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ABSTRACT

The use of covariance and the Jacobi identity

in. the study of gqual-time commutators is investigated.

Dendting by Tuv the usual consefved and symmetric
fensor density of Poincaré transformations (the symmetric

‘energy-momentum tensor in Lagrangian models) and by X

any of the operators {, Bpﬁ, Jos T4 0T Iy, (defined |

by JOK = dng - Bsz)_we use. the mqst general fo?m of

the equal-time commutators [i TOu(X)’ X(y)] and

[i Too(x)5 i Tdo(y)]' compatible with covariance
together with the Jacobi identities for

.{[i Too(x)s 1 Too )15 X(z)] to derive relations between
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_the.equal—time_commutafofs [T, (x), x(y)] and
[i’TOO(x), Y(y)1, whore ‘Y is any of the operators

'. denoted by X or Dyf o“w , B“Ju; an@-‘ &0 Tom* This
;nformatlonols_flrst used in deri&ing'equa1~time o
__commutatO£s in canonicgl modélo.- We then show that.
the éésumpﬁion of sU(2) QE)SU(E); chafge;cuffoot
c'q;nmutators; together wiv.th A, *(x), V)1, vy
W(x)'Ta¥56(§ —‘x) ~ (where .Aga denotes the axial
voctor current and v a Spinor field) implies (as
obtained earlier by the authors under differént assump-

,tlon )

L=

[A %(x), \!f(y)YO -~ -V (x) Y—Yk 5% -

+. iy - x)k [Aéa(x): If.mT(y)‘ Yo]'xo-——yo

[where £ denotes (iy“ au -m)y]. In a'qdition we.
obtain an'analoéoﬁsvequation forothe conséfved vectof
cuﬁrént, derived earlior'oy the‘authors direcfly uéing
covariance. (For conserved ourronts fhe §—integfated
equations afe a simple consequéhcé of the Hoisénbérg
equation of motion.) ThéAinoompatibility of fieldi'

algebra current commﬁtators ﬁith
3 -_—
_[d x4, (x), w(y) 7] o6 e V(y) ¥

i$ noted. Taking 'W to be the nucleon field (and



. where f, (fp) is defined by p, (m2) =
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assuming usual current-field identitiés) it is shown

that a certain form of the nucleon current leads to the

above unless the right-hand side vanishes. (The

o o - ' "
 consistency of [Ak (x), ¥(y) YO]X _y =0 with
- : 0770

covériance is checked.} Imposing this requirement.oné
v _ o
. . 04 T
then obtains = " where a X) V.Y = X
By T &y g 9 (x) Yor, 7= ¥(x)

o Q ' L _
'[gp vga(x) rH %— ¥(x)] denotes the contribution of A

(p) to £ in terms of the renormalized field:

aua(vpa). From this and the usual saturation of the

Weinberg spectfal function sum rules by single particle

intermediate states we obtain
2

2
m o/ 2 mAl

| gp = §Q—v and gy, = | EQ— o

‘ . o) 1 Al Al

2 2 '
- 2
fA 5(m m, )

! | | 1 1 ol

*[pp(mg) = fpea(mg - mpg)]. For currents obeying the

algebra of fields commutators restrictions on Schwinger
terms contained in equal-time commutators invelving
time .derivatives of the currents are obtainéd. These

relations show for example that in canonical realizations

of current-field identities one needs derivative couplings

of the spin-one field.
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. 1. INTRODUCTION

It isrgenerallyzassﬁmed;~7 that in'relativistic local field

" theories & conserved and symmetric local tensor Qpératdr‘ffuv(x)

exists with the properfy‘that the generators of Poincaré transforma-

tions may be written as

T N o aw
P = x T, (% (1.1
and o - . o l_ | : ‘ ,
, Mpv'_” de X[Xp_TOv<X)e X, Tougx)] . (1.2)
f Denotlng by g, W, H’ and J (defined as
Juv = 6 J, - 6 J ) local operators w1th spins O 1/2 1, and 2

respectlvely, one flnds that the equal-time commutators (ETC) between

THV' and these operators (and between the Tuv's themselves) are

1-4,8,9

partly determlned by covariance. Using the Lorentz transforma-

vtien properties'of ‘X” (defined as any of the operators ¢,_§IYO;

JO, Jé, or - Joz)“and Eésf (1.1) and (;.2) we obtain the most general
ferm of the"ETC v[i TOH(X)’ X(y)jl obeying tﬁese restrictioesiin_
Eqs.'(l.lu) - (1.20) aﬁd (1;éu) - (1.29). As may be read off:from

EQs - (L.14) - (1. 20), “the. norn- Schw1nger terms (NST) and the first
order Schwinger terms (FOST)-—the canonical terms—-ln the ETC

[i Too(x),_X(Y)] are completely spe01f1ed by covarlance, whereas in
the ETC [i T (x), X(y)] only the NST are completely determlned this .

way whlle the FOST are shown to satlsfy relations (l 30) (l %5).

These ETC have some 1mmed1ate applications which we dlscuss next.
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Turning first to Eq. (1.17) we remark that it follows from this

that the Gell-Mann condition6’lO

. . ; i
fd5y[i Too(%)s J5()] =_-é“ g, @ :
is equivalent to'2 | - | I |
_.Noo(Joj R - | ,?
2 F A S e e

As we shall also see below for canonical currents the noncanonical

jg?[k } are aJosentlB’lbr so that Eq. (1.3) holds in this
o | 6,11 .

case. In addition it is frequently assumed ’

terms (NCT)
that only the scalar : |

part of TMV‘ breaks’ the symmetry so that

From (1.26) we see that (1.5) is equivalent to

™) | ' o ) ‘ 3

' 3 ... .9 Om - S ' : o ;

S a0 09 |
= | o o |
R . , S S .

. : - , !

In Sec. IIT it is seen that in certain,modelsl6_19 ‘jgéfk } vanishes j
: E Ca o . |

so that Eq. (1.5) holds in such models. . Furthermore (Sec.  IIT) for - v

fields V proportional to canonical ones the NCT in Eq. (1.15) are

absentgo and thus ' ' S !
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/«Py[i Too (), T 11 = F T 1 - 53 Tx) 1,
| (1.7)
in analogy to Eg. (1;3) [Conditions under which the additonal Egs.
(3.38) - (3.42) hold are also investigated in Sec. III.]
As a conseqﬁénée of Eq. (1.51) [Eq. (1.33)] the ETC of TOm‘
with fields of spin 1/2 (spacevcomponénts‘of spin one fields) muét at
least haVé first order ST. Since thé ETC between the time-space

combonentS'bf the canonical energy-momentum tensor 6 with any

Om

field which is proportional to a canonical one does not have ST, this

property,distihguishés the generators of local Lorentz transformations

Tle (the symmetric energy-momentum tensor in canonical theories)
from @uv. Canonical models in which both coincide therefofe only
contain basic fields of spih'O (the generalization of the argument to
canonical variables with-spin higher than one should be obvious) and
thus no fermion operators ét all. Since we are mainly interested in
ETC in canonical theories which contain‘operators with spin 1/2 we
can not use the.determination of the ST.in Egs. (1.14), (1.18), and

(1.26) of Ref. 3, where Eq. (1.2) has been assumed with &

21
Oou*

ou replac1ng

T .

It is the main purpose of the present paper (Secs;'II and III)
to derive restrictions on the canonical and noncanonical terms in

Egs. (1.4)-(1.20) and (1.24)-(1.29). it is in view of the applications

2-4,6,8,9,11

made of these relations (see also Sec. IV and the Appendix)

that a systematic investigation is desirable.
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The results obtained in Secs. II and ITII are of different

geneiality; Whereas in Sec. IIT we calculate ETC in canonical models

(the results are described in statements 1-3), Sec. IT depends only

on the assumed validity of the Jacobi identities—2 for o ' *
[[i Too(x), i Too(y)], X(z)}v (where X denotes any of the operators

@, Vs, Jgs Jy5 Jggs OF BO¢) and-on the transformation properties

of Tuv and X under Lorentz transformations.. Writing these Jaéobi !
identities [Egs. (2.1)] we then calculate the lef?—hand sides of E
these equations by use of Eq.‘(l.El)“and the right—hand sidés by use | i
of Egs. (1.14)-(1.20). By suitable manipulations (as described in i
Sec. II) the contributiohs of the NCT in Eq. (1.21) are eliminated and [
the results given in Sec. IT [mainly Egs. (2.12)-(2.17), (2.34), and
(2.35)]Aare obtained. These equations are used in obtéininQQMISOmé
of-thé results in Sec. ITI [Egs. (3.20), (%.24), and (3.25)] but wé\ . ¥
would like to illustrate here possible applications by obtaining the |
commutafor [i Too(x), JOZ(Y)] in the Sugawara model” in wﬂich-we

have

‘m

[ev -, 11,00, 3,1 = gy 3,00 - (1.8)

Then we use (2.35d) [and the absence of NCT in Egs. (1.17) and (1.18)
for the Sugawara model] to see that at most NCT of second order
contributes to the commutator under discussion. Using (1.8) and (2.15)

we obtain

L

(3 T000)s 3,1 = 3 30,60 80 - 1) + 5, 0) 5 o -0
| | (1.9)
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(of course,.the above result would alsq follow by direct calcuiation,
a procedure which involves ambiguities due to proaucté of fields ét a
point which is avoided by fhe derivation presénted above. )

Absence of NCT in Eé.(l.El) may be made_plausible.by assuming

Schwinger's action_principlel which may be used to obtain

[5 Tyo(x), 1 Too(r)] = 1 T, (%) g?(; B(x - 1) + i Ty (¥) gi‘k' 5(x - %) -

(1.10)

However, our results do not depend on this assumption.

Next we would like to make explicite5 the consequences which
Egs. (1.1) and (1.2) together with the transformation properties of X

have for the commutators [i TOM(X)’ X(y)]. To describe a possible

- derivation we consider the commutators involving @Yb. Assuming only -

existence of the equal-time limit we may write
. _ ' 3 :
[ 2o0(x), ¥(¥) o) = x(x) 8(x - x) + X (x) S 5(x - ¥)

NOO ¥

00 ) §
i , X{ka}(Y) SEZ_ ces 5, B(E - X) . ‘ (1.11)
=2 1 0

Note the particular choice of the arguments of the ST in the above

equation. This may always be achieved and will prove convenient in

what follows. From the Heisenberg equation of motion [using Eq. (1.1)]

we find
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3 V) 1y = uy) - 3 x (¥ - | (1.12)

Writing Eq. (1.11) for y“ = 0, multiplying by X and integrating
over‘ X we find by use of Egq. (1.2) from the known transformation

properties of V¥ under boosts
(y) = —\V(Y) ) . (1'15)
2 k v

which determines the CT in Eq. (1.15). Applying the same reasoning
25

to the other operators denoted by X one obtains the results

(5 Too(x), #()]

()
= 3, #(x) 8(x - x) +z¢?§a](y) 'aik dik 3(x - ¥) »
a=2 = “ (1.14)
[ Too(x), T(¥) 7]
= a@ V(x) v, 8l = x) - % J(x):{ 3(x - y_;)'
) I “a R s
+ 22: "{ka}(“’)ja"kl B 8(x - x) - (1a3)
where we have defined
EE N 7 (1.16)
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One also obtains

08 B0, 0]

e > .
= a.“_J“(fc) 5(x - x): + 3, (x) gg@(l& - X)

' 00, : ,
N(J,) -
: _ ; |
) ijgc-){k}(y) aa s -, (1.17)
S aE xkl‘ : ’_Xkoc o -

[170(x), 7,()]

= Jo,(x) 8(x - y) - o (X) 7 o(x - x)
- 1% | | o . -
- j; .00 3 3 .
+ Jz;{ka](y) axk te axk 5(?5 - X) ’ (1'18)‘
Q=2 . 1 a : '

RENOR L]
= O OZ(X) B(X - x) + Z(Y) axk &(x - Y

NOO(J

' oz) - | ;  a'_ : - |
.00 ' ’
t JOE [k }(Y) a "3 5(25 - X) ’ - (1.19) \
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[1 Ty (x), 3P()]

= [ee otz - 0) + 3,.9x) 52; B(x - 1)

03 0)

and’
5 Too(x), 1 Too(¥)]
i T (x) 9. 8(x - y) +i T (y) a‘6(IX’- )
Ok T TV T T Bl T PR T
.NQQ(TO )
: a

: OO {k }(y> axk axk 5(x - x) -

a

_(1.21)

" NST are absent in Eq. (1.21) since BHTHV = S“Tvp = 0. 'However, the
consequences of Lorentz covariance are'not,yet completely exhauéted
in_the1above equationsince from the tranéformation properties Of_"

Too(¥) it also follows that

=2 1

and

o+ “ E qg?{ka}(y) O}a{k .o aik 5(& - 'x) ’ (;.20).

N0(z ) , ' I
ZE > 3 .00 ' .,
. axk "'Bxk 005 i }(x) = 0 : (1.22)
e . ' . :
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w%t,,) |
SEETE 0y 003 (k_ }
=2 % X @

0. (1.23)

1 o
We next use Eq. (1.1) for p =m to obtain

_ (i TOm(X)’ g(y)]

- | n"(9) .
N O e AR M A o et (RO
o Y Ty | |
: = (1.24)
(2 T, (), Tly) 7] |
| | v (y) ;
= 9, V(x) v, 8(x - y) + E ‘X?E 3 () o 5%;— 5(x - x) »
a1 ¢ 1 a
} (1.25)
[1 To, (%), I5(v)] |
| NOm(J ) |
' d zg .Om’ 0 0 ,
= "'Jo(.x) T 6(% - 5[,) + J sk }(Y) S 03 6(25 - X) P)
aX O=1 0 @ Xkl xKOé
(1.26)
[1 T (%), 7,(5)] |
. (g, |
N < % - v) + E .Om o ... . % - v
= am .Jﬁ( ) 6(~ X) - Jz;{ka}_(Y) axkl &ka 8(m- X) s

(1.27)
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(f}\{, - '.Y.) )

o , . d
= 3 J,,(x) B(x - x) + E )
n Y0z e Cdor; 3 T 3
| — a e, & |
| - ‘ (1.28)
and
- | N(5.8) |
= =0.B(x) —— 8(x -y) Py ) .o 8(x - ¥) -
0P\ 03k )W) 35 3 X
S - o~ ¢ Xkl-' "k
_ : v Q
(1.29)
~ Using Eq | (1.2) we further obtai'n.
;¢gom(y)‘+ ¢m0k(Y) = 0, (1.30)
..xnom(y) + Xmon(y) = _é_ {E(.V) fo)’myn‘- %\l_!(y) Y& (1,51)'
“dose @) + 3o ) = 0, (1.32)
Sy @) + 3,050 = gy T - gy B (1.3%)
and
Bose () *+ o (V) = O . (1.35)
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Before discussing applications of the results described above
we proceed to intrbdﬁcé our basic assumﬁtioné and'notatibns concerning
ETC betwéén currents and fields. We will restrict our attention to
chiral VSU(E)CK)SU(Q) and assume usual EIC between charge densities.
The'currepts Aué(x) and Vua(x) (a-=‘l—§>.  will be denoted by

Jua(x) »(é = 1-6) - with Jua(i) = Vua(x) for a =1-3  and

Jua(x) = Au?-B(x) for a = L-6. The structure constants 2PC
are then defined by
a b . abc c '
[3,3x), 3,201 = 1™ 5 %(x) B(x - x) - (1.36)

For the fermion field we will occasionally assume2
(A7), T = -x, ¥x) 15 77 8% - ) (137

It folloW527 from thié (by an appropriate choice of the phase of A)

assuming usual ETC between chargé densities that:

02, T = 2 ¥(x) r® 85 - ) (1.38)
with | _ |
Ta for a =1-3
r* o= | . (1.39)
75 Ta_B_ for a = 4-6

Turning next to the applications of Egs. (1.1h)-(1.21) we
note that the connection between usual ETC of charge densities, ST

in [Joa(x),.aH Jub(y)], and current algebra commutators has already

2,3

been partly discussed. x The discussion given in Refs. 2 and 3
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made use of Eg. (1.17) and assuﬁed for the main conclusions that NCT
were absent while in Ref. 7 uS¢ was @ade of Loréntz invariance and it
was.aésumed'that the(EfC dédufring in that derivation (Tpv was not
used in Ref. 7) contain at most a FOST. It was then sh’owng’B’7 that

usual current algebra commutators follow provided that.

G-, [3%0, # 32w = o, (o)

i.e., the above ETC contains no ST.
" In Refs. 8 and 9 it was shown that in certain models it follows

from Bq. (1.37) that "
[Jma(i),fﬁ(y) Tyl = % T(x) ™ Y 8(x - )

+oi(y - %) L), £ fy) vg) o, (1)
where‘_fm is defined by :._ o
(0 =ty - m) e ‘ (Lak2)

for any m.. [As noted in Ref. 9, Eq.>(l.hl) may 5e obtained for
conser&ed currents, using direct consequences ofvcov"ar.iarice,27 fromi
the Heisenﬂerg equation of motion. Aléo for conserved‘currents fhe,
x-integrated Eq. (i.hl) is a simple cbnséquenéefof tﬁe-ﬁéisenberg
equation of motion.] Absence of ST in the ETC

[Jka(x), V(y) YO] and [oM Jga(x), V¥(x)] was also derived in Refs. 8
and 9.°° This result may be combined with Eq. (1.41) t§ see that

[Jba(x), T (y) Yb] contains at most a FOST.
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It ié the first purpose of the applications made -in Sec. IV to
‘derive Eq. (1.41) from covariance and Eq.‘(1.57)'alone and to discuss
the dependenbe of the results.of Refs. 8 and 9 on the absence of NCT
in Egs. (1.15) and (1.17) (as is the case for certain models discuséed
in Sec. III).

We next illustrate ™ applications of Egs. (1.14)-(1.21) by
considering the Jacobi identity for [i Too(x), [Jba(y), Job(x)]}.2

We. thus write
. [Joa'(y), au. Jub(Z)] 8(}’5 - r%) - [Job(z)’ "a“- Jua(x)] 6(;& _ x)

S s Jua(Z) 5(x - y) 8(x - 2)

= 1), 3300) 5 0k -0 - 196700, 3°00) g ol - 2)

-

- 1™ 5 %) B(y - 2) aT?k‘ 5(x - z) + Z(xy,z) . (1.h3)

In the above equation we have denoted by Z the sum of terms which.

depend on ‘jO?{k ) Due to covariance we have
04

‘[653 Z2(x,y,z) = J{ABk X, Z2(x,y,z) = O . '(l.hh)

Note that if one assumes Eq. (1.3) then one may also write

dey Oz 2(x, y,2) = O . | | (1.45)
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Next we multiply Eq. (1.43) by (x - y)m, integrate over x
and 2z, and use Eq. (1.44) to obtain (as a result of covariance, and

the ETC between charge densities only)

(@), 3,507 = 1 €™ 1,200 + ey - ), L350, o 5 2]

(1.46) "

Assuming Eq. (1.3) we then obtain from Egs. (1.4%) and (1.45)

[Q%(xy), o 7 ()] - [@°(x b M7 ()] = 1 *°° 3 5 *(x) . | o
0 H 0 [ B : S :
(1.h47) S
The above relation has beén derived in Ref. 7 by use of Lorentz
covariancé ahd the assumption that at most a FOST‘is present in the
ETC [Joa(x), a“'Jub(y)] and [Joa(x),_ka(y)]. In Ref. 3 it was
obtained assuming absence of NCT in Eq. (1.17). Our derivation

shows that it is a simple. . consequence of Eg. (1.3).

 From Egs. (1.40) and (1.46) evidently usual charge-current _ T
2,3,7

commﬁfators follow. From chariance we deri?e ih ﬁhe Appendix

" absence of ST in [Jba(x), M Jub(y)] for currents which obey field
algebra commutators with charge densities. Also in thevAppendix the , i
usual® symme try relatioﬁs for the FOST in [Joa(x), Jﬁ?(y)] are |

obtained from assuming at most a FOST in this commutator.v The

Appendiﬁ, in which we employ the methods of Refs. 2 and 3, is

N

independent of NCT in Eq. (1.17) and contains also a discussion of

the further consequences of Eq. (1.3). This investigation is motivated
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by ‘noting that only for éahohiéal currents absence of NCT [in Egs. (1.17)
or (3.4)] has been obtained.2’5’8’9 | |

it isbthe main purpose of Sec; v té investigate consequences
of Eq. (1.%1) for ETvaetweén currents and fermion fields. It is
argued in that section32 that large effeéts due to the interaction
term in Eq. (1.41) are to be expected in contrast to Eq. (1.46) in
which these effects are éxpected to be small. The relation in Eq.
(1.41) shows that it is in fact due to the interaction of the spin
1/2 field that deviations from the quark model result for
[Jka(x),'$(y) Yb] are possible (as pointed out in Ref. 9). Since
proportionality of.the NST of this ETC to Jrarm is incompatible9
with céﬁmﬁtativity of the space components of the cﬁrrents, we
immediatgly see that the algebra of field current commutators are
excluded if the fermion field is freé. In.order'té investigate the

compatibiiity of Eq. (1.37) with field algebra commutators we present

in Sec. IV the following model for the nucleon current

]

(e, PIB()] + Lo, v, %G) + ¢y & %0x) T ONx)

(1.48)

£,0%)

which may be interpreted by use of current-field identities. In
Eq. (1.48), P[@(x)] denotes an arbitrary polynomial of the pion field.
If'algebra of fields current commutators are assumed together with

Eq. (1.48) then the second term on the right-hand side of Eq. (1.41)

(the interaction term) is proportional to the first term. Thus,
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field algébr@ current commutators are compatible with Eq. (1.41)
[a consequence of (1.37)] and Eq. (l.h8) only if the right-hand side
of Eq. (1.41) vanishes, which yields the relations'(u,18)-(u.51).

Theféfore Eqs;-(l.Hiannd (l.&B) suggest thatBj
[3,7(x), ¥()) = o (1.49)

in case of algebra of fields commutators . (Note that the above
equation is also a4COnéequence of the canonical rules in case of
canoniéalﬂrealizations of current-field identities.Bu)-

- In the remaining part of Sec. IV consequences of Egs. (1.15)

and (1.17) are first discussed when they are combined with Eqs. (1.37)

and (1.49) and finally the consequences of Eqs. (1.17) and (1.18) for

currents dbeying field algebra commutators are obtained. The main

results are Egs. ( 4.1O) and (L4.42) which are obtained without any

assumption about the NCT in (1.17) and (1.18). We would like to note

-here that Eq. (L4.40) shows that in:canonical.realizations of current-

field identities one needs. derivative cOuplings involving the spin’b

one field,lTs18:34

L3
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II. CONSEQUENCES OF COVARIANCE

In the preseﬁt section22 we assume the Jacobi idenfities'
invdlving_'{[i Too(x), i Too(y)1, x(z)] and utilize Egs. (1.14)-(1.22)
and (1.24)-(1.29) to obtain relations connecting the ST in |
[1 T, (%), X(y)] with the"NCT‘in (i Tob(x), Y(y)]. In the above X
(Y) denofes either of the operators ¢, JYb’.JO’ Jys Jogr OT GO¢
(6wfnf oM Ju’ Jom? bOJog, Qr_[j¢). Our present considerations are
model independent since we only make some rather géneral assumptions
about existence of equal-time limits and validity of the Jacobi
identity. Since all the felations below are. obtained by analogous
manipulations wé shall only choose the commutators involving V¥ to
illﬁstrate the calcﬁlations and merely give the results for the other
cases.,

We start by writing the followiﬁg Jacobi identities
5 200(x), 1 Too()1, X(2)] | .

=T, (i), X(2))] - {5 7o), (5 Te(x), X(2)1].

(2.1)

In this equation X denotes either of the operators indicated above.

For X(z) = ¥(z), we use (1.15) and (1.21) to rewrite this as
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[1 T (%), ¥(2) 7] 5%,.6(5 -y) + [ TOk(vy),vv;l!—(z) 7, B%: 5(x - y)

390 (500 | N
— (.00 o, 3 3
' z@_;;_. [oogi 305 ¥(2) o] T 8(x - 1)

=[5 Too(0), 3 T 7,1 8(x - 2) - 3[4 To(0), 8 Txdn I - 2)
e Too()s () 7.7 8(x - 2) + 205 T (), 3 F(x) 1, 8(x - g)

1 - o S
+ VO T 5 8k - ) 5o 8(x - 2)
SRS £°0'k ox, .

.-__Il;_ﬂ_f(y)rzrork % 5(x - y) 3%, 5(x - z)
% . fa 5 . 5 ‘ |
v 5 > x%ci 3 T S S 5(x - ) =T 5(x - 2)
=2 @ 1 a ' ‘ -
°w) SN - -
- %- x(gg }(X) oV vy E 5(x - %) S, 5(x - z)
- . a;g - C 1 07 ‘
n0(y | N .
: . .00 : N
‘+ [l TOO(X)’ X.{ka)(z)] E‘; et 5{,’1{— 6(56 - ,%) _
o=2 : 1 o)
ol
, 3 5
- > [T y), xc{)g &) o o e 8x - 2)
o=p o N Xkoc_ '
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For a consistency check we first multiply the above equation by

(y - Z)m and integrate over x and y to obtain
: [P 70, W) 3 = - [y - )l mo), 2 F@) ]

v 3 jd3y(y - 2) [1 T (v), 3 W(2) v 0 + £ 0 T,y

IRIOR (2.3)

+
N

Using once again Eq. (1.15) as well as Eq. (1.25) we then obtain,

after some rearrangements

el R

[ - s 1o, # @) 1) -5 @@ ) v,

(2.4)

Therefore, comparison with Eg. (1.15) shows that O ¥(z) Yp
transforms like a spin 1/2 field, as it should.
Employing the same reasoning as above and using Egs. (1.1k)

and (1.17)-(1.21) for each of the cases X = ¢, I Jg;“Joz’ ?nd BO¢

respécf;vely we then obtain theé correct transformation properties for.
T : [:] |
aoq, 5] J“, Jop? aonz, and d. o |
‘We now return to Eq. (2.2) and multiply it by (x - y)m and

integrate | over X with the result
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-2[i T, (v), ¥(e) o= fd5><(x -y), (1 Tdé(X);rfB“. Tf(y)Yl;] 5y - &)
<3 [ - 0 1000, 3T 1 8 - )
< 0 30k g S - 0) - -l ), T
+ Bz -y, [t Too<y5’_ SETORS

0 (y)

NN .y 00 R i
5 - ‘/AX(X  Y)m K{ka}(%> Yo'k 5;;; | S;;; 5(y - %)

X 5%; 5(x - z)

'J/ABX(X = ) L1 Too(x), x?ga}(z)]a§ . ask 5(y - %)_-

Ky - fa

g d=2

(2.5)

Note that there afe no contributions from the highervorder ST in
Eq. (1;21).. Therefore ﬁhe resulting expressions are identical to those
which woﬁld be obtained By'use of Schwinger's condition.

Using Eqs. (2.h>vend (1.15) the above eqﬁation may then be

written as
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[i TOm(y)’ W(z) YO] ‘=. .-'% (y_ Z)m. [l Too(y): a“ J(Z) YH] .

- 11: M ¥(y) YHYmYO 5(y - ,%) + 9, T(y) LA _5(35 - z)

- %W(z}ro gj—m 5(y - z) + % vz Orr - r) 5;,8; 5(x - z)
%) 5 S | »
1 .
+5 [d}x(x - y) E {X{k ](X ayk ayk 8(,2- - E)
- 1 a :

o

) X | 00 , .\7 O e v '
X ey é(;g -z) - [i TQO(X), X{ka}b(Z)]g}g - 8(y - %)}
(\V)

a |
“ % :>: [k }<z> mayk it (20

a

Employing the same reasoning as above the collection of
formulas obtained for X = ¢, Jor Iy BO¢, and J,, may be written -

as

(5 Toy(3), Bz >1 - Xy - )y 2 TO'(,(y), 3P(2)] + 5 3,8(2)8(x - 2)
f OO - o
1 f@éx(x P)LE o), E 2 ¢{k (@] o e S - )

. Q= 0% )

(2.7)
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0T, Ig(2)] = -5 (v - 2)li T (), T (2)])

- Jo¥) —a—m 5(x - z)
oy

rNoo(Jk) | .
v 3 fd.BX(X - y)mJ g :Jf{?{ka}(X) 53? g%: (% - ¥)
A Q=2 1 o
X 5802 -
x 00 | '
- N(T,) |
- i TOO(X)’ . Jg?{ka}(z)] ask e a?,k b(x - Z‘,) » |
zéi;:i;~ _ 1 ) (2.8
(3 Tou@)s 3,(2)] = = 5 (v - 2), 13 7o), 35,(2)]
lg, () 80y - 2) - 3 (v) 332 5y - 2)
. NOO(JO)_ )
+ = fd5x (x - y) 4 jOO (x) o o 5(x - x)
2 ;E (k) X
n =5 05ty 5ykl ayka
\
n%(g,)
o) .00
X " 5(x - z) i Toy(x), E »Jg{ka](z)

| )
3 ... sx-at | (2.9)
e sv;”j |
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3 Do, (v), 3 B(2)] = -%(y_; 2)y (1 Too(), []#(2)]

3 .
- ao ?(y) gy_m 6(56 - ,%)

OO . :
() -
' ) . v
+']2; f a'x(x - Y) | E g—“{ﬁé{k }(X) gy—— yk— 5(x - K)]

—é— 6(x - z)
at |
Noo(a.¢)_ | - —
| . 3
- E (1 Too(x), Boo e (2)) 5 - 53— 8L = 2) ¢
e sk, ) aykl yka
: (2.10)
and‘v
[ Ton()s T, ()] = 32, () O - 2) - F I0y(2) gya'z‘ 5y - 2)

f‘%vgzm Jo(2) 5§Q’S<x - 2) ¢ 3z - )l To), 37 5, (2)]

W0(s,)

_1 o E - 400 (z) 55—— -~; 5;—— 8y - z)}
2 dz™ | - £5£ka} k k LoE a
. L =2 1 [0
o NOO(J ) ' |
1 0 oo 0
t3732 ZE Im; (k,, }( z) ay T oy By - 2)
9z | s B Ty
3 [ sy lingete, > 6, o )P e )
» =2 1 . 64 :

(2.11)
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We will next obtain the relatlon between the FOST in
[i TOm(y), V(z) YO and the second order ST in [i Too(y), M V(z) T ] |
multiplying Eq. (2.6) by (y - z)m and integrating over X- This }

gives

ffpy(y = 2), [ Tou(v)s ¥(z) 74l
- L [P -, - e, [ ), ¥ T ) . &

rTT

00 ' |
(2) o -

1 — 1 -
t =g _w(g) o * B V(2) v (r - T )+ M x
(2.12) -

Analdgously,_the results for the other casés may be written as
Py(y - 2) i T (), p2)1 -
- n Om*Y 77 » _

- -} [P - - ) 1), 3] + 2, ) -

(2.13) j

[&v - 9,0 1,00, 341 ‘
1 3 . n 3

= -5 Jayly - z),(y - 2),[1 Tyoly), 077 (2)] 5
2 f . n 700 i . pi

b g To() + % (2) (2.11) 3

H)
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[t - 0,55 1,00, 3,21

= = % erBy(y - z)n(y = z)m[i Tob(y), Jog(z)]

5 JOO

’“Ligxz J()J“ao zmn() %2 J0;mn

(z) , O (2.19)

RN ORI IO

- -1 [a5y<y - 2), (7 - )t To), [ )]
v g AB2) + 3B (=) + 39 8, P, (2.16)

and . -

| [ yly - 2) (1 Tom¥)s J,(2)]

-1 [a5y<y S 2, = 2yl Tyg@) 3 g, (2)]

1 1 .00

-5 8 Jon(z) + 58, Iy ( ) + 8 oy mn(z) . : (2.17)

Note that Egs. (1.30)-(1.%5) (which have not been used in the preceding

calculation) emerge from the above by antisymmetrization in m and n.
Next we multlply Eq, (2.2) with (x - z) , integrate over X,

and use Eq. (1.15) to obtaln
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[1 T, (), ¥(z) vy] + %(y.- z), [1,6% To (V)5 ?(Z) Ty

- % 3 W(z) ¥, 8(xy - z) + -'g- 117(2') T (T - T ) 'gf,—k- 5(x -_}Z,)
Noo_w) |
- % Y deX(X - z) [i TOO(X), tk }( z)]
G2
L1 X?g (@ T, '85 e a? 8(y - z) . . (2.18)

Note once again that the ST in Eq. (1.21) have not contributed. By

an analogous procedure we obtain for the remaining cases the following

list of formulas

(3 To(3), #(2)) + B - 2, 12 3% 1, (9), 9(2))

- 13, ‘¢<z> o on)

Noo( - R -
E [dBX(X - z) [i Too(x), ¢{k }( z)] ay agk 5(y - z),

a
(2.19)
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[3 Doy (), To(2)] +3(r - 2), [ 3 1, (), 35(2)]

- 13, 5,0 o - 2)
NOO(J )

:E 500 o 3
m {k }( z) ayk v ayk 6(X - Z)

=2 1 o

o

UCRL-19438

o9

x° (J
E ]d5x<x - #)aliTo0(); 30 e (7)) ay

_1 oy - 2)
2 Byka LR
(2.20)

3 10,5 3,(2)] + By - 2), [1 3 1 (v), 7,(2)]

= % J.,(2) 8(x - z) - % J.(y) —éz 5(y - z)

) .
t7 8y Ty (2) 3, oy - 2)
. NOO(J )

"3 ;_ 80{1: () = S - )

B 55 kl ka

%, '

1 E Joux - 15 10000, 455 , }<z>1 éy m - B

(2.21)
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(i Tom(y)) aO ¢(Z)] + %(y - Z)m[iaF TQk(y)’ aO ¢(Z)] .

B NOO -
320 B -2 - 3> A (o) o
| oz o k

=2 1

UCRL-19438

I\)li—‘

Z fd5x(x - Z) i TOO(X)’ ¢o (k, } 2)] ésark

8T, 3,(a)] + B - 2, 15 8 (), 9,020

3

- +3 gya— Tos) B - 2) + 3 5 € Tox(?) 3, o - 2)
- 5 3,.(2) g‘i‘z' 5(x - 2)
NOO(J )
-1 Z‘i’jgﬁ{k}z) S oo -2
2ot | L gﬂ{ &;&
%ﬁoo(Jz) ‘

i
ol F ol
 |o
B
. Cte
= O
we O
e
Q
w/_\
N
S
o
5
- Q/
(o4
—~
&
1
N
"

)
P

5 8(x - z)
kO!
&)
‘ o(x - 2)
o v
1 R
(2.22)

(35,)
0 e
E fd5x(x - )l T, 3, ()] g§;— o -2

1 a

(2.23)
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We would next like to obtain relations between the higher

order-ST. To achieve this, we multiply Eq. (2.18) by (y - z)n

_ . o 1
(y - z)n , integrate over y, and use Eq. (1.25) to obtain
2 ~ ' : ' .
O n 3 00
(2) + tgy (2) + 2, 502 jdx<x-z)[mo<x>,nn<z>}
12‘-, 12
- .00 '
+ WY (2.24)
0
%0, T0Tn |
From the above equation it is easy to derivevthat xom = O.‘whenevef
: 12
gon - 0. In fact, when Xgon -0 Eq. (2.24) gives
172 o 172
~ On ~ On -
Om 1 2
X {z) - x “(z) -x —(2) = O C (2.25)
nin, mn,, n, m
and
On2 :
nlm( z) - x ( ) - an G ) = 0 . (2.26)
Adding these relations we then obtain
,Onl _ .
-2 x “(z) = 0, (2.27)
mn g

the desired fesult.

We next derive the ana2logous results for the ST of third order

by multiplying Eq. (2.18) vy (v - z)n (y - z)n (y - z)n ,
- . 1 2 3
integrating over 7y, and using Eq. (1.25). We obtain
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O
-3txnnn5<>-x ()—xnmn()-x ERO)

1Mo n n m

= jJ/ABX (x ',Z)m[i TOO(X), Xn (z )] +3 Xn 0 (Z ) . (2-28) 

17" 5 - v 123
Once again it follows: from the above that X = 0 implies that
Om - Aptipt 5 00
*pn n = 0. To see this, we write Eg. (2.28) "when X g =0 -
17273 , 17273
We obtain |
dn On' ' On5
(2) - %y, (2) - (Z) - %, pon(2) = 0
yhoh 3 mmon 3. l _ 172 :
o (2.29)
and
On On On o -
(z ) - X, ( ) - X (2) - " (2) =0 . (2.30)
mn2n5 | n,mn nlnem nlngn5 " |

Adding and subtracting these equations we get

On2 On

: nlmnB lnzm

“and

1

[
O

(2.32)

P :
(2) = X ipige (2)
ln2n5 Xn n2n3 '
. 1 - (] . .! — 1 = .
Checosing m =Ny, Dy = n5, n, = m, n3 n, and uslngrthg symmetry
of Xgm in the lower three indices we obtain from (2.32)

1723

t

w2 @) e D () = 0 (e

®
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On2 On3 S o '
(z) - (z) = 0, - ' (2.33)
R RCEDR
which upon-oomparison-with Eq. (2 31) shows that x ( )

apnoh 3
vanishes Clearly an analogous reasonlng may be performed for higher

order ST but we shall not do so in this paper since the generallzatlons
are nOW'apparent

Ou1‘results1nay be . schematlcally expressed as

‘/éix(x - y) ’]hiz(x - ¥, [1 Ty (X), X(y)]

( o o o u
Z¢(¢ki,...,kR) o for X =§ » (2.3k4a)
z;( 00 )' N | For X = W{ (2.34b)

T XklkR : . | = VT, .
.00 00 - ’ o
ZJO(Jo;kl...kR; Ik [.nkR) - for X =4J, (2.3he)
00 S |
(3 3 ) for X =J (2.344)
= ( 1 kg “03ky -k £
00 00
Zy (P e B i) for X = 9,8  (2.3ke)
X P, ks P03k g of
OO . . E.
(J Lol ) for X =J., (2.34f)
L' Top o0msky «oelps T23k - ook oz

since analogous calculations may be performed for the other choices

of X. “In the above we have denoted by Z those linear forms in.the
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ST obtaihed following the procedure indicated. Note that they vanish
whenever the ST vanish. » .
To obtain analogous results for commutators involving TOO
. -~ M o
and Y, with Y = 50¢xBPW¥h, a'Jp"JOm’ [:]Q, or- BOJOm we return

AT (v - 2),

to Eq. (2.6);v We multiply this equation by (y - z)n
R ' ' 1 i=2 i

(R = 2,3) 'and integrate over Y- The explicit non-ST on the right-

hand side do not contribute and we are left with a relation expressing

the ST of order R + 2 in [i»TOO(y),'aH V(z) Yu] in terms of the ST .

of order R +1 in [i T (y), ¥(z) v.] and 700 I
om 7o 6 k)

xgo... . Using Eq. (2.34b) we then obtain a relation expressing
17" "Frae - _ |
the ST of order R +2 in [i TOO(y), M ¥ (z) Yﬁ] in terms of

00 00
, e , LI B *
fep ey o Moyt g
schematically represented as

Our results for the different Y may be

|
|
i
1
i
!
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e ' : ‘/gix(x - y)m (x - y)nl/}f“{2x - Y)ni [i TOO(#)’ Y(y)]

1:2
¢<¢ B ) Cfor Y =3 (2.35)
Kykpyroey Thyteokp o | . . g
00 o= .
Z—( .. .. ) for Y =0V r
Xk1k2’ » My L W
(2.25b)
2 (3 Joo 400 400 )
- . b4 oo’ . PP
Jg "03kg Ky, e ee” “05k kR+2 I klk2’ m3ky <t Kp o
for Y = a“Ju- (2.35¢)
2. (3 400 , 400 400 )
s o8l . . > . eee’ . “o
= Ty msky Ko miky oo ekpyp TO3K Ky 05 Kyreekpio
for Y = Jg. (2.254d)
- 00 00 00 oo
Z. (¢ ceed .. 3¢ ¢
AL VIR S SRS SP R el kR+2
for Y = [:]¢ (2.35€)
g ' (J Joo Joo joo )
oo’ , P4 . ‘e
Tog "0k g, m e TOksKy T g o Th R, b3ky kg o
. - L for Y = ao Jog

(2.35%)

The explicit form of the 2 (which vanish whenever the ST
. vanish) may be obtained by performing the manipulations described'above,

takihg into account the explicit forms of the equations used.
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IIi. COMMUTATORS IN CANONICAL THEORIES
We obtain in fhis Sectidn some equal-time commutators of

Tou

with currents and fields in canonical theories with basic
céﬂonical'fields of spins O and 1/2. We will sometimes also assume
that'the:interactioﬁ Lagrangian dpes not contain derivativeslof the
spin 1/2 field. If‘canonical variables of higher spin are present,
a genéraiization of our derivations under this assumption reQuires
absence of derivatives of any field carrying spin from the interaction
Lagrangian.' In obtaining these commutators we will alsb makevuse of
the information obtained in Sec..II.l

We start with some remarks concerning the canonical energy;
momentum tensor ®MV énd the symmetric energy-momentum tensor Tuv
(the génerator of local Lorentz transformations). The canonical

tensor is given by Noether's theorem as

00) = TR A A0 e, B, ()

while the symmetric energy-momentum tensor Tuv is defined by

Fron e ey 3N . e
THV (x) = @Mv(x) .8 fxuv(x) . » (3.2)
We employ‘the formalism of Ref. 15. However, we choose the adjoint
of the Tuv given there as our symmetric energy-momentum tensor. This
will prove convenient and is possible even if Tuv is not Hermitian,

since the non-Hermitian pa}ts can not contribute to Egs. (l.l) and

(1.2).
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The canonical energy-momentum tensor ®Pv has the advantage

that equal-time commutators such a535

[ 8, (x), V()]

BV ok ), (5.3)

[1 0o (x), 3o(1)] = & 3 (x) B(x - 0+ 5 (x) 5%2 o5 - 1)

(3-4)
(1o (x), ¥()] = 3 w(x) 8(x -x) (3.5)

and . _
T80, B = =300 FHo-w)  (2:6)

are readily calculated, while if we consider the analogous commutators

: ' : - e .8
with Tuv replacing QHV we note that [i Too(x), V(y)] is different
from [i ®oo(x), w(y)] [see Eq. (3.15) below], [i Too(x), Jo(y)]
o 36 e giN w gy . |
is the same”  as [i @Oo(x), Jo(y)], and [i TOm(X)? ¥(y)] and
[i TOm(X), Jo(y)] are in general not completely determined unless

additional assumptions are made.36 Incidentally we also note that9

(1 000 (x), ) 1) = 3 ¥00) v 8 - 1) + T 55 0(x - ©)

'k
(3.7)
Evidently Egs. (3.3) and (3.7) may not hold with T, replacing
8oy due to covariance [i.e., Eq. (1.2)]. Since for any canonical |

9,15

variable ¢a one derives
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[1 00000), J0)] = 3 0,00 B(x - w) (5.8)

one finds from covariance that

Mbi = - ‘/ij X, @OO(O, X) - _ (3.9)

can hold only if all the basic canonical variables have vanishing spin.

similarly Eq. (3.5) with 6,

replaced by TOm‘ would be in contra-

diction with Eq. (1.31). These facts have already been discussed in
the introduction. It should also be noted that eveh though the equal-

time Eommhtatofs involving | are in general different from those

Op.
involving @OH . they give the same results in some instances.8’9’57
We will next derive XOO = 0 without making any assumptions

about derivative couplings. .To this end we note that for spin 1/2

S Eq. (4.18) of Ref. 15] is given b
pviop  LBde (4.18) 5 g oy

Spvias = % (YQYQ -'vah)v. (3.10)

Thus we may write [Eq. (4.19) of Ref. 1k]

fmoo(x)A = %’“(X) (ohy = ) i,  (3.11)

AN

where g is canonically conjugate to ¥

w) - —Z—  Ga2)

&
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In the above ¥ denotes the éahbnical field to which V¥ 1s assumed
to be proportional. We also note that if derivative couplingsvinvolving

Ve
¥ are absent one has

L Ty - - (3.13)

aamW(x)

Now, from Eq. (3.11) one easily obtains (using the antisymmetry
of f in the first two indices) | |

o) = 060 = § (T, - T YT

Then from Egs. (3.2) and (3.3) one obtains
—s

[i TOOT(X), vaW(Y)] = M th(x) 5(& ;.x) + %VYkW(X) 52; 5(x - %)

(3.14)

or

[1 Too(x), ¥(y)r,l = 3" V)T, 5(% - x) ¥%W(X)Yk§}—{ 8(x - ¥) -
(3.15)

Next, for the time component of a canonical'currént defined by
a, . b c a ' :
I (x) = -1 (x) ¢°(x) Fy,” 5 (3.16)

where 'Fbca are the structure constants of the group considered, we .

use Egqs.(3.4) and (3.16) to obtain (J. is Hermitian)

0

[ o), 301 = 3 5,(x) 0 - ) + 5 (x) e 8lx - ) -

(3.17)
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(To derive the above equation it is sufficient to realize that
M fuoo(x), Jo(y)] contains at most a FOST and thus the result follows
by covariance.)

Next we assume absence of derivative couplings involving V

and obtain from Egs. (3.10) and (3.13) [using Eq. (4.18) in Ref. 1k]

M _ Llam — Tl "
9 fopn(x)} = 3 o {n(x)(YmYn ) v(x) + k4 i a(x) v(x)} .
(3.18)
Since the above expression contains only canonical variables we may

calculate [i Toﬁ(x),tg(y) Yb]. We obtain

[i TOn(x)-’ 117(?) ] = ‘é’an ﬁ?(x)' .
RO ) T o0 - 3T et e w) L
| SR -

(3.19)

Now, since due to Egs. (2.34b), (2.35b), (3.15), and (3.19), at most
‘a second order ST is contained ip [i Too(x), ?ﬁ(y)Yb] [fm has beenu
~defined in Eq. (1.42)] and at most a FOST in [i Tom(x), V(y) YO] we
obtain from Eq. (2.12) and covariance that Eq. (3.19) is equivalent to
>

. N T N _ 1= 3 . .

' (3.20)

Therefore,'Eq. (3.20) is derived for canonical theories which do not

. ~ ,
involve derivatives of V¥ in the interaction Lagrangian.
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Our next task is to determine the commutators [i TOO(X), Jk(y)},
i ' : " . . : )
[i TOk(X)’VJO(y)]’ and [i T, (x), d Ju(y)] in canpn}cal theories
under the assumption that the interaction does not contain derivatives
of the fermion field. We will make use of Eq. (3.6), obtained in Ref. 3

and show under the present assumptions that the additional terms in the

definition of TOm do not. contribute so that
[10, (%), 3,(5)] = - 5 (x) == 8(x - x) - (3.21)
Om*™/? “0 0 3 X - )

The relations in Sec. II will then be used to derive [i TOO(X),'Jk(y)]
together with further commutators.
The derivation of Eq. (3.21) from Egs. (3.6) and (3.18) is a

straightforward calculation. Using the associative law and defining

an by

L. = 17, =TT (3.22)
we may write

[T (%) = 80,(x)5 3% ()]

R ACARORRORRORNOIE R
| o Q 0 3 ‘ e
+ hg [ %) ¥, M), 70 ¥ T FS) = o

(3.23)
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We next note that due to Eq. (2.20) it follows from the absence

of ST of higher order ithan one in Eq. (3.21) and from Eq. (3.17) that

08 7050, 3,01 = 30,00 85 - ) - 30) 5 8 - ) -
(3.2)

Note that in obtaining Eq.(%.24) from (3.21) the special form of the

FOST was not needed. Therefore, Eq. (3.24) depends only on the absence

of ST of order higher than one in Eq.(3.21) and on the absence of NCT in

Eq. (3.17). Now, due to Egs. (2.3hc) a@d (2.3L44) absence of ST of order .

higher than one in Eq. (3.21) and in the commutator [ivTog(x)’ Jﬁ(y)]
follows from Eqs. (3.17) and (3.24). It also follows from these

equations [using Eqs;v(2.25c) and (2.25d)] that no ST of order higher

00

Jog- Thus [Eq. (2.34a)] in this case ST of order-higher than two are

' : . . 1
also absent in [i TOm(x), d JH(Y)]'

than two are present in the commutators of T with B“JLl and with

,ﬁext; assuming Egs. (3.17) and (3.24) we show that Eq. (3.21)

and -
(), F ) = I ) (e2)

are equivalent. Then, since Egs. (3.17) and (3f21) are dérived for
certain16 models- and since, as shown above, Eq. (3.24) follows from vv.
Eq. (5;21),‘this establishes the validity.of Eq. (3.25) in these models.
To prove the equivalence, we note that Eq. (3.21) follows from Eq. (5.25)
since [Eq. (2.3hc)j_at most a FOST is contained in this commutator

which [Eq. (2.14)] is as given in Eq.(3.21). Assuming Eq. (3.21), we
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first note [Eq. (2.35c)] that at most a second order ST is contained in
[i TOO(x), o+ Ju(y)]. This:ST‘also faniéhes [Eq.'(E.lh)] and Eq. (5.25)
follows from covariance;v Thus, Eq. (5.25) is indeed a consequence of
Egs. (5.17) and (3.21).

Furtﬁermore we note that as soon as Eq.(3.25)1is established,
absenée of ST of order higher than two in [i Too(x),.ao M Ju(y)]
(Eq. (2.35&)1 and of order higher £han one in [i Tom? oM Ju(y)]
[eq. (2.3ha)JIfollows [note also Eq. (2.13)]. In addition from Egs.
(5;17) and (3.2A)li£ may be seen that ST of order higher than two are
absent in [i TOO(X), M Ju(y)] [Eq. (2.35¢)] énd in [i TOO(X>"JOZ(y)]
[Eq. (2.354)] ahd thaf.ST of order higher than one are absent:in

[i TOm(X);‘JE(y)]’[Eq. (2.%34d)]. Note also that the relation
[t - ), 1 1,00, 500

= 8y, 7,00 - [l -2, O - 2, [ 1), Tou(2)) (5.26)

[Eq. (2.15)] connects the ST in [i TOm(y), Jﬂ(z)] with those in

1 T (r), Tg,(2)]

‘We would like to investigate next scalar fields P(x) which are
proportional to cancnical ones. For example; the divergence of the
axial vector current in Langrangian models of PCAC has this property.

15,9

Since, for such fields

[160p(x)s J] = 3 g(x) 8(x -x)  (5.27)




-Lo- , :UCRL-l9h58

and

(1 00(0) = 1 10070, 9] = o  (3.28)
we have
(5 Too(x), F)] = 3y 90x) 3¢ - ) - - (5.29)

If the coupling does not contain. derivatives of the fields

carrying spin we have (since ¢ is Hermitian

[1 Tou(x), )] = 3, ¢) 8(x - ) - (5.30)
[Absence of ST-df order higher than one is already a consequence of
Eqs.(2.3hé) and (5.29).]_‘From Egs. (2.352) and (3.29) ﬁe learn that
at most a secénd order ST is contained in [i.TOO(X), BO ¢(Y)}v and that
this term vaniéhes due to (5.é9), (3.50), and (2.13). Thus it follows

(using covariance) that

(1 Do), 3 91 = [J960) 8k - ) + 3, 9 52; 5(x - 1) -
| | (3.31)

This relétioﬁ, which may have been obtained easily from the formulas
given in the Appendix of Ref. 9 if 806 is canonically conjugate fo
8 (i.e., if derivative couplings involving 6’ are absent) now is seen
to be valid e%en when the couplihg contains derivatives of ¢.

Using Egs. (2.13), (2.3ka), and (3.29) one may evidently also
derive Eq. (3.30) from (3.31). From (3.29), (5;51), (2.3%ke), and

(2.25¢) it follows that ST of order higher than two (one) are absent in

the ETC [i T, (x), g(y)1 (L1 Ty (%), 3y #(¥)1}.
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From Egs. (3.31) and (2.16) we thus obtain equivalence of the relations

11 (), 3 )] = - 3, ¢<x)§56<§-g>  (332)
and

5 0000, (] + %) #6)1 = ([ +n°) 3, #6) 8(x - ©)
| (3.33)
Note that Eq. (3.32) is a consequence of the canonical rules in case
that derivative cbuplihgs are éompietely'ébsent.
The fdllowing statements summérize the content of the abo&e
discussion. | |

Statement la. Assume Eq. (3.15). Then:

(1) There are no ST of order higher than one in -~
[1 Top(x), T()I. o
(2) The Egs. (5 19) and (3.20) are equlvalent

Statement 1lb. TFor a nucleon_field proportional to a canonical

field ¥ Eg. (3.15) holds. If the interaction Lagrangian does not
contain derivatives of V¥ then in addition Eq. (3.19) holds [and
consequently Eq. (3.20) holds.]

. Statement 2a. Assume Eg. (3.17) and at most a FOST in

[i TOm(x), Jo(y)]. Then Eq. (3 2k ) follows

Statement 2b. Assume Eqs. (3.17) and (3.2L4)., Then:

(1) The Egs. (3.21) andh(5.25) are equivalent.
" (2) ST of order higher than one are absent in the commutators

[i TOm(x), Jb(y)] and [i TOm(X)’ Jg(y)}.
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(3) ST of order higher than two are absent in the commutators
[3 To(x), 3 3, (1)1, [1 Tyo(x), 3o, (7)1, end

3 1o (), 3 3 ().

Statement 2¢c. If JH<X) denotes a canonical current Eg. (3.17)
holds. If the interaction Lagrangian does not contain derivatives of

¥, Eq. (3.21) holds [and.'consequently Egs. (5.2&)'and (3.25) also hold].

Statement Ba; Assume Eq. (3.29). Then

(1) The Egs. (5.30) and (3.31) are equivélent.

(2) There are no ST of order highér than one (two) in the ETC
[ To(x), 3 B(3)] (13 T0(x), [] A1)

Statement 3b. Assume Eqs. (3.29) and (3.30). Then Egs. (3.32)

and (3.33) are equivalent.

Statement 3c. If @#(x) 1is a canonical spin zero field, Eg.

(3.29) holds._ If the coupling does not contain derivatives of @,
Eq. (3.30) [and consequently (3.31)] holds. If all deriﬁative couplings
are absent, Eq. (3.32) [and consequently (5.53)] also holds.

Finally we noté relations analogous to Eq;(i.B) which.may also
be obtained.v This relation itéelf (as noted in the introductionj
follows ffbm Eq. (3.17) and has thué'been derived for qanonical currents.
Analogously we may derive Eq. (1.7) from Eq. (5.i5) (which holds for
~all spinor fields V¥ proportional to canonical fields). If the
cpupling does not con?ain derivatives of @ we may write [from Eq.

(3.20) and statement 1Db]

It

Jéy 12000, T ) - F 0, -EEE
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From Eqs. (%3.21), (3.24), (3.25), and with the assumption of Eq. (3.34)

we have (using statement 2c)

?[é3y [, (x), J,(0) = O, (5.35)

,dey [i TOO(X5, 3.1 = 3,6), o (3-36)
and . ) . - ) .

vﬁ%H%m&Hwﬂ=%¥%M- (5:37)

If ¢ is propoftional to a canonical field it follows from Eq. (3.29)

and statement 3c that
J{d5y [i'TOO(x), B(y)1 = 3, plx) (3.38)

If the coupling does not contain derivatives of Yy it follows from

| statement 3c and Egs. (3.30) and (5.31)

d[€5y (1 Tog(x), $(v)1 = o #(x) - (3.39)

and -

dey [i TOO(X), ao #(y)] = D¢(X) . ' (5.&0)

If the coupling does not contain any derivatives of the canonical.

variables we obtain from Egs. (3.32), (3.3%3), and statement 3c

dey (i TOm(X), % #¥)l = o . (3.41)

and

i

[+ 5 2 900 -

dey (i TOQ(X), (D+ n°) B(y)]
| | (3.42)
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IV. SELECTED APPLICATIONS

Applicationsﬁdf thé relations“obtainedvin the piecediné sections
may be distinguished as to whéther the result depends:on |
_absence of NCT or as to whether it depends on the specific form
of the FOST in Egs. (1.24)-(1.29) obtained in canonical theories.
Those applications whiéh oﬁly depend on general assumptions such as
existence. of equal-time limits and Jacobi identities will as such be
of a much higher generality than the others.

First let us consider the applications to the ETC assumed in
Eq. (1.37). We then note” ! the validify of Eq. (1.38) (assuming usual
su(2) Qb SU(2) commutators between charges and currents) and write
the Jacobi identity for [i TOO(X), [Joa(y), V(z) §b]] making use
of Egs. (1.15)‘and (1.17)

M ¥(x) r* T 80k - 2) 8(x - 2)

noj =

[3,2(x), T(z) 7] 3}% 5(x - x) -

T(x) r* 3;5;‘1: 8(x - z) d(y - z) + %; () rr 5—% 5(x - 08z - 2)

+-

e

ST 1 522'6<% S8 o - ) - 13 9000, Te) 1) o - )

- 152), FFE) 1) 8 - 2) + 2(y,e) (k1)

In the above equation Z(x,y,z) denotes the sum of the contributions
from NCT; it has the property stated in Eq. (l.hh). We have also

defined
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1«
5 3 ).

S = )

ERECY (h.2)
In Ref. 8-and 9 this equation with Z = 0 has been obtained if NCT-
are absent. Multiplying Eq.(4.1) by (x - y)m, integrating over x,
and using Eq. (1.4L4) we obtain '

' a o
[3,°(@), ¥(2) p) = T) 5 % 00 - &) + iz - y), L), )

| | (%.3)
wheré £~ has been defined in Eq. (l.h2).. Note that Eq. (4.3) has
been obtained in Refs. 8 aﬁd 9 assumiﬁg absence of NCT-énd is thus seen
to hold independent bf fhis'aésumpgion; Wg ﬁext discuss the dependence
of the further results of Refs. 8 and 9 on the model dependent assump-
tions madé there.
' We multiply Eq. (4.1) by v(x - z)m_ and integrate over g to

obtain

13, 2(y), T(2) 5] + (3 - 2), 5 (956, T 1)

A NE o R COPRTC I A IR (R
JIntegrating the above equation over 'x we obtain
J RN A O O B I ()

i.e., the above ETC has no FOST if one writes its ST with arguments z.
.This result has been obtained in Ref. 27 by a more explicit use of
covariance. Multiplying Eq. (4.4) by (v - z)n and integrating over ¥y '

we‘obtain
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[ & - 2, 1550, T2 1)

= - J/ABy (v — z)m (y - Z)n [+ J“a(Y), V¥ (z) Yb] . | (4.6) ] ;i

~ Thus for conserved currents FOST are absent in [Jma(y), W(z)_Yb].
Furthermore it may be seen by multiplying Eq. (L.4) with
(v - Z)ni...(y -'z)ﬁ, integrating over y and using a little‘élgebrai
that for conserved currents also»no ST of highér order ére contained
in this commutator. This_résult has also been obtained in Ref. 27 by
a direét uée 6f covariance. In Ref. 9 this result.has Been used fo
obtain Eq. (4}5) for the conservevaector currents. We notejjlpassiﬁg
that the x-integrated Eg.(L4.3) for conserved currents is a simple |
consequenée of the Heiéénberg equation of motion. : o .
Applying the manipulations described abo&e to Eq..(§.6) for
i Ju # 0 relations between ST are obtained. Tvobtain the MOst
powerful results of Refs. 8 and 9 one must assume the yalidity of
Egs. (3.15) and (3.17). Then 2Z = 6 in Eq. (4.1) and integration
over y shows the absence ofvST in the £TC [J" Jua(x),'W(y).Yb].
Multiplying Eq. (4.1) by (x - z)m (x - y)n, integration‘over vxv shows
then also ﬁhe absence of ST in.the ETC [Jka(x), f(y) Yb] for nonconserved
currents.
It is evident that Eq. (1.37) is é naturai assumption fof
current-field commutators in a model in whiéh ¥ is proportiénal.to a

. . a ; . X . s .
canonical field and JLl (x) 1is a canonical current since this equation
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is then a formal consequence of the canonical rules and the associative'
law. Since formal agreement with current algebra commufators might
therefore Ee expected, no such direct formal argumeﬁt for algebra of
fields‘coﬁmutators exists and it is not at all clear from the outset

if the assumed current—field commutator (1.37) would be in formal
agreement with algebra of fields.commutators. The answer‘depends on

the ETC between space components of thevcurrents and the fermion field."

8,9

Sinee proportionality of J/e;x[Jhé(x), V(y) TO] to J(y) r* T,

(the quark model result) excludes (using the. Jacobi identity for

de?x dEy{tJma(x), an(y)], V(z) YO] commutativity between'the"space
components of the currents, Eq.(4.3) shows that for a free fermion
field.the field algebfa commutators are in fact excluded. However,

32

one expects’™ in Eq. (4.3) large effects due to the interaction term

[we shall e#hibit below a model fer the nucleon currents for which the’
right-hand side of Egq. (4.3) vanishes], in sharp distinctionvfrom ~

Eq. (1.46) in which the deviation from the twice integrated curreﬁt
algebfa cemmutators is due to ST in [Joa(x), M Jub(y)], a term which

is ueually assumed to arise only in electromagnetic or weak interactions.
Incidentally, note that the'associative law and canonical rules do not
allow for a.ST in the ETC between the time component of a eaﬁeﬁical,

5

current and a canonical field. The presence of such terms” in
[Joa(x), M A“B(y)] in case of minimal electromagnetic coupling shows
an immediate conflict between formal reasoning, PCAC,'and minimal

electromagnetic coupling.
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We shall next investigate

[, 0), ) vg) = 0, )

which using the Jacobi identity involving

[(7200, 350, T2 e

is equivalent to
[v,"(x), ¥() 7,1 = 0 . (4.9)

In order to motivate the above choice we first mention that
Egs. (4.7) and (4.9) are simple consequences of the canonical rules if
current-field identities and PCAC hold. Next note that the above
choice is the only possibility to express current-field commutators as
' 1inear'forms in V¥ and its space derivatives which is compatible with
ithe algebra’of fields. As another justification of Egs. (H.f) and
(4.9) we will give é model for £~ for which these equations hold.

Consider the part of the nucleon current fm which may be

written as

£(x) = (1 ™ au - m) ¥(x)

o (lgx)] + [c, Vuo‘(x) + e, Auoc(x) Sha 3 y(x) ,
: (L.10)

where P[¢(x)] denotes any polynomial in the pion field with the right

gquantum numbers. Concerning the part of the nucleon current not
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contained in Eq. (4.10) it will be sufficient for our conclusion to
assume that its equal-time commutator with JOa contains no FOST.
 We assume field algebra commutators for the currents and define

the c-number ST by

b d
— °x - %)
ax t

(h.11)

[02(x), 3,°()] = 1™ 5 5(x) 8(x - ) + ic 8

Next we remark that due to Eq. (4.11), PCAC, Eq. (1.46), and the absence

of ST of order higher than one?® in the ETC [Joa(x), M Jub(y)] we

may write
3 . 'a b .
]d x (x - y), [3,2x), ()] = o.  (4.12)
| We define nOrmaiized Ty Al’ and p fields byBu
Moy O _ 2
Falx) = m° 1 “(x) | (4.13)
[0 1 O (04
a M(x) - §X—[fﬂ 3, () + 4 T()1 (4.14)
1
and
(04 1 (0 :
VH (x) = §; VM (x) . (L.15)

Next we integrate Eq. (4.3) over y and obtain

a

faBy[Jm%), W2) 1) = W) Evoe ngy i(z - y) [3,2(), 1, T(2)ry)
(u.16)_



-H2- ' UCRL-19438
Upon use of Egs.- (4.10), (k.12), and (4.16) it follows that

fd3x (5. 2(x), ¥(y) vy) = (-epe +3) V@) 71 (4.17)

Using the Jacobi identity for J[d5x dBy’ﬁJﬁa(x), an(y)], W(Z)TO].
one sees that Eq. (4.17) is incompatible with the assumed commutativity

~of . the 'space components of the currents unless

2¢c ¢y = L ‘ o (u.18)
and

2c ¢, = 1 o (hi19)

‘We now use Egs. (4.13)-(4.15) to express the nucleon current

in Eq. (4.10) in terms of the normalized . f, Ay, and p fields as
£, ()

t | . a
- BIAGT ¢ (g3, 0700 35 + g, v v gy a6 ) )

(4.20)
where ﬁe have defined
gy =25 fy , _ o (h.21)
i.e.
-1 1 - ' o .
gn,fn = < . . : (4.22)
’ -1 1 ' |
g, f R = = ()4-.25)
Al Al c ’
and
- 1
g £t - 2. (k.2k)
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comparing Egs. (4.23) and (4.24) we obtain

C(h.os)

A more detailed result is obtained if one saturates the vacuum

expectation value of (4.11) for a = 1-3 by the p meson intermediate

state. Then
2 -2
c = f m L.26
Za 2, (v.26)
which, combined with Eq. (L.2k) gives
2 -1
= M f )—!—.2 ;
g, >t ( ,7)
Combining this with Eq. (4.25) we have
2
To_
Al Al fD2 |

Assuming validity of

39

function sum rules

f
Al

Thus Egs. (k.25) and

and

the usual saturation of the Weinberg spectral

one has
(4.28) may be written as
- k.20
gp (k.30)
2 2 -
m /0 ) -1
_ FQ‘ - m_P_ mg < £, (k.31)
S . A 1 M1
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Having discussed a nucleon current such that Egs. (4.8) and
(4.9) hold we would next like to obtain consequences of covariance for

this case. From Eq. (4.3) we obtain

TO) = 8- 8) = iy - 2), [5°0), £ 70 ) (h32)

or equivalently

0 = (v - 2), "2, W(z) ) = (- 2), 17 3, T(e) )]
(k.33)
i.e., fhe result obtained for the nonconserved axial current from
assuming absence of NCT in‘Eqs. (1.15) and (1.17) now hoidé due to
covariance even if NCT ére present in these equations.
Next we use Egs. (1.15) and (1.18) to write the Jacobi identity

inViningv {i TOO(X), [Jﬂa(y),-J(z) Yb]] as

{2 Toot)s 13,200, T(=) ] = 19,°(), 3 ) 1] 8(x - 2)

X

-1 ga; [3,%(v), $x) ] 8(x - 2) + 303,%(v), ¥(x) 7] 52; o - 2)

& E .
+ [Joza(X), ¥(z) %l 8(x - x) - ¥(x) .g_ v, 5(x - 2) _a% 5(5_ 0

+ 7(x,y,z) . , (ﬁ,3h)

Under the present assump@iohs of Egs. (4.8) and (L4.9) the left-hand

side as well as the [Jza(x), V(y) Yb]' terms on the right-hand side
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vanish., Multiplying the above equation with (x‘r z)m and integrating

over x we thus obtain

(y - 2)

w090, @) W) ) = 0 5 (4.35)

i.e. in canonical realizations of current-field identities with
. ~
canonical fermion fields V¥ we have

v - =), [556§§;E;7 - 3,20, W) vb] S0, (b36)

due to the canonical rules. Multiplying Eq. (M.BM)'by (x - y)m and
integrating over x we obtain a relation which is identical to Eq.

(k.3k) if use is made of the Heisenberg equation of motion. Tt reads

o R .
(2 -y), 3R, W) v - W) vy e - g) o (Ba3T)

Note that as a consequence of the Heisenberg equation of motion one
may also write
| 3 ar |2 T ) _ o a — : :
Jor i, # i@ T s 0 = - L, T Tl

| | (4.38)

Finally we would like to obtain the restrictions which Lorentz
‘covariance imposes on currents obeying the algebra of fields commutators.

To this end we first write the Jacobi identity for

[ Toot0)s 13,50, 3,°(@)]] es
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[3,"(2), 35,71 80 = 1) = (5705 3,"(0) ox - 2)

= 1% g () B(x - y) -2 8(x -
. ‘ ox~ .
- 1 2P ch(x)'6(§ - 2) —ég 8(x - x) + z(x,y,2z) .

ox
: - (4.39)

Note that the c-number ST contributions have dropped. As usual, Z

has the property stated in Eq. (1.hkk). Multiplying Eq.(4.39) by

(x = z)m and integrating over x we obtain

ba

(z - v), [3,°(2), 3,20 = 1 g, 5°() 8y - 2) -

(4.10)

3L

From this wé see that canonical realizations of current-field identies
require derivative cduplings infolving the vector and axial. vector
- fields. From Eq. (4.40) we also obtain absence of ST of order higher
than one in the ETC [sz(ZJ, JOka(Y)}. Notg once again that only
covariance is required in this application. |

Next consider the Jacobi identify.for {i Too (%) [Joa(y),sz(z)]}

which under the present assumptions reads

[ 5 2(x), 3,°(2)] 8(x - %) + [3%(), Jp," ()] 8(x - %)

= 1 e 5,00 B(x - 2) By - ) - 1 e g S(x) 527 5(x - 2)3(x - 2)

1% B - ) Sy ols - a) v aleye) - (k)
: X B :
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We multipiy the above equation by (x - y)m and integrate over X

to obtain

_ abc - c
1eacg£J0(y)8(,}$-x)'

(2 - ¥)l320)5 35,0 () :
(4.42)

Il

Multiplying Eq. (4.41) by (x - z)m and integrating over x we

obtain

- ‘a | ‘b : ‘
(y - =), [&" I, ), 3,(2)] = o. (h.43)

The above Egs. (L4.42) and (4.43) show that ST of orders higher than
one are absent in the ETC involved. Finally, those weaker relations
which follow by use of the Heisenbefg equation of motion alone may be

obtained from Egqs. (4.39) and (4.L41) by integration over x and read

13,°(2), 36 @] = [53), 35,°(2)]

= 1% 5% a0 - 2) - 1% 5,00 e - 2)
dy . Oz
| (4.4k)
and _
[ 320, 7,°(2)] + ), 35,°(2)]
= ieabé szc(z) o(y - z) - ieabc‘Joc(z) SEZ 5(z - x) - . (4.M5)

Note that for conserved currents Egs. (L4.42) and (4.45) are equivalent.
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APPENDTX
' In this Appendix we wouid like,to note more fully some
consequences of Eq. (1.3) and of the Jacobi identity given in Eq. (1.43).
We start by noting that as anvimmediate consequence'of the Heisenberg

equation of motion we may write

0 _.b j b . _abc 0 .
[Q%(xy), 8 3,°(x)] - [ &y (3,°(x), 72 = 1™ 5 (x)
077 0 0 o 0
(A.1)
where charge-current commutators have been assumed. Combining Egs.

(1.47) and (A.1) one obtains as a consequence of assuming Eq. (1.3)
- a k b . abe 3k ¢
[q (xo), 0 I (x)1] = ie o T (x)

- jd3y{[JOb(x), AR OV IR S A COTIE S Sl CORD IR (V)

Next we compare this equation with Eq.(1.46) under the assumption
that at most a second order ST contributes to [Joa(x), M J“?(y)].

For later use we write for any R

[3,°(x), & 9,°()]

R

P e ) o ) e 2 b - ) L)
. ' _ ,ocZI: (koc} xkl KKO‘ _

and obtain for R = 2 upon comparing Eqs. (1.46) and (A.2). no

restrictions on o*®  and ckab, whereas for ckzab it follows that

[as a result of Eg. (1.3)]
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F ot o P = 0 e

A moie involved relation would be obtained for general R.

We‘ﬁext obtain-using the method of Refs. 2 and 3-the éonséquences
of covariancevif af most 4 FOST is present in [Joa(x), Jéb(y)].. We
do not specialize to. R=2 in Eq. (A.3) in whatvfollows. Multiplying

Eq. (1.43) by (x - y)m” and integrating over x we have

(2 - ¥)y 00, F 3,°(2)] = e, 3,°0) Bl - 2)

- [QT(ZL {f(YH f[J&ﬁyL Qf(zﬂ + (z —yhng%jJJRy% %f(ZH'-

(4.5)
In the‘special case of . R = 2- it follows from-this that [multiplying

(A.5) by . (z - y)n ‘and integrating over g]

P yy

. 20
mn .

= S

@) = 8, 50(2) B O

Assuming, for general R, absence of ST of order higher than one in

[Joa(y),kab(z)], we multiply for R > 2 Eq. (A.5) successively with

(z ~y) ooz =F) ,eee,(z -y) (2 -7) and obtain that at most
my m " ’m . o '

a ST of ‘second order is contained in fJba(y), M Jub(z)]. For this

therefore Eq. (A.6) holds. Especially for field algebra commutators

with only the usual first order c-number ST we find from this resuit,

Eq. (A{6), and Eq. (1.46) that no ST are contained in {Joa(x), M Jub(y)].
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We collect our results for the conserved vector current and
the nonconserved axial vector in the following two statements.

Statement Al. If usual field-algebra commutators of charged

densitites with currents hold, [Joa(x), M pr(y)] contains no ST.
Statement A2. Assume |
a b | ab
v - D070, 3,2 = s, sk -0 - ()
Then R =2 in Eq. (A.3),
Vv V.V :
s CP - 5P %, (4.8)
m;n n;m ‘
and -
VA AV
pa  _ ap
Sm;n - ,Sn;m o - (A9)
Eurthermore
ab . : .
O = o | | _ (A.10)
is equivalent to
A A A :
s o = s P& o (a.11)
m;n. n;m SR
Moreover, from Eqs. (A.4) [as a result of Eq. (1.3)]
AAL : AA _
S \n B aman B O
o 9 Sy = o 9 Som - (A.12)

.The reader should notice that Egs. (A.8), (A.9), and (A.11)
have been obtained in Ref. 2 from different'assumptions byvessentially
the same mefhod. For another method to obtain analogous results see

Ref. 7.
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by [k };

ceeLk
s J Q

We denote the set k o

1
We restrict our attention to the céntributions of basic canonical
fields with spins O and 1/2.

Absence of NCT in Eq. (1.17) has been obtained for canonical currents
in Ref. 2 by means of Schwinger’s action principle (Ref. 1). For
models in whichvthe difference between the time-time component of

the symmetric and the canonical energy;momentum‘tensor commutes

with tﬁe time componént of the éanohical current, a derivation of

this result has been given in Ref. 3 and in the Appendix of Ref. 9

(using the formalism of Ref. 15).

G. Kallen, Quantenelectrodynamik Handbuch der Physik, Bd. V/1

- (springer-vVerlag, Berlin, 1958).

Wevreétrict our attention to the contributions of basic canonical
fields with spiné 0 and 1/2 and assume a Lagrangian not involving
derivatives of the fields carrying spin (see also footﬁote 17).
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current-field identities require couplings involving derivatives of

@ (which we allow here). We shall see (Sec. IV) that for any
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This conclusion has been obtained in Ref. 8 for theories fulfilling
the condition of footnote 16.

Of course, QMV may be used in any canonical theory as long as it

_is not interpreted as a generator of local Lorentz transformations

(see Refs. 8 and 9 for an example).

We will assuﬁe in.this paper that.the'equal—timeblimits considered
exist and that the Jacobi identities employed are valid. (See
Ref. 23 for a discussion of equal-time limits and their possible
nonexistence;) Occesionally we shali also assume the associative
law. For brevity we_shell refer to the conseQuences of assuming
the Jaeobi identities for [[i TOO(X), i Too(j), X(z)] witnout
imposing any restrictions on the possible NCT in the ETC

(i Too(x), X(i)] and [i TOC(X)’ i Too(y)] as "corsequences of
covarianee.” . | | v
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To obfain the results given in Ref. 8 and 9 it was assumed in Ref. 8
that NCT were absent in the ETC [i @Oo(x% Job(y)] and

[i @oo(x), V(y) YO]. Absence of these terms was derived in Ref. 8
for canonical currents and for fields proportional to canonical

ones in Lagrangiarn field theories. In Ref. 9 absence of NCT in -

{1 Too(x), Job(Y)] and [i Too(x), V(y) YO] was -assumed.

This derivation differs from that given in Ref. 2 in that Eq. (1.40)
is not assumed and from that given in Ref. B:in that we‘éllow for
the possible presence bf NCT in Eq. (1.17).

A different discussion is given in -R. Jackiw, Noncanonical
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See Ref. 15 (and Ref. 9) for a derivation of Eq. (3.3). In
Refs. % and 9 Eq. (3.4) was obtained, Eq. (3.5) obviously holds,

and Eq. (3.6) was derived in Ref. 3.

This will become'apparent after reading this section.

‘0f course, ®uv is defined only in canonical theories and the more

general results of covariance follow only from the commutators
involving T .

: MV ., .
This fact is derived in the Appendix of the present paper (statement

Al) using the methods of Refs. 2 and 3.

S. Weinberg, Phys. Rev. Letters 18, 607 (1967).
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