory of a non-relativistic fﬁlly
ionized gas in thermal equilibrium is developed using the well-known
linked-cluster'expansion of the grand pOtential}' A §ystema£ic ana}ysis
qf the‘se;f—energy structures leads to a master-graph formulaiioh éf
guantun stétisfics. This provides a rmch siﬁpler derivation and
improved version, with imporiént differences, of the earlier work Sf
Mohling and Grandy. In’particular the analysis of the photon
seif-energy structures iﬁ now entirely different. As aﬁ appiication
of the genefal theéry the”lowest.order calculation of‘the photbn
self—enérgies and photon méméntum distribution are presented. The
résults are -compared with earlier:work of others. Finally,Aexpliéit
. . :

connections between the master-graph line factors and Green functions

are outlined, and the consequences of such a connection are indicated.
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I. INTRODUCTION

Thére exist several many-body theories, each having its own

adherents and each having certain conceptual or caleculational advantages

over the otheré. Of course, all mathematically rigo:ous'many-bbdy

+

thebriés.ﬁusf be, in some sense, equivalent. Thus, the épplications.
of these'theofies to a given physical ;ystem differ only in theif
relative sultability for the problem, their mathematical |
sophiéticaiion of their'appeal ﬁo the'intuitiOn. Owing to the
inherent mqthématical éomplexiﬁy of any many-body theory, diagrammatic
technidues are usually incorporated.’ | -

In view of the preceding diScusSion, we do not purport to
present in this paper a many-body theofy»whigh
trunscénds all others; however, our formﬁlation does have several.novell'
featuneé. >We.afe interested in. developing a theory of mulﬁicompbnent,
nonhrelétivistic gquantum electrodynamics at finite temperature. "Thus,
our formuiation is developed so that,-for example, mass—renormalizatién
and reﬁoval_of the infrared divergence can be accomplished in a

straightfprward'ménner. The Hamiltonian is rearranged by adding and

subtracting a sum of arbitrary cne-particle operators (called counterterms),
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and.it is iﬁportant to note that‘thesé coﬁntgrterms.emefggiin the
thepry inZérmathématically very useful manner. Ourvdiagrammatic
expansion is subjected to a simple and complete seif;eﬁergy analysis,.
andvfhe ééuﬁterterms canvbe ﬁséd rigoroﬁsiy fo canéél_spurious,
systém;indépendent éelf-éﬁergies; Our formaliémvestablishes certain

' connectioné béﬁween Green function techniqﬁes and the quantum
vstatisticalvtheofy of Mohling! and Mohling, RamaRao, and Shea® which
3

have the Sésic_ideas of tﬁe tee and Yang method as their foundation.
We note here that the final'masfer graph formulaiioh of Mohlingl and
MRS will be derivéd in a simpler way without the Iee:Yang method as
a basis. 7? | | | o |

Fér.a s&stém wifh photons 1nteractihg with éharged.particies,
certain photon self-enéfgy structures [called (0,2) and (2,O)Iétruétures];
" can lead to important coﬁtributions to physical quantities;b An |
importantvnew'featufe of this paper is that we consistently take these‘
quantities ihto account, both in our quantum statistical theory and inb
our devélépments involviné Green functions.

It”is-our aim to make the presentation'easily accessible to
persons committed to another point of view. The necessity of keeping‘
the length of the paper reasonable has required that detailed derivations
not be reproduced whenever they have been presented elsewhgre. However, |

it is hoped_that the presentation is sufficiently self-contained 80 that

the physical presence of referenced material is not crucial.

-
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' II. DEFINITION OF SYSTEM

It is our purpose to formulate e microscopic basis for

: lcalculating the properties of a non-relativ1stic fully-ionlzed gas

of interactlng charged particles and photons which are in thermal
equilibrlum; though it“is-not difficult to do, we.do-not 1nclude
neutral components. The gas is multicomponent, and the consitituent
particles are labeled by Greek letters a,a,q, oes (the symbol 7 is
reserved exclusively for photons). A1l particles (except photons; of
~ course) are treated as point particles with mass, Charée and spin, but ;'
with no internal degrees of freedom. The system is described by a |
Hamlltonian which we write flrst for a system of N partlcles with

their radiatlon fielo.(Gau551an units are used):

N ez 2 N 7.%. e°
B )y (- ) ¢ 3 ) A
rad /o) A c ~i 2 . .
,2Mi - . ij |
i=1 ‘ i,..j:l' ’ ;’
- |
=H + V17 + V17 + V27 + V27 +V =H + V7 +V_ =H +,V !
(2.2) '

(o)

where p 'ﬁ k is the momentum Mi the Bare mass and Zi the

charge number (e  is the magnitude.of the electronic oharge) of_fhe ith
'particle; Qd is the vector potential, in the Coulomb‘gauge, at tﬁe.
positiou of the ith particle (a constant external magnetic field can
also be iucluded in this vector po’cential);“rij jis the separatiou

of the iﬁhv and Qﬁh particles; Hrad is the Hamiltonian of the free

photon field. Since photon number 1s not conserved ;_as well as
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'forfmathematical‘convenience, we perfer-tovadopt'Fock space methods
S0 that in‘the free—parﬁicle'moméntum represeﬁtation the_Hamiltoniaﬁ:

. - L
in Eq. (2.1) involves the operators

| "HO =:.ZE:: ZE:: w(o)(%g) aT(EQ) a(%?) . ! o (2.3)
. o W& . ‘ o - _

Vly . Z Z Tl k% ) ) )

a a, o 7u 7
aty Bokea ks A

~5 ~,

x| 1™ 05,517, 5™ 57 6,7 () () alg,”)

. ,aT’(&O‘)'aT(;g;)(;gla K571V, l,% 1,7 a(}séa)a(gﬁ)]

(2.5)

- i) D e e
e L@ B a,B

Qg:*y léls,}ég,ki@,l&g

X" P T 1) ag,P) ™) L (2.6)
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where for no external fields free-particle states are plane waves

satisfying periodic boundary conditions so that". '

£2(k )2 :

v , ﬁT for (0] =.pax_'tic;es_‘ .

\'h_Ck ~ for « = 7 (photons )
(2.7)

| | | 12 -
a o 7 25, : P £ A
Vil k") = 2B/, )(2ra o k) 3

(2.8)

X5 8, :
ol\{'l»a) (l.{/‘_) + £3 ) m2

. ' : .12
Gy, 15" k5" 5,7 = 2 262 ) () (7 3,7 / & .5

X5 5

~l ’ (k }53 + ‘131‘-7\ ml) m2.

. : ‘ o
(kl ~37|V "lsea &7) = Zae(‘ke/Ma)(mo/Q)(kB'y k’+7) / (,é A

3" &)
X 8 : 8
(l'sla + k37) ) (‘lsea + gh')') ml, m2

(2.10)5
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' B 3
<§1 lv ]~5 k), ) (ex) (hn ZZge /n q )
x O ; ' ) )
(2.11)
where Ba'B is a Kroneckerpdelta, @ = ee/hc is the fine-structure
] C O . '

constant;"mi is the spin projection quantum number, Qi is the

polarization unit vector associated with the photon propagation vector

§i7 and g = £5 - Ei ié the momentum transfer. In E@s. (2.3) - (2:6)‘
the notation‘ k- includes spin degrees of freedom with éach momentum
state. The multicomponent feature of the descriptlon has been |
exhibited by a separate sum over particle species, and the particle-

type and momentum summations are equivalent to the summation over

the following #alues:
3 ~1 ’}\{Q ;l 5"";_ ~ I,SQ ) . (2012)

Thus, at times the notation } is used to mean summation over the
S ' k
~

eigenvalue spectrum in Eq. (2.12).

One can see directly from Egs. (2.4) and (2.5), for example,
that in interaction terms involving phdtons the number of phbton
creation operators may differ from the number of photon annihilation
operators;‘ This feature leads‘to important self-energy structures with
zero photon‘momentum transfer. This is the reason for the occurrence of

(0,2) and (2,0) photon self-energy structures in Secs. IV and V.
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IIT. QUANTUM STATISTICAL DEVELOPMENTS

:Beforevdéveibping a calculational techniqgé,‘we must specify the type of
bhysica1 §uantities which we wish to be able to calculate. We are
interested in thefmodyﬁamic functions, moméﬁtum disfributions;
quaSi-péf%icle enérgieschrrelation'funétions, electromagnetic properties
and éo fﬁrth, vIﬁ this pabér ﬁerconcentréte_oﬁ thermodynami¢ functions and
_mcmentum distributioﬁ.r For example, ~ if f is the | |
grand potentlal and Q- the volume, then the pressure P, the a&erage
particle number of G-type particles (Na), the particle density | o,
the avergge'energy "(E) and the average entropy (8) . can be :

calcuiated as>follows£

p=gtaar)pR S (3.1)
(Na>.= Yatae) e, - o (3.2)

Y. Z Ry Z 31/, (5.3)
®)-c-2@pe (3.
(s) = 3(s™ar)or - | (3.5)

~vwhere G = 2{: (Nd) &, 15 the Gibbs potential and (G¢,H] = 0 (note: g7;o),
5 _

The basic'definition of the grand potential is

f(B, 8, 8y ++, 9) = fn Tr{explp(c - H)]} (3.6)

where H 1is the total Hamiltgnian and Tr indicates the trace in Fock -

_space. The momentum digtribution (na(g))‘ (which is the average



-8~ e © UCRL-19423

number of = @-type particles with momentum k) is defined

(n () = Trla () a(®) ep(-a)emplp(c - I (3.7) |
= = 3-1[5/5W(£?)] Qf ', v S » (3.8) | | J'f}

where 1h‘Eq.:(5.8) ﬁhe functional derivative is performed for fixed
potential in the Hamiltonian. Our subsequent development will result

in diagrammatic expans1ons for Qf, (na(g)) and one-particle Green.

. functions (defined in Sec. 5) and interrelationships of these expansione.

- Thus, we start with Eq. (3.6) which we re-write in the

quasi-interaction representation by means of the operator W(B),

def;ned' -

'!'e-BK° we) = P | (3.9)
where 

- K; - ﬁo *U-G R (34105
and '  K=H- é =K +V- g | (3.11)'

with the one-particle operator U defined” ' - )

U E.Z u(k) al(x) alk) + Z s(x) aT() ali)

3 X

~

Z o) ') a(k) (3.12)
ko |

It
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The freé-partiéle energies in Ho becomevrendrmglized;by U so that

H +U - has the guasi-particle enérgiesvéé followsgl

K = Z Z J(;g“) oM B (3.13)

a O
'where
B - WO o) + s K) -, . (3.0)

‘The countérterm Sa(g) is intfoduced specifically to achieve mass

renormalization for charged particles; thus, we set

S;’('lg) =0
2N |
0 - (5 )2, oo
vhere k
D, =1 - Ma/Ma(O) 1 Da(k:) T (3.16)

and Ma is the observed mass. The quantity ua(g) will o
be discussed in Sec VI. With Eqs. (2.7) and (3.15) we see that

for charged particles
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(0)/iy & o« (uy . 2 .2, 8 - -
Wy, (k) + 8, (k) = e x /M, - - (3.17)
which is the correct free-particle energy.
Now, Eq. (3.9) permits us to re-write Eq. (3.6) in the more
useful form - : I
Qf = In Tr p_W(B) | S (3.8) .
= Qf_ + fn Tr ¥(p) y (3.19)
where : - : C ' : C o
: , -ﬁKo : _ , S
o= S o (3.20)
and
RE = 4dnTrp = . | E | (3.21) ‘ (
It is wé_ll'knoim that w(B) satisfies a Bloch-type differential
equation which is equivalent to an integral equation whose iterative
‘solution is the following Dyson expansion: o : :
w(B) = (-7 - Bds Bdé P (H (s )-.. H (8 )} b]
= n: l LR J n T l l ‘CI l n $
' n=0 0 0 - : o -

(3.22)
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where PT' is the temperature ordering operator which'ordejs the
variables slgu---, sn in increasing order from right to left. It is
to be noted tﬁat Eq; (3.22),15 equivalent.tb the~§p§ﬁtum Ursell
expansion;; ifA Eq. (3.22) is substituted into Eq.A(5.18) énd the fihite
temperéture version of Wick's theorenéis utilized;_then’dne obtains an -
expansion_éf ‘ Qf vhich iS‘mdst efficiently stétéd in terms of

connected'diagréms,7,Thﬁs,'we write.

all conneéted : : ‘ :
af = Qf f?{:[(o,o) graphs ] _ (5‘23)

~where the rules for connected (4, v) graphs are given in Appendix A;
and here p=20,v=0. Similarly, ih terms of connected graphs the

ﬁomentum'diétribution_is

(1,1) graphs

g9 = ol v, 8) Z [ihsomeered | (e

where

.V(}ga) =V

o) = (e BE(O e g™ (es)

It 1s important to note that throughout this paper we adopt fofms’of

the diagrammatic rules that facilitate a comparison of this and other

~ developments. Here, we note that the line factors in connected (,v)

graphs are free-particle Gréen funétions [see Eg. (A.1) in Appendix A].-
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dIV. SEILF-ENERGY ANALYSIS

Iﬁ conneeted | (u, v) graphs, graphlcaT structures which can'

be removed from the rest of the diagram bv cutting two internal lines

[} o

are called seTf energy structures. Self-energv structuree are always
'connected (l 1), (o, ¢) or (2 O) graphs_and it is for this reason |
that in Appendlx A we give the ruTes-for connected (u, v).'graphs,
where u +V =2, as well as (u, v) = (0, O) For exampie, in Figs.
2-a(3), 2-b(L) and 2-c(4) we observe the occurrence.of the self-
energy Structure in Fig. 2-a(1) fdr. n.= 7,v where.it.is important
to note that (0,2) ahd (2,0) structures always have photon external
line Slmllarly, all of the dlagrams in Flg 2 can occur as self-

energy structures in other approoriate graphs. In connected (u, v)

graphs it is poss1ble to sum the entire class of self-energy strnctures

and to relegate the effect of the summation of these structures to
llne factors. Moreover, it is p0351b1e to enlarge this swmation
procedcre.eo as to eﬁcompass graphical.structureavcalled improper
graphs_ﬁhdch we discﬁss next." |

_Aa'improper graph is a. connected (1,1), (0,2) or (2,0) graph
which can be separated into two graphs by cutting ode internal line,
where each of the graphs is a (1,1), (Q,Q) or (2,0) structure. A
proper graph is a connected (1,1), (0,2) or (2,0) graph which is
not improper; Thus, we wish to perform a partial eummation which Yill
result in proper graphs with no self-energy parts.

The summations referred to in the preceding psragraphs will.

now bevperformed. First, we define the functions (u + v = 2)
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e Qi - " 1all different connected
tpuv(#E’tl’.g )= §,',[(u,-v).L-graphS~‘ ,'._,;] o

(4.1)
where & . (u,v) IL-graph is defined to be a graph wiﬁh the same.

strﬁéturé;as a given '(p,v) graph with the_following‘exceptions:
j?(a)' v Nojvertex factors are associated with the
vtemperaturs lébels‘ te,tiﬁ‘of the lines.
Stich vertisces do mot contribute to the
_orderiof ‘the diagram.. |
(v) There is no integration over the external  (4.2)

temperature labels té,tl.

(¢)  There is no summation over the momentum

labels of external 1ines

Next, we define the gquantities which we shall eventually regard as

line factors

3 (04
G (tE,tl’ k

(01
b,y ~ )

}\{' .

) + € Ih)v(tz,tl,

) = 5(t2<’_,) -8B Lt &

(k.3)

where throughout this section u + v'= 2 and always (0,2) and
(2,0) structures have photon external lines. Finally, we define the

functions
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o
C
b

1
B

Muiv(ﬁ2’tl’§])ff § [connected (u,V) L-graphsjl]‘

()
- The functlons deflned in Eqs. (h 1), (M 3) and (h h) are related oy ?'f;[
2
the follow1ng set of 51mple coupled integral equations

Ll;l(tEftl’E’) = .és,{Gl)l(tg,s,k ) h (s t k ) S o 1

. "f.i’s 7 ‘2 o(te’s K& ) o 2( 1,'5 K )]
| (u\.s)

(t'

d’ﬁl’ (te,s k ) M (s ‘t ~)

+ qu;y Ql,l(s’téfg-)_MO,Q(S’tl’g.}J' ‘

(4:6)
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B
(04 (9
L?’O(tg,tl,k ) = ds [G2 O(tz,s k ) M (t 175" k )
O .
+ o8 (t ,8,K7) ME’O(S, l,k )]

a,7 l l
' (4.7)

" In general quantities associated with -k lines will be.
different from the corresponding ones for +k lines. Thus, we
always place a bar over quantltles assoc1ated with- -k lines

[note,‘for example, Egs. (4.6) and (4.7)].

‘The preceding self-energy analysis is based on integral
o
v( 2)1:1) kc, )

however, up to now we have considered only self-energy structures

equations which involve M in a very intimsate manner;

whose external momenta are not summed. But indéed there exist proper
gréphs wvhich can be separated into two disjoint graphs by cutting two
internal lines; thus, we should complete our analysis for internal .

lines by including self-energy structures whose momenta are summed.
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This progrsm,is easily accomplished if we introduce-master (u,v)
graphS‘which are.inreducible connected '(p,v) graphs whose internal
lines have as line factors G ( “' ) - An irreducible graph is

a graphical structure which cannot be separated into two or more (u;v)f_

graphs - (p + V= 2 or 4) by cutting one or two internal lines. In terms

'master graphs all self-energy structures are contalned 1n the llne factors.

In sumary, this basic. result is expressed

k)_ec(k)[e(t -t)+ev(k;)]8-. (t

l.L,‘V( 2’ l’ 1 . Vo “,v ‘V 2, l,k ) ’
(u.8)
where
E all different |- -
(t2 l’ ) /. [master(khv) Iﬂ.graphs] o U (4.9)

A1l of our subsequent developments will be based on master (u,v) graphs.

For example, in calculating the momentum dlstrlbution, where

. . B :
(r.’a("lw =Yl | ot Gl,l(ﬁ’t’l-ﬁa) - (4.10)

[see Egs. (3.2u),,(u{1) and (4.2)], we are to understand that

Gy l(tg,tl,gz) is evaluated in terms of master graphs.
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Alﬁhough our_self-enérgy'analysis is completé‘it isvusefui, for
the:purpbsé of applicatiéns,-%o'perfofmfa reérréngémént of :
Eqs.  (4.6) - (4.8) so that the iptegrai equations f°rqu,v<t2;tl)§’>
‘are parfially_decoupied. This reérrangement is readilyiaccoﬁplished by -

- the_introduction of the following three new functions:

Btk - () ¢ T k7 | '
G(ty,t,-k") = 8(t, '~t;) + Lt,,t.,-k"), (k.11)
B . | o
I_(#g:tl,v"%y) = | . ds G(te,s,-§7) Ml', 1(s’tl’.-}§'7) 3 (kaa2)
‘ 0
' 7 _ - - ; 1 y o 7
B

.+

7’ = 7 4
ds,ds, 2,0(t2’31’5 ) Glspr8,-k ’K.O,2(-tl’$2"15 )-

| (4.13)

In terms of the three new functions in Egs. (L4.11) - (4.13), the

integral equations in Egs. (4.6) - (4.8) become : S

‘ , p !
- . 7 B ) Y Y
L131(t2,tl,§ ) = ds gl;l(tz,s,g ) Q(s,tl,g ) C(h.1k)

PR F T R e ane . .
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B S |
(t2 l,k7) = dsldseMo e(sg,sl,k ) 6y 1(52,t2,k ) G(sl, v 5 y,

e )

L Ly
ds.ds, G, -(t -k’) Me,o(se’sl?5 )

1%%271, 1 k) G(tl’sl’

C(tt k) =
Le;o(?e’tl’k ) = 2’32’

(1.16)

It is ﬁow possible to formulate aigeneral procedure for
selecting the counterterms. For example, in Eq. (T lh) one calculates,
)

). Then, € u (k)

l’ aa~

k ) which is multiplied

to any deeired ordef; the quantity Q (t
can 5e chosen to.be any term in Q (t2, 15
by [G(té_ﬁ_tl) + eaya<5)] and‘ﬁhich is otherwise independent of

t, and tl; ‘Eof eelecting uy(%) it is more useful to apply-this.'.
same procedure to Eq. (4.13). Indeed, one attempts to select‘the
counterterms to meet one or more of the folloﬁing criﬁeria* (1) well—-
behaved line factors are obtalned (2) mass—renormalizatlon is achieved

(B)nhighly convergent 1terative theory is obtained; and (h) the theory

is somehow simplified. Of course, one must establish the effects on
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fhe_theofy'after.the couﬁtertérmévhave been selected. Also, it is to. )
be?ndtéé:fhat the;selecticn procedure discussed above usually leads to
inéég?él'éqﬁétions sincé the iine faéfors themgelﬁéé'are functionals of
_the couhterte:ms. : , | |
| UﬁJio this.poiht we‘have given th¢ préScripfiﬁn for caléulafing
only the momentum distribution. Tt is not at all difficult to derive
an expressiqn:for the grand‘potential in terms of .(O;O)v'mééter grapﬁs.-
Not only is this relation available eisSewhere,z but also we take the
7poinf of_view that (0,0) vgraphs arevdnnecessar§3 ﬁhus in the hext
section_bp Grgenlfﬁnctions we express.ﬂhe grand potential ih terms of
_(l;l) »graphs. |
‘-.At this point it is useful td point out that oﬁe important
-accomplishment of the preceding development ié that we have preéented a
highly?gimplified version of the fofmuiation of others. Moreover,
our derivationvincorporates, 5y means Of counterterms, the so-called
A-transfbrmation from,the‘beginning, thereby avoiding the complicated .
'pfoéedufe ¢f performing the A-transformation on the thedry céntaining
no counterterms. It is also importaht to note that our line factors
are the same as those of MRS only after the A-tranéformation has been

performedr8’9
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V. CONNECTION WITH GREEN FUNCTIONS -

In the preceding éectidn-we formulated a theory in which the
line fa_c"b._bxis'_v‘ G, v(.‘b'é,tl,”}sa) '. -pléy 8 ft;ndé.meﬁtavl"ro.lé». ‘Whe.th'er
these qﬁanfities havé any. deeper, physical meaning has beeh an ppen'
.question,{;Thus, it is our objective in this section to eétablish  .
formal %eiations between the line fac#ors Gh,v(t2;tl’§?> and
one-partic1e Green’functions. Thié not 6nly clarifies the meaning of_
the'liné fa§£ors, but also it enaﬁies-ué to use’well-knoﬁﬁ prbpertieé-
of Green functions to deduce importaﬁt properties of the line factors.

‘""The“Single4particle_Green function is defined as follows: .
. Ay A ! o (12 t,& .

It isvélSO necessary to introduce for photbns anomalous Green functions,

defined as follows:

. ay . Aol gl @ T, o -
’Sz,o(te’tl’}ﬁ ) = &, Tr(8 Pyla (‘5 ) tg)av.(- k5, t)1 :

(5.2)

a PR RSN’ a
So,e(tz’tl’}?- ) = 8, 7 Tr{P Ppla(k’, ty)al-k", €)1} .

(5.3)

In Egs. (5.1), (5.2) and (5.3) D = exp(-Qf) exp(-SK); P; is ﬁhe

temperature ordering operator
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[cf. Eq.,(3.22)], but now defined to give a factor of ,ea. for ‘each
' 0dd permutation of operators for a-type particles réquired to restore
the originﬁiIOrdér; the creation and annihilation operators are

defined inithe'Heisenberg represenfation, where

a(x%,t) = exptk)a(x) exp(-tk) o (5.4)
af0@, +) = exptk) al(6®) exp(=tX); O (5.9)

and Kt is an inversé temperature variable. From the-definition in
- Egs. (5.1) - (5.3) and Eqs. (5.4) and (5.5) we have the important
result that

o o o . S
Sp,v(tQ’tl’k ) = su,v(te - K ), N (5.6)

where ;(p,v) = (l;l) (é;o) and (0,2).

As noted in Appendix A connected :(u,V) graphs involye'
éingle-particle Green functions;vthus, on the basis of intuition, oﬁe
would expect the single-particle and anomalous Greénifunctions to haveba
close réiation to comnected (u,v) graphs. This is indeed the case. Moreover,
using the Dyson expansion of Eq. (3.22), the finite temﬁerature form of |
Wick's theoren and a self-energy analysis similar to that ofVSec. Iv,
, - a)':

178

and thereby arrive at the following relations between the Green functions

one can formulate a diagrammatic representation for Su v(te’t
. J

of Egs. (5.1) - (5.3) and the line factors of Eq. (L.3):
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| SN L O N ay
(t2, 1&,)‘ exp[-tz_E(k )] exp[tl-E(£ )] ds Gl,l(te’s’k )

X [6(s - +)) + e ()]

5. O(t l,ka) =.exp[-t2 E(&?)] expl-t, K k)] G2 O(tg,
(t t k ) = exp[tevE(kﬁ)]'exp[tl'fk-g?)] | dszdsl
0

X L6(s, - ) + e (10106(s, = ) +

Although one can write integral equations for the *S (te,

(5.7)

k%)

(5.8)

(52:5

o, 2
€&7&(’5)]

(5-9)

l)k )

analogous to those for. G "(t 2ty ka) in Sec, Iv, 'it is perhaps

more instructive to substltute Eqs. (k. 3) and (h 5) -(4 7)

Egs. (5 7) - (5. 9) ‘to obtain

into

)
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(tz, 1K) = Sty
2] i _
I o
+ dsgdsl 5, 1(t2 2,k ) Rl 1(52’51’ ) oo(sl,tl,l:' )
B |
, a " a,
o+ d82d81 82 O(te)s2lk ) RO 2\ l)s IE ) So( sl,tl,l{' ) .
0 S
(5.10)
L B . :
. o a, = ) _ [0/
Sy, o{tr b k") = dsed°1 2, ol b5y K) Ry 1(s, sp07K7) So(tys85 K7
0]
B .
a o
+ <152dsl S1 1(t2’sl’1'5 ) R2 O(Sl’se’ s (t Spr=k )
0
(5.11)
B _
(o] o Aome ; o
50,2(t2,tl,1‘5’ )v“ dsgdsl O; (tz)s k ) Rl l(se)s bl '}‘S) SO(sl’tl’—'ls )
B
o o
+ ds2ds1 1, l(s ,t JK) R, (32,81,k )s (sl’tl’.-}s )

“(5.12)
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R o P
0 l’ ) are_relatgd to thé Mp)v(te,tl,g )

of Eq. (4.8) as follows:

The functions R (t

ey ot s | oy
Ml,l(tQ’t]_’E ) = exP[tQE(,}E )] .exP[-t’l E(E )]
. a a "
X ds Rl’l(s, t_]_’}ﬁ ) SO(tQS;}E )
o :

'(5.13?

(te’ s %) = exp[te.E(gé)] exp[tl_ikfkg)]

, ay Lo
dseds1 R, 0(52fsl’§ ) So(ta,s2

- (5.14)

PR N - N = P
(5.15)

The connectlon between the Green functlons S (t2 l’ )

and the line factors G k ) is now established Next we

’V( 2} 17
wish to explore some consequences of such a connection. One of the
more important observations, based on Egs. (5.6) and (5.7) - (5.9),

is

Oy = L a
) SO(tl’sl’-ﬁv
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which is uéeful as a check on calculations of line factors. AlSo, it
‘is not difficult to establish, for a homogeneous system, that
R D ; : | s

- o | v = 4 _
Ga’o(tgyt'l,}f‘ ) = expl(t, + t E(K) + E(-kN) 1) [ dsedsl %, Q(Sg’sl'k )

X [6(s, = ) + e (0106(s, - t) + € F (k)]

(5.17)

This relation can be used as a consistency check on the separate

a ' L .
| calgulgtlons of GO,Q(tz’tl’5 ) and G2,O(t2’tl’§‘)f ‘A special,

importaht case of Eq. (5.17) is

%Nw,mg6=t1+%mnu+vxﬁne@mm@%+ibyn}

X [asds, 02(5 ) : (5.'18')

We mentioned in Sec. IV that we could calculate the grand,
potential in terms of (0,0) master graphs, but we would .use instead an -
alternate procedure which permits the evaluation of the grand potential

in terms of ' (1,1) ‘master graphs. We discuss this procedure,7_
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First, one constructs the scaled single-particle Green function

51, M, 1,;3"‘_) = Tr(exp(-at") exp(-gK")
¥ Pyl (6% 1) a*f<59,§1)11 G
where -
K* = By 4+ AV + xévc : : (5.20)

The scaled Green function in Eq. (5. 19) is obtained from the normal
Green function in Eq. (5.1) with the replacement of K by Kk every-

where. It 1s tedlous, but stralghtforward to establish the 1dentit,

szf=s2fo.-s Z[ tL’im‘ {270’+?§0)(Ea)]
_ S o : 91"2 2 -

oz?f,r

Moyt ) (5.21)

a
X €a°1,1 1’
Hence from Egs. (5.7) and (5.21) we see that a knowledge .of scaled
master (l,l) graphs in sufficient for the determination of the
grand potential, and the explicit calculation of master (0,0) grephs

is unneceSSary.
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'VI. APPLICATION TO PHOTON MOMENTUM DISTRIBUTION

HbeJﬁhe_pufpose of'illUStr€£ing fﬁe formalism developed in the -
precéding-sections'we nowv.calculate, tojlow_order, the photOn momentum
distfibuﬁioﬂ; .This calculation will prove to have aevefal interesting
rfeatdres;  For éxample,‘the removal of the iﬁfrafed‘divergeﬁce resﬁlts
in é:renqrmalized photoﬁ_energy-mpmentum relatidn. Alsdg’we obtgin an
.apprbximéte, non-iterétive solution to the‘ihtegral‘gquation for the
line faétorff |

' _In_tﬁis example, we calculate the three graphs in Fig. 3, where
the exterﬁal lines are for photons. The momentum sums are evaluated
in thelhigh-temperature,'low-density limit, Thus, for the first graph

in Fig. 3; we have

st
‘ B 2 /e
K & + %) = ds 2 a.
| 1::1()02’#1"1‘{') : : z : 5 K% Gl,l(tl’s’}&l)
- e - 1
: k . ) a : .
~1 |
42 2 » |
~ae —2 [6(t -t) +v (k)], - (6.1)
a otek 2 1 ‘7 ~ :

where

2 .2 L
o = pr (a) (6.2).
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and -

N (6.3)

and qi,ris the number of a-type'particles'per unif'volumé; .For the!

second graph in Fig. 3, we have

1/, k -k

o L PRy D N _
. Yo ) | k. | . k@
Ko,0ltar bk’ = E | 2 ddsy N& 6,150k )
o | a l&,a“-o , a S |

X ([6(t, = t)) + v (9] exp t,[v (1) + 7 ()]
P8t - 5) + T ()] exp byl (K) + T (K )]
o (6.1)

where w;(g) = ik + u}(%). Finally, for the last graph in Fig. 3, we

have
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- ) . z[ <

1'5.
7y
S 2.2
_ Oy o .
,.x. Gl,l(tl’s’vlil ) vzs(t:2 - tl) ~ I
X oty - ) (vl V(R (6.5)

- One should note .that Egs. (6.4) and (6.5) satisfy the relation in

Eq. (5.17).

Ndw, in order to calculate the phofon momentum distribution

in Eq. (4.10) with a = 7, we must first calculate -Gl l(B,t,§7). To
bl
do this we use Eq. (4.3) with Eq.'(h;lh). Thus, we evaluate the
approxiﬁate eXpression
(6.6)
Wy N _ '
Q(teytl:,lf, ) badt u7(1§')[9(t2 - tl) + Vy(,ls)] + K (t2’ l’ )
p
+ | ds (t LS k7) (t s k’)
0]
' h2 2 /EECK]
= (ol t)+v(k>1{ (1) - ek + ,w.(k)w,_y
| , NP
[5%_2/ohck]
+ L :

lolt - %) + V(D] Srgf v

x expl(ty = t))(wy(k) + 7, (k)]



30— B o UCRL-191,‘-23 :

This expression is simplified considerably if we cho_ose S

(i) = 'héw 2 __.[kgf_ /2hck] .(6.'_7)1.
7~ 2hck v, k. v, lﬂc')‘ -
To lewestb'order we teke',
.;k) ﬁck +hw /2kck A’ -_'(‘6.8)'_ ,.
,Thgs, Wltth (6.7) we have .the‘result_
Qr;(_g)'?_'» thex)? tho 21 o (6.5

It is 1mportant to note that with ‘u (k)=0 Eq. (6. 6) ‘is divergent for

k=0, and the divergence is a manifestation of the so-called infrared

divergence. Now, with the ch01ce in Eq. (6 9), Eq. (6 6) becomes

'l’xgw 2/E‘jx'xc k ]2‘

(tg’ 1’ )— '(k) " 7(-k) [6(,tl - t2) +V7(-£)]

v expl(t, - £)0w() + 7 (01,

(6.16)_
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Thus, we'haVe succeeded in‘removing

the infféred diVeréence,.et leastvto lowest order, by the

identifieation of the counterterﬁ in Eq. (6.7),_ Also, we point out

that Eq}-(6;9) has been obtained byycﬁhers by subjecfiné-the‘Hamiltohian

>in Eq. (2.2).to a BOgoliubov fransformation with fhe:same'coneequenceé-

:aS'here “the infrared divergence is removed. 10,11 |
The calculation of the photon momentum distrlbution is based

on Eq. (4.10) with Egs. (4.3) (4.14) and (6.10). Tt is immediately.

oﬁvious that Eq. (4.3) with Eq. (h.lh) does not possess an iterative

solution when.Eq. (6.10) is used (see Appendix C). However, we can

use the developments in Appendix C to obtain the result

(tz, 1’ 7) = 8ty - b))+ Al6(t) - t,) + M) expl(t, - £))(B - A)]

(6.11)
vhere

[h2s 2/2“1’10-11 ]vé
A= w'(k§ + W (-k)

y & TR
B - w;@ SACIEE

| \-1 o

M=-%ma[%ﬂy}-1> =v#w.

(6.12)



"fe“ order to calculate the photon momentum dlstrlbution in Eq. (h 10)

e umeskes

Tt should be noted that A 1n Eq. (6 12) diverges for k - O wéo 
:'that an. 1terat1ve solution to Eq. (h 3) with Eqs. (h lh) and (6 lO) 'CT _»{%cﬁi

would be unacceptable if one ex1sted. Thus, we use Eq. (6 ll) in ,;J‘*‘i

' We obtaln i"-v'

where
v (k)r‘;_ [e‘"fg ~ -1 ] j

W ( k) - w'(k)

QW[IK)
7

with w;(g) 'given'by,Eq;v(6g9)'and '5;(-5)_ '-giveﬁ"by,Eq,_(Q,B);f 'EA
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.It_is of interest to examine Eq. (6.13) in the limits of

large énd_small k. For large' k we find ‘

,<ﬁ§(‘£‘,)) - "7(5) * (552&- > [1+2v. (k)] | (6.14)

,which approaches
ARE fexp(phiek) -7t (6.15)

as k  increases without limit; thus,‘Eq. (6.14) is essentially the

free phofon distribution functioh. On the other hand, for small k we
qbtain

« ’ 'l
(n7{&)) *‘v7(5) + ﬁjﬁ%j; (1 f 2v7FE)] .
The expression in Eg. (6.13) is a new result. 1In

particular, as is clear from Eq. (6.16), this momentum distribution is
divergent for k - O. This result disagrees with the earlier resﬁlt of

Hwang and Grandy,ll’12

who find that the photon momentum distribution
approaches a svstem dependent'iimit as k = O.. The reason.for this -
discrepanéy is mainly bécause these authors do not include the (0,25
and (2,0) photon self-energy structures in their éalculatidn. Physically,

a singularity in (ny(k)) as k -~ 0 is not at all surprising (the.

Planck distribution also diverges for vanishing photon momentum).
i .
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vir. DISCUSSION
Théiﬁain résuits of ﬁhié.papér ﬁill now b¢ éumma;i;ed.

:(1)_ We havé_jdutlined-alquantum Statisfical_theofy of a.
'nonfeiati§istic; fully ioni2edfgas'in thermal eriiibfium;

. (2) ‘We héve aisQ esfablishéd expiicitly the relation between
the pré;ént'work and;the%Gréén‘functiqn techniqué.in mahyfbody theory.
In this connection the'r_esul‘ts.of"’Sece V are not onlyivalid for the
model éystéﬁ'considefed here, but also are true for'othef many-body :ﬂ
.syéteﬁé és.well. | ' |

| (3) The -momentum_distribution of the photons has been
evaluated in lowest order. It is‘found that this q#antity”behaves as
i/k for k - 0, thereby exhibiting a singﬁlar beﬁavior‘which is
physically reasonéble. This result'diéagrees with the earlier‘work of
_Hwang and Grandy,l} and the sdﬁrce of fhe disagreement has.beén

discussed at the end of Sec. VI. | o o ' ’

'(4)"We'have not investigated the effects of the Coulomb
interaction; in which case one needs to sum the ring diagrams,
Sucb a summation can be pérfdrméd easily in the preSenﬁ framework

and reéults in a much simpler version of the earlier work by Méhling

S

' 1
and GrandyQL
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~ APPENDIX'A. RULES FOR CONNECTED (u,v) = GRAPHS
AND MASTER. (p,v) GRAPHS

- o _ ;
A Pth order connected (p,V) graph is defined to be a graphlcal
.structure con315u1ng of Pl interactlon vertlces and P2 A-vertlces

(see Fig..l), ‘with P = Pl'+ PQ’ which are entirely 1nterconnected

'by m. airected internel-solid lines; aftached te the enfire‘structu}e
_'afe' n_.outgeing external solid lines‘and v incoming external solid
lines;.'If (u,V) # (Old), then the incoming particle (but not |
i photon) lines refer to the same set of partlcles as the outg01ng lines.
Photon llnes representing strlctly zero momentum are to be excluded
from ediagrams, since such‘photons correspond to vacuum.interactiqns.
_ Each Verfexvis assigned a diffefent temperature label Sl{ 52, el Sp)
and each outgoing externel line atteches to a point uith a.temperaturev
*:label tl --f, t . Eech line is assigned a.different pantiele label
and momentum label and the external line momentum labels are fixed or
pregivene External lines w1th dlfferent momentum labels er directions
are treated as distinguishable. Each topologically distlnct
‘ arrengement of lines end vertices gives a different graph-see'Rnle 4
below, The rules fof intercconnecting tne P vertices and forrassoeiating
with the graph the appropriate analytic expression are given_below.

l.. To each vertex assign a vertex factor, as pfovided : |

| | by Fig. 1 and Annendix B, and form a'product of theee

vertex functions. Note that momentum ie conserVed

at each vertex.



- with momentum'.g. and.particle’label @ assign a.

fined 6(x) =1 if x>0, €x) =0 if x <O.
Assign to the graph an overall factor of II(e.a)
~where P is the parity of the relative permutation of
' ' the bottom and top row momenta of a-type particles'in
“the product of vertex functions. h ' |

- Assign a'faotor' S"l to the entire gréph' wheré the‘_, : C

Integrate over the P temperature variables 8., ¢+, 8

from O to B.

-%6- . UCRL-19423
To each line directed from t. to tg-.énd’lébeled

1

line factor

Soltgr tpK7) = exal (g ) BUENIMOtym ) ¢ SR

(A1)

 where  E(X%) . is defined in Eq. (3.14) and v (k) 1is

defined in Eq. (3.25). The step function is de- g

p o 1

Q

Sfmmetrv number S is defined to be the total number

lof permutatlonu of the m integers a551gned to- the
‘1nternal lines which lead to a topologlcally_equlvalent
~ graph. Two conﬁected (u,v) graphé are topologically
| different if ﬁheir structures (includingrparticle;type‘5

"labels and line directions) are topologically inequivalent;

Each 1nternal particle momentum is summed over all L -

states of all particles and each internal photon

' momentum is summed over all photon states-see Eq. (2.12).

17 Tt p



37- ‘ UCRL-19423

It is important to realize that Eq (a. l) is the basic
contracted product which is produced in the applicatlon of Wick'
theorem. Moreover, one observes that thls contraction is prec1sely'the
51ngle—partlcle Green functlon or propagator for the non-lnteracting case.
‘ In practice, manlpulatlons of the theory are facilltated if we
elimihate the line factor in Eq. (A.l) by redefinlng the vertex functions
so that this factor is included. Thﬁs, consider a vertex with |

temperature label t to this vertek assign a factor

l : .
[o(t' - tl) + eava( )] exp(~(t' =~ t ) E(k ) for each outgoing line

(ﬁhieh.has momentum label i & and which goes to a temperature label

~f
t{); ﬁoreover,‘for each‘outéoing;line assign a facfor ekp[ti’E(§;2)j;
fihaliy; for each incoming line.(with'momentum label gia) assiéh 8
factor exp[-tl EU{ )] | | o

' The summatlon of all (p,v) self-energy structures leade'to
master (p,v) graphs. Thus, we give next the ruies for master
(4,v) graphs. |

A‘gﬁh—order master f(u;v) graph is a ceilection of P cluster

vertices (hut no A-Vertices), defined in Appendix B, which are entirely
interconnected by m internal 80lid lines and to which are attached p
-outgoing external solid lines and V incoming external solid lines;
Each external solid line carries a single arrow, and each internal
solid line carries two arrows--ene at each end. At the head of each
arrow there is a dot. If the arrow points toward a vertex this dot is

identical with the vertex. Three different types of internal solid

lines are possible, depending upon whether the two arrows point in the.
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same direction, point toward each other or point,away'frbm’éaéh other.
A master .(p;v) _graph is‘ifreducible'in the sense that the éﬁtting of
any two of its internal linés must not produce two {or three) dis-

connected graphs, at least one of which is a (1,1), (0,2) or (2,0)

graph. Corresponding to each master (u,v) graph there is prescribed

an analytic term according to the following rules:

(l)v To gaéh'extérnai éblid line assign a pregiven momeﬁtum-
 with a particle label; if (11,v) # (0,0) thé:incoming
: particleu(ﬁot photon) lines refer to.the‘samé set of
particles as the éutgoing lines. Extefnal lines with _
differenﬁ momeﬁtum labels or directions afe‘treatéd‘as
distinguishable. | |
(2)  o master (u,v) eraphs aré-differeﬁf.if fheir‘
 "t§pological structures (including arfoﬁ directions,
particle-type labels and external lines; but not
including.the ﬁoﬁéntum labels of iﬁfefnai;airows and _
the tEmpérafure labels.which willzbe assigned'beloﬁ)
are différent; | |
- (3) To each arrow of the m internal solidvlineé éssign
'a different integer i (i = 1,2,...,2m) and a cor-
responding momentuﬁ kia (the possible choices of «
will be fiked by the associated cluster vertices).
" Assign 5 different temperatuie'variable tj to each
of the P clﬁster'vertices and to eaqh of thé dots i

which occur at the head ends of internal afrows that
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'_-point away from vertices., To each dot of the outgoing.

~ external solid lines assign the températﬁre»variable”.a.

Aésign to the entire graph a factor 'S_l, where S 1is

" the symmetry number. The symmetry number is defined to

(5)

(6)

IR

be the total number of‘permutations1of the* 2m integers

(assigned to the arrows of the internal lines) which

leave the graph topologically unchanged (including the

positions of these integers with respect to ‘the arrows).

.Associéte with the entire graph the appropriate product :

of P cluster vertices with the momentum variable assign-

ments of rules (1) and (3). Assign to the graph an

- overall sign factor II‘G a, where Pa is the parity

of the permutation Of the bottom row momenta of q-type -

. particles in the vertex functions with respect to the
,cbrrespbnding ones in the top row.
To each internal'solid line with arrow labels i and j

| assign a line factor and & momentum conserving Kronecker

delta as follows:

~8k k (t s,k ) when the arrows point in the same
direction,
Bk (t s, k ) qa 7 .when the arrows point toward |
=127 4 each other,
(t s,k ) 8 when the arrows point away from
k,,=k 2 0 o,y
-1’ =j each other,

where the temperature labels t and s correSpohd to those

assigned by rule (3). In each case, the arrow labeled i
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 points toward the dot labeled t. TheﬁKronéckér delta -
implies_cbnservation of‘ﬁarticle-type.. o - ) o ;" ;?

(7) . Finaliy;vsum over:the"em internal mdmen£a aﬁdvintégraté‘
. ffom Q'to B oyer fhe temperature variables. fj. assigned . '.  ; L

:-in‘rqie (3).
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APPENDIX B.  VERTEX FUNCTIONS
In thls appendlx we glve the expressnons for the &ertex
I : ' ‘ functloﬁs assoc;ated with the vertex s;mbols of connected (u,v) graphs

and masfer_ (u,V) graphs. One should note that the'vertex'functioﬁé
: accoﬁntlfﬁr‘ﬁhe’interaction terms in the Hamiltonian,:alqng with |
certain ofhér statistical facfors.

first, we list the vertex functions associatedlwith cohnectéd
(u,v) graphs; the symbols correébonding'té these vertex functions are
given in Fig. 1. it shouid be'innted out thaf‘the temperature labels for‘
theSe verte#Ifunctions are.superfluous; however, the addition of
Temperature labels. maintains a desirable continulty in our notation.

The vertex functlons of connected (u,v) graphs are the follow1ng

“1% . |
~1 ~p o -
ek = - [<-}~c:1"1~{'2ivc|'l'{'3’£4) + €a<£l’§2‘vc"]‘&’u"}‘§'§)]
N3 NS | e o
o for a =8
a B
= - €a€a<kl 51V, |k3 k) - for a# B
Q= charged
particle
o Yie ¥ for
= - 2e (kK [V, sl ") - TOR |
'8 = 7 (photon)

(B.1)
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i

- € [(k 71{ 7|V27|k1+> + (kl,~5 ke ‘VT |k)+) .A ‘ 'l

]
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The explicit expressions for the matrix elements in Egs. (B.1)-(B.5)
will be included in the vertex functions for master (u,v) graphs.
Next,-wé give the analytic expressions for the vgrtex‘functiohs

“of master (u,v) - graphs:

b
Ly = ety s 1)+ () Tle0t, - ) + egva(iy)]
a B
TR B )Bg (k) -E (k) -Eg (k) )]
X\ k, x € - »
a B -
(B.6)
tyt, o
A 2. 2 Ala-
~L A2 N ha.e Z ece :
o .\\\\ = - /(2'? o B fo(ry - ) VoK)
ks 5h//: a o (kk )2 |
a v ' | o o
' | +[E_(k,)+E_(k_)-E (k.)-E_(k, )]
X [ty - t) +vi(k,)] e '““Q y k) o les) B, ()

Y 2 '
X 6 L.
(k’l +}S2) 2 (.]{1,3"'}51,_) M5 m3

(B.7)
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=Ma7(1-D)< (ke) [O(t-t)+eV( )]
a7 | |
t(E (,1;:, ) -E (k,)-E ( k,)] ‘
x e 70 (3.8)
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tlE( )IE(km:( )-E (k)]
XNH -ﬂ+v( Hmu -ﬂ+v%kﬂe +7@.7

P 5 . . (B.11)
55%’(§1*52+53) Moty <, ,)

In Egs. (B.7)-(B.11) m, 1is the spin projection (the Kronecker deltas
N o

conserve momentum and spin), e 1 is the polarization unit vector and

A = eg/ﬁc' v is the fine-structure constant.

' The bracket symbol in Eq. (B.6) is defined as fo_llbwsj

% % A

¥ ) (o kplVelksoky) + el kol Ve |~h’k )]
=5~ | |

o s | | | for a=8

K P)

= " &f <k1 ’~EBIV 'ki '8y

,fdr afp
' (B.12)

In Eqs. (B.6) and (B.12) a and B are both charged particles and

lmZ 7 e°
a, B a, B aB - ‘

e v 1x.% x = ——
(2‘51 & Ic|~ 7Y ) _ qu (k ) (k3+1§#) ml 5 T,y ’
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e

Where*-V corresponds to ‘the Coulomb 1nteractlon between two ;ti]r'fep"gf: S
particles, one ‘of charge Z e and the other of charge ZBe, t;"fu f{jeze: S T

3 q = k3 - 5, is the momentum transfer.‘ L
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- APPENDIX C. AN INTEGRAL EQUATION AND ITS SOLUTION

The following integral equation occurs quite frequently in
calculations of the type discussed in'Seé. VI:
B

Go(té;#ifg) = 6(t2 - t,) + 'dstA[é(tl'--s)f+_ﬁ]_egp[(s %_tl)Bl

Jo o |
‘ " :GO(.tQ’s"}E)} )

(c)

ﬁhere A, N, and B are‘independent'of' s; bﬁt'ﬁay:bé fﬁnctidns of B
and -;5'. Tt 1s to be noted‘ that it is not poséible to. iteigte E.q." <c.,1)_
to arbitrary order, since the iterations become independent of the
integratibn.variable. Mpreover; the function A could be divérgent
;:for certain values of B and k, and the éuccessiVe terms in an
“iterative solution would be»di&efgent tbvhigher and higher orders; It
ié qﬁite straightforward to verify that_the'following function is

a solution of Eq. (c.1):

Coltgrty ) = 8t = 4 * ALO(E) = ty) + M) expl(t, = £)(3-A)]

(C.e)

where

M= [exp(-Ba) (1 4 N°1) -51]-.l . (c.3)

Use of the solution Eq. (C.2) is made in Sec. VI.
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FIGURE CAPTIONS |
ﬂ'Fig}.l.- Symbols for the interactlon verfices and thev’AiieffeX;T’The7¥J'

‘tvertex functions are deflned in Appendlx B. :3;feffi~m5!? f;gnf-.’vl' S

'tFig;fEQIm(a) Examples of connec*ed (l l) graphs.’é?'f*;

| “"J?(b) Examples of connected (O 2) graphs -

“»‘ (c) Examples of connecied (2 0) graphs

fFig:mj;v The mas er graphs used in the lowes*—order calculatlon of.

'ethe photon momentum dlstribution f“7"
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Fig. 2
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Fig. 3



LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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