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* PION-EXCHANGE MULTIPERIPHERAL MODEL 

+ 
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Department of Physics and Lawrence Radiation Laboratory 
University,of California, Berkeley, Callf'ornia 

January 30, 1970 

ABSTRACT 

The 1962 ABFST multiperipheral model, with a kernel based on an 

up-to-date guess for the elastic rtrt cross section, is used to illuminate 

certain controversial concepts that have arisen in multi-Regge models. 

The small magnitude of the elastic rtrt cross section above the region of 

prominent resonances is related to the small diffraction dissociation 

cross section and to the small pomeron coupling constant.in the CP model. 

Although lower trajectories in the multi-Regge kernel give an inadequate 

representation of low-subenergy resonances, we show that an artificial 

CP model input can be found which roughly simulates the resonance component 

of the ABFST kernel. By products of our investigations are: (1) A 

generalization of the Berestetsky-Pbmeranchuk formula that provides a 

practical basis for exact numerical evaluation of the ABFST model at any 

energy. (2) A perturbative analysis of diffractive dissociation (d.d) 

which reconciles a small d.d. cross section at accessible energies wit};l 

a total cross section that becomes entirely of the d.d. type in the 

extreme high-energy limit. 
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I. INTRODUCTION 

An attempt has been made during the p:l.st two years to elucidate 

the dynamical status of the pomeron and other high-ranking Regge 

trajectories through the study via multi-Regge-pole models of multi

particle production processes.1- 7 Interesting results have been achieved, 

but the shaky underpinning of multi-Regge dynamics has left room for 

skepticism about their significance. We here revive the 1962ABFST 
. 8 

multiperipheral model based on (non-Regge) pion exchange in an effort 

to illuminate certain controversial aspects of the 1968 CP multi-Regge

. 1 4-6 
pole modeL ' The qualitative conclusions from the latter survive, 

and. there emerges a more specific and, perhaps, a more believable picture 

of the underlying mechanism. 
i 

It is an established experimental fact that if the final p:l.rticles 

from a multiple-production reaction are ordered according to longitudinal 

momenta the mean subenergy of a neighboring pion p!.ir is less than or of 

the order of 1 Gev. 9 This experimental importance of small subenergies 

in the multiperipheral chain has three immediate consequences that 

undermine confidence in the CP model while at the same time supporting 

the ABFST model: 

1. Kinematic approximations depending on large values of sub-

energies are unjustified. 

2. A multi-Regge-pole model based on leading trajectories 

requires an extreme and perhaps .unreasonable significance for duality: 

an adequate Regge description of the lowest energy resonances. 

). A lower-lying trajectory containing a low-mass particle 

may be more important than high-lying trajectories containing no low-
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mass p3.rticle; that is, a representation in the original "peripheral" 

sense based on nearby poles in momentum transfer, may be more relevant 

than a representation based on high-ranking poles in angular momentum. 

We are thus led to reconsider the model based on,pion pole 

8 
dominance that was introduced in 19te by ABFST. The small pion mass 

, 
motivates the assumption that the dominant multiperipheral,chain is the 

one shown in Fig. 1, which maximizes the number of pion-exchange links 

in a collision of the type 

A + B - A + B + 2(N+l) pions. (Ll) 

Every second link is to be approximated by a pion pole, allowing the 

following factorization of the amplitude: 

... 

... 1 (L2 ) 

where f (s,9) is the elastic rrrr amplitude at c.m. angle 9 and energy rrrr 

and f rrA,B is the corresponding amplitUde for pions colliding 

with p3.rticles of type A,B. Since the si are not large on the average, 

we shall not use a Regge representation for these two particle - two 

particle amplitudes but instead will employ a realistic guess based on a 

.. ' 

combination of experimental and theoretical sources. We shall not assume ~' 

that the low-energy resonance components of these two-particle amplitudes 

are adequutely described on the average by a Regge representation, as was 

1 conjectured by Chew and Pignott1. 

: I 
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The model amplitude (I.2) is constructed so as to have the pion 

poles at the correct positions with the correct residues, but the implied 

prescription for moving away from the poles is arbitrary. We shall iden-

tify 8. 
1. 

as the angle, in the c.m. system of the out-going !th pion pair, 

between the direction of the outgoing pions and the direction of the 

spatial components of the adjacent momentum transfers. This prescription 

leads to a simple relation between the kernel of the multiperipheral 

integral equation and the elastic nn cross section. Other equally 

plausible prescriptions lead to less manageable relations. 

8 
In the ABFST model the pion plays the role of a zero-spin 

elementary particle, a fact which implies a counterpart Bethe-Salpeter 

equation. "Reggeizing" the pion links would break the Bethe-Salpeter 

10-12 correspondence and still leave a tractable problem, but the logic 

behind such an !limprovement" is not presently clear. If a motivation 

emerges, pion-Reggeizationcan and will be studied in the future. 

Both in the ABFST pion-exchange model and in the multi-Regge-pole 

model, the result of summing all partial cross sections leads to a total 

cross section with Regge asymptotic behavior. Any model based on the 

iteration of a multiperipheral kernel yields output Regge poles, but the 

(input) multi-Regge-pole model explicitly characterizes the kernel through 

Regge trajectories and residues and thereby closes an immediate bootstrap 

cycle. The bootstrap implications of the ABFST model are not fundamentally 

different but are indirect--requiring an additional link that proceeds 

outside the model and involves crossing. It would be convenient if duality 

l'esultin:::; errors are quantitatively inadmissible. 
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A further simplification important to the CP model was the 

neglect of phase-space correlation between adjacent momentum transfers 

in the multiperipheral chain. It was thereby possible to factor the 

kernel, to average over separate momentum transfers, and thus to define 

effective coupling constants. These constants are related so indirectly 
'--to 

to Regge residues, even assuming duality, that so far they have been 

determined only by fitting multiple production data. However, since 

kernel factorization is equivalent to the trace approximation for the 

Fredholm determinant, and in the ABFST model the trace approximation 

turns out to be tolerable, we have the possibility of calculating the 

effective CP coupling constants from the ABFST kernel, that is, from the 

~~ elastic cross section. In particular we shall be able to understand 

a vital feature of the CP model, the small value of the internal Pomeranchon 

coupling, in terms of the small high energy "tail" of the elastic :rr:rr 

cross section. 

A well-known and powerful technique for studying the ABFST model 

is to Write an integral equation for the imaginary part of the forward 

amplitude and to diagonalize the equation by a suitable transformation. 

The transformation is from the energy s to the Toller variable A.--

a "higher angular momentum" in the t channel. This approach directly 

yields the asymptotic s properties of the cross section but is less 

well adapted to studying finite-energy properties of the model, particularly 

if the kernel has a small but nonzero component at high subenergy. Such 

a component generates "fine structure" in the output Regge-pole spectrum, .. : 

so that the physics of finite energies involves the positions and residues 

of several output poles. We sr3ll consider the diagonalization approach 
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in the final sections of this paper, but in the earlier sections we shall 

study the ABFST model by more elementary methods. 

II. INDIVIDUAL CROSS SECTIONS' FOR MULTIPLE PION mODUCATION 

As the most elementary and straightforward approach to the ABFST 

model we present in this section the model prediction for individual 

production cross sections. The notation will be useful for all subsequent 

considerations. Referring to Fig. 1, let us define a set of· "vertex 

10 13 
boost'" parameters qA' ql' % ... qN' qB by 

cosh ~ (II.l ) 

(II.la ) 

, (II.lb) 

together with the "overall boost" p3.rameter 1) :. 

cosh 1) (II.2 ) 

Let us also define quantities CA (s), C(s), 
~ 14 

such that 

C(s) ~ A.(s, 
2 2 a:~ (s) , = m -in) 

l&r . rc' rc (II.3 ) 

CA (s) 1 2 2 rcA ( ) ::: 3 A.(s, mA ' m ) a £ s , 
l6rc :rt: e 



with 

.6. 

1 2 2 rrB·' 
= 1W r..(s, ~ , mrr ) ae£(s) , 

r..(x, y, z) = ]

1/2 
222 [x + y + z - 2 (xy + xz + yz) 

(II.~b ) 

(II.4) 

In terms of these quantities we show in Appendjx A tbat the amplitude 

AB (1.2) leads to the following formula for the cross section aN to 

produce N "internal" pairs of pions (see Fig. 2): 

= 

• .• -q -
'N 

(II.5 ) 

Note thB.t the index N bas been defined so that N = -1 has the 

significance 

(II.6) 

The special case of Formula (II. 5 ) with N = 0 was first written down, 

. 15 by Berestetsky and Pomeranchuk. . 

The derivation of Formula (II.5) is given in Appendix A for the 

case of neutral pions. When charge is included it is convenient to .. 
diagonalize in the crossed-channel isotopic spin, which may take the 

.,. 
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values I = 0, 1, 2 in the ABFST model because two pions are "exchanged" 

between particles A and B in the sense of Fig. 2. One then replaces 

Formula (II.3) by 

cl(s) 1 ;\.(s, :2 m 2) I I'll' a:~,I' (s) (II.3' ) = 
l6rc3 

m , , 
1r 1{ 

I' 

where I'll' is the isotopic spin crossing matrix, 

1 5/3 

I'll' = -5/6 • (II. 7) 

~nere will be a corresponding replacement ,of CA and CB that depends 

on the isotopic spin of particles A and B. 

The formulas of this section give the physical content of the 

ABFST model in terms of "input" elastic cross sections. At any finite 

energy only a finite number of the "output" inelastic cross sections 

AB aN are nonzero, so with a sufficiently powerful computer the 

theoretical task would now be finished, nothing but elementary quadrature 

remaining. Already at lab energies ~ 20 GeV, however, the number of 

important N values is sufficiently large that important collective 

effects appear in the total cross section, effects which are unlikely 

to be illuminated by a simple-minded term-by-term evaluation. It is 

thus worthwhile to study the summation over N by the integral equation 

technique of ABFST. 
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III. RECURSION REIATION AND THE ABFST INTEGRAL EQUATION 

Following-ABFST and using the notation of the preceding section, 

we define a Lorentz-invariant function of two four-vector variables, 

! . 2 N-l! 4 4 
ds ···ds C(s )···C(s)() d P2···d ~. 1 N 1 N 11 -l'~ 

(IILl) 

corresponding to Fig. 3, where all lines refer to pions. Although not 

explicitly so represented in its arguments, 
+ . 

FN is nonzero only for 

positive time-like components of ~IN+l - PI). The normalization is such 

that, by comparison with Formula (II.5) (see Appendix A), 

(IIL2 ) 

or more generally 

= 

(III.3 ) 
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Observe that although the definition (III.l) implies for the special 

case N = 1 that the function 

F +( t, t ,) I s, = C(s) 

is independent of t and t ' , in general the functions 

three scalar s • 

(III. 4) 

+ F N depend on all 

The functions fN(P, p') satisfy the recursion relation 

(III.5 ) 

The upper limit of'the sN integration is only formally infinite 

sincesN must be less than (p - pl)2 by some finite amount. [This 

constraint is imposed in the ~ integration,where it is impossible to 

2 
simultaneously satisfy the 0 function and have (p -~) above the 

2 threshold for the function f N_l if sN > (p - p') • ] 

The definition 

f(p, p') = (II1.6) 

N=l 

then leads to the ABFST integral equation: 

rep, p') = r1(p, p') + ~ f d\" rep, p") K(p", p'), 

(TIL 7) 

with the kernel, 
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K(p", pI) -J ds' C(s') 
. 0+( (pl_p,,)2 s) 

2 2 2 
(pit _ m ) 

re' 

= 

Formula (111.2), together with (11.6), implies 

= 

2 . 2 
",(s, m , m . ) . 11: re 

UCRL-,19457 

(111.8 ) 

(111.9) 

whereas replacement of fN ·by f in Formula (111.3) yields a total 

inelastic cross section far a general ·(A, B) collision. 

, If the integral equation (111.7) is solved by iteration and 

substituted into (111.3) one simply reproduces the sequence of p3.rtial 

cross s,ections given by (11.5). We propose to study the solution by 

two other methods. The first method depends on splitting the basic kernel-

determining function C (s) into two p3.rts--one large and one small--and 

treating the small p3.rt as a perturbat~on. To motivate such a splitting 

of the kernel we now examine the structure of C(s) as revealed by 

experimental 11:11: elastic scattering data. 

Figure 4 shows our estimate, based p3.rtly on experimental 

knowledge and partly on the Veneziano model, of the three re11: elastic 

cross sections and the three ellS. We have included the following 

resonances: standard p and f (both with a l40MeV width)Ja~broad 

€ (r = 450 MeV) at the p mass, and highly inelastic g and p" • 
E 

The assumed properties of these resonances are presented in Table I. 

.. 

.. 
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TABLE I. EstirOated properties of the low-energy :J(-:J( resonances. 

Resonance Ha.ss 
(GeV) 

p 0.765 

€ 0.765 

f 1.26 

g 1.65 

f' 1.65 

Full width Elasticity 
(GeV) / = r:J(:J( r tot 

0.14 1.0 

-
0.45 1.0 

0.14 1.0 

0.14 0.35 

0.14 0.28 

* Evaluated from Eq. (IV .20) for T = 1 Ge..f2. 

~13 OIcr~ot (max) 

(mb) 

231 

26 

46 

38 

7 

0.25 

0.09 

0.05 

0.04 

0.01 
R 

d = 0.44 
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We a1so included a nonresonant I = 2 cross section of 8-12 mb and 

forced the cross sections down to approximately match the Weinberg 

16 scattering lengths at threshold. .. From Fig. 4 one sees that for 

s > 3 Ge'~ the resonance fluctuations are expected to be negligible, 

so that a representation in terms of Regge poles above this energy is , 

valid. One observes, furthermore, that the cross sections for 

.2 s > 3 GeV are expected to be small relative to their values in the 

region of low energy resonances. From factorization (and also the 

intuitive notion that, since the high-energy ratio ~et/atot is 

1 .... 
t) ... 0 

1 
5 

for both pp and reP, this ratio must have a similar value 

for we obtain rere 6 a .... ..L = 1 mb 
... 0" 

and are~(asym) = 2.5 - 3.0 mb. 
eAi -

Of 

course a:~(s) is not constant, due to the logarithmic shrinkage of 

the diffraction peak, so we mean these values to hold for s ~ 20-50 GeV2. 

IV. THE WEAK roMERANCHUK COMroNENT OF THE ABFST KERNEL AND 

DIFFRACTIVE ~ISSOCIATION 

The ABFST model, like 'a multi-Regge model,necessarily implies 

multiple Pomeranchuk (p) exchange. When the mode1 is expressed. as an 

integral equation and then diagonalized., as in Sec. V below, this P 

component produces, the kernel's rightmost singularity in the J plane 

an& complicates the leading singularity structure of the output amplitude. 

TIle asymptotic behavior of the amplitude'at extreme high energies is 

correspondingly affected. P-generated. singularities have nevertheless 

been. shown in the CP model to be so "weak" that at moderate energies the 

1 -
P component of the kernel has relatively minor physical consequence. ,) 

But because the CP model employs dubious approximations to achieve its 

.-
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high degree of tractability, the generality of the "weak Pomeranchuk" 

notion has not been widely appreciated. In this section we use the 

ABFST model to study the same question in a diff-erent and perhaps more 

persuasive context. 

Rather than working in the J plane, we shall study in a direct 

fashion the effect on the moderate-energy total cross section of 

including or excluding from the ABFS~ kernel the high~energy tail of 

the elastic rrrr cross section. Our starting point will be the undiago

nalized integral equat.ion (III.I), together with perturbation theory. 

We show for energies where s is large but .en s is not, that single-P 

exchange is predicted to be small and multiple-P exchange negligible. 

Exchange of at least one P in an inelastic reaction is often 

characterized as "diffractive dissociation" (henceforth to be 

abbreviated "d.d."). Hence the objective of this section is to show 

that moderate-energy d.d. cross sections are relatively small. 

The specification of' "moderately high" energy is crucial to an 

understanding of the subtle behavior of d.d. We shall find that the 

proportion of the total cross section involving at least one P exchange 

increases with increasing energy. Eventually this fraction must 

approach unity, but not until energies at which .en s is a large 

number. In other words, the rate of increase of the d.d. cross section 

is so small that, even at energies at which Regge behavior of the total 

cross section is well established (e,g. s "'" 20, .en s "'" 3), the d.d. 

component remains a minor fraction. 
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It follows then that any model which attempts to describe the 

total cross section purely in terms of P exchange, single or multiple, 

is inadequate. On the other hand, a crude model may omit P exchange 

if one wishes to describe only moderately high energies. 

After this lengthy preamble we now proceed to estimate the first-

order effect of the pomeron on the t~tal cross section at energies where 

s, but not ..en s, is large. We shall separate the elastic rere cross 

section into two components--a large low-energy "resonance component" 

and a small high-energy "tail"--and then calculate the effect of omitting 

or including this "tail." We thus begin by writing 

= 
R P . 

fl (s) e(s* - s) + fl (s) e(s - s*) , (IV.l) 

where s* will usually be taken as about 3 Gel-. (See Fig. 4.) Next 

we express the integral equation (III.7) symbolically as 

f = fl + fgf
l 

fR f p. R P 
(IV.2 ) = + + fg(fl + fl ) , 1 1 

where g represents the pion propagator. Let fR designate the 

"zeroth-order" solution, 

~ R ~g fR (IV.3 ) = fl + 1 

1 
i .... 

-_i! 

. 
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Then to first order in the "small" quantity f P 
1 ' 

(IV. 4) 

or, also to first order in 

Separating off the first term, which corresponds to elastic 

scattering, we have far our perturbation estimate of diffractive 

dissociation 

1C1C 

(] . d.d. f P r P . Jf·· p 1 f~ g:f + ):f g:f~ +. :f g f'~ g:f J · 
(Iv.6) 

The first two terms in the bracket represent dissociation of either 

one or the other of the two incident particles, while the third 

represents dissociation of both. We shall refer to these alternatives 

as "single dissociation" and "double dissociation," respectively. 

We have at the outset agreed to treat the function fl (p, p') 

as depending only on the single scalar 2 (p' - p). Doing the same for 

f(p, p') in Eq. (1v.6), we may replace f through Formula (111.9) by 

the total 1C1:r cross section. Now, suppose we assume that the ABFST model 

has the capacity to generat.e the physically observed pion-production cross 

sections and the corresponding total cross section. Then, to evahtate 
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nn 6) . R a y~ Eq. (IV. we don't require the resonance kernel fl. 
d.d. 

We 

can substitute in the observed total cross section. Assuming such 

capacity for the model we propose to use the experimental total cross 

section in Eq. (Iv.6) .. T!1e two types of integrals therein are then 

formally identical to those appearing in Eq. (11.5) for N:= 0, 1, 

except that certain elastic cross sections now become total cross sections. 

If at this point we restrict attention to zero I-spin in the 

crossed challii.el and. correspondingly define 

~(SJ 
2 m , n 

I' 

1{e obtain by appropriate substitutions in Eq. (11.5) the folloWing 

explicit realization of Eq. (1v.6): 

-n: 
O'~.d. (s) ~ 

r 
X 

XI 

J 

(' 

X I 
) 

dt 
e( Tl - ql - a~) 

(t _ m 2)2 -~ 
. n 

(Tl-q -Q_-q ) e(Tl-q -a_-q ) 
( _ m 2)2 1 c 3 1 -~ 3 
t2 rr 

(Iv.8 ) 
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Examination of the integrands appearing in (IV.8) reveals that 

the simple pion propagators do not suffiCiently cut off the large-t 

contributions. As written, one finds the important range of Itil to 

increase indefinitely with increasing s, in violation of the underlying 

physical assumption of peripheralism. A related fact discussed below 

in Sec. V is that the diagonalized ABFST equation is not Fredholm 

unless a t cutoff is imposed. [The cutoff parameter employed in 

Sec. V is not precisely equivalent to tnat used here because in this 

section we have neglected the dependence of f(p, p') on 2 
P and. 

This deficiency presumably arises from our having treated the 

exchangai pions as elementary. In any event, when evaluating (Iv.8) 

we shall employ a simple square cutoff in the t integrals~ recognizing 

that our original motivating assumption of pion-pole dominance requires 

that such a cutoff be not much larger than 1 Gev2. 

To facilitate evaluation of Formula (IV.8), we break the total 

cross section, and correSPondingly· ctot(s), into high-and low-energy 

components: 

The formula for 
nn a then becomes the sum of five terms, which d.d. 

schematically we write 

nn 
a d.d. 2 J Otot

R 
g 

p 

°e£ 

(IV.IO) 
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The first term of (IV.10) may be described as a "generalized 

Deck effect, ,,17 as depicted in Fig. 5a. When represented as the reaction 

rt + rt ~ rt * + rtB, the mass range hereof rt * is small [so small when 
A B A, A. 

) 

R is the p' resonance as to allow a 3rt (.J\) resonance interpretation]. 

It is well known that the model under study here gives an acceptable 

description of diffractively-produced resonances. 
18 

The second term of (IV.lO) corresponds to Fig. 5b and is less 

-
easy to identify with a clean physical measurement because the mass of 

rtA* is now unbounded. In "missing mass" terminology this second term 

evidently corresponds to the region of large missing mass, above the 

prominent individual resonances. Each interval in missing mass yields 

a contribution to the d.d. cross section that is constant in overall 

energy, but since the missing-mass range increases with energy, the total 

contribution to d.d. from this second term increases with s and must 

:e;!~nally surp9.ss the resonance contribution. 

So far only the first term of (IV.lO) has received systematic 

experimental study. The final three terms correspond to doubly 

diffractive dissociation, with or without large masses for and 

* rtB • Figure 5c, for example, corresponds to the third term of (IV.10), 

where the masses of both * rt ' 
A 

and are constrained. 

In evaluating the integrais we use the following approximations: 

P 
(IV .11) (Je£ (s) <=::: constant, 

p 
(IV.12) (Jtot(s) <=::: constant, . 

R . L 0' j(max) rt r i m
i 

b( s - mi 
2 ) , (IV.13) O'tot(S) "'" 

i 

! 

( : 

<. 
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where r i and 0' i (max) are the masses, widths, and peak total 

cross sections of the important ~~ resonances (see Table I). Since 

we are concerned only with moderate energies we neglect the effect of' 

diffraction peak shrinkage on the elastic cross section. 

There is no difficulty in numerically evaluating Formula (lV.8), 

but understanding of the physics is enhanced by further analysis. 

* 2 ,Let us suppose that s» s »T» m , T being the cutoff on the 
~ 

t integration. Kinematic simplifications -explained in Appendix C then 

lead to the following asymptotic approximations to the five components of 

Formula (lV.10): 

2 J C~ot (lV.14) 

'" P '/- P '" d .£n ( 5 s)O' e.£ ' (lV.15 ) 

J R P R 
O'tot gO' e.£ g O'tot (IV.16) 

2 f C~ot P P 
~ !. dP dR '£n(s/;') P g O'e.£ g O'tot 2 O'et , (lV.17) 

f C!ot g 
P P 

2 
.£n2 (s/s) 

P ,..., g (dP
) O'e.£ g O'tot ,..., O'e.£ , (lV.18) 

where 

d
P T P -

l6~3 O'tot ' . (lV.19) 

dR \""' 
d R 1.', 16:3 

~ r 
i m. C1. (max) 

) 1 1. 
= I = 2 i ---,,).. T + m. i 1. 1. 

(lV.20) 

The scale parameter s is of the order of magnitude (s*)2/T • 

< 
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All cross sections, including dd.d.' refer to the linear 

combination appearing in (IV.7), which at high e.nergies is three times 

the actual nn cross section. To avoid confusion about normalization 

it is helpful to .think in terms of the ratio of 
p 

controlled by the dimensionless quantities d'" 

d d.d. 

and dR. 

and nn: 6 () d == 1 mb, we find from IV.19 theresult tot . 

P . 
d ~ 0.25, 

to d n' which is eL 

With T ==1 Gel 

(IV.2l) 

while from the n:n resonance p3r8meters listed in Sec. III, Formula (IV .20) 

gives (see Table I) 

d
R 

""" 0 14 . ~ . (IV.22 ) 

With such moderate-sized coefficients one sees from (IV.16), (IV.17), and 

(IV.18) that double d.d. is small compared with single d.d. so long as 

tn s is not large. 

It is easy to see that multiple-P exchange is totally negligible. 

Since in first order single d.d. is larger than double d.d., we may 

conclude that in second order the largest term is 

( P P P 
2 J d et d et O"tot' 

which by comparison with (IV.18) is 

0" e.e 2 p ) 
-p- ... tn (s/s) 
O"tot . 

(IV.23 ) 

when the leading power of .en s is evaluated. Thus a good estimate 

of the total moderate-energy d .• d. in the A3FST model is given by the 

first two terms of (IV.IO), or more generally by the first term of (rv.8) 

~-which is simply the Ber.estetsky-Pomeranchuk singly peripheral formula15 
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with an elastic cross section at one vertex and a total cross section at 

the other. 

The Berestetsky-Pomeranchuk formula is sufficiently simple that 

it can be nUmerically integrated without approximations. In Fig. 6 we 

show the result of such an integration, still'using the simple forms 

(IV.ll.;..13) but with an exact treatment of phase splce and the physical 

value of m • 
1( 

The result of our estimate is that the moderate:..energy d.d. cross 

section is smaller than the elastic cross section, and thus very small 

compared with the total. The d.d. production of a fixed interval of 

"missing mass" has the same dependence on total energy as the elastic 

cross section, but the missing-mass spectrum elongates with incident 

energy so that the integrated d.d. cross section increases logarithmi-

cally. When the integrated d.d. cross section becomes comparable to the 

total, the perturbation approach of this section becomes invalid, but 

from (IV.15) and (V.2l) we estimate that such will not occur until 

or, with 

P 
Ge.e 

~ -P-
Gtot 

.en (s/s) 

1 
E;' , 

~ 24. 

P 
Gtot ' (IV .24) 

(IV.25) 

Thus for all except the highest cosmic ray energies it is appropriate 

to think of the pomeron component of the ABFST kernel as a small perturbation. 
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V. THE DIAGONALlZED EQUATION AND THE DErERMINATION OF REGGE POLE POSITIONS 

10 13 ' 
We may use BCP variables' to reformulate the ABFST integral 

equation, which in Eq. (111.7) we have expressed through conventional 

momentum variables. Diagonalization of the equation is then possible, 

using the techniques of Refs. 10-12; The result is the same as achieved 

by the Bethe-Salpeter route, 7 and, now exposing the I-spin index, may be 

written 

F/(t,t·) ~ Fr,lA(t,t') + 1° dt" F/(t,t")~A(~",t') , 

-00 . (V.l) 

where the "partial wave" If- is defined by 

= 

with 

cosh 11 (s, t, t') = 

d cosh 11 

s - t - t' 
2(tt' )172 ' 

-(>--+l)l1(s,t,t' ) 
e 

'A. + 1 

a similar projection formula defining the inhomogeneous term 

(V.2 ) 

The projected kernel of the integral equation turns out to be given by 

-('A.+l)T)(s,t",t' ) 
1 e 

2}2 - m n: " 
'A. + 1 

(v.4) 

The appropriate formtua to invert the transforrration (V.2), given in 

Ref. 19, is 
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J <lA(A + 1) 

+(A.+l)'I) 
e 
sinh 'I) 

UCRL-,1:31...4; 57 

the integration over dA. running over a contour from -ioo to +ioo, 

passing to the right of all A. singularities of ~. The rightmost A. 

singul.a.rities then control the large s asymptotic behavior of 

Fr(s,t,t l
). 

Roughly speaking the A. singularities of A. 
Fr arise from two 

different sources. Branch points already present in the kernel KIA. 

and in the inhomogeneous term A. 
Fr,l propagate into the solution of 

the integral equation, whereas poles in A. arise from zeros of the 

Fredholm determihant--corresponding to solutions of the homogeneous 

equation. Pole positions thus depend only on the kernel and not at all 

on the inhomogeneous term. We shall confine our attention here to the 

question of pole positions, leaving the more difficult question of residues 

for future investigation. 

Formula (v.4) shQws that, if the elastic ~~ cross sections are 

A. power bounded, the kernel KI (t,t') is an analytic function of A. 

for Re A. sufficiently large. As discussed in Sec. VI, Eq. (VI.l), 

we assume the asymptotic behavior 
'[3 

Cr(s) 
r (s/so) r 

...., 
C £n(s!so) 

, 
s-+oo 

(v.6) 

with 

130 = 2ap (0) .. 1 '" 1 , -
[31 ap(O) + ap(o) - 1 - 1 

= '" 2' ' 

[32 == 2ap (0) - 1 ~ o , (V.7) 
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being the zero-t intercepts of the Pome.ranchuk and rho 

. trajectories, respectively. When (v.6) is combined with (v.4) it follows 

that the rightmost ~ singularity in KJ ~ is an infinite logarithmic 

branch point at· ~ = ~I' wi t~ strength proportional to c
I

: 

. f... 

( Ctt 'l/2 \ 
-~-+-l""'· So ) 

\ , 

) .en I 
f... - ~I 

(v.8) 

Analytic contin~tion to the left of this branch point is possible but 

we shaU be mainly concerned with the region to the right, at least for 

I =0 and . I = 1 • 

. Thet-dependence of (V.8) shows that even for Re ~,> ~I' the 

kernel (V. 4) is non-Fredholm, the simple inverse power behaVior in 

t and t' not being ade<luate to produce convergence in (V.I). A 

cutoff of the large t region is re<luired, just as in Sec. IV; and we 

shall achieve this by replacing the -00 lower limit in (V~l) with 

-.0; where we expect to choose' 6 ~ I Gel- . . We shall find, fortunately, 

. that certain important <lualitative conclusions can be reached ,independently 

of t.he -value of 6. 

Once an assumption rnS bee~ made about cI(s), it is a straight-

forward matter by numerical computation to determine the Regge poles as 

,~lues of ~for which the kernel has a unit eigenvalue. Insight into 

the dynamics is enhanced, however, by consideri:r;g the trace approximation 

to the Fredholm determinant, whose vanishing corresponds to the unit 
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0 foo J 1 l dt .-(A.+l)r) (s,t) 
= 1 - 1 

2)2 
ds e Cr (s), A. + 

~ - m 4m 2 
1{ 

1{ 

(V.9) 

with cosh ~(s,t) = 1 - ;t' In this approximation, which we have 

verified to be reasonably accurate by numerical comp1rison with the 

exact solution, the location of Hegge poles is reduced to a simple 

quadratUre. 

VI. THE TRACE APffiOXIMATION; COMPARISON WITH THE CP MODEL 

Since resonance fluctuations are expected to be small for 

s > s* ~ 3 GeV2, we break the integral, Eq. (V.9), into low- and high-

energy p1rts, employing a Hegge representation for the latter. Here 

the type of J-plane singularity appears to be important, so we shall 

not neglect the effects of diffraction-peak shrinkage. That is, we 

take 

= 
s>s* 

i 

C. r 
l. 

(VI.l ) 
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This f'orm corresponds to an assumed Regge-pole behavior for the elastic 

11:11: amplitude, with residues varying exponentially with -r, leading to 

a diff'erential cross section 

L
I

, 

eJ, 

L 
r (:Jm (T ) <an (T) dar' 1 

a T 
t3II , 

m,n mn 
dT re 2" "r e , 

s 
m,n 

(VI.2 ) 

or, with linear trajectories, to an integrated elastic cross section, 

'\' flU' L
I

, 

eJ, 
aI' 

1 
2 

s a I + (a' + a l )£n(s/so) mn m n 

The f'orm (VI.3) evidently leads to (VI.l) through the identifications 

t3 i = a (0) + a (0) - 1 (VI. 4) m n 

and 

I 

b. I a mn (VI. 5 ) = 
l. a' + a' m n 

· : 

.,' -": 
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Since the I-spin in question'refers to'the crossed reaction, the 

leading trajectory combinations for I = 0 are PP, PP', pp, and pI P' • 

For I = 1 the leading combinations are Pp, pIp, and PP, and for 

I = 2we have pp • 

For DI(~), in the trace approximation, we now write 

where 

T I(X) . res 

DI(~) '" 1 _ T I(~) 'TI (~), "- res asym 

= 

= 

1 fO 
~ + 1 

-6 

~l \~ 
~+l L 

1 

(t 

C I 
i 

dt 
IS> 

_ m 2)2 
rc 4m 2 

rc 

dt 

-~+l)~(s,t) 

(VI. 6) 

-(~+l)T](s,t) 
ds e I 

C (s) , 

~ ..;;.,e-=:-, ___ -'-

b . I +.en ( .£.. , 
(VI.8) 

~ So I 

I To evaluate T (~) we note that since s is much larger asym 

than t, eT] ~ (_~). This gives 

0 

\ r~ TI (~) '" 
1 f . ~-t2~+1 

C I 
"-

~ +1 dt 
(t _ m 2)2 

/ 1 ds asym .' . 
'-----1 

-6 
rc s* 
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If r... is not too close to zero we may neglect the m1( 
2 

. in the 

t integration. Then performing the t-integration and changing variables 

in the s integral, we have 

I 00 

~Sym(r...) 
(t:/so)r... L c I 

bi (r...-~i) 

f dx I ' 

-x e 
= 

r...(r... + I) 
e i x 

i 
(r...-t3. )(bi +.2n~) . ~ s 

° 
(VI.IO) 

= C I 
i 

In the integral form one can see the expected logarithmic singularity. 

Turning to the resonance component (VI. 7~, it is difficult to 

avoid a numerical s integrati~ but because the range of s is 

restricted we no longer need a cutoff in t. Inverting the order of 

integration and again setting 
2 

= 0, we have m 1( 

T I(r...) I fS' I ~ dt -(r...+I)'I) (s,t) 
'" ds C (s) J '" r... + I t 2 e res· 

4m 2 
. -0) 1( 

(VI. 7' ) 

2 r' ds I 
= 

r...(r... I )(r... + 2) 
C (8) . 

+ s 

4m 2 
1( 

It appears that the leading r... singularity here is at r... = 0, 

a surpriGjng result, since the more correct expression (VI. 7) has only 

Ute pole a l \ - -1 sbat arose from pion exchange (2a - 1 = -1). 
T( 
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The pole in (VI.7') at ~ = 0 arises from the approximation of setting 

2 mrr = 0, a simplification unjustified for ~ ~ O. As before, however, 

we shall be chiefly interested in the region where > 1 
~"'2· 

where 

Combining the preceding results, we have 

D
r

(,,-) '" 1- >..(>..
1
+1) { "- ! 2 ~ + C~ ) "-

(s* 

dn 2 
rr 

ds 
s 

I C (s) • (VI.12) 

Formula (VI.ll) above may be compared with the denominator 

appea~ing in Eq. (4.2) of Ref. 5 to relate the ABFST model to that 

of CPo To show more clearly the relation between the models we keep 

only the leading cut and then make a pole approximation for this.cut. 

That is, we assume b. l 
~ 

to be large and use the asymptotic expansion 

of the exponentia1e~:tegfra1' 1 1 } 

El (z) '" 1 - - + 0 -z z 2 z 

to get 

= 1 - ~(~ + l) 
1 

-z e 
z + 1 ' 

(VI.13) 

(VI.14) 
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1 
A. - 131 »1 s* • 

b +.en
So 
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Thus the cut with a branchpoint at 13
1 

and discontinuity proportional 

to b (A.-13 ) 
e is replaced by a pole at 

1 

b
I. s* ., 

+ .en -
So 

the approximate "center of gravity" of the discontinuity. 

(VI .15) 

Restricting discussion to I = 0, where we are approximating 

the PP cut by a pole, we have, from (11.3'), 

Co(s) '" 5 0 e£ () o~.e:::l(S) ~ cr~£ =2(5)) --3 3" 0 1 =0 s + + 
s>s* l6rc s s s . 

-~ ~ oe.e(s) , (VI.16) 
l6rr3 

so the single-term approximation, 

, (VI .17) 

corresponds, with 13
0 
~ 1, to 

(VI.18)-

Thus the coefficient within the square bracket in (VI.14) may be 

evaluated as 
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ei( *) (j s , (VI.19) o s* b + in-
So 

allowing (VI.14) for I =0 to be written as 

e -(>--~o~£n .~ 1. 
'" - 130 J 

(VI .20) 

For comparison with the CP model we now consider the denominator 

of Eq. (4.2) of Ref. 5 (identifying J with "'), 

D(",) 2 M = 1 - ~ p ("') 
4 P M 

gp p ("') p (A.), (VI .21) 

where the "prop3.gator" f'unctions pi(A.) a;re normalized to (A. - f3. rl 
l. 

for A..- f3
i 

large. The corresponding functions of A. in (VI .20) fall 

off more rapidly than the inverse first power, but the resonance 

component of (VI.20) decreases' smoothly after the "pOle" at A. = 0 
-

and the high energy component decreases smoothly after the "pole" at. 

A. = f3 0 • We are chiefly interested in the region near A. = 1, so let 

us replace all but these leading-pole factors in (VI.20) by the values 

taken at A. = 1. Then (VI.20) becomes 

A. near 1 

fRo Q So aet(s*) ) 
, 

1 (6 \ 
I 

1 1 
, 

1 - ',- + 2" sOl 
;. 

A. l3 1 6:n: 3 A. - f3 0 J 
(VI .0:'2: ) 
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Comp:u-ing (VI.21) with (VI.22), we may now read off the following rough 

equivalences: 

~M ~ o , (VI.23) 

~p ~ 130 ' 
(VI .24) 

2 RO 
(VI .25) ~ 

~ 

3 
, 

~ (s~) 
3 e£ ( *) 

4 So (J s 
(VI.26) gp :::::: 

16,,:3 

It is interesting to remark that ~ :::::: 0 
M 

means, according to 

Formula VI.4, that in the CP model an input pion trajectory behaves like 

a (0) :::::: 2!. rather than a (0) = o. An equivalent statement is that an 
rt n 

inelastic t;wo-body- to~two-body cross section with pion exchange varies 

as -1 
s 

Since 

, not 

t . :::::: 
m~n 

it follows that 

-2 s , for 

(mC 
2 

when s 

(JA13-+CD(s) cc 

s not too large. 

-2 
s 

2 2 
- mA )(~ 

s 

2) 
~ , 

Such a cross section is given 

I 
cc 

-2 
s 

is small enough that Itmin I » 2 m , 
1C 

-1 s 

The result (IV.26) provides an estimate of the internal pomeron 

coupling in terms of the elastic rrrr cross section. Previously we 

estimated Jrrc (] = 2.5 - 3.0 mb for ef s = 20 - 50 Gev2. Since 

,. 
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it may be that a:~(s*) (actually just the pomeron contribution to it) 

is slightly larger, perhaps 3.5 mb. This estimate gives for 

(VI.27) 

Therefore our assumption, 6 ~ 1 Gev2, implies a small value for 

small enough to justify making a crude model by dropping the' pomeron 

com~onent of the kernel. It should be obvious to the reader that we 

are here repeating the estimate of Section IV, but now in a "J-plane 

language." 

The estimate (VI.27) is in satisfactory accord with the re~uire-

ments of Ref. 20, where the small high-energy tail of the kernel is used 

in a CP-type model to split the leading output pole into P plus pl. 

Such a splitting capability 
4 . 

re~uires gp ~ 0.03. 

In papers employing the CP modell, 4,5 it has been shown that the 

large experimentally observed multiplicity implies that the effective 

output pole should be produced primarily by the low-energy component of 

the kerneL Neglecting gp 4, or dropping the contribution to the trace 

from s > s* in the more accurate E~. (VI.ll), leads to 

(VI .28) 

To produce the P and p poles we evidently need to have 

= 0 and = o. 

(VI.29) 

By numerically integrating CI(s)/s (see Fig. 4) one obtains from 

E~. (VI.12) RO = 0.79, Rl = 0.31, and R2 = 0.01 for s* = 3 Ge~. 
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The first two values are too small by a factor of 3 to 4 to satisfy 

(VI.29). Correspondingly, evaluation of ~2. from Eq. (VI.25) leads to 

gM 2 ::::: t, whereas in cp,l needs to be ::::: 1. 

In Ref. 20 we show for I = 0 that it is unnecessary for the 

low-energy component of the kernel to produce a pole as high as A = 1. 

If the kernel with only the low-energy contribution can, via Eq. (VI.28), 

produce a pole at A = 0.07 then addition of the high energy kernel tail 

can boost the leading singularity to A::::: 1 and still maintain an 

acceptable multiplicity. Assuming such to be the requirement,' RO::::: 0.8 

seen to be roughly half of what is needed. 

Although the R 's 
I 

calculated from Eq. (VI .12) are too small, 

they have the proper ratio to explain the observed ordering of the 

leading I = 0, 1, and 2 trajectories. In Appendix C we point out 

that such is not the case for a purely multi-Regge model based on duality. 

VII. SUMMARY AND DISCUSSION 

We began this paper by arguing that the.ABFST model has a firmer 

physical basis than multi-Regge models, and we have explored various 
, 

aspects of the ABFST model to illuminate in particular the CP multi-Regge 

model. We have confirmed the notion of a weak pomeron component in the 

multiperipheral kernel, relating this idea to the small diffractive 

dissociation cross section and obtaining an estimate for the CP pomeron 

coupling constant in terms of the high-energy elastic. ~rr cross section. 

The lower-trajectory aspects of the multi-Regge kernel have been foUnd to 

have weaker physical foundation, duality giving a poor representation of 

the important resonance components of the ABFST kernel. Nevertheless, 

if one rorel::~oc::; direct identification of input and output poles it is 
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possible to find "input poles" for the CP model which roughly simulate 

the important resonance input of the ABFST model. The factorizability 

of the CP kernel, although motivated- originally by an illegitimate 

assumption of large subenergies, appears not to be grossly misleading. 

In the course of the investigation, unanticipated light was shed 

on several matters: (a) We discovered a generalizati,on of the Berestetsky-

Pomerenchuk formula which provides a practical basis for exact numerical 

evaluation of theABFST model at any energy. (b) We f01.ll1d a way of-

looking at diffractive dissociation which explains certain paradoxical 

features of this concept. (c) We found that the exceptionally small 

pion mass causes the pion-exchange effect in a CP-type multi-Regge model 

to act like a trajectory with J ~ 1/2 rather than J =0. 

A disappointing discovery was the deficient strength, by a factor 

2 to 3j of the resonance component of the ABFST kernel,' based on a 

reasonable estimate of the rcrc cross section •. We can offer several 

possible explanations for this deficiency,. the most immediate being 

the inherent limitation of the model. The basis of the model is the 

presence in the multiparticle production amplitude of pion poles, with 

residues that are related to the elastic nrc amplitude. This fact 

suggests, but does not determine, the multiparticle amplitude in its 

h . 1 . 21 P YS1ca reg1on. 

A second possible factor contributing to the inadequate kernel 

strength is our estimate of the rcrc elastic cross section. For example, 

WOlf,22 in fitting reactions with pion exchange, used rcrc cross sections 

which were 6 to 8 times as large as ours at threshold. Another possible 

source of error is interference terms (crossed graphs).23 Since the 
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mean ~rr subenergies are comparable to the momentum transfers, the 

usual motivation for neglecting crossed diagrams is diminished. 

In spite of the inadequate kernel strength the qualitative 

characteristics of the ABFST model seem impressively relevant to nature. 

With a "fudge factor" to augment the resonance component, we expect 

that this original version of the multiperipheral model will prove 

extremely useful. 
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APPENDIX A:· GENERAL1Z.ATION OF THE BERESTEI'SKY-FOMERANCIDJK FORMULA 

The general cross section formula for producing n particles is 

(see Fig. 7a) 

(A.l) 

For the ABFST model we group the final particles into N + 2 pairs and 

use a different labeling system, as shown in Fig. 'lb. With the factored 

reaction amplitude (1.2), the corresponding cross-section formula is 

where 

N 

~ 
~ 
i=l 

N+l 

11 
1=1 

1 
. 2 2 ' 

( t - m ) i 1( 

(A.2 ) 
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2 
so = Kj 

, 
J 

with K = k + k' 0 

j j J ' 

to 
2 

= Pj , J 
with P

j 
defined as in Fig. 7h, and 

is the angle between k
j 

and -Pj . in the ~ rest frame. Note 

the important fact that the momentum transfers P
j 

can be expressed 

entirely in terms of the Ko. 
J 

Consider in Formula (A.2) the factors associated with a particular 

4 pair of outgoing particles, adding--a formal integration over d K o , 

J 

together with a compensating delta function: 

For a fixed 
. 4 

the integration_here over d ko 
J 

is evidently 

identical to that which occurs in the corresponding elastic cross 

section. Expression _ CA.3) consequently can be written 

which with the definition (rL3) becomes 

= SJdS 0 C(s 0 )Jd4Ko 
11: J J J 
- . 

+( 2 5 Ko - so) , 
J . J 

(A.3! ) 

a corresponding rule also holding for the A and B pairs at the ends 

of the cp~in. Formula (A.2) may thus be contracted to 
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X fd
4
KA a+(KA2 - SA) J d4rs. a+(rs.

2 
- 8 1 ) .. 1 d4

I1l a+(I1l
2 

- SB) 

X a
4 fA + ~ - ~ - I1l - t Ki 11 (t

i 
_lm~2)2 

(A.2,' ) 

The region of integration for the K
j 

in (A.2') is just the 

usual phase, s:p3.ce for N + 2 ":p3.rticles" with "massesl' (s. )1/2. The 
J 

region of integration for the s. 
J 

is more subtle. The lower limit for 

each ,Sj is simply the appropriate elastic threshold, but the upper 

limit is collectively determined by the requirement that 

N 

k (A.4) 

With a change of variables from the Kj' to the Pj' thereby eliminating 

the energy-momentum conservation delta function, Eq. (A.2') constitutes 

the basis for Sec. III. 

To derive Eq. (11.5) from (A.2'), we note that for a fixed set 

the integration-over the K.'s amounts to just the N + 2 
J ' 

:p3.rticle phase s:p3.ce. We treat this problem as a succession of two-

parti~le phase-s:p3.ce calculations, starting at the B end of the chain. 

Thus we fi-rst consider KE as one ":p3.rticle," the other "particle" 

cons1stin~ of all remaining pairs, with combined momentum (see Fig. 8) 

= K + A s + ... 
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This two-particle phase spa.ce may be calculated as 

= 
n: 
2 A.(s, 

the angular integrations having been performed in the absence 

of any factors in the model that depend on angles. In (A.5) we have 

introduced a factor ~/ (~+l - vN+l ) "Which does not appear in (A.2') 

and so to compensate must integrate over dv l' We also have· n+ 

introduc,ed. d~+l' which we compensate with a factor 64(~+1 ~ Ka - IS. ..• -~) 
that carries over to the next step, where we consider KN as one -

"particle" and .~ = Ka + KJ.. + ···KN-l as the other "particle." The 

next two-particle phase-space calculation then leads to 

n: 
2 (A.6) 

together with an integration over dv • n Repeating the process down to 

the A end of the chain, we have 

+( 2 ). (4 +( 2 ) J 4 +( 2 4 . 6 ·K -s ! d K- 6 K- -s .... d K-.- 6 K-.- -s )6 (p +p -K -K-- ••• K-.-) 
A A J -~ -~ 1 -13 -13 B A B A -J. -13 

= 1! . r dv: . dt 1! J dVN dtN 2A.( 2 2) N+l N+l 2 
s,rnA'~ ) 2A.(vN+1,rnA ,tN+1 ) 

1! 
( 

1! r X 0 •• 

2 ! dV2 dt2 2 J 
dt1 

2A.( Vy rnA ' t3 ) 
i 2A.( v2' mA ' t2 ) ,) 

(A.7) 

" 

i 
! 
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The final step is to integrate over the v's. Here the use of 

Toller variables is appropriate, In addition to the boosts defined by 

Eqs. (11.1) and (11.2), we define the parameter ~i' 

sinh ~i = , cosh ~i = 
A.(V

i
, m

A
2 , t

i
) 

2m
A 

(-t
i 

)1/2 ' 

(A.8 ) 

which boosts from the rest frame ofrarticle A where Pi is 

"z-t 1ike" to the frame where Pi is "z like" and PA is "z-t like, II 

(By our numbering convention ~l = qA' ) We also require the rarameter 

Si' Which boosts from the latter frame to the frame where Pi is still 

"z like" but is "z-t like," The relation among these Toller 

variables is 

sinh Si+l = sinh Si cosh qi cosh ~i + cosh Si sinh ~ , 

(A.9) 

cosh T) 

Since each 

= sinh ~+1 sinh qB cosh SN+l + cosh ~N+l cosh qB' 

(A.10) 

has a zero lower limit, S. 1 has a lower limit equal to 
~+ , 

Si + qi' while in addition SN+l has an upper limit equal to T) - qB' 

Observe now from (A,8) that for fixed ti 

dv. 
~ 

d sinh ~i 
= = 

cosh ~i 
(A,ll) 
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It then follows that 

1, . .J. J 
dV~\i.J.." 

J 
dV2 

••• -~-(V-2-,-m-A~2-,-t-2-) 

= 

(A.12 ) 

Insertion of (A.12) into (A.7) and thence -into (A.2 ,) leads to the form 

(II.5) presented in the text. 
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APPENDIX B: ASYMPl'OTIC PHASE -SPACE SIMPLIFICATION FOR TEE DIFFRACTIVE 

DISSOCIATION FOP-HULA. (IV. 8 ) 

The large-s linit of the i,r:tegrals appearing in Formula (rv.8) 

can be evaluated . in closed form if one realizes that, because of the 

small, pion mass the exterior vertex boosts are always large, while the 

interior vertex (when it occurs) involves only and also, 

therefore, only large boosts. We may consequently replace 2 sinh ~ 

or 2 cosh ~ by e~, 'as well as 2 cosh~ by e1'l. We may furthermore 

simplify (rr.2) to 

cosh ~ 

at an interior vertex, while (rLla) leads to 

~2m (-t )1/2 
1l 1 ' 

, 

with a corresponding simplification at the other exterior vertex. 

There is of course never any question about the approximation 

2 cosh T) ~ slm 2 • 
1l 

Thus in the first term of (rv.8) we employ the simplification 

.en s (-t ~ , 

* where even the t in the denomirator will be dropped for sl > s , while 

in the second term of (Iv.8) we use 

.en 
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again dropping a denominator t whenever the companion si is 

large. 

Making the one additional and unquestionably legitimate 

approximation of setting the pion mass equal to zero in the propagators, 

it is then possible to evaluate the integrals in closed form. 

,;:., 
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APPENDDC C: "DUALITY" AND THE KERNEL OF THE ABFST INTEGRAL EQUATION 

When the first multi-Regge model was proposed it was suggested 

- -,. that through "duality" the Regge form might represent the resonance 

region in some average sense. At that time, however, it was not 

appreciated how low the average sUbenergy actually is. Given that the 
9. ' 

average subenergy is s ~ 1 GeV2, the applicability of duality to the 

multiperipheral model becomes more doubtful. We' shall show here that 

one realization of the duality concept, based on the Veneziano model, 

leads to a qualitatively wrong isospin dependence of the ABFST kernel. 

The Veneziano model for nn scattering24,25 contains both p 

and pI trajectories. Because of the absence of I ~ 2 resonances 

these trajectories are exchange degenerate, a fact which fixes the 

ratio of their residues and consequently fixes the ratio of the three 

ABFST kernels. The Veneziano model gi~es for the s channel ~~ 

amplitudes 

~ ~ [3B(s,t) + 3B(s,u) - B(t,U)] , 

~ ~l ~ B(s,t) B(s,u) , 
s 

and 

AI =2 = B(t,u) , 
s' 

.. , where 

B(s,t) 
(3r [ 1 - a ( s) ] r r 1 - a ( t ) ] 

= 
r [1 - a(s) -"a(t)] 

Except for the unfortunate pI this model contains the same 

resonances with roughly the same properties as we use in Table I for 

the low energy nn cross sections. 
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To test the usefulness of duality in the multiperipheral model 

we take the asymptotic form of the Veneziano model and then use it, 

even in the low-energy region, to determine the kernel. The large-s 

asymptotic form is 

~ =0 -
s 

[ ] 
a(t) [ -ino:(t) 

t3 r 1 - a ( t ) (sso) ~ e 
a(t) -ino:(t) 

AI =1 - t3 r [1 -a(t)] (:o) e , 
s 

and 

r [ 1 
] a(t) 

AI =2 "" t3 a(t) (s~) 
s 

Notice that the Regge form of AI =2 is real,a result which, 
s 

by duality, is necessary if the I = 2 channel is to have no resonances. 
s 

On the other hand, when we square the amplitudes to get the I-spin cross 

sections we will obvioUSly get equal I = 1 and s I =.2 
s cross sections! 

Comparing with our estimated eros's sections, Fig. 4a, we see that we 

must expect difficulties. 

Neglecting this forewarning a~dcontinuing on, we find, for the 

differential cross sections needed in (VI.2); 

e£ e£ 1 2a( T )-2 da I =1 da I =2 1$2 
r2 [ 1 -a( T ) (:0) s s 

= = 
dT dT 2 

To obtain the CIt 5, Eq. (II.4a'), we cross to the t channel 

before doing the .- int~gration and find 

.j 

'.1 
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= 

x 

Since a(O) ~ ~ the values of the integrands at T = ° (at the 
2 ' 

forward peak) are in the ratio 7:1:1 for I = 0, 1, and 2 respectively. 

Taking the different "widths" of the "forward peaks" into account, we 

see that CO, C1, and C2 care in the ratio r:1:1 with r > 7. 

This implies that the low-energy contributions to the kerne1--the 

parts with no singularity for ~ > 0,--a1so stand in the ratio r:1:1. 

These ratios can be compared with those calculated directly from the 

low-energy resonances, where we found the RI to stand in the ratio 

0.79:0.31:0;01. 

We see that the naive use of "duality" leads to the disastrous 

prediction that output I = 1 and I = 2 poles occur at the same 

value of ~. It also will probably lead to an excessively large 

separation between the output I = ° and I = 1 poles. 



* 
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FIGURE CAPl'IONS 

Fig. 1. Diagram representing the ABFST model amplitude for the process 

A + B -A + B + 2(N + l)~. 

Fig. 2. Diagram representing the cross section obtained by sq,uaring 

the ABFST amplitude of Fig. 1 •. 

Fig. 3. Momenta and invariants used in the integral eq,uation. 
- . 

Fig. 1!a.. The assumed ~~ elastic cross sections. 

Fig. 4b. The funct ions cIt (s ) / s , given by Eq,.. (II. 3 ,) with insertion 

of the ·cross sections shown in Fig. 1!a.. 

Fig. 5a. The singly diffractive "generalized Deck effect," 

a low-mass system. 

Fig. 5b. Single diffraction dissociation leading to a large-mass 

Fig. 5c. The doubly diffractive reaction 

* both ~A 

few pions. 

and * ~B are low-mass systems containing only a 

Fig. 6. The ~~ diffractive dissociat~on cross section, normalized to 

the asymptotic ~~ elastic cross section. Contributions from 

various parts of ~1t 
0tot are shown separately. 

Fig. 7a. Diagram showing significance of momentum labels in Formula (A.l). 

Fig. 'lb. Diagram showing significance of momentum lables in Formula (A.2 ) • 

Fig. 8. Momentum diagram defining the " cluster momenta" . K. used to 
1. 

express mul tiparticle phase space as a product of two-body phase 

sp3.ces. 
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