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ABSTRACT 

A study is made of the kinematical properties in four-momenta <1 

space of scattering amplitudes involving two incoming and two outgoing 

massive particles with arbitrary spins. For reasons of simplicity in 

considering analytic properties, the M function, or Spinor Amplitude, 

formalism is employed, a choice that has no practical effect on the 

results. Complex covl}riance at points where the scattering functions 

are holomorphic is employed to find points where there are kinematical 

restrictions on them. The effect of discrete symmetries is then 
.~', 

accounted for. It is sho'wn that a decomposition into sums involving 

invariant amplitudes free of any kinematic~l singularities or zeroes 

and k:lnematical factors, or "standard covariants," is possible, provided 

the latter have certain precisely specified properties derived from the 

kinematical behavior of the Spinor Amplitudes. Our approach is contrasted 

to that using center-of-mass helicity amplitudes. Actual discussion of 

the methods by 'which standard covariants may be constructed is left 

for a. second paper. 
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INTRODUCTION 

In considering a scattering process involving any number of 

particles with spin, one is faced with two main problems. The first 

involves the treatment of the dynamical properties of the system, which 

arise from the interactions that the particles undergo, and the second 

involves the kinematical'properties, which are imposed by the require-

ment of Lorentz invariance. One would like to treat the two properties 

separately, decomposing scattering amplitudes into sums involving purely 

kinematical factors and functions of the independent invariants formed 

from the four-momenta, such that the latter contain only dynamical 

singularities and zeroes. Then one would be able to write dispersion, 

relations in terms of invariants,1,2 and make dynamical approximations 

for the scattering functions. 

Initially, one must regard the scattering amplitudes as functions 

of the- four-momenta of the particles involyed. The choice of amplitudes 

to be used is far from unique, since, if one wishes to regard the 

individual particle states as unitary representations of the inhomogeneous 

Lorentz group, one has the freedom, among other possible choices, of 

using the so-called canonical basis,3,4 the helicity basis,5 or the 

. b' 3,6 sp1nor aS1S. However, it is simplest to work with the spinor 

3.6 ampli tudes, , 7-10 also called M functions, since it is only these 

h · h b h 1 h' t f d . 1 . 1·' t' 7 -10 W 1C can e 0 omorp 1C excep. or ynam1ca slngu ar1 1es. 

Even when there are no spins and, consequently, no kinematical 

factors involved, it is not trivial to express the analytic properties 

in terms of invariants formed from the four-momenta. 
. 11 

Hepp and 



-2- UCRL-19460 

W"ll" 12 l lams showed that a mul tisheeted invariant function of any 

number of four-vectors is expressible as a function of invariants formed .. 

from the four-vectors on a dense subdomain that is "saturated" with 

respect to the mapping between vectors and invariants" The result of 

Hepp and Williams is a generalization of a theorem of Hall and Wightman13 

that is not applicable to scattering functions on the mass shell. 

For scattering amplitudes with arbitrary spins, the separation 

of the kinematical and dynamical properties on "saturatedll domains 'was 

carried out explicitly by Williams12 for the case of four massive 

11 particles, while Hepp showed how to treat the case of any number 

of particles. Unfortunately, in order to simplify the problem as much 

as possible, these authors coupled all spinor indices with the same 

transformation properties, using Clebsch-Gordan coefficients. These 

couplings are not invariant under discrete symmetry transformations, and 

complicate any attempt to make practical use of the results. Hepp 

did prove for four- particle arriplitudes that it is, in principle, 

possible to find combinations of the coupled-spinor amplitudes that 

have definite signature under the various discrete symmetry operations 

and that are free of kinematical singularities" When only tIm of the 

14 four particles have spins, Fox 

combinations. 

was able to actually find such 

Most other treatments have relied almost exclusively on 

perturbation theory, the philosophy of which was summarized 'by Hearn,15 

to justify their results. The best knO'lIO example is the familiar A 

and B 
16 ampli tudes for pion-nucleon scattering. Recently Scadron 
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and .Jones17 have given some of the relations that are needed to 

apply this philosophy to scattering amplitudes involving two incoming 

and two outgoing particles with arbitrary spins. A few authors have 

tried to justify their results on the basis of the Hall-Wightman 

Theorem, an example being the invariant amplitudes for nucleon-nucleon 

tt . 18 sca, erlng. 

11 
Because of the results of Hepp, one is justified in using 

the criteria of perturbation theory15 to get invariant amplitudes 

free of kinematical singularities, even ,,,hen using theories that do 

not acknowledge the validity of the perturbation expansion of the 

scattering amplitude. 19 However, as anyone who has tried will 

readily acknO\vledge, in practice the approach involves tiresome and 

seemingly endless algebra{c manipulations that offer no physical insight. 

The main purpose of this paper is to present an alternative means of 

obtaining kinematical singularity-free invariant amplitudes for the case 
'--

of two incoming and two outgoing particles, using some simple analytic 

and Lorentz covariance properties that scattering amplitudes are 

believed to satisf'y as functions of their four-momenta on the mass 

shell. 7-10 

The criteria that we develop to justif'y the absence of kine-

matical singularities in a particular expansion of the scattering 

function for hJO incoming and two outgoing particles are actually a 

12 
generalization of those used by Williams in connection with his 

invariant amplitudes. However, in contrast to Williams, we avoid 

the coupling of spinor indices of the M functions,and, consequently, we 

find it possible to account for the restrictions that the discrete 

symmetries impose on the invariant amplitudes. 
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Section 2 introduces the S-matrix elements in canonical form 

and the motives for preferring the Mfunctions, or spinor amplitudes. 

F9110wing this, we review the. analytic properties of the "connected 

parts" of the M functions, referred to as M
C 

functions. 

In Sec. 3, after considering some consequences of Hall and 

Wightman's treatment of complex four-vectors, 13 we explain their 

i) 20 
relevance to stapp's theorem, ' . which states, among other things, 

that the MC functions are covariant under complex Lorentz tr~nsforma-

tions at all points where they are regular. We define "saturated" 

domains in the space of the complex four momenta and use Stapp's 

theorem to find those points on such domains where there are kinematical 

restrictions on the MC functions--that is, points at which Lorentz 

covariance imposes a linear relationship between their values. 

Section 4 is concerned with the effect that the various discrete 

symmetries can have. One result is that, if we divide the M
C 

functions 

into parts having positive and negative signature under spatial inver-

sion, whether or not it is actually a symmetry, the number of independent 

components with a givensign1.ture is the same at all points on a 

"saturated" domain where there are three linearly independent four

momenta. This is true even though, as found by Hall and Wightman,13 

some of these points have the same invariants formed from the four-

momenta as other points where there are only two linearly independent 

momenta .. 

In Sec. 5 we discuss the theorem of Hepp and Williams mentioned 

earlier. Following this we sl{ow, for those cases in which only four 

.. 



,~ 
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particles are involved, how our earlier discussion of the kinematical 

and discrete symmetry restrictions at various points is relevant to the 

problem of decomposing the scattering functions on "saturated" domains 

into sums of invariant amplitudes describing only the dynamics and of) 

kinematical factors or "standard covariants.1! This approach is compared 

to recent attempts to describe the analytic properties in terms of 

center-of-mass (c.m.) helicity amplitudes.
21 

The methods and 

practical problems involved in actually constructing the standard 

. 22 
covariants are left for the followlng paper. 

In reading this paper, we urge the reader to give particular 

attention to the dis~ussion in Secs. 3 and 4 of special points in the 

space of complex four-vectors, since this discussion proves essential 

in defining the.properties of the standard covariants in Sec. 5. One 

ca~however, omit Part C of Sec. 4, where restriction due to symmetries 

other than parity a.re considered, without interrupting the smooth flow 

of the pa.per, and it would probably be advisable to do so at the first 

reading. Of the four appendices, the first three are concerned with 

the Lorentz Group and Spinors and play an important part in establishing 

our notation. The final appendix gives the proof of a lemma in Sec. 5 

concerning the standard covariants. 

We avoid any discussion of massless particles because, when one 

or two of the particles in a process involving two incoming and two 

outgoing particles are massless, the problem of finding standard 

covariants for cases in which discrete symmetry operations are relevant 

has been explicitly solved by Zwanziger. 23 Compared with the case in vlhich 

all four particles are massive, this is not difficult to do. 
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2. BASIC PROPERTIES OF TWO PARTICLE SCATTERING AMPLITUDES 

A. The S'Matrix 

Let us consider a scattering experiment in which particles 1 

and 2 are incoming and particles 3 and 4 are outgoing. We specify the 

24 
results by the following information: 

(a) 

specifies the "type" of the particle~ Here m. 
l 

t. = [m., j . ,q. } 
l l l l 

is the mass of the 

particle, j. 
l 

is its spin, and q. 
l 

stands for all additive quantum 

numbers independent of the Lorentz Group, i.e., baryon number, electric 

charge, and strangeness. We ignore the effects of isotopic spin. 

(b) o 
k. = (k. ,k.) 

l l "-'l 

specifies the (real) four-momentum of the particle. The energy is 

positive and the mass shell constraint k .. k. = (m.)2 
l l l 

is satisfied. 

It will prove convenient to introduce the notation 'Ki = [ki,t i ) and 

Ki = (ki,tiJ, with obvious meanings for 

(c) 0; 
a 

K a 

0; .is the spin 
l 

quantum number of the ith particle. Its value is one of the numbers 

-j., -j. + l,···,j. - 1, j .. 
l.l l l 

The spin measurements for a given particle refer to that 

particle's rest system. In such a frame, one specifies a unit three-

vector along which the values, 0;., of the spin quantum numbers are 
l 

measured. In the "canonical" convention,3,4 which we adopt here, 

this rest-frame vector is chosen along the 3 axis. It is a simple 

matter to relate this choice to others; for example, the helici ty 



-7-

conve~tion,5 where the rest-frame vector with respect to which the 

spin components are specified Is along the direction of motion of the 

particle. 25 

The relationship between measurements on the initial and final 

particles is expressed by the S-matrix elements S(Kb ; Ka ), which 
a.·cx 
- b' a 

contain a four-momentum conservation delta function that expresses 

.. d t· t 1 t· 26 lnvarlance un er space- lmerans a lons. To each of the incoming 

and outgoing particles one may assign a momentum-space wave function 

\)I i(k.) with the norm 
CX. l 

l 

\""' f dk. . * 
i (k. ) Lei,· .. ,4 L ~ \)I l (k.) \)I := 1 

k 0 ex. l ex. . l 
. l l ex. l 

l 

(1) 

'JIhen, the probability that the outgoing particles are in the state 

specified by their assignedwavefunctions if the incoming particles 

have the given wavefunctions is Is (\)Ib,\)Ia) ,2, where 

x (2) 

The invariance of probabilities under a simultaneous proper 

orthochronous Lorentz transformation of both incoming and outgoing 

states ~eads to the relation 3,6,9,27 
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The notation is such that 

n2 (:) ., J. 0:. 
=: D' 1 fA*(k. )". 1 

.' I V 1 ')0:. 
i=ll 

UCR1-l9460 

According to the spinor 

calculus convention introduced in Appendix A, each of the raised 

indices on the transformation matrices is summed with the corresponding 

8-matrix hldex,and dots are introduced over incoming spin indices to 

indicate that they transform like the complex conjugate of outgoing 

ones. Here A:= A(A,A *), where, as explained in the Appendix, A is 

a matrix in 81(2, C), and A(k.), ,defined by (A.33),is the matrix in 
1 

8U(2) corresponding to the "Wigner rotation" in (A.32). We have 

adopted the convention AKi [Ak.,t. }. 
1 1· 

B. The M Functions 

The fact that the spin transformation matrices in (3) depend on 

the four-momenta of the particles leads to "kinematical" singularities 

in the four-momenta when one analytically continues such an expression 

out of the physical region of the original process. This, in turn, 

leads to somewhat complicated crossing relations between the amplitudes 

that are most natural for describing certain physical processes that 

are all act.ually described by a single set of functions of t.he four-
I 

momenta. To simplify the various properties just mentioned, it. is 

convenient to int.roduce spinor amplit.udes, or M funct.ions. 3,6-10 
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We may define M functions with lower undotted spinor indices 

assigned to outgoing particles and lower dotted indices to incoming 

particles by the relation 

where i1(k.), defined in (A.24), is the Hermitian matrix in SL(2,C) 
l 

corresponding to the Hermitian "boost" L(k
i

) in (A.2l) that carries 

k. = (m., 0) into k.. Then, using A == A(A, A*), the following simple 
l l l 

covariance property is 'easily verified from (3), (4), and (A.33): 

M(~; f.Ka) 

~; aa 

Instead, we could have defined M functions with all lower 

undotted indices. It may be verified from (5) and' 

M(~; Ka) 
(ja) -1 a~ 

Ka) D (0 . k C 1m) M (~ ; , a a a 
a 

~; (y: ~; a a a 

with the aid of (B.6), that 

(j ) a' (j ) a' 
M(J~; AKa) D b (A)~ b D a (A)a a 

M(~; Ka) == 
a 

ext; a' ~. a , a a 

(5 ) 

(6) 

As a matter of fact, one is free to choose individual spinor 

indices to have any desired transformation properties, since the type 
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of spinor index chosen has no effect on the physics or on the analytic 

properties. The matrix that transforms a particular spinor index from 

one type to another is a holomorphic function of that particle's 

four-momentum. 

In the usual way, we may express the M functions for a given 

process as a sum of a !!no'-scattering" part and a "connected part," 

Mo . h· h 11 th t· 1 . t t 28 , ln w lC a e par ·lC es ln erac •. It is only the latter 

part in which we are interested, and we write it so as to explicitly 

show the four-momentum conservation delta function: 

(e) 

where the spinor indices have been suppressed. 

Equation (8) defines MC functions that are free of delta 

functions and it is these which are regarded as analytic functions in 

'7-10 complex four-mo,menta space in S-matrix theory. ' To discuss these 

analytic properties, one has to take into considerati()n the fact that, 

of the 16 components of the four-momenta, the mass shell constraints 

and four-momentum conservation allow only eight to be functionally 

independent. There does not exist any set of eight independent 

parameters such that the 16 components of the (k.)V are globally 
1 

holomorphic functions of these coordinates. However, there always 

exist sets of "local" coordinates,and "analyticity on the mass shell" 

may be well-:-defined in terms of these coordinates. 8 ,29 

As usual, we use the term holomorphic to designate the property 

of being analytic and single-valued. A domain is a connected open set, 

r 
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and, for our purposes, it is sufficient to regard the "domain of 

holomorphyfl of a function as a union of sheets, a sheet being the 

maximum domain on which the mapping from the local coordinates to the 

function is single-valued. 30 Note that the definition of the domain 

of holomorphy implies that the sheets may overlap; in fact, the location 

of sheets is somewhat arbitrary, and any point on the domain of holo-

morphy lies on the interior of some sheet. We do not include poles 

and branch points on any sheet, even though it is customary in physics 

to speak of a pole as lying on a particular sheet when the point at 

which it occurs is the limit of points on that sheet and not of points 

on some other sheet. 

For physical reasons one defines a "physical sheet,,9 whose 

boundary includes the physical regions of the various processes related 

. 2 6 9 10 by crosSlng. ' , '. Although the singularities of the MC functions 

are believed to be determined by unitarity, their exact locations and 

nature do not affect the discussion in this paper. 
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3. PROPERTIES IN COMPLEX FOUR-MOMENTA SPACE 

A. Stapp's Theorem 

There is no need in this section to distinguish between 

24 
incoming and outgoing particles. We may also avoid specifying'spinor 

index types by writing the covariance relation, of which (5) and CO 

are particular examples, in the form 

Any function satisfying this property in some region of four-moment.a 

space is said to be Lt-covariant in that region. 
+ 

Following st.app,8,20 l~t us define the domain of regularity of 

the set of MC functions with the same incoming and outgoing particles 

t.o be the intersections of their domains ,of holomorphy. A theorem of 

st 8;20 app says that, because the W functions satisfy (9) in some 

physical region, they are;f.. -covariant everywhere on their domain of 
+ , 

regularity. By --I -covariance one means the generalization of (9) to 
"" + . 

complex Lorentz transformation's. A function that is ;j' + -covariant 

on a domain D satisfies 

(10) 

whenever ~oth k and A(A,B) kED. As explained in Appendix C, 

A and B,E SL(2,C) and A(A,B) E --;L . 
+ 

The notation on the right-hand 
(j. ) 

D 1 (A) acts from the left side of (10) indicates that the matrix 

on t.he spinor index belonging to the ~th particle if it is lower undotted, 
(j. ) 

while the matrix D 1 (B) acts on it if it is lower dotted. 



..... : 

The ;(+ orbit, ?t.+k, of any point k = (kl ,'" ,k4 } in the 

space of the complex four-momenta is the set of all points 

obtained by letting A E -P ~+ take on all possible 

values. stapp's Theorem for the M
C 

functions under consideration 

8 20 
then says: ' 

S1. The domain of regularity of the MC functions is a union 

of sheets. (Recall that branch points and poles are not included on 

the sheets, which may overlap.) If a sheet contains a point k, it 

contains every point on the same ?/+ orbit. 

82. The M
C 

functions are ~ + -covariant on· each sheet ; that 

is, they satisfy (10) there. 

85, The sheets may be chosen such that all points in a real 

domain corresponding to physical points lie on a single sheet. 

The above statements are actually valid for delta function-

free MC·functions describing the interaction of any number of particles. 51 

At any point 

B. Properties of ~+ Orbits 

k - (k .•. k } 
- l' '4 in the space of the complex 

four-momenta we may define the scalar invariants k .• k .• 
l J 

For the 

case of an arbitrary number of particles, one should also consider the 

pseudoscalar invariants formed by contracting the completely antisymmetric 

tensor EiJ.VAP with the four-momenta. The invariants taken together 

are then referred to as "'-+ 
invariants; since they are invariant 

under any AE~, while the scalars alone are referred to as ;.:;t:, 

invariants, since they are invariant under any /\€ cf. = ;[+ U ~, where 
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-0(- is the set of improper Lorentz transformations. In the case 

under consideration the pseudoscalars vanish identically, because four-

momentum conservation allows at most three of the momenta to be 

linearly independent at any point. Consequently, it makes no difference 

whether we refer to two distinct points as having the same ot..+ 
invariants or the same £ invariants, and we will use the former 

terminology. 

Even though all points on the same·~. 
+ 

orbit have the same 

-' invariants, one cannot always specify orbits by the values of their 0<_ + 

invariants, since two distinct points with the same cf+ invariants do 

not necessarily lie on the same 

Following Hall and Wightman,13 

~ 
+ 

orbit, as will be seen below. 

let us consider any real or complex 

point k = [kl,···,kn,kn+l,···,k4}' where the vectors are ordered such 

that the first nCk) are linearly independent at the point under 

consideration. Because of four-momentum conservation, n(k) S 3, and, 

because the mass shell condition prevents the four-momenta from 

vanishing identically, n(k) 2. L 

Let us define the Gram determinant 

det 

(11) 

and let r(k) be the rank of this determinant at the point k. Hall 

and Wightman13 gave the following relationship between the rank of the 
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Gram determinant at any point and the number of linearly independent 

four-vectors at that point: 

r(k) n(k) 

3 3 

2 2 or 3 (12) 

1 1 or 2 

The possibility of having n > r for r < 2 is, as will be 

seen below, a consequence of the fact that one can have complex light-

like vectors in the space orthogonal to the first r vectors when 

r < 2. From the considerations of Hall and Wightman regarding the' 

properties of complex four-vectors we can make the following remarks, 

keeping (12) in mind: 

where 

first 

that 

same 

HI. (a) At any r = n = 3, 2, or 1 point, one can write 

the 

r = 

k. 
l 

a .. k., 
'lJ J 

for i=r+l, .• ·,3 , 

a ij'S are finite scalar coefficients. (Recall that 

n .vectors are linearly independent at the given point 

the 

and 

k4 is globally determined by four-momentum conservation.) 

H2. 

(b) If k and k' are any two r = n points with the 

invariants, they lie on the same ~ orbit. 

(a) There exist r 2, n = 3 points \vi th the same 01:+ 
invariants as any given r = n -' 2 point. For example, consider the 

pO:tllt k d('t.u'rnillt'cI by (1:,) with r .. 2 .. In t.he spatial direction 
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orthogonal to the two linearly independent vectors kl and k2 one 

may define real unit space-like vectors 

el . @2 = O. Then define 

,,1 
e and 

,,2 
e such that 

(14) 

It follows that (,) ± . kl = w ± . k2 

such that k(±) 

w • w = O. Now consider two points 
± ± 

and k 

Here 

while C f 0 

(-) 

k (±) 
3 

(+) (+) (kl ,k2,k
3 

- ,kh - ), where 

2 

(; Q 3iki + Cw+ (15) 

are the same as for the r = n = 2 point in (13), 

is an arbitrary real or complex number. The points 

and k(-) are two distinct n = 3 points with the same ~+ invariants 

as the r = n = 2 point obtained by putting C = 0 in (lS). They are 

related by an improper Lorentz transformation that changes w into 
+ 

w_, while leaving kl and k2 the same. 

(b) The points k(+) and k 
(-) 

determined by (15) 

and the r = n = 2 point obtained by putting c = 0 in that equation 

all lie on different ;L 
+ 

orbits. Any other r 2, n = 3 point 

with the same ~+ invariants lies on either the ~+ orbit of 

or the ;t!. + orbit of k( ~). Any point on one of these two orbits is 

related to any point on the other by means of an improper Lorentz 

tra.nsformation. As a consequence of Hl. (b), we may state that, for 

any set of values of the -P invariants for which the rank of the d-+ 

Gram determinant is 2, there exist three different .;:f orbi ts .35 
+ 
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(c) Consider the limit C ~O in (lS), which yields an 

r == n == 2 point with the same -./ invariants. ~+ This means that any 

neighborhood of an r == n == 2 point contains points of every r == 2, 

n == 3 orbit with the same :f...+ 1nvariants. 

H3. (a) Similar remarks enable one to construc~ an infinite 

number of r::: 1, n == 2 orbits having the same invariants as any 

r == n == 1 orbit; In this case, however, any two r == 1, n::: 2 points 

related by an improper Lorentz transformation lie on the same (/....+ 

orbit. 

(b) The occurrence of r == 1 points is possible only in 

M
C 

functions for which the sum of some of the masses equals the sum of 

the others. This follows from the conservation of energy and the fact 

that every r == n == 1 orbit contains a point of the form k
i 

== (±m
i

, 0) 

for all k. E k. 
l 

H4. Let us define the little group tJ +(k) at a point k to 

be the set of proper Lorentz transformations that leave k invariant; 

1. e., A E .Jj (k) 
+ 

~ det A == 1 and Ak == k. At any point k with 

n == 3, the only matrix in >& +(k) is the unit matrix. However, if 

n < 2 , lJ+ (k) is an infinite set. 

. d t· f' H . 11,12, 20 We now lntro uce some ermlnology lrst adopted by epp. 
. (I ) 

The 1+ -saturated kernel, U a +, of any sheet <t.(a on the domain of 

regularity of the MC functions for a given process is the largest 

subdomain of '2Ia such that, if it contains a point, it contains all 

points'with the same ~+ invariants. The I -saturated kernel of the + . 

domain of regularity of the MC functions is the union of the I -
+ 

saturated kernels of all sheets. 
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Every r = n point on the domain of regularity lies on the 

I -saturated kernel. This remark is a consequence, first of all, of 
+ 

Hl. (b) and H;~. (c), which show that if an r = n point k lies on a 

given sheet 1../ a' then every neighborhood ofk on the sheet contains 

points of every ;C orbit with the same invariants, and then of 81, 
+ 

which guarantees that every point with the same :t::.. invariants lies 
+ 

on '1./. However, an r = 2, n =: 3 point on the domain of regularity a 

does not necessarily lie on the I+-saturated kernel, since it is 

possible to have a singularity at an r = n = 2 point ,.hich is a limit 

point of the r = 2, n = 3 orbit. Physical points on the domain of 

regularity are always on the I+-saturated kernel, since such points 

are real and the construction in (14) and (15) shows that r I n points 

are always complex. 

C. Kinematical Restrictions 

Each of the MC-function components is a different function, 

and the number of such independent functions is the same as the number 

of values that the spinor indices take on. This is given by 

(H~) 

The result in (16) is just the number of independent scattering 

experiments at a fixed physical value of the four-momenta, at least 

on a dense subset of the physical points. Of course, for the four 

particle MC functions under consideration, discrete symmetries can 

lead to a relation between the results of various experiments, so that 

,;. 
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the number that are actually independently determined is less than the 

number in (H-;). Such restrictions will be completely ignored in this 

section and will be the concern of the next one. 

It may be possible to find sets of measure zero in the complex 

four-momenta space on which one can determine, from physical considera-

tions and the analytic properties, a linear relationship, with constant 

coefficients, between the values of the MC-function components at any 

point on such a set. 36 Such a restriction can be of dynamical or 

kinematical origin, but it is only the latter type·which will be of 

concern to us. We will show that at any point on the I+-saturated 

kernel where the rank of the Gram determinant is less than 3, Lorentz 

covariance alone requires the number of MC-fun~tion components whose 

values can be independently assigned to be less than the number in 

(16); that is, there are kinematical restrictions at such points. For 

a given point k withn <.. ~.~ on a given sheet "ita this statement 

follows immediately from remark H4 and the ~ covariance relation 
+ 

(10), the latter of which becomes, when A(~,Bk) E ~+(k), 

various 

Equation (17) is a linear relation among the values of the 

MC-function components at the point under consideration. 

Although the little group at any r = 2, n = 3 point contains only 

the unit matrix, according to remark H4, we will also find a restriction 

at any such point lying on the I -saturated kernel of some sheet, due 
+ 

to the fact that the t. orbit 011 which it lies' contains r = n = 2 
+ 



UCI<L-19)j (,0 

limit points on the same sheet. It is trivial to extend our considera-

tions to r = 1 points and they will be omitted from our discussion. 

It is sufficient to restrict our considerations to a single 

point of any given r = n = 2 orbit on a given sheet, since (10) 

guarantees that the number of kinematically independent MC-function 

components is the same at all points on the orbit. 57 On any 

r = n = 2 orbit, there is a point k such that the spatial components 

of the vectors k. E k are all parallel to the 5 axis. Then, from 
1 

(ki)O + (k. )5 0 

(k)) 
1 

CJ • k. 
(k. ) 

0 
-

i=1,···,4 .. 
1 

0 
1 

(18) 

Let us now make the following choice for the.matrices A and 

B E SL(2,C), where A. is any complex parameter: 

A == 

(XP(-;/2) 
eXP(:/2)) . 0 

(19a) 

B 
(XP(:/2) 

eXP(:A/2J (19b) 

From (C.l) it follows that .A.(A,B) k. == k. , for all i = 1"",4, 
1 1 

when A and B are given by (19) and k is a point of the form in 

(18), so Ii(A,B) belongs to the little group J; (k). 
+ 
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Becailse of (A.27), we have, when A and B are given by (19), 

(j. ) (j. ) 
D 1 (A) == exp[-:\ J

3 
1] UlOa) 

(j. ) (j. ) 
D 1 (B) == exp[\ J" 1 ] (20b) 

.J 

Suppose that the particles are ordered such that the first .£ 

~ave lower undotted spinor indices and the remaining 4-£ have lower 

dotted ones, the assignment of index types to individual particles being 

completely arbitrary. Then, because of (17) and (20), we have, at any 

point k of the form in (18) on any sheet, 

.' (21) 

. . 
where (0:) - 0: .• '0: - 1 .£ and 5 .• '54 ,£+1 

are not to be confused 

wi th the outgoing and incoming spinor indices of the preceding section. 

Equation (21) requires that 

o if L O:s - L 5t f 0 . (22) 
s t 

Therefore, the MC-function components have "kinematical zeroes" 

at any point of the form in (18). At other r == n == 2 points, the 

relationship among the. values of the given components, as given by (17), 

will be more complicated, but the number of such linear relationships 

will be the same as the number of "zeroes" in (22). It is convenient to 

continue to use the term "kinematical zeroes" to refer to the 

r_estrictions at these latter point:3. 

: ..... ,.' :". '. f' 
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the same 

Now consider any r = 2, n = 3 orbit on the same sheet having 

'0(, invariants as the point k in (18). Again, it is 
+ 

sufficient to consider a single point on the orbit to determine the 

number of kinematically independent MC-function components anywhere 

on the orbit. There is a point k(+) or k 
(-) 

on the orbit such that 

(18) , C; 
1. 

form k. 
( ±) = k. + C.w , where 

l 1. 1. ± has the 

is a real or complex number, and w± 

k. is given by 
1. 

is a 

complex light-like vector in the space orthogonal to the k .. 
l 

Choosing 

the real space-like vectors and to be parallel to the 1 and 

2 axes respectively, we have from (18) and (A.9), 

k 
(±) 

0" • 
i C

o -. 
(k.) + ,(k.)) 

l l 
= 

(l+l)C. 
l 

Using A(A,B) defined by (19) ~nd (C.l), but restiicting our-

selves to real values of ~,we find that 

lim MA,B)k. (±) 
l 

with k. given by (18). 
l 

obvious notation K. C±) = 
l 

i=l, ... ,4 , (24) 

Since MC (K) and Me ~(±)) , where the 

{k/±l,ti} is introduced, have both been 

assumed to lie on the same sheet, and since the holomorphy of M(K) 

a t the point k yields its continuity there, we have, using (10), (20), 

and (24), 

" 
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lim MC G(A,B)K(±)) == MC(K) 
A~ too (a)(b) (a) (~~) 

== lim exp[-A(~ CXs - L s0] MC(K( ±~) 
A~ too t 

(a) (S) 

In particular, (25 ) implies that 

M
C (K( i)) MC(K) if Z a L St s 
(a)(~) (a) (~) s t 

(26) 

and, in order that the limiting procedure in (25) be consistent with 

the results for the r == n == 2 point k in (18) and (22), we must 

have 

MC (K(+~ 0 if L a < L St ' (27a ) s 
(a) (~) s t 

M
C G«~0 == 0 if L a > L St . (27b ) s 
(a)(s) s t 

There is, however, no kinematical restriction on the values of the MC
_. 

function components with 2: a > L St at the point k(+), and no 
sSt 

such restriction on those with L a < L St at the point 
(-) 

k • 
sSt 

Either of Eqs. (27) is therefore sufficient to determine t.he number of 

kinematical zeroes at an r = 2, n = 3 point, this number being 

exactly half the number given by (22) for an r = n = 2 point. 38 
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By adding up the number of MC-function components not 

restricted by (22) or (27), we can get the number of MC-function 

components whose values are independent at any r = 2 point on the 

I+-saturated kernel. The result is given in Table I, which is actually 

valid for MC functions with any number of particles, but for which at 

most four have spin. The last remark is a consequence of t.he fact. that 

(22) and (27) are valid for any number of incoming and outgoing particles 

'th bOt ,24 Wl ar 1 rary splns. 

./~, ", 
;":.'<" .1 •• 
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Table I. Number of independent MC-function c-Jmponents at an r 2 point. 

These results are valid for the case when at most four particles have spins, although the 

total number of particles can be arbitrary, and are valid on the I ,-saturated kernel of the domain of .,.. 

regularity. Here r = rank of Gram determinant, We take jl + j2 and j3 + j4 both to be integers, 

with jl + j2 ~ j3 + j4 and jl ~ j2' j} ~ j4' 

Number of linearly independent 4-vectors, n 

n = 2 n = 3 

Case I I , i jl-j;:J~j"i+j4 I --' 
I ( 2j 2+ 1)(2j

3
+ 1)(2j 4 + 1) (jl+ 1)(2j 2+ 1)(2j

3
+ 1)(2j4+ 1) 

J , I 
i\) I Case II ;', ,-,ase .1.L \Ji I 

~, 
"-

,"' 

~ 

~~ 
i~ . 

( 

~ 
} 

. . ,>' . 
J

3
+ J4 :::... J l - J 2 

jl- j2::: j3- j4 

Case III 
, . >. . 
J

3
- J4 - J l - J 2 

(2j 2+ 1)(2j
3

+ 1)(2j4 + 1) , 
~ 
i 

l( , , . 
-- J + J + J4-
3 2 3 jl)(j2+ j3+ j4- jl+ 1) t 

! 
.. (j +j +-j -j+?).~ 

2 3 41-

I (2j4+ 1)[(2j2+ 1)(2j
3+ 1) 

i -!:.j4(j4+ 1) - (j + j - j4- j ) 
\ 3 2 3 1 

I ·(j2+ j3+ j4- jl+l)J 

(jl+ 1)(2j 2+ 1)(2j
3

+ 1)(2j 4+ 1) 

-;(j2+ j3+ j4- jl)(j2+ j3+ j4- jl+ 1) 

.. (j2+j+jL-j+2) 
3 ~ 1 

( 2j 4+ l)[(jl+ 1)(2j 2+ 1)(2j
3

+ 1) 

-5 j 4 (j 4 + 1) - ~(j 2 + j 3 - j 4 - j 1 ) 

,,(j2+ j3+ j4- jl+ l)J 

c:: 
o 
~ 
t:-I 
I 
f-' 
\D 
.j:::"" 
0\ 
o 
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4. DISCRETE SYMMETRIES 

A. Identical Particles, PCT, P, T, and C 

Our present purpose is to discuss the restrictions on. the number 

of independent MC-function components at various points on the domain 

of regularity, in addition to those mentioned in the last section, if 

the functions have definite signature under the various discrete symmetry 

operations. Most of the results are well known, and our main goal is 

to find the results at points where the number of linearly independent 

04 
four vectors, n, is 3 ,but the rank of the Gram determinant,' r, is 2 '-. 

Invariance under PCT and the connection between spin and 

statistics are both consequences of the basic principles of S:-matrix 

theorylO and of Field Theory.34,39 In terms of the connected parts of 

the Smatrix in canonical form,the PCT identity reads 

PCT (28) 

where ilpCT is a phase factor. The spin-statistics connection states 

that exchanging the order of the momentum variables and spin components 

of any two identical initial or any two identical final particles of 

spin j changes the sign of the scattering function by (_1)2
j

. 

The assumption that transition probabilities are invariant 

under a change of direction of all spatial components of the four

momenta leads to the relation
40 

P (29) 
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Here K.=Ck:.,t.}, with k.=(k.O,-k.),and 11 =±l is the l l l' l l "-'l -p 

" . t·· 't ,,40,41 process In rlnSlC parl y. Provided all processes allowed by 

additive conservation laws occur in nature and are invariant under 

)+2 
spatial inversion, the cluster decomposition law enables one to 

40 
assign a real "particle intrinsic parity" to each particle. For a 

given process, TJ
p 

is then just the product of the !fparticle intrinsic 

parities" of the particles occurring in that process. 

It is straightforward to show that if transition probabilities 

are invariant under time reversal, which involves exchanging initial 

and final states and changing the sign of all three vectors, one may 

write 

T 
(j) a' (j) . , 

TlT D a (C)a a D b (C)a cxt SC(Ka;~.), 
a b a" a 

a' b 

where TJT is an arbitrary constant phase factor for ta f t b , but 

Tl = +1 is required for an elastic process, i.e., one in which 
T 

It may happen that PT is a symmetry of the scattering amplitude 

even if P and T are not. In this case, one has 

PT sc(~; Ka) 

~; eXa 

= 

where TJpT = +1 when ta = tb' 

When (31) is valid, the peT identity (28) requires charge 

conjugation invariance,. 

, )' 
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C Sc(~; Ka) = 
Ob; Cxa 

Itlhere TJ
C 

is a consts,nt phase, factor. 

The relevant sytiJmetry relations for MC functions with spinor 

indices of the types introduced in (4) and (6) follow easily from (28)~ 

(32) and are given in Table II. These relations are valid over the 

entire domain of regularity of the MC functions if they are valid in 

any real neighborhood of some physical region. Thus, if a given 

sytiJmetry is valid for a certain physical process, it is valid for the 

processes related by crossing. Let us understand that by -K. we 
l 

mean [-k.,t.}. Then the crossing relation6,10 says, for example, 
l l 

that when all the k. 's take on real values with positive energies 
l 

and when the point under consideration is on the boundary of the 

"physical" sheet, 

MC (K2,K4; Kl ,K
3

) = 

O:ZX4; 0:1 0:3 

TJt M
C

(-K
3

,K4; Kl , -K2 ) 

0:
3

0:4 ; 0:10:
2 

describes a physical process in which t2 represents an outgoing 

antiparticle of the particle t2 and t3 an incoming antiparticle of 

the particle t3' The constant phase factor TJt has been discussed 

6 10 elsewhere. ' 

, . 
,,";: ,:' 

I 

.<.<~-.~:" . . ;A 



Symmetry 

PCT 

P 

T 

PT 

C 

c '. 

Table II. Effect of invariance under various discrete symmetry operati0ns on the M
C 

functions 

MC(~; K) 
~; Q:a 

N number of fermions in state a a 

MC(~; Ka) 

a.·a 
b' a 

.,; ~. JIIa ~ c -" - ~ '. I \~ t ; 

N 
(-1) a 'lpCT MC(Ka; ~) 

~; CXa 
'1p MC(~; K) 

a . n' 

a' "b 

(jil) (a . ~\ (ja) (a. k~ MC(K ;K ) 
'1 D ' -::) • D m • , ~lJ a 
P \. ~ / ~o:.;, a aaaa at,; a~ 

Cta ; ~ 
N C _ _) 

(-1) a ~ M (Ka; Ka 

N (j ) (a. k0' (jb) /0 . ~~, MC(K ; i) 
a a - D , • , a ~lJ 

(-1) 1]T D man' \ ~ ~o:;, a'; a.' 
\"a aa '- a b 

N 
(-1) a '1PT MC(Ka ; Ka) 

'1C M
C

(ISo; Ka) 

~; aa 

aa; °b 

'" 

(-1) lpCT M (~a: ~) 

°a; (\ 

(j ), -;; . k \ o:~ (j ) ~. k ~ ~ a a \ b ~lJ C - -

"PCT D \, v C ~ /. D -- C , M (Ka; ~) 
'- . aa ~, ~ 0:' • 0' 

a f b 

, : . ~; .Oa 
N c - _ 

(-1) a '1p M (~; 'Ka) "" 

, -' T ",\ . 
(jb)! c· '\ \ ',' D(ja) ~ . ka ,\.' MC(~; Ka) 

'1 D , '). m CX' • 
P \", ~ ,'~at, a aa a at,; a~ 

(ja) a' (jb) ~ 
"T D (C)CX

a 
a D (C)~ MC(Ka;~) 

~;at, 

N 
(-1) a 'lPT MC(Ka ; ~) 

aa; ~ 

(jJ 
'lPT D ~ 

~. ka\ a~ (jb) /0 .~) ~ C 

C -- \ D \- C M {K ; K. ) mi' 1ll a ~lJ 

',- a / CIa b ~ a~; <it 

'1 MC(K; K ) 
C ~lJ a 

~; aa 

I 
N 
-.D 
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B. Functions With Definite Parity Signature 

Even when spatial inversion is not a symmetry of the process 

under con;:;ideration, it can be useful to decompose the MC functions 

for two incoming and two outgoing particles into parts having positive 

and negative parity signature. Let us recall from the discussion of 
(/)/ (1+) q 

Sec. 3 that, if the 1+-saturated kernel, U( a ,of a sheet [i'a 

on the domain of regularity of such MC functions contains a point 

k k }, it also contains the spatially inverted point 
a 

'" } 4-3 k . 
a 

M±c(Kb; Ka) 

~; cxa 

Consequently, the functions 

(j ) /a. k) (j )~ .. ky J b (-0 a a c ~ ~) 
± D \ . " D " M (K ; K ill. 0:. 0:.' . m CX CX --b a 

o -O-b a / a a . ext; cx~ 

~ (I) 
are holomorphic everywhere on Zi +. 

a 

From (34), we may make the following decomposition on the 

saturated kernel of the domain of regularity: 

MC(Kb; Ka) 

~; CXa 

M+c(Kb; Ka) + M_c(Kb; Ka) 

~; CXa ~; CXa 

With the aid of (B.8), we find from (34) that, for E ±l, 

(jb)~' kb) (j) ~. ka) .c ~ .. ~ 
E D D -- M (Kb; K ) , 

~ 0:. a' rna CX a' E a 
o b a a ext; CX~ 

I -
+ 

(36) 
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which means that the functions defined by (34) have definite signature 

under spatial inversion. By comparison of (35) and (36) with Table II, 

we see that, if spatial inversion symmetry is valid with ~ == ±l, 

then M- (K_ ; K ) § O. + --b a 
a.' (X 
-b' a 

The crossing property in (33) yields, with the aid of (3)-1) and 

the fact that 

(j.) ~o • k~ D l l 

m. 
l 

2j. (j. ) Q . k~ (-1) l D l . __ l 
m i . 

the relation 

where 

ME c CK;~,K)+; _ Kl ,K3) 

(X2 (X4; (Xl (X3 

Thus, if a single fermion is crossed, the sign of 

the signature under spatial inversion is changed. In particular, this 

means that,when spatial inversion invariance holds, the "process 

intrinsic pari ties fI of tyJO processes related by crossing a single 

fermion have opposite signs. 

At any r == n = 3.2, or 1 points, [~; ka } and [~; ka } 

lie on the· same ';t 
+ 

orbit, so (36) and the covariance properties 

of the c M functions lead to a linear relation between the values 
E 

of the components at such a point. This fact is well known, but we 

will review it, because. our goal is to extend the analysis to 

r == 2, n 3 points, in which case two points related ,by 

inversion lie on different "d. + orbits. Because of the 
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M c functions under the parity operation 
E 

defined by (36), it is much simpler to use the connected parts of the 

S-matrix elements to count independent components. 1~e SC functions 

have kinematical singularities arising from the "boost" matrices that 

relate them to the MC functions, as in (4). These singularities, unlike 

those of the M
C 

functions, are not Lorentz invariant, so we can always 

find points on any orbit at which the SC functions are analytic if the 

tF functions are holomorphic. 44 

By application of the proper boost matrices to (34), we obtain 

where 

S/(Kb ; Ka) 

Clb; aa 

SE c(~; Ka) 

Clb; aa 

~ [SC(~; Ka) ± Sc(~; Ka)J 

Clb; aa Clb; aa 

ESC (K_ ; K ) 
E --b a 

a.·a 
b' a 

The last relation is equivalent to (29) when spatial inversion 

invarianceholds. 

(38) 

To see the restrictions at r = n = 3 or 2 points, it is best 

to choose a point on a given orbit such that all spatial components are 

normal to the 2 axis; then a rotation of rt about this axis carries 

to theWigner rotation is equal to A when A is unitary, and since 

the required rotation matrix for spin ji is now simply the matrix 
(j. ) 

D ~ (C) in (A.29-A.30), (3) gives us, at the type of point indicated, 

i. 

. ; 

I I 

" ! 



/ 
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4 
L(j·-cx·) 
. 1 1 1 

E(_l)l== (40) 

Equation (1+0) allows us to conclude that at any r = 3 point 

on the domain of regularity of the MC functions, disregarding possible 

restrictions due to other symmetry operations, the number of 

function components whose values are independent is 

== (!+la) 

if there are fermions involved in the process. On the other hand, the 

number is 

~U(2ji 
4 ji] L 

i-l (41b) NE + 1) + c( -1) -

if all the particles are bosons. 

In order to obtain the restrictions at r == n == 2 points we 

note that, in terms of the s c functions, (22) becomes 
E 

o 

Then (40) restricts the number of M c functions whose values are 
E 

(42) 

independent to exactly half the number allowed by (42) alone, if some 

of the particles are fermions, and to that number plus 

".. " 

, ," ., .... ,.'". . d.: r: ~:"~:,, ... 



4 L ji 

~ E(_l)i=l ,if all the particles are bosons. The number allOl'Jed 

by (42) alone has already been given in Table I. 

From remark H2~b) in Sec. 3, we know that an r = 2, n = 3 

point is related to its spatial inverse only by an improper Lorentz 

transformation. However, on the I+-saturated kernel of the domain of 

regularity, the limiting procedure of (2:5) must be valid for the M c 
E 

functions, and we do get restrictions at r = 2" n = 3 points. In 

particular, in'place of (26) we have 

MEC(Kb; Ka) 

a.,·cx 
0' a 

o J 

if [~; k
a

} represents an r == n = 2 point of the form in (18) and 

[~(~), ka (±)} an r == 2, n == 3 point on the same sheet having the 

form in (23). 

Similarly, in place of (27) we get 

4 

M/(~ (+); Ka (+») == 0 if L CXi 
<.. 0 , (44a) 

~; CXa i==l 

4 

o if L cx. > 0 , 
l 

(44b) 

i=l 

but there are no restrictions on the components not accounted for by 

(43) or (44). 
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By inspection of (43), we see that at the r = 2, n = 3 point 

under consideration, the values of the MEc-function components 

satisfying L a. = 0 are subject to the same restrictions due to the 
. l 
l 

parity operation as they are subject to at the r = n = 2 limit point 

of the orbit, so the number of these that are independently determined 

is the same as the number mentioned in the sentence following (42). 

Adding to this the number of components not restricted by either (43) 

or (44), we find that the number of MEC-function components whose 

values are not subject to any linear restriction among themselves is 

exactly the same at any r = 2, n 3 point on the I -saturated 
+ 

kernel of the domain of regularity as the number at any r = 3 point, 

given by either (41a) or (4lb). 

C. Restrictions in Special Cases 

Invariance under any discrete symmetry other than spatial 

inversion can restrict the number of independent MC-function components 

in the physical region of a process with two. incoming and two outgoing 

particles only in special cases where the point in momentum space 

resulting from the symmetry operation lies on the same £+ orbit as 

the original point. We will consider the restrictions for r = 3 

points by working in the physical region of a particular center-of.,.mass 

system with the 1 and 3 axes orientated as in Fig. 1 and with the 2 axis 

pointing out of the paper. The restrictions thus obtained are easily 

extended to all r = 3 points and the extension of the results to 

r = 2 points is straightforward. 
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For example, for a scattering process of the form 

tl -{- tl ~ t3 + t)' the exchange symmetry for identical particles leads 

to a restriction, as may be seen by simultaneously exchanging the 

orders of the initial particles among themselves and of the final 

particles among themselves. Then, in the reference,system of Fig. 1, 

a rotation of Jl about the 2 axis carries the transformed momenta 

back into the original orientation and we have 

for and 

By crossing, one finds that the functions for the process 

tl + t3 ~ tl + t3 have the same number of independent components as 

those allowed by (45). This restriction could also have been obtained 

by applying the PCT relation (28) in the new channel. For a process 

of the form t + t ~ t + t with t = t, the PCTrelation and the 

symmetry under the exchange of identical particles simultaneously lead 

to a restriction in the same channel. In the reference frame of Fig. 1 

a rotation of 11 about the 3 axis carries the point on the right-hand 

side of (28) into that on the left and we obtain, in this frame, 

PCT Sc (KyK4; Kl ,K2 ) 

cx3' CX4; al ,a2 

for 

SC(K
3

,K4; Kl ,K2), 

-(Xl' -CX2 ; -a3 ' -cX4 

" ;' .. '-.. 

t = t. (46) 



-37- UCRL-19460 

Time-reversal invariance restricts the number of independent 

components only in an elastic two-particle process. In the reference 

frame of Fig. 1, the required exchange of the four-momenta, is brought 

about by a rotation of rr about the 1 axis and (30) becomes 

T : SC(K
3

,K4; Kl ,K2) 

0:3'0:4; al ,a2 

== for 

where we have put T} == +1, as required for an elastic process when time-
T 

reversal invariance is valid. 

The relation corresponding to (45), (46),. and (47) for the 

parity operation has already been given in (40). By combining (40) 

with (47) one can get the restriction due to PT symmetry, as it appears 

in the frame of Fig. 1. 

Equations (40) and (45)-(47) are s\ifficient to find all possible 

restrictions for a two-particle scattering process at r == 3 points. 

In Tables III, IV, and V, we have listed the number of independent 

M c-function components having definite signature under the relevant 
E 

symmetry operations, for those cases where spatial inversion is not 

the only possible symmetry that can give a restriction. In Tables IV 
2(jl +j3) 

and V we have allOl"ed only those terms satisfying (-1) == 1 

when taking (45) into account. This is because the additive quantum 

numbers independent of the Lorentz group must be the same for 

~' , ' 1'_'"'; . 
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in a process. of the form tl + tl -7 t3 -I- t
3

, and in 

nature all strongly interacting particles with half odd-integer spin 

apparently have odd baryon number, while those with integer spin have 

even baryon number. 

Of course, when spatial inversion is a symmetry, for all 

processes in nature, only terms with E = P = +1 are nonvanishing in 

40 
any of the tables, and when time reversal is a symmetry for the 

elastic processes in Tables III and V only terms with T = +1 are 

nonvanishing. If neither P nor·T is a symmetry, but PT is, then 

only terms with PT = +1 45 are nonvanishing in Tables III and V. 

Any process not accounted for in Tables III, IV, and V for which 

a discrete symmetry other than spatial inversion can restrict the number 

of independent MC-function components is related through crossing to 

one in the table. For example, in the process tl -I- tl -7 t2 + t2 

charge conjugation invariance can yield a restriction, but this is 

exactly the same restriction given by PT symmetry in the process 

Although Tables III, IV, and V were derived for r = 3 points, 

they also tell us how many independent M c-function components having 
E 

a given symmetry there are at any r = 2, n = 3 point on the I -+ 

saturated kernel. This is because the restrictions due to exchange 

symmetry, peT, T, and PT,are all a result of the symmetry of the 

scattering functions under permutations of certain variables. If such 

a restriction holds at r = 3 points, which form a dense subdomain of 

the domain of regularity, it holds everywhere. Before the symmetry 
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under these permutations is considered, the number of 

UCRL-l';j)t(,U 

M c-function 
E 

components whose values are independent is the same at all n= 3 

. points and the number. must continue to be the same when the permutations 

are accounted for. 



I 
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Table III. Number of independent M c-function components having 
E 

definite signature under T and PT for the process 

These results hold at any point on the I -saturated kernel of 
+ 

the domain of regularity where there are three linearly independent 

four-momenta, Exceptional cases where exchange symmetry and/or PTC 

must give a restriction are: (1) tl = t 2 ; (2) tl = t 2 ; (3) both 

tl = tl and t2 = t 2 , These exceptions are either given directly by 

the processes in Tables IV and V or related to them through crossing 

(a) If at least one of the incoming particles is a fermion: 

E P T PT Number of terms 

+ -;- + !(2j l+ 1)(2j 2+ 1)(4j lj2+ 2jl+ 2j2+ 3) 

! 
+ !(2j l+ 1)(2j 2+ 1)(4jlj2~ 2jl+ 2j2- 1) - -

- + - 1(2" 1)2(2" 4" J l + J 2 
+ 1)2 

- - + !(2j l + 1)2(2j 2 + 1)2 

(b) If both particles are bosons: 

E = P T PT Number of terms 

+ + + ~[(2jl+ 1)(2j 2+ 1)(4j lj2+ 2jl+ 0" ,,-J 2:1- 3) + IJ 

+ - - ~[(2jl+ 1)(2j 2+ 1)(4j lj2+ 2jl+ 2j2- 1) + IJ 

- + - ![(2j l+ 1)2(2j 2+ 1)2 - IJ 

- - + ~[(2jl + 1)2(2j2 + 1)2 - IJ 

, 

i 
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M c-function components for the 
E 

process t1 + t1 ~ t2 + t2 with t1 -f t 2 · 

These results hold rat any point on the I -saturated kernel of 
+ 

the domain of regularity where there are three linearly independent 

four-momenta. Since the additive quantum numbers that are independent 

of the Lorentz group must be the same for and t o , such a process 
f_ 

apparently occurs in nature only when and t 
2 

are both fermions 

or both b6sonso The table is valid even when tl = tlo 

(a) When particles tl and t') are fermions: 
'-

'E = P Number of terms 

+ h( 2j l+ 1)(2j 2+ 1)(4j lj2+ 2j + 2j,)+ 3) 1 L 

- ~(2jl + 1)2(2j2 + 1)2 

(b) When tl and t2 are bosons: 

E = P Number of terms 

+ (2j l j2 + jl + j,.., 
"-

+ 1)2 

- (2j lj2+ jl + j2)(2j lj2+ jl+ j2+ 1) 

.," . 
·,.3! .. ~ ,--,,;T, 

I 
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Table V. Number of independent M c-function components having 
E 

definite signature under T and PT for the process t + t -? t + t. 

These results hold at any point on the I -saturated kernel of 
-I-

the domain of regularity where there are three linearly independent 

four-momenta. 

(a) When particle t is a fermion: 

E == P T PT Number of terms 

+ + + !(2j 
S 

1 )(S·3 + 1\ J + 12j2 + lSj + 7) 

+ B(2j + 1)(Sj3 + 12j2 + 2j - 1) 

+ g(2j -I- 1)4 

+ ~(2j + 1)4 

(b) When particle t is a boson. If, in addition t = t, 

then only terms with P'I' = + are allowed by the PCT theorem. 

E P T PT Number of terms 

2. 4 4. 3 2 
+ 4j + + + J -I- J -I- 6j + 1 

+ ? .2( . 
~JJ + 1)2 

+ j(j + 1)(2j 2 + 2j + 1) 

+ j(j + 1)(2j 2 + 2j + 1) 
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5. INVARIANT AMPLITUDES 

A. ' The Theorem of Hepp and Williams 

In the preceding sections we have considered the MC functions 

for two incoming and two outgoing particles as functions of the four-

momenta on the mass shell. For many purposes one would like to be able 

to describe the analytic properties in terms of the invariants formed 

from the four-momenta,and in this section we consider how this may be 

,done. Because of the mass shell conditions and four-momenta conserva-

tion, one can form only two independent ~ invariants, which can + . 

be taken to be two of the three Mandelstam invariants: 

Let us first consider a process for which all four particles 

are spinless; that is, one for which the MC functions are ~+ 
invariant: 

11 
Hepp and Williams 12 

(48a) 

showed that such a function can be expressed 

as a holomorphic function of the independent ~+ invariants on the 

I -saturated kernel of its domain of regularity. On that subdomain one 
+ 

may write .' 

A(s,t) . (48b) 

The domain of regularity of the function of ~+ invariants on 

the right-hand side of (48b) is a union of sheets, each sheet being the 

image of the .' I+-saturated kernel of some sheet of the original function. 
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Consequently, the relation (48b) is not valid at an r:-: 2, n =c::5 

point k = (~; ka ) on the domain of regularity if there is a singu

larity at an r = n = 2 point that is a limit point of the r = 2, 

n = 3 orbit. Although this is a mathematically interesting complication, 

it is of no significance as far as physical considerations are concerned, 

since r = 2, n = 3 
46 points are not physical, as mentioned in Sec. 3. 

B. Standard Covariants 

We would like to generalize the preceeding considerations of 

this section to the cases where one or more of the four particles has 

spin. That is, we would like to be able to express the M c functions 
E 

for any process with two incoming and two outgoing particles in terms 

of invariant functions that are holomorphic in the ~+ invariants, 

s and t, everywhere on the I -saturated kernel of the domain of + . 

regularity. The spin dependence and, consequently, all the kinematical 

properties of the Mfc c functions will be accounted for by globally 

holomorphic functions of the four-momenta referred to as "standard 

covariants." First we will precisely define the latter. 

Definition. Consider the MC functions for a scattering process involving 

two incoming particles of spins jl and j2 and two outgoing particles 

of spins j3 

g 1,···,N+, 

and j4' A set of spinor functions Y (g) (k) 
+1 ' 

and Y-
l 

(g) (k), for g = 1,'" ,N_, where 

for 

4 
= ~(2j .. + 1), is said to be a set of standard covariants 

. i=l l 

for this process (and the processes related by crossing) if they satisfy 

the following five properties: 
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SC1. They are globally holomorphic functions of the four-

momenta for the process, subject to the mass shell and four-momentum 

conservation constraints. 

SC2. They are 

Y
E 

(g) G(A,B)k) 
~; O:a 

;!.. covariant, i. e. , 
+ 

SC3. They have definite signature under the spatial inversion 

operation: 

ex. '0: 
- b' a 

SC4. Those of the same signature E under spatial inversion 

are linearly independent of each other in the space of the spinor 

indices at all n = 3 . points. In other words, if we form the functions 

where the Y (g), s are real or complex numbers, then at any n = 3 point 
E . 

k = (~; ka }, the only solution to the equations ° for all 

values of . (~; O:a} is Y
E 

(g) = 0, for all g = 1"" ,NE' 

SC5.If the number of MC-function components whose values are 

independent is restricted by any discrete symmetry other than parity, 

.. :::" . 
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then each of the spinor functions has definite signature, 

+1 or -1, under this operation, where the form of the symmetry 

operation is the same as that for the M
C 

functions in Table II. 

The above properties of the standard covariants lead to the 

following lemma, the proof of which is given in Appendix D. 

Lemma. Consider a set of standard covariants for the MC functions 

describing a given two particle scattering process. Then, 

Ll. At any r = 3 point, the standard covariants of spatial 

inversion signature +1 are linearly independent of those of spatial 

inversion signature -1. 

L2. For E = +1 or -1, N is given by (4la) if there are 
E 

some fermions involved in the process and by (41b) if all the particles 

are bosons. 

L3. In those cases in which property SC5 holds, the number of 

standard covariants having a given signature under any of the applicable 

symmetry operations is in agreement with the number in Tables III, IV, 

and V. 

The choice of a set of standard covariants for 'any process is 

by no means unique. If we have found a set Y
E 

(g)(k), for 

satisfying the required properties, and if we can write 

N 
E 

\ 
L 
g'=l 

g = 1,'" ,N , 
E 

such that the coefficients f gg' (s t) are globally holomorphic 'E ) 

functions of the Mandelstam invariants with det f
E
gg ' (s,t) nowhere 
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zero, then the also form a set of standard covariants. 

Obviously, there are an infinite number of suitable choices for the 

coefficients fe
gg1 

(s,t)--in particular, when they are simply constants. 

The same relations that change M-function spinor index types 

are valid for the standard covariants, as, for example, in (6). Thus, 

the use of all lmver undotted spinor indices in this section, rather 

than some other choice., has no real significance. 

C. Invariant Amplitudes for Scattering Functions 

With Spin 

We are now ready to consider the possibility of expanding the 

Me c functions for a given process in terms of standard covariants 

having the same discrete symmetry signatures, using the properties of 

the standard covariants in the definition and lemma of Part. B of this 

section. The problem of actually constructing such standard covariants 

will be left for the following paper and we assume here that we already 

know a suitable set. Our results are expressed by the following 

theorem: 

Theorem. Consider the MC functions describing a process with two 

incoming particles of spins jl and j2 and two outgoing particles 

of spins Then, on the I -saturated kernel of the domain 
+ 

of regularity of the MC functions one may write the following global 

decomposition involving the standard covariants for the process: 
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The "invariant amplitudes IT A (g) (s, t), 
E 

for g=l,···,N, 
E 

are 

holomorphic functions of the Mandelstam invariants sand t everywhere 

on this domain. Those invariant amplitudes whose corresponding standard 

covariants in the sum (53) have the wrong signature under whatever 

discrete symmetry operations cause the number of iridependent 

function components to be less than the number NE in (41a) or (41b) 

are identically zero, but there is no point at which some linear com-

bination involving the remaining ones is required to vanish in order to 

assure that the 
c . 

ME functions have the kinematical behavior required 

by the considerations of Secs. 3 and 4. 

The above theorem says that, given a set of standard covariants 

for the process under consideration, the decomposition (53) is possible 

such that the invariant amplitudes are free of kinematical singularities 

and zeroes. The absence of kinematical singularities is equivalent 

to saying that, if arq of the invariant amplitudes has a singularity 

at a point in the space of the ;;t+ invariants, then there is a point 

k with the same values of the invariants at Ivhich the M. c functions 
" E 

are also singular. The absence of kinematical zeroes means that there 

is no point at which some linear combination of the values of the 

invariant amplitudes or of any of their derivatives is required to 

vanish in order to assure the correct kinematical behavior of the 

M c functions; kinematical zeroes are a complicating factor when one 
E 

works with c.m. helicity amplitudes. 21 Thus, the only singularities 

and zeroes that occur in OUT invariant amplitudes are the dynamical 

ones that appear in the Mcc functions themselves. We are free to make 

'.' ~ \, ' ~ .,',. " .. ' '. ,',', 



" 
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any reasonable-looking dynamical approximation for the invadant 

ampli tudes without destroying the covariance properties of the l'-Lc 
, C 

functions. 

If the M~c functions for a particular value of E are 

identically zero, then (53) is trivial with vanishing AE (g),s. In 

our proof of the theorem for nontrivial cases we will first completely 

ignore those cases in which the number of independent M c-function 
E 

components. is less than the number in (4la) or (4lb)at n = 3 points. 

The necessary modifications for the exceptional cases will be easy to 

make. 

For our proof, let us first try writing' 

ex a 

which corresponds to (53), except that we regard the invariant 

ampli tudes as functions of the four-momenta for the present. 

We will show that (54) is invertible; that is, we will solve for the 

amplitudes c:lE(g)(k) in terms of the ME
C functions and show that 

this does not introduce any singularities not present in the M
E

C 

functions themselves. Finally, the theorem of Heppll and Williamsl2 

allows one to re-express (54) in the form of (53). Remember that, 

according to the last paragraph, we are ignoring the exceptional cases 

for the present. 

First we consider the scalars 

" f, ,~ .. 
,,' 

,.co' 
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(55a ) 

and 

(SSb) 

Each of the scalars defined by (55a)is holomorphic everywhere, 

and the determinant formed from them, det qj(gl ,g) cannot vanish at 
'7!E',E ' .. 

any r::= 3 point. The only way the determinant at such a point could 

vanish would be for some of the standard covariants to be linearly 

dependent, contradicting statements sc4 and Ll. Since the standard 

covariants are not·all linearly independent at an r::= 2 point, 

det 
ou,(g' ,g) 
(/E I ,E must vanish at such a point. 

The determinant just introduced consists of four blocks, the 

upper left-hand one having components of. the form ~it:~), the 

lower right-hand one q.l (g I ,g), the upper right -hand one t:)..f. (g f ,g) , 
~ -1,-1 1 +1,-1 

and the lower left -hand one VU (g f ,g) However it follows from ! ~l,+l . . , 

(50) that ~. (g' ,g) = 0, since one has an invariant function of three fl E,-E 

independent four-vectors that has negative signature under spatial 

inversion, and such a ,function vanishes identically. Consequently, 

the determinant is factorizable, 

[det lf4(gl ,g)J[det 't/g' ,g)] 
t1 +1,+1 (J -1,-1 

(56) 

and neither of the determinants det q; .. (g' ,g) for 
(fE,E ' E = ±l, can 

vanish at any r = 3 point. Since (56) is known to vanish at 

.. 
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det til ( g' ,g) <X 
(J E, E 

k
l

, k
2

, and k3 are any three of the momenta and N is some integer. 

In (SSb) m~: ~c vanishes identically for the same reason as 

?7'LJ (g' ,g) does, a.nd from (54) and (55) we obta.in the set of equations 
(J E,-E 

(57) 

where, because of (r55b), each of the functions 1?l(g) 
. E,E 

is holomorphic 

in the four-momenta on the domain of regularity of the MC 
functions. 

At least at r = 3 

is soluble for the 

points, where det tf--"g' ,g) 
(fE, E 

invariant functions a E (g) (k) 

The solution of (57) has the form 

-RE (g) (k) 

where is some combination of the 

m(g)(k)'S in (55). 

cannot vanish, (57) 

in terms of the 

(58 ) 

and the 

E, E . 

The numerator ~E(g)(k) on the right-hand side of (S8) is a 

holomorphic function of the four-momenta on the I+':'saturated kernel 

of the domain of regularity of the MC functions. The only possible 

kinematical singularities on this domain in the invariant arpplitudes 

on the left-hand side of (58) are poles where the rank of the Gram 

determinant is less than three--it turns out, as we will see below, 

that it is sufficient to consider only r = 2 points. 
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Let us look at (54) once more. We have already seen t.hat the 

invariant amplitudes on the right-hand side of t.he equation are holo

morphic at all r = 3 points on the domain of regularity of the MC 

functions. Since these points form a dense subdomain of the domain of 

regulari ty, as we approach any r =.2 point on the I -saturated 
+ 

kernel the limit of the right-hand side of (54) must exist and be 

equal to the value of the left-hand side at the given r = 2 point. 

If the limit point is an r = 2, n = 3 point, the standard covariants 

are all linearly independent at the point and there can be no cancelling 

singularities in the invariant amplitudes; i.e., the limit at such a 

point must exist for each invariant amplitude in (58 ) separately and 'not 

just for the right-hand side of (5L~) as a whole. 

The above considerations show that there exists some neighborhood 

of any given r = 2, n == 3 point on the I+-saturated kernel such that 

f( .~ )(k) 
E 

in (58) has the form 1(E(g)(k) X./g)(k) G
N, where 

XE(g)(k) is holomorphic in the given neighborhood. From (58), 

a (g) (k) 
E 

is holomorphic in that neighborhood. 

Now let us consider the limit in (54) and (58) as we approach 

any r = n = 2 point on the domain of regularity. If ~ (g) (k) 
E 

in (58)~ere to vanish more slowly than GN at this point, there would 

be a pole there. One would then have, in some neighborhood of this 

point, -RE(g)(k) =:JE(g)(k) GM and aE(g)(k)=~~g)(k)/GN-M, where 

M < N is some positive integer and ~(g1k) is holomorphic and nonzero 
E 

in the given neighborhood. This means that 

',' ,:,' ', ..... ;, '. , ,~. 

.-

is 



", 
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holomorphic and nonzero in that neighborhood, 'lihich, according to 

remark H2~c) in Sec, 3, contains points of every r:= 2, n:=:3 orbit 

wi th the same ';{ invariants as the r:= n = 2 orbit under considera
+ 

tion. We have already seen that there cannot be a pole in any of the 

invariant amplitudes at any r = 2, n = 3 point on the I -saturated 
+ 

kernel, so must vanish at such a point, giving a 

contradiction. Consequently, there is no pole at any r:= n =2 point. 

We may conclude that there are no kinematical singularities 

in the invariant amplitudes at any r = 2 or :3 point on the I -
+ 

saturated kernel and that, at such points, we can express them as 

holomorphic functions of ;;z: invariants, Thus, there can remain only 

r := 1 points with which to be concerned, but, as we point out below" 

they present no problem. 

The argument just given is in many respects similar to that of 

W'll' 12 1 lams, who found a decomposition into invariant amplitudes for 

functions obtained by summing over the spinor indices with Clebsch-

Gordan coefficients. We now point out, as Williams did, that it is 

impossible for our invariant amplitudes to have a singularity at any 

r = 1 point, since such points, at which k.· k. := +m.m., are isolated 
lJ - l J 

in the space of the invariants, and an analytic function of several 

1 ' bl t h . 1 t d . 1 't' 47 h comp ex varla es canno, ave lSO a ,e slngu arl leSe T us, our 

invariant amplitudes are holomorphic functions of ~ 
+ 

invariants 

everywhere on the I+-saturated kernel of the domain of regularity of 

the MC functions, and the decomposition (53) is possible on that 

domain; at least for those cases in which the number of independent MC
_ 

function components is given by one of the Eqs. (41). 

:;., .:,(,):":' ,,1',' , '.' 
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In the exceptional cases in which properties SC5 and L3 hold, 

the scalars ~~~~ ,g) in (55a) formed from standard covariants tha.t 

have opposite signatures under any of the applicable discrete symmetries 

vanish identically. Then the determinant in (56) splits up further; 

that is, det '1.A(g' ,g) for either value of E, can itself be written dE, E 
as a product of smaller determinants. Furthermore, when the M c 

E 

functions have definite signature under the symmetries in question, 

the scalars in (SSb) involving standard covariants with different 

symmetry properties also vanish identically. The solution of (54) 

proceeds very much as before, except that now only the standard 

covariants having the correct symmetry properties need be used in the 

expansion, and the set of equations to be solved is of smaller order. 

Since the standard covariants continue to be linearly independent at 

r = 2, n = 3 points, which was the crucial factor in our previous· 

proof, we have no kinematical singularities at points where the Gram 

determinant vanishes. 

The point in the theorem regarding the absence of any kinematical 

zeroes in the invariant amplitudes is trivial, since the properties 

of the standard covariants guarantee that, on the I+-saturated kernel 

of the domain of regularity, the right-hand side of (53) has the same 

kinematical properties as the left-hand side. It is also clear why we 

did not bother to analyze the restrictions that Lorentz covariance 

places on the derivatives of the MC function when we analyzed the 

kinematical restrictions on their values at certain points in Secs. 3 

H.nd i~. fI'J1e properties of the stttndard covariants given in SCI-SC5 
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automatically guarantee this behavior. One may therefore state that 

M c functions are in the 
E 

the kinematical properties of the all 

standard covariants and all the dynamical properties in the invariant 

ampli tudes. 

By considering the crossing relation, as in (yO, one can see 

that our standard covariants will automatically have the correct 

signature under the various discrete symmetry operations in the crossed 

channels. In particular, the spatial inversion signature will change 

when an odd number of fermions are crossed, for the same reason this 

happens for the ME c functions, as discussed in connection "I'iith (37). 

Of course, the standard covariants chosen with the original channel in 

mind may not be the most natural ones for the crossed channels, 

particularly with regard to the calculation of pole terms and the 

angular momentum decomposition. 

D. Comparison With c .m. Helici ty Amplitudes 

The several methods that have been employed to learn the 

nature of the kinematical singularities and zeroes of c.m. helicity 

amplitudes
21 all reduce essentially to considerations similar to our 

foregoing discussion. In an arbitrary reference frame one might 

write the connected parts of the helicity amplitudes for two incoming 

and two outgoing particles in the form 

jJ£(s,t) 

!3b;!3a 

',.' 

:' .~ 
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where P, indicates the channel whose c.m. energy-squared is the Mandelstam 

invariant s, t " or u. Here and are the helidty indices, 

which undergo a unitary transformation that depends on the four-momenta 

when one goes from one Lorentz reference frame to another. On the 

right~hand side of (59), the transformation matrices act on these 

helici ty subscripts, while f3b and f3 a are labels distinguishing the 

various flinvariant ampli tUde~ ",-.1; ~Ba from one another and also the 

"zt\'a". , various "spin functions" () The latter are chosen such that, 

as the four~momenta approach their values in the center-of-mass system 

of the £ channel, one has 

t\; Ba 
lim "l£(k). = ° °a 
k-> kc •m. ~'a ~·Bt af3a , a 

The same boosts that relate the helid ty amplitudes in an 

arbitrary frame to the MC functions change the "spin functions" on 

the right-hand side of (59) into covariants 
. . 

obtain 

= 

£Bb ; 13 a 
Z (k) ,so that we 

ex. ·a . b' a 

(60) 

Equa tion (60) resembles (53), but; in contrast to the properties 

of the standard covariants in the earlier equation, the covariants on the 

right-hand side of (60) are not holomorphic functions everywhere and have 

a different kinematical behavior than the MC functions. These 

unnatural properties are reflected by the presence of "kinematical" 

,' ... ,: 

.... ' 
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sir.gulari ties and zeroes in the "invariant amplitudes" .1>/ ~ P, ' 

I-'V-a 

alias j!, char..nel c.m. helicity amplitudes, a fact that becomes obvious 

when one attempt.q to invert (60) as we did for the expansion in (5-5). 

- .... ' 
,.,! 

";. ,,-



G. SUMMARY AND DISCUSSION 

In t.his paper we have discussed those properties of two-part.icle 

scattering amplitudes with spin that are relevant in obtaining 

invariant. amplitudes free of kinematical singularities and zeros 

everywhere on the I+-saturated kernel of the domain of regularity of the 

corresponding MC functions. Even though we have used argument.s based 

on analytic S-mat.rix theory t.o introduce many basic properties, our 

treatment of the kinematical properties of scattering amplitude's and 

the decomposition into invariant amplitudes is of general apPlicability.48 

The main points that have been introduced or reviewed in this 

paper are the following: 

(a) There is a dense subset of the domain of regularity of 

the MC functions for a given scattering process such that, if this 

subset, referred to as the I -saturated kernel, contains a point in 
+ 

complex four-momenta space, it contains all points with the same 

invariants formed from the four_momenta. 8 ,11-13,20 

(b) At points on the I -saturated kernel where the rank of 
+ 

the Gram determinant, r, formed from the independent momenta in a 

scattering process is less than three, covariance under proper complex 

Lorentz transformations (~+-covariance), which is a consequence of 

Stapp's Theorem,8,20 can restrict the number ·of MC-function components 

whose values are independent to be less than the number at points where 

t.he rank of the Gram determinant is three. 

(c) Invariance of a scattering process under spat.ial inversion 

limits· the number of MC-funct.ion component.s whose values are independent 

" 
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at points where the rank of the Gram determinant, r, is three or less. 

Howev~r, the number of independent component.s having a definite signa-

ture, +1 or -1, under spatial inversion is the same at all points in 

complex four-momenta space where the number of linearly independent 

four-momenta, n, is three, even though some of these points have the 

same invariants as other points where only two of the momenta are 

linearly independent. 

Cd) Invariance under any other discrete symmetry restricts the 

number of independent components only for a two-particle scattering 

process where the process resulting from its application is the same as 

the original one. The number of independent components with a given 

parity signatur; is the same at all points where there are three linearly 

independent momenta, including the exceptional points mentioned in (c). 

(e) Given "standard covariants l1 satisfying the properties 

SC1 through SC5 in Sec. 5, Part B, one may express MC functions with 

definite signature under spatial inversion as a sum involving these 

standard covariants and invariant amplitudes as in (53)--because of a 

theorem of Heppll and Williams,12 these invariant amplitudes are 

ho1omorphic functions of the Mandelstam invariants on the I+-saturated 

kernel of the domain of regularity of the MC functions. The invariant 

ampli tudes are free of any kinematical zeroes. 

(f) The difficulties arising from the use of c .m. helicity 

amplitudes are a result of the fact that one is actually doing a 

decomposition of the form (60), where the "Z-covariants" do not have 

the natural properties of the standard covariants in Sec. ,), Part B. 
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The considerations of (a) through (c) above are, easily extended 

to the case of an arbitrary number of particles with spin, where the 

restrictions in (d) do 
24 

not apply. 

Having completely avoided any use of arguments based on pertur-

bat ion theory to obtain invariant amplitudes free of kinematical 

singularities and zeroes for a two-particle scattering process, we hope 

to have set forth a prescription in Sec. 5 that accomplishes for more 

general theories what Hearn15 did for perturbation theory. Although 

H I l' 11 t th t th lt bt' d b th t epp sana YSl.S guaran ees a e resu s 0 -,al.ne y e wo 

prescriptions will agree,19 we believe that our approach, particularly 

with regard to the specification of the properties of the standard 

covariants, is more relevant. The actual construction of the standard 

covariants will be discussed in the following paper: 

The fact that our discussion involved spinor amplitudes is of 

no practical consequence, since anyone who prefers to use the S-matrix 

elements in the canonical or the helicity form has merely to apply the 

appropriate "boosts." These boosts affect only the standard covariants 

and leave the invariant amplitudes, which contain all the dynamics, 

unchanged. The use of spinor amplitudes serves to greatly simplify 

the considerations required to find invariant amplitudes, since in 

other cases the properties labelled SC in Sec. 5 would have to be 

modified to incorporate the complicated kinematical behavior of the 

S-matrix elements. 

With regard to the.content of Part D of Sec. 5, we note that 

the removal of kinematical singularities from and the classification of 

,', ,.,', ' 
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. the constraints ofc .m. helici ty amplitudes has received considerable 

21 
a.ttention. If one could succeed in finding combinations of such 

amplitudes from which all constraints can be removed, one would end up 

With invariant ampli~udes of the same nature as those we considered in 

Part C of Sec. 5 • However, the various types of singulari ti,es and 

constraints in the space of the scalar invariants with which one is 

involved in the helicity amplitudeapproac~ a.Fe not associated with the 

actual kinematical behavior of the scattering functions in the space 

of the four-momenta. 49 Our approach, on the other hand, is 

directly based on this behavior, which, as we saw in Secs. 3, 4, and 5, 

actually causes complications only at points where the rank of the Gram 

determinant is less than three. For real values of the four-momenta, 

such points lie on the boundaries of the various physical scattering 

. 50 
regions. 

- c 
We conclude by mentioning that, although the M functions were 

introduced in Sec. 2 for stable particles that are observed in initial 

and final states in the laboratory, one is justified in introducing 

MC functions with complex masses. The existence of such MC functions 
, . 
appears to be essential in S-matrix theory if one is to correctly treat 

the singularities of the/ stable particle MC functions on their unphy·sical 

sheets, particularly the poles and cuts lying close to the physical 

region and having experimenta~ly observableeffects.5l Most functions 

involving particles of higher spin have complex masses associated with 

those particles and the analysis of this paper is applicable to them. 
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APPENDIX A: SPINOR CALCULUS AND REAL LORENTZ TRANSFORMATIONS 
.. 

We discuss here the group of two-dimensional unimodular matrices, 

(: SL(2,C), and its relation to the real proper Lorentz group.5 2 
In 

addi tion, some of the notational conventions employed in the main part 

of the paper are established. 

It is easy to see that the replacement of every matrix 

T-l At-l 
A E SL(2,C) by A*, by A , or by yields a representation of 

the same group. Here we use the superscript T to indicate the 

transpose of any matrix and t to indicate the Hermitian conjugate. 

Introducing the matrix 

c (A.l) 

it is easy to verify that 

so that there are actually only two inequivalent representations of 

SL(2,C). In particular, there is only one irreducible representation 

of the unitary unimodular two-dimensional matrices, which form the 

subgroup SU(2) of SL(2,C). 

Any A E SL(2,C) may be written 

A = HV, 

where H is Hermitian and V E SU(2). 

A two-dimensional spinor transforming under the matrix 

A E SL(2,C) may be written as Sex' with the transformation property 
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(A~4a) 

We will write a spinor transforming under" A * as "Tj&, wi ththe 

property 

. A*.6 Tj. 
- a ~ 

(A.4b) 

. Let us now introduce 

Ea ~ 
= c-1 E , 

~ .. . . at' 
TjD: = c-1 T}. , 

~ 
(A.5b ) 

where, because of (A.l), 

_1at3 -l~ l-a a ~ 
C = C =(-1)2 0'- , . (A.6a) 

.l.-ta. . 
(-1)2 0 . a,-~ 

(A.6p) " 

are, respectively, the raising and lowering operators for spinor 

indices. 

Then, from (A.2), (A.4), and (A.5), 

-la 
= AT E~ 

~. ' 

We now consider the Hermitian Pauli matrices 
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In addition "lve introduce 

, (A.10) 

Vvhich yields 

(A.ll) 

As is customary, tensor indices are raised and lO"lered by the 

metric tensor components !-LV 
g = g!-Lv' with 

00 rr 
g = +1 and g =-1 for 

r =1,2,3, and gflV = 0 otherwise. The convention for any four-vector 

x is that 

(A.12) 

For any real four-vector x, we may define the Hermitian matrix 

o . x 

with 

det(o. x) 

o 
x + 0 • x 

= 

" -' ,. 

, (A.13) 

x-x (A.14) 
~ 



If we now consider 

a· x = AooxAt 
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v x , 

o· fI.(A,A*) x , 

defined by 

for any A € SL(2,C), then a· x' is also Hermitian, with 

det(o· x' ) x' V x' 
v 

det(o 0 x) . 

UCRL-19460 

(A .15) 

(A.16) 

Consequently, fI.(A,A*) defined by (A.15) is a real Lorentz 

transformation. Since any A E SL(2,C) is continuously connected to 

the identity, /I,(A,A*)E L:; that is, it is a proper orthochronous Lorentz 

transformation. 

Equation (A.13) may be written as 

o . x 
ex(j (A.l?) 

and, because of (A.15), we then have 

x' 
ex(j 

A Y A *.0 x . 
ex t3 yo 

(A.1S) 

., 
Thus, any four-vector is equivalent to a spinor transforming 

like the direct product A <Xl A *. 

Likewise, because of (A.IO) and (A.15), 

(j • Xf 
-1 

t ~ -1 
A o· x A o· fI.(A,A*)x , (A.19) 

and also 

c/Xt3, x (A.20) 
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It is clear that, for every A c SL(2,C) there is a A 

in fact, ±A give the same A. One may also show that for any 

Ie E L1 one can find "!:A co SL(2,C) such that (A.l':,) is satisfied. 
+ 

Let k be any real four-vector on the mass shell; that is, 

k2 2 h = m , 'were m -I 0 is the mass of the particle under consideration. 

Its rest-frame value is k = (m,O) and the "boost" L(k) is the 

Hermitian matrix in L1 defined by 
+ 

k L(k) k 

We now define the Hermitian matrix ~ (k) E SL(2,C) by 

o·k (J • L(k) k 

Thus we have 

L(k) 

with 

1 
((J . k/m)2 

o _1. 0 
[2m(m + k )J 2[m + k + (}. ~J 

It may be verified that there al'Vlays exist real parameters 

2 and A such that in (A.3) one may write 

v exp( -i :!,' V2) 

H exp(?:; . V2) . 

(A.21) 

(A. 23) 

(A.24) 

(A.25a) 

(A. 25b) 

Then, by the usual methods, we get representations of higher 

order with properties corresponding to (A.3) and (A.25). For any 
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integer or half odd integer j -Cl'ie have the 2j + 1 by 2j + 1 

matrices 

(A.26) 

with 

The matrices lj) are the usual 2j + 1 by 2j + 1 matrices 

satisf'ying the commutation rules: 

[J (j) J (j)] 
r 's 

i \ E J (j) 
L rst t 

(A.28) 
t 

The matrix C in (A.l) and (A.6) can be written 

C = exp(-ill °2/2), and the generalization is 

(A.29) 

or 

(A. 30a) 

Corresponding to (A.2) and (A.10-ll) we have 

' ....... ' 
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(A.3Ia) 

== (A. SIb) 

The transformation matrices just introduced act on higher-order 

spinors, analogously to Eqs. (A.4) and (A.7) for the two-dimensional 

case. 

Corresponding to any .A. E and any rea~ four-momentum k 

on the mass shell, one may define the "Wigner rotation" 

R(k,A) (A. 52) 

which is well known to those familiar with the unitary representations of 

the inhomogeneous Lorentz group. One may write R(k,A) == A~(k) ,A*(kD, 

where A(k) E SU(2) is given by 

A(k) 

The generalization to the matrices D(j)~(k~ is then obvious. 

," 

" : ":i\·ft·~,; ,: . 
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APPENDIX B: CLEBSCH-GORDAN COEFFICIENTS IN SPINOR FORM 

For many applications, it is convenient to follow Williams)) 

by expressing the Clebsch-Gordan coefficients in spinor form. One 

writes 

(B.la) 

~4 
where, on the left-hand side, we have employed the notation of Edmonds) 

for the Clebsch-Gordan coefficients. Because of the form of the raising 

and lowering operators in (A.30), one easily verifies that 

[ . . . Jex 
J; J l J 2 ex ex = 

.1 2 
(B.2) 

To add n spin j indices to get total spin nj one defines 

by repeated addition, the generalized Clebsch-Gordan coefficients 

ex ···ex 
[ . . . J 1 n 
nJ; J"'J . ex 

(3ex 
[nj; (n - l)j jJex n [(n - l)j; 

ex ···ex 
. 'l 1 n-l 
J' "J"(3 

(B.3) 

which are completely symmetric in their upper spinor indices. 

The matrices D(j)(A) in (A.26) can be expressed in the form 

= 
ex "'ex (3 (31 ~2j 

[j; ~ ... ~Jrv 1 2j[j; l .. ol) A ... A 
u, 2 2 f3 "'(3 ex ex2 . 

1 ·2j 1 -J 

(B.4) 
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and the generalization of the matrix a· k and (A.22) is 

D(j) (0 . k/m)01l = {D(j) (13 (k)) D(j) t <p (k)) }ae 
0; ... 0; ~ ... rj . 

[j; ~"'~Jo; 1 2j [j; ~ ... !Je 1 . 2J 

with 13 (k) defined by (A.2 l r). 

k k a • -···0 . -
o;l~l m 0;~.S2. m c.J .-J 

The generalization of (A.1S) is 

(B.5a) 

(B.'5b) 

n(j)(A)o;o;' D(j)(A*)Srj' D(j)(a. k/m)o;'S' 

(B.6) 

Because of (A.ll), 

, 

where we use k = (kO,-!:). Furthermore, 

(B.8) 

The last relation is true because it is valid for the simplest case as 

a consequence of the relation 

~ ~ 

o a + a a = 2 g , 
~ v v ~ ~v 

and the generalization follows from the construction in (B.')), or from 

the' group properties. 
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APPENDIX C: COMPLEX LORENTZ TRANSFORMATIONS 

In (A.13-14), let us replace the rEal four-vector x by a 

complex four-vector z. For any matrices A g,nd B E SL(2,C) we define 

by 

(J • z! a· J\(A,B)z 
T 

A a· zB , (C.l) 

and one has 

det(a·z') == det(a·z) v z z 
v 

(C.2) 

Thus A(A,B)E ;i.+, the group of proper 'complex Lorentz transforma-

tions with det 1\ '-= 1, a group that is continuously connected to the 

identi ty. The full complex Lorentz group is ;;(' = ;;( + lJ --t: _, 
is an improper Lorentz transformation with 

det AI = -1. In contrast to the real Lorentz group, which has four 

components because the unit matrix, and the simultaneous 

reflection of all four coordinate axes, ..It -I E L+, are not related by 

any continuous transformation, the complex Lorentz group has only two 

components, ~ + 
and -£_, because I and -I are connected by a 

continuous path in ' ,~, . 
+ 

For example, in (C.l) put 

A I (C.3a) 

(C. 3b) 

Then, as ~ varies continuously from 0 to 2n, z' changes continuously 

from z to -z. 

-' 

).:.' 
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Note that one can still de"fine D(j) (0' kim) for complex 

four-vectors k on the mass shell by means of (B.5b) and that (B.(») 

is replaced by 

D(j)(A) a' D(j)(B) (3' D(j)(o« kim) 
a ~ I a' ~ f 

(c. ~) 

.~. '(,' '-' .: 
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APPENDIX D: PROOF OF THE LEMMA IN SECTION 5 

To prove statement Ll of the lemma, we will first assume that 

at a given r = 3 point, the standard covariants of signature +1 are 

not linearly independent of those of sig!lature ~l,and:we will then show 

that this assumption is not consistent with property sc4 of the standard 

covariants. In other words, we assume that, for some r 3 point k, 

there exists ~ set of nonzero y 's 
+ 

and y' s such that, for the 

functions defined by (51); 

+ r (k) 

a. ·CX 
- b' a 

for all choices of [~; cxaJ. 

o , 

But, since any r =3 point k lies on the same 

(D.l) 

J orbit d-+ 

as the point k obtained by spatial inversion, there exists some 

Ak E SL(2,C) such that (49) and (51) give 

(j ) '(j ) cx' 
D b (A) ~ D a (Ak)cx a 

k ~ a 
r (k) 

E 

a. ·cx 
- b' a 

r (k) 
E 

a.' ·cx' . b' a 

(D.2) 

After substituting (D.2) into (D.l) and multiplying each spinor index 
(ji) -1 . 

in the result from the left by D (A
k

), we get 

r (k) 
+ 
a. ·cx 

b' a 

+ r (k) 

a. ·cx 
b' a 

o . (D.3 ) 

Thus, if (D.l) is valid for all [Db; CXa } at any r =3 point, (D.3) 

is also true. 
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Because of (50) and (51), 

r (k) 
Eex. 'CX 

. b' a 

(D. ~) 

If we multiply each spinor index in (D. 3) from the .left by 
(j. )('~' k

V 
D l __ l 

m. 
l 

and then make use of (D.4), we get 

r (k) o . (D·5 ) 
ex. ·CX 

b' a 

The consistency of (D.l) and (D.S) requires that 

r (k) 
Eex. .cx 
~b' a 

o (D.G) 

for both E= +1 and E = -1, for all choices of fOb; cxa }. But, as 

mentioned after (51) in property sc4, the linear independence of the 

standard covariants of the same parity signature at any n = 3 point 

means that (D.6) cannot be true there for nonzero Consequently, 

(D.l) cannot be true and " statement Ll of the lemma is valid. 5? 

We now consider statement L2 of the lemma. First note that each 

component Y
E 

(g)(k) ,for a fixed value of g, but different values of 
aD ;CXa 

COb; cxa }, is actually a different function. However, as was the case 

for the M c functions in Sec. 4, (50 ) means that at most N of their 
E E 

( 

values, where N is given by ( 41.a) .or (Lfl~b), whichever is appropriate, 
E 

can actually be chosen independently at any' r = 3 point. Thus, the 

number of standard covariants Y (g)(k) that are linearly independent 
E 



for a given E cannot be greater than N • 
E 

Since 
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4 
= Tl( 2j. + 1), 

i=l 1 

and since, according to Ll, the covariants of signature +1 are linearly 

independent of those of signature -1, the number must be N 
E 

It remains to prove statement L3 of the lemma, which applies to 

those special cases in which the number of independent M c-function 
E 

components at an r =:3 point can be less than the number in (41a) or 

(41'b). Property SC5 says that the standard covariants are symmetric or 

antisymmetric under each of the applicable symmetries, and we want to 

show that the results agree with Tables III, IV, and V for the number 

of independent M c-function components having such symmetry properties, 
E 

If, for example, ml = m3 and m2 = m4' we require that the 

standard covariants have definite signature under the simultaneous 

exchanges (kl,cxl ) ~(k3'CX3) and (k2,CX) ~(k4'CX4)' which is the same 

as the PT operation for the MC functions in Table II. Then the same 

considerations that led to Table III tell us how many standard covariants 

at most can have a particular signature under this operation, and their 

linear independence at r :::: 3 points means that this equals the actual 

number. Note that, by choosing our covariants to have definite PT 

signature, we automatically assure that they have definite signature 

under T. The above considerations are easily extended to the case that 

ml :::: ~ and m3:::: m4' when the covariants are chosen to have definite 

signature under the simultaneous exchanges (kl,cx1 ) ~ (k2 ,cx2 ) and 

(k
3

,cx
3

) ~ (k)+'CX,l.j)' and to the case when all masses are equal, when 

definite signature under both types of exchanges mentioned in this 

paragraph is chosen. 
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any number of four-vectors (regardless of whether or not mass-

shell constraints are present) as a function of the independent 
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Ak € SL (2, C) • 

f+(k) f: 0 
a. 'CX - b' a 

In this case it is 

in contrast to the result (b.6) for an r = 3 point. The standard 
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FIGURE CAPTIONS 

Fig. 1. Special reference frame used for obtaining discrete symmetry 

restrictior.s. The 2 axis points out of the paper . 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or con tractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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