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ABSTRACT 

UCRL-19423 

The quantum statistical theory of a non-relativistic fully 

ionized gas in thermal equilibritun is developed uSin&the well-knowll 
, 

linked-cluster,expansion of the grand potential. A sys~ematic analysis 

of the self-energy structures teads·to a master-graph formulation of 

quantum statistics. This provides a much simpler derivation and 

improved version,with important differences, of the earlier work of 

Mohling and Grandy. In particular the analysis of the photon 

self-energJ structures in now entirely different. As an application 

of the general theory the lowest order calculation of the photon 
-

self-energies and photon momentum distribution are presented. The 

results are compared with earlier work of others. Finally, explicit 
<l: 

connections between the master-graph line factors and Green functions 

are outlined, and the consequences of such a connection are indicated. 
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I. INTRODUCTION 

There exist several many-body theories, each having its own 

adherents' and each having certain conceptual or calculational advantages 

over the others. Of course, all mathematically rigorous many-body 

theories must be, in some sense, equivalent. Thus, the applicat.ions 

of these theories to a given physical system differ only in their 

relative suitability for the problem, their mathematical 

sophistication or their appeal to the intuition. Owing to the 

inherent mathematical complexity of any rnany-lJody theory, diagrammatic 

techniques are usually incorporated. 

In view of the preceding discussion, we do not purport to 

present in this paper a many-body theory which 

t:n:mscends all others; however, our fornrula tion does have several- novp.l 

features. We are interested in developing a theory of multicomponent, 

non-relativistic quantum electrodynamics at finite temperature. Thus, 

our formulation is developed so that, for example, mass-renormalization 

and removal of the infrared divergence can be accomplished in a 

straightfonlardmanner. The Hamiltonian is rearranged by adding and 

subtracting a Sunl of arbitrary one-particle operators (called counterterms), 

. '.' 
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and it is important to note that these countertermsemergeln the 

theory in a mathematically very useful manner. Our diagrammatic 

expansion is subjected to a simple and complete self-energy analysis, 

and the cQunterterms can be used rigorousiy to cancel spurious, 

system-independent self-energies. Our formalism establishes certain 

connections between Green function techniques and the quantum 
'1 ..' 2 

statistical theory of Mohling and Mohling, RamaRao, and Shea which 

have the b~Sic ideas of the Lee and Yang3 method as theirfouodation. 

. " 1 
We note here that the final master graph formulation of Mohling and 

.: .. 

MRS will be derived in a simpler way without the Lee-Yang method as 

a basis. 

For a system with photons interacting with charged particles, 
. . 

certain photon self-energy structures [called (0,2) and (2,0) structures] 

can lead to important contributions to physical quantities. An 

important new feature of this paper is that we consistently take these 

quantities into account, both in our quantum statistical theory and in 

our developments involving Green functions. 

It is our aim to make the presentation easily accessible to 

persons committed to.another point of view. The necessity of keeping 

the length of the paper reasonable has required that detailed derivations 

not be reproduced whenever they have been presented elsewhere. However, 

it is hoped that the presentation is sufficiently self-contained so that 

the physical presence of referenced material is not crucial. 

: r .. 

I 
. I 
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II. DEFINITION OF SYSTEM 

It is our purpose to formulate a microscopic basis for 

calculating the properties of a non-relativistic fully-ionized gas 

of interacting charged ~rticles and photons which are in thermal 

equilibrium; though it is not difficult to do, we do not include 

neutral components. The gas is multicomponent, and the consitituent 

particles are labe~ed by Greek letters, 0,13,'1, ••• (the symbol '1 is 

reserved exclusively for photons). All particles (except photons, of 

course) are treated as point particles with mass, charge and spin, but 

with no internal degrees of freedom. The system is described by a 

Hamiltonian which we write first for a system of N, particles with 

their ;radiation fiel~(Gaussian units are used): 

where p 
-:i. 

2 

(
p _ eZi A. \, 
.... i c "'l.) 

1 
+ -2 

N 

L 
i,.j==l 
i t j 

+ V == Ho + V + V == H c '1 c 0 

is the momentum M.(o) 
~ 

the bare mass and 

(2.1) 

+ V 

Z 
i 

the 

charge number (e is the magnitude of the electronic charge) of the ith 

particle; ~ is the vector potential, in the Coulomb gauge, at the 

position of the !th particle (a constant external magnetic field can 

also be included in this vector potential); rijis the separation 

of the !th and ,J,th particles; Hrad is the Hamiltonian of the free 

photon field. Since photon number is not conserved , as well as 

,', 

" 

':.' 

,,:;" 

I' 
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for 'mathematical convenience, we perfer to adopt Fock space methods 

so that in the free-particle momentum representation the Hamiltonian. 
. 4 

inEq. (2.1) involves the 9perators 

H= o 

v = 
1'1 L L 

a 0; 1 0; k '1 
. Ct r'1 ~l ' ~, "'3 (2.4) 

a a a '1 r 
ex + '1 ~l' ~ , !s3 ' ~4 

t( a t( r ex '11 I a 'Y} ( ex) ( '1)] +a~l ) a ~3 )(lsl ~3 V2r ~~4 ~ ~ a ~4 

(2.5) 

Vc = ~. L 
ex t' 

ex, r 
~ 1 , 

" ; 

, 
. ! 

i 

.. , 
. I 

"'. i 

. , 
", "1 

! 

, 
.' : 

I 
...,' 
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where for no external fields free-particle states are plane waves 

satisfYing periodic bQundary conditions so thai' 

t ck for ex = 1~(photons) 
(2.7) 

(2.8 ) 

X 8 ex ( 1 ex ll' 1 1 \ 8m . ~ m2 ~l' ~ + ~3 + ~4) 1 

(2.10) 

(: 



where 8 a,b 
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is a Kronecker .delta, 

UCRL-19423 

(2.11) 

is the fine-structure 

constant, is the spin projection quantum number, is the 

polarization unit vector associated witn the photon propagation vector 

~1 and ~ = ~3 - ~l is the momentum transfer. In Eqs. (2.3) - (2.6) 

the notation' k includes spin degrees of freedom with each momentum -
state. The multi component feature of the description has been 

exhipited by a separate sum over particle species, and the particle-

type and momentum summations are equivalent to the summation over 

the following values: 

.. -,'; t3 f3. 
~l ' ~ , "'; ••• ; . .. . (2.12) 

Thus, at times the notation 2: is used to mean summation over the 

~ 
eigenvalue spectrum in Eq. (2.12). 

One can see directly from Eqs. (2.4) and (2.5), for example, 

that in interaction terms involving photons the number of photon 

creation operators may differ from the number of photon annihilation 

operators. This feature leads to important self-energy structures with 

zero photon momentum transfer. This is the reason for the occurrence of 

(0,2) and (2,0) photon self-energy structures in Secs. IV and V. 

i . , 

j 

: ; 

'-'; , , 
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III. QUANTUM STA'~ISTICAL· DEVELOPMENTS' 

. Before developing a calculational technique, we must specify the type of 

pbysicaltluantities which we wish to be able to calculate. We are 

interested in thermodynamic functions, momentum distributions, 
.. I 

quasi-particle energies, correlation functions, electromagnetic properti.es 

and so forth. In this paper 'we concentrate on thermodynamic functions,and 

momentum distribution. For example, .' if f is the 

grand potential and n· the volume, then the pressure P, the average 

particle number of a-type particles (Na ), the particle density p, 

the average energy (E) and the average entropy (S), can be 

calculated as follows: 

P = ~-l o(ur))On 

(Na ). == ~-l O(Uf)/dga 

p " (N)/n "2:: (Na)/n "~-l 2:: ~f(cl"o 
a , a 

(E) == G - o(nr))O~ 

(S) == o(~-lnr))OT 

where G == L (N ) g, is the Gibbs potential and 
a a-ex 

The basic definition of the grand potential is 

[G,H] = 

ur(~,~, g~, ~ •• , n) == An Tr{exp[~(G - H)]} 

o (note: g =0). 
'1 

( 3.6) 

where H is the total Hamiltonian and Tr indicates the trace in Fock 

space. The momentum distribution {n (k) aN (which is the average 
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nUmber of a-type particles with momentum k) 
"" 

is defined 

t a a . 
Tr{a (k ) a(k ) exp(-nf)exp[~(G - H)]] 

"" "" 

where in Eq. (3.8) the functional derivative is performed for fixed 

potential in the Hamil toni an • Our subsequent development will result 

in diagrammatic expansions for Of, <.n (k») and one-particle Green 
a"" 

functions (defined in Sec. 5) and interrelationships of these expansions. 

Thus, we start with Eq. (3.6) which we re-write in the 

quasi-interaction representation by means of the operator w(~), 

defined 

where 

and 

K ==H +U-G 
00 

K=H-G=K +V-U o 

with the one-particle operator U defined 5 

( 3.11) 

,,' i 

. : 
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. i 

The free-particle energies in H become renormal1zed by U so that o 

H + U has. the quasi-particle energies as follows: 
a 

where 

• ( 3.14) 

The counterterm S (k) is introduced specifically to achieve mass 
a"" 

renormalization for charged particles; thus, we set 

S (k) 0 ., '" 

S (k) = (~2 k
2.) D 

0: "" 2M 0: a 

where 

D = 1 - M 1M (0) ~ D (k) a a""a a 

and Ma is the observed mass. The quantity u (k) 
a'" 

will 

be discussed in Sec VI. With Eqs. (2.7) and (3.15) 'W~ see that 

for charged particles 

; . 
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which is the correct free-particle energy. 

Now, Eq. (3.9) permits us to re-write Eq. (3.6)'in the more 

useful form 

where 

and 

Uf = .en Trp W(f3) o 

-13K 
P = e 0 

o 

Uf = .en Tr p o 0 
., ' 

It is well known that W(f3) satisfies a Bloch-type differential 

equation which is equivalent to an integral equation whose iterative 

solution is the following Dyson expansion: 

00 

W(f3) = L 
n=O 

, ! 
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where PT is the temperature ordering operator which orders the 

variables 8 1, ••• , s ,in increasing order from right to left. It is n . 

to be noted that Eq. (3.22) is equivalent. to the quantum Urse11 

expansion.· If' Eq. ().22) is substituted into Eq. (3.18) and the finite 

6 temperature version of Wick's theorem is utilized,then one obtains an 

expansion of nf which is most efficiently stated in terms of' 

connected diagrams. 7 . Thus ,we write 

Uf ::: nf + \ [all connected J 
o L (0,0) graphs 

where the rules for connected (\-l, v) graphs are given in Appelldix A; 

and here \-l == 0, V ::: o. Similarly, .in terms of connected gi-aphs the 

momentum distribution is 

::: V(k) + V (k) cx..... ex .... 

where 

\ [all connected ] L . (1,1) graphs 

It is important to note that throughout this paper we adopt forms of 

the diagrammatic rules that facilitate a comparison of this and other 

developments. Here, we note that the line factors in connec~ed (~,V) 

graphs are free-particle Green funcftions [see Eq. (A.1) in Appendix A]. 

• .'1\"._ 
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. IV. SElF-ENERGY ANALYSIS 

In connected (~, v) graphs, graphical structures which can 

be removed from the rest ~f the diagram by cutting two internal lines 

are called self-energy structures. Self-energy structures are always 

connected (1,1), (0,2) or (2,0) graphs and it is for this reason 

that in Appendix A we give the rules for connected (~, v) graphs, 

where ~ + V =2, as well as (~, V) = (0,0). For example) in Figs. 

2 ... a(3), 2-b(4) and 2-c(4) we observe the occurrence of the self-

energy structure in Fig. 2-a( 1) for 1)::: 'Y, "There it is important 

to note· that (0,2) and (2,0) structures always have photon external 

lines. Similarly, all of the diagrams in Fig. 2 can occur as self-

energy structures in other appropriate graphs. In connected (~, v) 

graphs it is possible to sum the entire class of self-energy structures 

and to relegate the effect of the summation of these structures to 

line factors. Moreover, it is possible to enlarge this surmnation 

procedure so as to encompass graphical structures called improper 

graphs which we discuss next. 

An improper graph is a connected (1,1), (0,2) or (2,0) graph 

which can be separated into two graphs by cutting one internal line, 

where each of the gr~phs is a (1,1), (0,2) or (2,0) structure. A 

proper. graph is a connected (1,1), (0,2) or (2,0) graph which is 

not improper. Thus, we wish to perform a partial summation which 'jill 

result in proper graphs with no self-energy parts. 

The summations referred to in the preceding paragraphs will 

now be performed. First, we define t.he functions (~+ V =2) 

, ! 
. ! 
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,.'. ' 

[a~l di~.~erent connected J 
. (f..L,V) .I,.-graphs . " ° 

k .... 
( 4.1) 

where a (f..L,V) L-graph is de~1ned to be a graph with the same 

structure as a given (f..L,V) graph with the ~ollowing exceptions; 

'(a) No vertex ~actors are associated with the 

tempe:raturf} labels t
2
,t

l 
o~ the lines. 

Such 'vertices .do'not<.contribute to the 

order:'o~ 'the diagl;sm •. 

There is no integration over the external 

temperature labels t 2,tl • 

(c) There is no summation over the momentum 

labels o~ external lines 

( ~ .• 2) 

Next, we de~ine the quantities which we shall eventually regard as 

line ~actors 

( (-) ) o t2 . - tl 0 + . . Il, V €~ L (t
2
,tl ,kO) ..... f..L,V ..... 

( 4.3) 

where throughout this section f..L + V= 2 and always (0,2) and 

(2,0) structures have photon external lines. Finally, we de~ine the 

~unctions 
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v [all different proper·', •. ], ~ 
== Lcormected (~, v) L-bTap~s" ... 

,k .... 
'., 

(4.4) 
.... 
'-

The functions defined in Eqs. (4.1) J (4.3) and ( 4.4) are rela ~ed by 

2 the following s,etof ,simple coupled integral equations:. 

' .. :. 

LO,2(t2,t1 ,joU) = •. [ .. ~dS [G~,2(t2'S;joU) Ml,/ .. ,tl'~joa.) 
", 0 

(4,6 ), 

.... ;:. 

·f··· 
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I 
(4.7) 

In general quantities associated with -~ lines will be 

different from the corresponding ones for +~ lines. Thus, we 

always place a bar over quantities associated with- -k lines -
[note, for example, Eqs. (4.6) and (4.7)]. 

The preceding self-energy analysis is based on integral 
. ex 

equations which involve M~,V(t2,tl' ~) in a very intimate manner; 

however, up to now we have considered on~y self-energy structures 

whose external momenta are not summed. But indeed there exist proper 

graphs which can be separated into two disjoint graphs by cutting two 

internal lines; thus, we should complete our analysis for internal 

lines by including self-energy structures whose momenta are summed. 
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This program is easily accomplished if we introduce master (Il,V) 
I 

graphs'which areirxeducible connected (Il,V) graphs whose internal 

lines have 813 line factors G
Il

,V(t
2
,t

l
, ~a). An irreducible graph is 

a graphical structure which cannot be separated into two or more (I-1,V) 

graphs (1-1 + V = 2 or 4) by cutting one or two_ internal lines. In terms of 

master graphs all self-energy st'ructures are contained in the line factors. 

In sunnnary, this basic result is expresl3ed 

M (t2,tl ,k
a ) = E C (k)[e(t - t

l
) + E V (k)]8 + K (t2,tl',ka), 

J.I.,V ,.. a a - 2 a a -1-1,V Il,V -

where 

=\ [all different ] -L master (1.1,") L - graphs 
ka 
,.., 

(4.8) 

All of our subsequent developments will be based on master (Il,V) graphs. 

For example, in calculating the momentum distribution, where 

(n (k)) a- ( 4.10) 

[see Eqs. (3.24), (4.1) and (4.2)], we are to understand that 

Gl_,1(t2,tl,~a) is evaluated in terms of master graphs. 

. i 

. ! 
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Although our self-energy analysis is complete it is useful, for 

the purpose of applications, .to perform a rearrangement of 

Eqa. (4.6) - (4.8) so that the integral equations fOrGIJ.,V(t2~t1'~") 

are partia11ydecoup1ed. This rearrangement is readily accomplished by 
, 

the introduction of the following three new functions: 

( 4.11) 

( 4.12) 

( 4.13) 

In terms of the three new functions in Eqs. (4.11) - (4.13), the 

integral equations in Eqs. (4.6) - (4.8) become 

( 4.14) 

.~ " 

. ~. 
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~ 

LO,2(t2, tl'~?') = (dSldS2MO,2(S2,Sl'~?') 
jo , 

. ?' - ?' 
Gl,1(S2,t2J~ ) G(Sl,tl'-~ ), 

(4.15 ) 

( 4.16) 

It is now possible to formu.l.e.te a general procedure for 

selecting the counterterms. . For example, in Eq. (4.14) one calculates, 

to any desired order, the quantity Ql 1(t2,tl,~a). Then, €auo(~) , 
can be chosen to be any term in Ql,1(t2,tl,~a) which is multiplied 

by [e(t
2
· - t l ) + E V (k)] and which is otherwise independent of ao-

For selecting it is more useful to apply this 

same procedure to Eq. (4.13). Indeed, one attempts to select the 

counterterrns to meet one or more of the following criteria: (1) well- . 

behaved line factors are obt~ined; (2) mass-renormalization is achieved; 

(3)a.highly convergent iterative 'theory is obtained; and (4) the theory 

is somehow simplified. Of course, one must establish the effects on 

,.;. .1 

",. , 
; . j 

.1 
I 

. i 

i 

·1 

• ~ 1 

· I 

. ; 

• I 

... 
.. I 
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the theory after . the counterterms have been selected. Also, it is to . 

be I noted that the·selection procedure discussed above usually leads to 

integrale,!uations since the line factors themselves are functionals of 

the counterterms. 

Up/to this point we have given the prescription for calculating 

only the momentum distribution. It is not at all difficult to derive 

an expression for the grand potential in terms of (0,0) master graphs •. 

Not only is this relation available elJewhere,2· but also we take the 
; 

point of view that (0,0) graphs are unnecessary; thus in the next 

section on Green functions we express the grand potential in terms of 

(1,1) graphs. 

At this point it is useful to point out that one important 

accomplishment of the preceding development is that we have presented a 

highly: simplified version of the formuiation of others. Moreover, 

our derivation incorporates, by means of counterterms, the so-called 

A-transformation from the beginning, thereby avoiding the compticated 

procedure of performing the A-transformation on the theory containing 

no counterterms. It is also important to note that our line factors 

are the same as those of MRS only after the A .. transformation has been 

performed.8 ,9 
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V. CONNECTION WITH GREEN FUNCTIONS 

In the preced:Lng section we formulated a theory in Hhich the 

line factors G\-1,v(t2, t l , ~Ct) play 2. fundamental role. Whether 

these quantities have a.nydeeper, physical meaning has been an 9pen 

question. Thus, it is our objective in this section to establish 

formal relations between the line factors G V(t2,tl ,kCt) and 
fl, .-

one-particle Green functions. This not only clarifies the meaning of 

the line factors, but also it enables us to use well-known properties 

of Green functions to deduce important properties of the line factors. 

The single.particleGreen function is defined as follows: 

It is also necessary to introduce for photons anomalous Green functions, 

defined as follows: 

= B Tr(a pI [at(kCt t )at(_kCt t
l
)]) 

Ct, Y T -' 2 ...., 

(5.2) 

I 

In Eqs. (5.1), (5.2) and (5.3) ~ = exp(-Uf) exp(-~K)j PT is the 

temperature ordering operator 

,',:.", 

I 

i 
. ! 



[cf. Eq. (3.22)], but now defined to give a factor of€o for each 

odd permutation of operators for a-type particles required to restore 

the original order; the creation and annihilation operators are 

defined in the Heisenberg representation, where 

and Kt is an inverse temperature variable. From the definition in 

. Eqs. (5.1) - (5.3) and Eqs. (5.4) and (5.5) we have the important 

result that 

, 

where ,(~,v) = (1,1) (2,0) and (0,2). 

As noted in Appendix A connected (~,v) gr~phs involve 

single-particle Green functions; thus, on the basis of intuition, one 

would expect the single-particle and anomalous Greeni'functions to have a 

close relation to connected (~,v) graphs. This is indeed the case. Moreover, 

using the Dyson expansion of Eq. (:,.22), the finite tempera~ure form of 

Wick's theorem and a self-energy analysis similar to that of Sec. IV, 

one can formulate a diagrammatic representation for S (t2,tl ,ko ) . ~,V N 

and thereby arrive at the following relations between the Green functions 

of Eqs. (5.1) - (5.3) and the line factors of Eq. (4.3): 
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x [e( s - t ) + € v (k)] 
. 1 00"" 

o - ex 0 
exp[-t2 E(~ )] exp[-tl E(-~ )]G2,O(t2,tl ,!) 

.. (5.8) 

.X' [8(s2 - t
2

) + € v (k)](8(sl - t
l

) + € V (-k)] 
00""· 0.0 .... 

Although one can write integral equations for theS (t
2
,tl ,kO) 

J.1,V .... 

analogous to those f'or G( t 2" t l , kO
) in Sec • IV, it is perhaps 

J.1,V .... 

more instructive to substit1lte Eqs. (4.3) and (4.5) -(4.'0 into 

Eqs. (5.7) - (5.9) to obtain 

. , 
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~ i 

+ . ~S2dSl Sl, 1 (t
2

, 92,~Q) RI , 1( 9 2 , Sl,~Q) SO(-81 , t1,~Q) )0-

.~ 

+ idS2dSl S2, o( t 2, S2'lo") RO, 2( 8 1, 8 2,lo") So( SI' t l , lo") 

(5·10) 

~ 

S2, o( t 2, t 1, lo") " i ds2ds l S2, 0 ( t 2,"J> !s") HI, 1 ( s 2' sl' -lo") So ( t l , s 2' -!l") 
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, , ex 
The functions R ,,(t

2
;tl ,k) 

, ~, ~ 

, ex 
are related to the MIlJ,,(t2JtlJ~) 

of Eq. (4.8) as follows: 

t3 

>( 1 d6 HI, 1 ( s, tl'Ji.") So ( t 2 ,s, f) 

13, 

X ldS 2 dS l H2 , o( 6 2,81 , l!.") ( Q, - ( Q) S t,s ,k ) So tl,s ,-k o 2 2~ 1 ... 

The connection between the Green functions SIl,V(t2,tl,~Q) 

and the line factors' G (t2, tl~kQ) is now established. Next we Il," -
wish to explore some consequences of such a connection. One of the 

more ,important obserVations, based on Eqs. (5.6) and (5.7) - (5.9), 

is 

, 
.: ! 

. l 

,. 
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which is useful asa check on calculations of line factors. Also, it 

is not" difficult to establish, for a homogeneous system, that 

t3 

G2,o( t 2, t1,jo") " exp(( t2 + t l)[E(jo") + B( -loa) 1 fa ds2ds1 Go, 2( 6 2, sl'jo") 

x [8(s2 - t 2) + € v (k)][8(Sl - t l ) + € Vo;(:'k)] ex ex ...., ex ...., 

This relation can be used as a consistency, check on th~ separate 

calculations of GO,2(t2,tl'~o;) and G2,0(t2,tl'~ex). A special, 

important case of Eq. (5.17) is 

We mentioned in Sec. IV that we could calculate the grand, 

potential in terms of (0,0) master graphs, but we would use instead an 

alternate procedure which permits the evaluation of the grand potential 

in terms of (1,1) master graphs. We discuss this procedure. 7 
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First, one constructs the scaled single-particle Green function 

where 
. \ 

(5.20) 

The scaled Green function in Eq. (5.19) is obtained from the norrnal 

Green function in Eq. (5.1) with the replacement of K by r2' every-

where. It is tedious, but straightforward, to establish the identity 

Of = OfO - f3 

Q ).'(t t kCt ) 
X EO""'l,l . 2' l' -. 

Hence from Eqs. (5.7) and (5.21) w~ see that a kriowledgeof scaled 

master ( 1 J 1) graphs in suffi cient for the determinati on of the 

grand potential, and the explicit calculation of master (0,0) graphs 

is unnecessary. 
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VI. APPLICATION TO PHOTON MOMENTUM DISTRIBUTION 

For ,the purpose of illustrating the formalism developed in the 

preceding sections'we now calculate, to low order, the photon momentum 

distribution. This calculation will prove to have several interesting 

features~ For example, 'the removal of the infrared. divergence results 

in a renormalized photon energy-m()mentum relation. Also, we obtain an 

approximate, non-iterative solution to the integral ~quation for the 

line factor. 

In this example, we calculate the three graphs in Fig. 3, where 

the external lines are for photons. The momentum sums a.re evaluated 

in the high-temperature, low-density limit. Thus, for the first graph 

in Fig. 3, we have 

where 

~J k . .... t 
1 

( 6.1) 

( 6.2) 
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and, 

(6.3) 

and P
a 

,is the number of a-type particles per unit volume. For the 

second graph in Fig. 3, we have 

- 2 11 c k 

- -1' [wl(k) + w (-k)] , 
"l .... 7 '" , 

)( ([e(t2 - tl') + v"V(~)] exp tl[w (k)+ w (-k)) 
I -- ' .,.... "l-

+ [ e( tl - t ) + V (-k)] exp t 2[ w (k) + w (-k )] 
2 7 - 7- "l "l 

( 6.4) 

where w'Ck) = -lick + u (k). 
"l'" 7 IV 

Finally, for the last graph in Fig. 3, we 

have 

, , 
! 

• .,. I,· 



. 
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[LI~dS (k -~ -1 

KO,~/t2' tl'~?) = 
.. k k· -1 ..... ,., . 

t:;! 
ex k ex 0 ex .'1 '1 "'1 

X G1,1(t1,s'~lex) 
1i2(l) 2 

8(t2 - t l ) ~ ~ 

X 8(t
2 

- t
l
)exp(-t

2
[w'(k) +'w(~k)] 

r'" r'" 
(6.5) 

One ~hou1d note that Eqs. (6.4) and (6.5) satisfy the relation in 

Now, in order to calculate the photon momentum distribution 

in Eq. (4.10) with ex = '1, we must first calculate . G1, 1 (~, t,~r). To 

do this we use Eq. (4.3) with Eq. (4.14). Thus, we evaluate the 

approximate expression 

(6.6) 

~! . 
!; . 
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This expression is simplified considerably if we choose 

-h2(J)2 

u,.c~) IV 21i
P

C k 

To lowest order we take 

Thus, withEq. (6.7) we have the result 

. w' (k) 
71V 

L 2 L 2 1/2 . 
- [11 c k ) + (n (J) ) J • p .. 

UCRL-19423 

(6.7) 

(6.8) 

It is important to note that withu (k)= ° Eq. (6.6)· is divergent for 
7 IV .. 

k - 0, and the divergence is a manifestation of the so-called infrared 

divergence. Now, with the choice inEq. (6.9), Eq. (6.6) becomes 

)( exp(t
2 

- t )[w'(k) + W (-k)]) , 
1 7 -. 7-

( 6.10) 

.. 

. ; 
. I , 
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Thus, we have succeeded in removing 

the infrared divergence, at least to lowest order, by the 

identification of the counterterm in Eq. (6.7). Also, we point out 
. ; 

that Eq. (6.9) has been obtained by others by subjecting the Hamiltonian 

in Eq. (2.2) to a Bogol1ubov transformation with the same consequences 

as here: 
10,11 

the infrared divergence is removed. 

The calculation of the photon momentum distribution is based 

on Eq,. (4.10) with Eqs •. (4.3) (4.14) and (6.10). It is immediately 

obvious that Eq. (4.3) with Eq. (4.14) does not possess an iterative 

solution when Eq. (6.10) is used (see Appendix C). However, we can 

use the developments in.Appendix C to obtain the result 

. G1,1(t2,tlJ~?') = B(t2 - t l ) + A[e(t1 - t 2 ) + M] exp[(t2 - tl)(B - A)] 

(6.11) 

where· 

A = 
w'Ck) + w (-k) r ,.. .,,.. 

B :0 . w' (k) +w (-k) ., ,., .,,.. 

(6.12) 
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, It. should be noted tha tA in Eq. (6.12 )di vE;!rge's 'r~r. 1~":' 0, . so 
,,' 

that an iterative>solutiontb Eq.(4.3) with Eqs'. (4~'14)and (6~;LO) 

would be unacceptablelr one existed. ,Thu~;'-w~-~'~~ E-q.'(6~il)rirr~~ -

order to calculate the . photon 'fuomentum distribution 1rtEcr. (4.10). 
. . ....!. .. . . 

We obtain " 

(n'(k) = 
" "1-

where 

, J(k) .... . 

-/ 

w·(-k)- w'(k) 
)' N", )' N 

.' 2w'(k) . 
, )'-

, I 

1 " 
with w (k) given by Eq~ (6.9) and w (-k) 
. "1 -. "1 N 

r'· 

" , 

( 6.13) 

,given byEq. (6.8). 

• ~. j 

.. i 

.;,:" . 
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It is of interest to examine Eq. (6.13) in the limits of 

large and small k. For large k we find 

(6.14) 

.which approaches 

(6.15) 

as kincreases without limit; thus, Eq. (6.14) is essentially thel 

free photon distrlbution function. On the other hand, for small ~ we 

obtain 

The expression in Eq. (6.13) is a new result. In 

particular, as is clear from Eq. (6.16), this momentum distribution ,is 

divergent for k -+ O. This result disagrees with the earlier result of 

11 12 Hwang and Grandy, 1 who find that the photon momentum distribution 

approaches a S'fstem dependent ·limit as k -+ o. The reason for this 

discrepancy is mainly because these authors do not include the (0,2)· 

and (2,0) photon self-energy structures in their calculation. Physically, 

a singularity in (ny(k)} as k -+ ° is not at all surprising (the 

Planck distribution also diverges for vanishing photon momentum). 
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VII. DISCUSSION 

The main results of this paper will now be summarized. 

" (1) We have outlined -a ,quantum statis.tical_ theory of a 

-nomelativistic, fully ioni·zed gas in thermal equilibrium. 

(2) We have also established explicitly the relation between 

the present work and the Green function technique in many-body theory. 

In this connection the results of Sec. V are not only valid for the 

model system considered here, but also are true for oth~r many-body 

systems as, well. 

(3) ThemomentQm distribution of the photons has been 

evaluated in lowest order& It is found that this quantity'behaves as 

11k for k -l> 0, thereby exhibiting a singular behavior which is 

physically reasona'ble. This result disagrees with the earlier 'ltlOrk of 

11 Hwang and Grandy J and the source of the dis8,greernent has been 

discussed at the end of Secs VI. 

(4)' We'have not investigated the effects of the Coulomb 

interaction, in which case one needs to sum the ring diagrams. 

Such a sUJIl.mation can be performed easily in the pre'sent framework 

and results in a much simpler Version of the earlier work by Mohling 
, l.j. 

and G~andy. 

, 
. . ~ .. "',p' :.;. !.l' ,.<-: • '. ,',j 

, ; 

, : 

I, 
I 
" 

, 
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APPENDIX' A. RULES FOR CONNECTED ( j..1, V) GRAPHS 

AND 1~1ASTER, (Il, V) GRAPHS 

i 

"- graph is defined to be a graphical A Pth order connected 

structure consisting of PI interaction vertices and, P
2 

t.-vertices 

(see Fig. 1) ,with p:= PI + P 2' which are entirel~r interconnected 
" " 

by m directed internal solid lines; attached to the entire structure 

are Il outgoing external solid lines and V incoming external solid 

lines. If (j..1) V) I (0,0), then the incoming partiCle (but not 

photon) lines refer to the same set of particles as the outgoing lines. 

Photon lines representing strictly zero momentum are to be excluded 

from diagrams, since such photons correspond to vacuum interactions. 

Each vertex is assigned a different temperature label s , s ," .•• 
1. 2 

and each outgoing external line attaches to a point with a temperature 

label t , "', t • 
1 Il 

Each line is assigned a different particle label 

and momentum label, and the external line momentum label's are fixed or 

pregiven. External lines with different momentum labels or directions 

are treated as distinguishable. Each topologically distinct 

arrangement of lines !lnd vertices gives a different graph-see Rule 4 

below, The rules for interconnecting theP vertices and for aSSOCiating 

with the graph the appropriate analytic expreSSion are given below. 

1.. To each vertex assign a vertex factor, as provided 

by Fig. I and Appendix B, and form a product of these 

vertex functions. Note that momentum is conserved 

at each vertex. 
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To each line directed from tl to t and labeled 
.2 

. wi th momentum k and particle label ex -. assign a 

line factor 

ex a 
sOCt2,tl'~ ) ::: exp[-(t2- t l ) E(~ )][e(t2- t l ) + £aVa(~)]' 

(A"l) 

where E(~ex) . is defined in ECl. (3.14) and Vex(!;;) is 

defined in ECl. (3.25). The step fUnction is de­

fined e(x) = 1 if x > 0, e(x)::: 0 if x $. 0. 
p 

3. Assign to the graph an overall factor of IT (€ a) 
ex 

4. 

where Pa is the parity of the relativ-e permutation of 
i 

the bottom and top row momenta of a-type particles in 

the product of vertex functions. 

Assign a factor -1 S to the entire graph, where the 

s:fmmetry number Sis defined to be the total number 

of permutations of the m integers assigned to the 

internal lines which lead to a topologically equivalent 

graph. Two connected (fl,V) graphs are topologically 

different if their structures (including particle-type 

labels and line directions) are topologically inequivalent. 

5. Each internal particle momentum is summed over all 

states of all particles and each internal photon 

momentum is sunnned over all photon states-see ECl. (2.12). 

6. Integrate over the P temperature variables sl' ••• , sp 

from ° to 13. 
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It is important to realize that Eq. (A.l) is the basic 

contracted product which is produced in the application of Wick's 

theorem. Moreover, one observes that this contraction is precisely the 

single-particle Green function or propagator for the non-interacting case. 

In practice, manipulations of the theory are facilitated if we 

eliminate the line factor in Eq. (A.l) by redefining the vertex functions 

so that this factor is included. Thus, consider a vertex with 

temperature label tli to this vertex assign a factor 

[9(tt - 't
l
') + E v (k

i
)] exp[-(t' - t

l
) 'E(k.C%)] for _each outgoing line " oa~ ~ 

, C% 
(which has momentum label ~i and which goes to a temperature label 

, ' , 

t'h moreover, for each outgoing'line assign a factor 

finally, for each in~oming line (with momentum label 

factor exp[ -t l E'(~:jC%)]. 

exp[t' E(k.C%)]j 
~~ 

k 0) assign a 
~j 

The summation of all (~,V) self-energy structures leads to 

master (~,V) graphs. Thus, we give next the rules for master 

(~,V) graphs. 

A Pth-order master (~,V) graph is a collection of P cluster 

vertices (but no Ll-vertices), defined in Appendix B, which are entirely 

interconnected by m internal solid lines and to which are attached ~ 

outgoing external solid lines and V incoming external solid lines. 

Each external solid line carries a single arrow, and each internal 

solid line carries two arrows--one at each end. At the head of each 

arrow there is a dot. If the arrow points toward a vertex this dot is 

identical with the vertex. Three differ~nt types of internal solid 

lines ar.epossible, depending upon whether the two arrows point in the 
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same direction, point toward each other or point away from each other. 

A master (jJ.,V) ,graph is irreducible in the' sense that the cutting of 

any two of its internal lines must not produce tylQ (or three) dis-

connected graphs, at least one of which is a (1,1), (0,2) or (2,0) 

graph. Corresponding to each master (jJ.,V) graph there is prescribed 

an analytic term according to t he following rules: 

(1) To each external solid line ass'ign a pre given momentwn 

with a particle label; if (jJ.,V) -I (0,0) the inCOlAling 

particle (not photon) lines refer to the same set of 

particles as the outgoing lines. External lines with 

dif:ferent momeritwn labels or directions are treated as 

distinguishable. 

(2) Two master (jJ., V) graphs are different ,if their 

topological structures (i11clud.ing arrow directions, 

particle-type labels and external lines, but not 

including the momentum labels of internal arrows and 

the temperature labels which will be assigned below) 

are different~ 

(3) To each arrow of the m internal solid lines assign 

'a different integer i (i = 1,2, ••• ,2m) and a cor-

responding momentum k. a (the possible choices of a 
l 

will be fixed by the associated cluster vertices). 

Assign a different temperature variable t. 
J 

to each 

of the P cluster vertices and to each of the dots 

which occur at the head ends of internal arrows that 

, i 
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point away from vertices. To each dot of the outgoing 

external solid Hnes assign the temperature variable t3. 

Assign to the entire graph a factor -1 
S , where S is 

the symmetry nwnber. The symmetry number is defined to 

be the total number of permutations of the. 2m integers 

(assigned to the arrows of the internal lines) which 

leave the graph topologically unchanged (including the 

positions of these integers with respect to the arrows). 

(5) Associate with the entire graph the appropriate product 

of F cluster vertices with the momentum variable assign-
. 

ments of rUles (1) and (3). Assign to the graph an 
F 

overall sign factor II € a, where Fa is the parity 
a 

of the permutation ~f the bottom row momenta of a-type 

particles in the vertex functions with respect to the 

corresponding ones in the top row. 

( 6) To each internal solid line with arrow labels i and j 

assign a line factor and a momentum conserving Kronecker 

delta as follows: 

8 , GO 2 ( t, s'!!i a) k.,~k. 
-J_ -J 

, 

8 G2 o(t,s'~iCX) k. ,-k. 
-~ -,) 

, 

when the arrows point in the same 
direction, 

80.,"1 ,when the arrows point toward 
each other, 

8 when the arrows point away from 
0., "1 each other, 

where the temperature labels tand s correspond to those 

assigned by rule (3). In each case, the arrow labeled i 

',::, . 



-40- UCRL-19423 

points toward the dot labeled t. The Kronecker delta 

implies conservation of particle-type. 

(7) Finally, sum over the 2m internal momenta and integrate 

from 0 to t3 over the temperature variables t. 
J 

assigned 

in rule (3). 

;,.. I 

! 
1:" 

1 : 
. " 

., ' 

i:" 
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APPENDIX B. VERTEX FUNCTIONS 

In this appendix we give the expresstons for the vertex 

functions associated with the vertex symbols of connected (I-1,V) graphs 

and mast.er (1-1, V) graphs.' One should note that the vertex functions 

account for the Interaction terms in the Hamiltonian, along with 

certain other statistical factors. 

First, we list the vertex functions associated with connected 

(I-1,V) graphs; the symbols corresponding to these vertex functions are 

given in Fig. 1. It should be pOinted out that the temperature labels for 

these vertex functions are superfluous; however, the addition of 

temperature labels maintains a desirable continuity in our notation. 

The vertex functions of connected (I-1,V) graphs are the following: 

= 

for a == 13 

for a I f3 

for 

a == charged 
particle 

f3 = 1 (photon) 
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. ~. 

(B.3) 

" 

, ' , 

, ' ,'Y 1 
-:-2ea<~4Iv2'Y1~1'~ ~3 ) (B.4) 

. .. . . 

- Ea[ q~l'Ji,/Io/ I V ~ 1lfJ,} + (~l,loll./ I V ~ 1i!;4)] 

, 'r 

, ! 

i 

, i 

! , ! 

i 
~ , 

, i ' 
- j 

, [ 
i , 

i 
, , 
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The explicit expressions for the matrix elements in Eqs. (B.l)-(B.5) 

wi 11 be included in the vertex functions for master «(J, V) graphs. 

Next, we give the anal)~ic expressions for the vertex functions 

. of master (1-1, V) graphs: 

x (::~) 
ex f3 

(B.6) 

t[E,..,(kl)+E(}s...)-E (k~)-E (~I.)] 
..... - .., '-c;. ex "" -' ..,--+ e 

(B.7) 



tlt~k k~. -v 1 ""'2 

k -v3 t 

tylfJ. ."" 
\If.1 ~ If.3,{ 

ex r r 
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+E V'(k )] a a-3 

(B.9) 

t[EaO~4)-Ea(~1)-Erq~2)-EJ~3)] 0 

X e °4'(~1+~+~3) ml ,m4 
( B.10) 

, 
. i 

I 
. I 

. I 

I 
i 

. , 
i 
, 

~ 
• i 
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0: ., ,., 

( B.ll) 

In Eqs. (B· .. 7)-(B.ll) m1 is the spin projection (the Kronecker deltas 

conserve momentum and spin), ei is the polarization unit vector and 
2 .' ' 

0:0 ::: e Inc is the fine-structure constant. 

The bracket symbol in Eq. (B.6) is defined as follows: 

(
'1, ~) 
~3 ~4 
0: ~ 

for 0: = ~ 

for 0: I f3 

(B.12) 

(B.13) 
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where· Vc corresponds to the Coulomb interaction between two 

particles, one· of charge· Zae . and the other . of charge .. Zl3e;. 

q = ~3- lsI is the momentwn transfer. 

. ... ..:. 
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APPENDIX C. AN INTEGRAL EQUATION AND ITS SQWTION 

The following integral equation occurs quite frequently in 

calculations of the type discussed in Sec. VI: 

where A, N, and B .are independent of s, but maybe functions of f3 

and k.It is to be noted that it is not possible to iterate Eq. (C.l) 
,." 

to arbitrary order, since the iterations become independent of the 

integration variable. Moreover, the function A cou+d be divergent 

for certain values of f3 and k, and the successive terms in an 

iterative solution would be divergent to higher and higher orders. It' 

is quite straightforward to verify that the following function is 

a solution of Eq. (C.l): 

GO(t2,tl'~) = 8(t2 - t l ) + A[e(t l .. t 2 ) + M] exp(t
2 

- tl)(B-A)] , 

(C.2) 

where 

-1 
M = [exp(-f3A) (1 + N- l ) -1] 

Use of the solution Eq. (C.2) is made in Sec. VI. 
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FIGURECAP'rrONS 

Fig. 1. Symbols for the interaction' verti.cesand the6-vertex~. The-. 

vertex functions are defined in Appendix B; 

Fig. 2. (a) Examples of connected (i,i) graphs. 

.( h) Examples of conn~cted. ( 0, 2) graphs. 

(c) Examples of connected (2,0) graPhs.~ 

Fig. 3.. .The mas'ergraphs used in the lowes 1:,':'order calculati.on of . 

the :photon momentum distribution. 

, . , 
. ,j 

i 
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