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ABSTRACT
“ It is shown that any_basis.of’covariant folynomiais

efer artwo particle scatterihg precess yields"iﬁvarianf
‘eﬁplitudes free Of'kinemeticai singularities,pfovidede

(2) the total nuﬁber of bééie.bolynemials equals the number

of spin spacercémponeﬁts:of the.scattering amplitude,end

(b) the polynomials of each of the tﬁo:parity signatures

are separately linearly independent at'ell points where

fhree of the particle four—ﬁomenta areilinearLy independent.
‘.Ihis resulf allows one to directly identify good bésis sets

yithout.going through the very fedious algebra. invdlved in.'
.feomparing them‘to the sets of?Hepp and Williams, The—iatter are

not useful for practical applications because the spinor

&®

"indices belonging to different particles~are.¢oupled and
Athese sets do not transform into themselves under the

relevant discrete symmetry operations.



I. INTRODUCTION
: Thé desgription»of a scéttering proceé§‘in terms of invariant
N amplitudes is ﬁseful becauge they have simple éﬁalytic propérties and
can triﬁially satisfy tﬁe various symmetry'requirementé.v For fhis
purposé éne must fiﬁd a -covariant baéis that éxhibits the appropriate
‘symmetries and horebfer ensures_a_decomposition_ihto invariant amplitudes
.free df kinematical singularities. In this paper We prove a theorem
that‘énggles one to check by inspection whetﬁbrka'given baéis is a
satisfécfory oné._ -
Heppl has figorously proven that any‘éét,of holomorphic covariant
functions M(k) can be written in fhe form
M) = ) A(s) TR
o i ‘ :
Where‘the "standérd cofariants" Yi(kjk are matrices on fhe'spinor
indiées and polynomials in the four-véctoré k =:tkl’;°"kn}‘ The
invariant amplitudes Ai(s), which are functions of the independent
invafiants 5 = {sl,--»,gm} formed from the _ki's, are holomorphic
exceﬁt én the s-space image of k-space singularitiés of the_functions
M(k).{ In general, a ﬁinimal set of standard céﬁariants, i.e., a set
whose = number is Juét the number of values'that.thé sﬁinbr indices
b take on, does not exist. But for the case of'séattefing amplitudes
descfibing two incoming and two outgoing parﬁicles, and subject to the:
mass sheli and four-momentum conservation éonstraints, Hepp proved |

that one can find a minimal set of Yi(k)'s having positive and



negativeAsighature ﬁndef parity and whatever other_discrete symmetry
operatibns transform the particular process undéf.cdnsideration_into v K4

itgelf.

=)

Tb‘find the relevant standard cbvariants»fbr‘ahy givenv M(k)
one musﬁ find é set_bf polynomials such that ali covariant polynomials
 wWith the'éamevspiﬁor index types can be exptesged ih terms of them for
all alldWed values of thevcomplex four—vectorsv_k;. ﬁepp's'proof is,
in effecf,va proof that.such a basis exists and.thgt any such bagis | _
gives a holomorphié dééomposition (oné free of kinémafical éingularities)
into 1nvariant amplitudeé of the given holomorphic functions ~M(k).
Any bther forﬁ.forhphysicél scattéring functioﬁé is'equivalent tb the
23 + 1 Epinor form, so Hepp has given a rigorous Justifiéation of the
prescripfion originally developed ﬁy Hearn2 for perfurbation theory.
Recently Scadron and Jones5 have foﬁﬁd sqme of.the relations needed to
applyfthis methdd tbAtWinarficle processes withvarbitrar& spiﬁg and.
mény other relations have been found by the authof,of thié papér.
Several~éxamples 6f gets of covariants'that giﬁe a holomorphiec
vdecompdsition have been given by Hepp and independently by Williams,5
but thesg_db not transform into themselves under the discrete symﬁetry
operatibns. To find a satisfactory basis it 15 sﬁfficient té‘show how
any Ong of thésé sets can be.written.as'linear combinations of,co&ariants
having definite signature under P, C, T, and exchange symmetry;
with coefficients that are polynomialsg in the invariants. For those 4
processes in which two of'the four particles are spinless this procedure

)"’:‘6)7'

is not too tedious and all the required covariants have been found.
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When morc tnan:tWO spinning particles ame»involved. the algebraick
problems become rapidly unmanageable as the spins increase. 3,&,7,8 Thus, al-
thoughtheprescrlption of Hearn and Hepp solves the problem in prineiple,
it does not solve it in practice.

The main aim of this work is to eihibit in eoncrete terms, the
origin of the dlfficulty in obtaining holomorphlc invariant amplitudes

and to develop a simple criterion that allows one to verify dlirectly

'whether any given basiS‘ gives-amplitudes that are free of kinematlcal

'51ngularities. The criterion is essentially thisi any minimal éet of

covariant polynomials is a good set if all the covariants of positive
parity signature are linearly independent and all the covariants of
negative parity 51gnature are linearly independent at all points where
three of the particle momenta are linearly 1ndependent.

,The core of the argument is a detailed’ degcription of the
constfaints that Lorentz covariance and analyticity.imnose in neighbor-
hoods of p01nts where‘only two of the particle four-momenta are linearly

1ndependent._ Once the nature of the constraints is clearly understood

the essential requirements on the standard covaiiants will be eagy to

see and the proof of the theorem will be straightforward.

~Aside from the Hearn-Hepp procedure,Athélonly good criterion

that has been previously given for justifying the absencé.of kinematical

singularities in a set of invariant amplitudes is that of Williams.5

However, Williams' arguments were for a particular get of covariants

that has no simple relation to the discrete symmetries.



‘vonevreason that thevétandard'couariants'éirenfby Hepp and
WilliansbhaVe not'found practical application is that all spinor indices
with the same properties urider proper Lorentz transformations are
coupled w1th Clebsch-Gordan coeff1cients.9> These:couplings Join
together-parts hav1ng'd1fferent discrete=symmetry properties and aleo
make the'reeulte impracﬁlcable for substitution into the unitarity
relations; Any useful basis must av01d coupling spinor indlces
belonglng to different particles, and this does not naturally emerge if one
starts from the sets of Hepp or Willlams.. By our-simple criterion,
-any proposed basis can be checked directly without comparing it to all
the other polynomlals having the same spinor index types orgto the
gets of- Hepp or Williams. | |

o apply our crlterlon the llnear independence of the basis.
‘sets-of each parlty signature must be checked. ThlS problem, although
not triv1al, is 31mpler than the one involved in previous methods 'A
paper deallng with procedures for checking the linear 1ndependence of

bas1s sets is belng prepared

The general background material needed for this work is scattered
in various places and some of it is unpublished. vMany of the essential
results are obscured by the abstruse mathematical forms of the original'
papers, and there is no satisfactory account of.the general situation
anywhere'in the literature. A secondary aim of this paper is therefore
to provide a_systemafic.simple'description of the previous results that
10, ll

form theibasis of the present work. These include a theorem of Stapp,’

which states that scattering functions are covariant under proper

W



_complex_Lorentz transformations at all points where they are regular,

b -and somé;hasic-properties of sets of .complex fouijvectors.l2 We also

5

discuss and extend a theorem of Hepp'-l and Williams’ that allows one:

W R . . .
to express a multisheeted invariant fnnctiondofvfnurrvectors as a
function.of invariants formed from,thsm. . |

We confine our d1scuss1on to those cases in which.all four partlcles
are mass1ve, since Zwanziger 13 has found all the standard covarlants

having deflnlte parity signature when one or two_are massless.

i ST
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outwofftnefphysicel;region)of}the'originai'prGCess}n This, in ‘turn,

~ leads to3sonewhat'cOmplicated'croseing‘relations betWeen thefamplitudes

for the various physical processes that are connected by analytic

continuation.' To simplify the crossing, analytic, and Lorentz transfor-

mation properties it 1se convenient to introduce the splnor amplitudes,

or M i’\;mction:s.ll‘t 17
' ~ The M functions with lower undotted spinor indices assigned to
outgoing particles and lower dotted indices to.incoming particles are

| definé‘d- By .

() N % G &
SRR C18) MR A X ) MY SRR
%% T T

nhereiffg(ki);'définedHin:(5;9)):ithhedHermitianvmatrix in  8Ln(2,C).
corresponoing to the Hermitian "noosth fL(ki)"in[;(A;B) that carries
Ei_; (mi,O)« into k;» Then, using ‘A é.n(A,A%),'the following sinple
' covariance property is easily verified from (3); (&), and‘(A.ll){.u
o yt I | a
M(Alcb, A,) = D(jb»)(A)%ab n”a)w)&_&amxb; ) - 0O
ab, o _a_, o aé
One can use instead the M functions with all lower undotted

indices.' ‘It may be verified from (5)» (A h), and

RE T U

Mg 1) = 0 Voot Cumsx) o ©

ab%_“h, ] ab? aé

that

=

¥
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particles are splnless, then Ay (A A )

-9-

L (ab> o ICRBNE o
MAKy5 AK) = DT )ab . (A"?‘a MKy k) - - (n
ab; a - : T ab, a' ‘ _
The choice of index type has no effect on the phy31cs or on the
analytic properties. The matrix that transforms a particular spinor
index from one type to another is a holomorphic function of that
particle ‘8 four—momentum. |

For a given process, M(Kb, K ), where we . suppress -the spinor

indices, is expressed as a sum .of & no-scattering part Mps(Kb, K )

~and a connected pa.rt"l8

Wi, k) - tohe vk, - ky - ) WO K,) - - ®

Equatlon (8) defines M° functions that'are‘free'of'conservation
delte fUnctlons. To avoid speclfylng spinor index types one may wrlte
their physical region covariance properties, of which (5) and (7) are

particular examples, in the form

:M"-(A(A,A*)K) - A9 ®, )

where X = (Kb’ K,). The M® functions are said to be 'ﬁx‘ covariant

in the phy81calxeglon ofthe process ti"+ft2’;;t3'+.th;- If all four

I on-the‘righﬁihand side:

of (9) and the single M® function is said to be‘ Lfﬁ invariant in the

given physical region.
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III. PROPERTIES IN COMPLEX FOUR-MOMENTA SPACE
A. Stapp's Theorem _
Let j%’ denote the set of points k _-(kl,kz,ks,kh} in

'complex four vector space that satlsfy the four mass-shell constralnto

i ok. (m ) > 0 and the four. conservatlon law constraints
k) + k2-_ k5 + kh' The M° functions defined by'(8) are assumed in
S-matrlx theory to be analytlc functlons over: 7%/ except for

3
dynamlcal s1ngular1t1es.lo s14,19 The set ?%g "is a subset of the

space of hbcomplex four-vectors. The notion of'analyticity on such a
subsét'isia standa?d mathematical concept.eo
.As usﬁal we use the teim_hdlomorphic to designaté-the
ﬁropérfy‘of being analytic and single valued. A domain-is a connected
open sef_and, for our puipbseé, it is sufficiént to regérd the -
ndoﬁaiﬁ of holomorphy" of & function as a union of sheets, é Shéet
being the maximum domain'whosébpoints map oné-fo4one onto péihts in
1f;%;.21 'The-sheets.may’o#erlép; in fécf, thé'béundaries of the sheets
are somewhat arbitrary, and any point on the_domain of holomorphy lies
on thé_iﬁterior of some sheet. One does not iﬁélude_poles and branch
poinﬁs oh any sheét, evenvthough it is customary in physics'to;speak
of_a pole.as lying on a partiéular sheét when it lies on the boundéry
of that sheet. |
_ For a given scatfering process there-is an Mc function-
correspondlng to each combination of values of the spinor 1nd1ces.

Follow;ng Stapplo ll we define the domain of regularity, '7§), of

this set of M° functions to be the intersection of their domains of



“11-
holom_orphy; i.e., ﬁ is the largest (multisheeted) domain to which
all of these M functions can be simultaneously. analytlcally continued.

N

The M* f\m\,tlons are known to be L+ -cova.rlant [see Eq. (9)] at
points lylng in- the phys1ca.l region for which they were orlglnally
defme_d,_but what can be said about covariance ‘at’ other points on ’R?
Beforefsfating Stapp's theorem, which gives a precise_answer fo bur

question, we require a few definitions:

A set of tensor-valued functions F(k) is said to be ‘5(:

covarlant on a set of points’ ,J 7%

F(A(A B)k) - 2, (8,8) F(x) | (10)

whenever ' k? and A(A,B)k are in ,d . As exblained in Appendix A,
the matrices A and B are in SL(2,C) and A(A,B) ef+, the group
of proper complex Lorentz trans‘formations. The nota.tlon. on the
right¥hand side of (10) indicates that the ma’(.:ri)’cv D(J )(A) acts from
the léft on the ith spindr index of F(k) if it is a lower undotted
one, whereas the matrix D Y (B) acts on it from the left if it is

7

a lower dotted one.
The { orbit, ECk of any point k ¢ %; is the set of

all pbints = {Akj_""”Akh} obtalned by letting Aez take on all

, poss:Lble values.

10,11,22

Stapp's Theorem:™ ’7 7 Let the M® functions for a given process be
Li\ covariant and holomorphie on a real open connected set in % 3
correéponding to physical points. Then the domain of regularity, ﬁ R

of these Mc functions has the following properties:
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Sl # is a union of ;Z/ ~invariant sheets % H e.; if.
the 1ma.ge in %/3 of a sheet Q{ coptams_a polnt k then this. :
image COn_ta:Lns all p01nts on x+k. - : .. o '. | ’
82 The M° funct‘ions afe {; ce\'raria‘,nt: c')vn'ea‘ch sheet Wa'
That i.s.,.if the image in.' '%{5 of a shee_t Q{av.v'eontains a point Kk,

then
Mc(/\(A,b)K) = .AS(A,B).MC_(K),. o o (11)

for each A(A B) € %+.
_ »SB’.- Any bounded connected set of phys:Lcal p01nts on ﬁ is
contaivned‘; in some single i;invariant sheet 'ﬂ{a.ZB o
For a process involving feur'spinlessvparticles‘ one may replace .
%+ '.cex.rafiaziﬁfbgr" ) ;{ invariant in statement S2. A functien F(k)
is 35+_ 1nvar1ant on a set of points d in. % if it satisfies
(10) w:Lth Ag (A,B) = I whenever k and A(A,B)k are in _J .
| | | (+-'0rbits in %;
We intend to investigate the constraiﬁts ﬁhat ;{+ covariance,
as specified by Stapp's theorem, imposes at certair_i points on the
domain of regularity of the M® functions. But first we nee'd some -
prope?ties of poisfs k in %5 and their ';L/ﬁ_ orbits. _ v
A.t any point {k kh }” in %/5 we may define the 9!
scalar; i_nvariants ki . kj’ For the case of aﬁ ‘a;"r_bit.rary number of
particles, one should also consider the pseudos_calar. invariants formed

by contracting the completely antisymmetric tensor euvkp with the

- four moments. The invariants taken together are then referred to as
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. -J_}- ’

;Z/+’ invariants, since they are lnuariant underdanj Aenstlgawhile
the scalars alone are referred to as 5{3' 1nvarlsnts, s1nce they are
1nva.r1ant under any Ae{ X’ U%, where ;\/_‘ is the set of
1mpmoper Lorentz transformatlons. In the case under cons1derat1on the
pseudoscalars vanish 1dent1cally, because four-momentum conservatlon
allows at ‘most three of the momenta to be llnearly 1ndependent at any
p01nt, Consequently, it makes no difference whether we_refer to two
distinctkpoints es having the same ;Er:_-inrariants or the same ;(d
invariants,'and we will use the former of_theseitwo terms.

’All points on the same 5Z/+ orbit haﬁe the same Eﬂfi

‘invariants. But one cannot always specify orbits by the values of

their inuariants, since two distinct points with the same =~
invarlsnts do not:necessarily lie on the same 5?{4_ orbit,hos will be
discussed below. | o |

Consider any real or complex point hd; {kl5'f';kn;kn+l""’kh}’
where.the vectors are ordered 'so that the-first‘ n are linearly
independent at the point under consideration. Because of four-momentum

conserVation, n < 3, and, because the mass shell condition prevents

the fbur-momenta from vanlshlng 1dentlcally, n > 1. Let us define the

'Gram determlnant

G(k ) = det k. k (m

1’ 2’
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and let r be the rank of this detérminant at the point k. Hall and
'Wightmanlg gave the following relationship between the rank of the Gram
,determinant at any poin£ and the riumber of linearly independent four-

vectors at that point:

r .. on
3 3

2 2 or 3v

1 lor 2

The possibility'of having n >r 1is, as Will:also be seen below, a
COnséqﬁenée of.the fact that oné»cgn have éompléx 1igh£like vectors in
.vthé.gbAée orthsgdnal to the firét n vvectors when n { 3.

v”.From the coﬁsiderafiohsvof Hallband Wightman- regarding the
propértiés of complex foup-&ecfors we can make the followiné remarké-
about pbints and orbitéviﬁk 7%/3:

.> Hl. (a) Atany r=n=3, 2, or lvpoint, one can write

k= Zaijkj’,' for i=r+vl.;.-A--,3_, (13)

where the C:?ij's are,finife scalar éoeffiéients. (Recall that the
firstAvrr= n vectors are linearly independent at the givenvpoint and
thatj ku“is giobally déteimined by four—momentum conservation.)

(b) If k and k' are any twd r =n points with the
same -J</+_ invariants, they lie: on the same 7;<<+ orbit. -

" H2. (a) There exist r =2, # =3 points with the same 21f*_

I

invariants as any given r = n = 2 point., For example, consider the

\ﬁi

o
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;is;
point k determinedvby_(lj) with r = 2. In fhe_spatial_directibn .
6rthogbhai tq the two lihearly independent'vec£o£§i kl and‘ k2 one
may define}real unit space-like vectors @l ahd; ée .such that

al. é2 = 0. Then define

e (1)
It folléws that w, 'kl =w, k2 = Qi- Qi =,Oa rﬁqw consider two poinﬁs
) ana k() cuch that k(i) = (kl;kg,ksg#);k#(%)j, where
e kv = S Aok vow (15)
| 3 3 * 4 311 *
Here ‘kl; k,, and k3 are the same as fbr»the.:r =n = 2 point in (13),

while C %'O is an arbitrary real or complex number. . The points k(+)
and k(f)v are two distinct n =3 points with the same'.;z:+-invarianté
as the r =n = 2 point obtained by putting C = O in (15). They are

related‘by an improper Lorentz traﬁsformation]that changes w% into

w., while leaving k

1 andv k2 the same.

(b) The points k(+) and k(f)ifdetermined by (15)
and the r=n-=2 pointvobtéined by putting € =0 1in that equation
all lie on different ;Zi+ orbits. Any othérf‘ir =2, n=3 point
with the same ';23+ invarignts lies on eithér'the 5(?+ -orbit of k(+)
or_thév 3£?+ orbit of k(_). Any point on.éne 6f theée two orbits is
related ﬁo any point on the other by meané of an'improper'Lorentz
transformation. As a consequence of le.(b),lwé may state that, for

any set of values of the éﬂf+' invariants for which the rank of the

| Gram determinant is 2, there exist three different Ezf+ orbits. -
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(¢) ConSider the'1imit, c"—+0'~iﬁ'(15),'whi¢h yields an
r ;In ¢ 2ﬁ:p6i@t'wi£h*ﬁhe saﬁé 'E§f:‘ainvariants;1 This_méans that any .Y
néiéhbofﬁoddlﬁf'éh Pr =-n:; 2“”§6int:é6h£aiﬁs:péinﬁé'df é&éry.'r 5"2,’
n = 3vipfbiﬁ'with'£he.saméb iﬁf: invariants. |
'.H3. (a) Similar remarks enable one tb Qqnsfruct an infinite
number of T ;'1;’ n = 2 ”ofbifs with lihit.points'on a given
r = n ;'lhvdfbif;A'In tﬁié'caSe, however, any two r=1, n=2
poinﬁé'related'by.an'impiopéf Lorehtz‘transformatién lie on fhe'same
E(Q;' orbit. N
(b) The occurfence of r=1 zpoints in ?g/s is possible
only if,the'sum of some of ﬁhe.masses eqdal; the sum of the others.
This foliqﬁs"ffom:the'cohservatidn of energy and the fact that every
r=n-=1 orbit contains.a'pdint of the form 'ki = (imi,o) for all
k. €K v : |
.:Hh,, We define thevlittlé_group 2@7;(k) ‘of a_pbint‘ k to be
the sét_ofiprOperfcomplex Lorentz trénSfbrﬁatidns”that;leave ‘k
invaridnt;:li.e., A€ ‘éy+(k) —>det A =1 and Ak = k. At any point
k with n = 3, thé.only matrix in ;27;(k) is the unit matrix.
Howe?er, if r =n < 2, _£z7+(k) is an infinité;set.
C. The I,-Saturated Kernel of the Domain of Regularity
We‘eﬁphasize.the:faét that to_a_given point ke 3%;' tﬁe:e
can correspond mény"boints on the domain of regularity, 'ﬂﬁ’, of the.
MC fungﬁions for a;given pfocess, élthough at most one point:on any
sheet "z{é:}ﬂ?. In the remainder of this paper when we speak of a
point k ‘with.certain.values of r and n lying on Tﬁ? e
actually méan a point on Zﬁ? whose image k. in ﬁ%fB has these

values of r and n.
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Thus Stapp's theorem in Part A of thls sectlon says bessentla.lly
that (a) ’ﬁ is a union of x orblts, i.e., 11’:‘ a p01nt k lies
on ﬁ there is an z: orbit, %J&,. tha-t lies on ﬁ 'a‘n‘d
cont&ins the given point, snd (b) the Mcvfuncti(»)ns are 3(+ covariant
on TR , i.e., the MC functions at any two points_v‘ k and A(A,B)k on
the ssmé X,+ orbit oriv ﬁ bare I;elafed by (1]_) [If all four
particles are spinless the M° -funéfion is ;(+ invariant on ﬁ;

i.e., A (A,B)= I in (11).] | | ;_ | o

:If an r =n <3 point k' lies on 'ﬁ, then every.vr # n
orbit "for which it is a limit point lies on ﬁ . Th_is is bscause there
is somé full neighborhood Q? in ﬁ - of t'h'e. point vsuch that there
is a or.l_e-.tor-,-one mapping betweén'points in ?7 ' a.nd pomts in a -
neighborhood N(k')e %--accordmg to H.2 (c) and H. 5 (a) N(k ).
contains p01nts of every r 5‘1 n- orblt in %5 for which the r =n
point k'eN(k ) is a limit pomt By Stapp s theorem W must
contaln the full a?: orbit of any pmnﬁ in ?7
\; ‘If an r # n “point. lies on f, the r =n limit points

of its {4_ orbit do not necessarily lie oh 7? .l The I -saturated

kernel, ﬁ (+), of ﬁ is the subset obta,lned by deleting from ﬁ
all r 74 n orbits whose T = n 11mit p01nts do not 11e on 'ﬁ 1’5’11
All physica.lvp'oints‘ on ﬁ ',lie'on 'R( ) beca.use_ their image in
%5 is real and the construction in (1k) and}i(.l5).'shows tha.rt_ r4n
pointsv i‘n %3 are always complex. o o |

In the remginder of thls paper the symbol % (+) designates

(+) @( . _ . .
the set @{ ﬂ ﬁ ’ where o IS soms Z;lnvarlant sheet on
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ﬁ, i.e., ma(.‘-) is the set obtained by deleting from 7{3, all
r #n orbits whose r = n_:limit'poinfs_do_not lie on ?; . We refer to
' +). ' R o
62(;( ) as the I+-$aturated kernel of the aC:_—invariant sheet ‘2{;.25
D. Kinematicael Restrictions '
. The number bf_M9 functions. for a given process is the same as

the number of different combinations of values of the spinor indices.

N‘_ —_-‘! l (235 + 1)'.7 : (16)

i=1

This is given by

Equation (l6) gives the number of indepéndént scattering experiments
at a figéd physical value Qf the fourémgmenta, at léast on a dense
| sﬂﬁset of thé‘phySical pointé. of éourse fbr‘the MC fﬁnctions'uhder
éoﬁSiderafion discrefevsymmetries can leéa to a relation between the
results of Various‘éxperiments, so that the number that are independently
determined is less than the number in (16). Such restrictions will be |
.’ighored in this section and will be the concern of the next one.
We will show that at any point on "*ﬁ“) at which the rank
v Qf the Gram determinant is less than 3,  ;&{; éoﬁariance leads to :
_iinear relationships between the Mc'functions; i.é., there are kinemati-
cal restrictions at chh’a point.26 For any r = n.= 2 point k on
ﬁ_ “this stafement follows by letting A(A,B) be a matrix in the
-iittlé group, ,ggy+(k), defined in remark Hh. Then the :Kf; covariance

relation (11) becomes

W = A E) K. an



-

We w1ll also find klnematlcal restrlctions at aoyﬁhr =2, n =3 point
W | lying on "j'v'__ﬁ(wk).- The tr1v1a.1 extension of our results to. r=1
.pomts w111 not be needed in thls paper. o

We restrlct our attentlon to a single pomt on any given

orbit on 'ﬂ( ) 3 smce the number of M® f‘unctlons whose values are
1ndepend_ent is the same at all points-on the orb:_.!_:_., Any r =n =2
ofbit on% contains a.' point whose image‘. ké % : is such vthat each
lof the "\}e'cﬁo'rs kiek ha.s no components along the l and 2 axes. -

‘Then, from (A. l),

w0 o

s ' i=i cee,l |
i L 0 .9 ;e ’
PNl o () - ()

(18)

Let us now make the following ch01ce for the matrices K and

B ¢ SL(2 C), where A 1is - any complex pa.rameter: .

i exp(-)\/2) ' | Y , (190)
o . exp(r/2)

B = =2 (./2) o ° | . | (19b)
' o - exp(-r/2)

-l

From (A. 2')"it follows that A(K,B) k; =k;, forall i = 1, -~-,%
" when k . is a point in #3 of the form in (18), so A(A,B) belongs

to the llttle group ,Zj (k).
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'_'Bééause of (A.3),., we have,

Rl

(Ji) — . (Ji) B
D (4) = expl-A T 1, o (20a)
. 3 ' @
G Gy |
D " (B) = explp g, ~ 1 . : (20Db)
Snppose that the particles are ordered so . that. the first ¢
have lower undottedvspinpr indices and the remaining 4-£ have lower
dotted ones, the assignment of index types to individual particlés being
completely arbitrary. Then, because of (l7)_and'(20), we have, at any
point k of the form (18) lying on Zé 5
e L , N
c ' ey,
- M(K) = expl-)\ E a - ) B} M(K) (21)
(s s=1 t=4+1 - (@) (B)
where (o) = o e, and (B) = Boel ‘Bl are not to be confused
with the outgoing and incoming spinor indices of the preceding. section.
Equatioﬁ (21) requires that
) =0 ar Yoo - N B A0 | (22)
(o) (B) s t o
- Therefore, the M®- functions have "kinematical zeroes"
at any Such point. At other r =n = 2 -points--the - R
o ‘ : : W

relatibnship among the values of the;Ms functions, as ‘given by (17);
will be more complicated, but the number ofﬂsuch’linear relationships
will be the same as the number of "zeroes" in (22). It is convenient.to-
continue to use the term "kinematical zeroeé"_to refer to the

restrictions at these latter points.
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3 Now consider any:_r.=‘2, n :;3'vorbitf§h_ 1ﬂ?.(+) for which
the r=n=2 point k on ?§> that we have just considered is a
limit poiﬁt. There is a poinf on the orbit whbéé image k(+) or
k) _1n_-f%/; is such that eachvvector.,ki(f)é'k(*) has the form
ki(i);%fki +'Ciwt, where k. :is_given by (18),.fbi is a real or complex
number, énd w, = él.j i @2 '

is a complex light{like vector in the space
orthogoﬁai'to the ki}-véhoosing"the real spdce-;ike vectors € and

@2 to bevparallel to the 1 and 2 axes respecﬁiﬁely, we have from (18)
and (A.1)
’ (ki) L+ (ki) _ ",(;tl)civ

P e ()
o- k,

_ " - (23)
- o 3 :

aile, () - ()

‘Using A(4,3B) defined-by (19) and (A;E), but restricting our-
selves to real values of A, we find that | |

“lim A(K,ﬁ)ki(f), = k3 B TS RN ' ' (2k)
with k. giveh by (18). Since the Mc_function§vare continuous at
the point k on 'ﬁQ), we have, using (11), (20), (24), and the

~ obvious notatioh K.(i) = k.(f) ti>:'v
S i \"i ’



~po-

11m.M (a, e )> ' MC(K)

.x~>- ::‘” (a)(a) 7 . (a)(é) v » ‘ i
- o - Z-Btv] (K< )> U e
, ?-*+°° { <$ t ) (a)(B) | E |
o In partlcular, (25) impli'es'fhat ; _
M“'”A(K‘i)) S 1t Sa-Yoe. o (6
(a)(B) (a)(a) o | :[‘ ° Z‘ t_ -

Furthermore s for the llmit 1n (25) to be cons:.stent w1th the result

1n_(22)v for‘»the = 2 po:mt k' on 'ﬁ we must ha.ve

<(+> —;-"o ifZaS <Z ‘Bt , | -'-__(’27'&)
P R

(@@ -~ . s

((D _o ;v.if ZQS>ZB’G ~ (27m)
| s ,t -

(a)(s)

However P there is no kinematical restriction on the values of the
M° functlons with Z a > Z Bt. at a pomt on. ﬁ( ) Whose

" _.unage in % Cis ( ) ~and nz such restrlctlon on t.hose w1th ,
Z 01 < Z Bt. at a point whose 1mage 1s ( ) Ei‘cher of Egs.
_ (2’?) 1s. therefore sufficient to determlne the number of kmema.tlcal

zeroes at an r = 2_, 5 pomt on fﬂ?( ), this number belng

exactly half‘ the number given by (22) for an r =n = 2 point on

| 7?‘27,
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i'.By adding ﬁp the number of Mcbfunctions not restficfed by (22)
or (27) -we get the number of such functlons whose values are free of
klnematlcal constralnts at any r = 2 p01nt on 7&7( ) The result
is glven in Table I, whlch is actually valld for M functions with any

number of partlcles, but for which at mostvfour have spln.u



Table I, _Nﬁmber of independent M functions at an r = 2 point..
These'results are valid for the case when at most four particles have spins, although the
total number of partlcles can be arbltrary, and are valld on the I -saturated kernel of the domain of i

fregularity' Herer = rank of Gram determinann We»take

: Jl . 2_ and 33 + jh both to be integers,_‘ o

with ) + Jp > 33 + jh and jl > 32, 35 > jh
,Numbef,of-linearly‘iqdepéﬁdent h;yeé£Qrs;i n
G dp 205t A | (I DI DR+ ] (G D@ DRI 125+ 1)
ase I R N
j5tf517275;-'32 (2Jé+'i)(235+ l>(23h+ 1)_ N ,(jl+ 1)(232+_1)(233+ l)(23h+ 1)

R JS'-JM _,-%(32+ JB%,Jh->Jl)(32+ It dm v ) -*“6(32+ I * jh 30 (p* 35+ 3y bt L)

: j?(32+ 35¥»3uf'Jlf12)' 1_ | o o(32+ Izt jh i+ 2)
Case 111 o » . -
357 3y 237 3y | oy DRI 1) (245+ 1) o (e DG 1) (20 1) (235 1)
30,0ur 1) - Gt 35 3= 3y) 153,00 1) - 3 35m 3y 9))
JERNEE R R S el gt gy 3yt )]
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IV. DISCRETE SYMMETRIES
A. Identicél‘Particles,>PCT; P, T, and C
In this section we determine the>numbef of’independeht M°
fuﬁctions~ét varioﬁs pOihts,on 1‘?(+) if thé functions have definite
signaturé'ﬁnder.the discrete symmetry operations. The main objecf is to

establiéh-the results at poihts where the numbef‘of linearly independent

' momentag'n; is 3, but the rank of the Gram deﬁefminant, r, is 2. The

understgndiné dérived'frdm this discussidh leadé to the1results of the
followiﬁg §ection.

>Invariance-under fCT_and'the connectidn;bétween spin and
statistics are both consequencés of the basié priﬁcipleé of S-matrix

ok,28

theory19 and of field'theory, In terms df,the connected parts of

the S matrix in canonical form, the PCT identity reads

_ ‘ L . o
PCT @ 87(Ky3 K)) = Tpgp D (C)ai Sk k) (28)
Qs Oy i=1 . aé; oct')
whergr Npop 1S 8 phase factor. Here X, = (ki,ﬁi) With
Ei = (mi?ji’-qi) indicating an antiparticle.  The spin-statistics

connection. stapes that exchanging the order of the momentum variables

- and spin components of any two identical initial or any two identical’

final particles of spin J ‘changes the signiof-the SCaftering function
vy (-1)2, -

| The assumption that transition probabilities are invariant under
a chénée_of direction of all spatialvéompqhénts bf the four-momenta

leads to the relation
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Pl K) = on SR E) (29)
ey & o -

1%

-Ei), and n, = +1, the "process

in the physical region of the process .t é;ts +t),. Here

~ ~ . ~ O
Ky = (kyp%;), with ky = (k7
intrinsic parity" is the product of the "particle intrinsic parities"

- of the?articleSOCCurring-in the ﬁr'ocess.29
R Tt is straightforward'to show that iffffansition probabilities
are:invariant under time reversal,:ﬁhich invoivéé'exchanging'initial
and finel states and changing thelﬁign of all three vecfors,‘one has
for ?h&gical poihts B
. . -. o S ."
Tt K,) = g D(qa)(C)a S s°(K, K,),  (30)

;'05; %, o ' : :?5*, %5 %

where = +1 1is required for an elastic process.

N
- It may happen that PT is a symmetry, even if P and T .are

not.  Then the PCT identity (28) requires charge-conjugation invariance,

c s°(K, 5 K,) = ﬁb sc(ig;yﬁé)y j‘ | (31)
%3 % %3 2

.

::lThe.relevant symmetry relations for Mc_functions with spinor

» indices éf the types introduced in (h).and (6) fbllow easily from (28)-
(Bl)ﬁand are given in Table II. If a given symmetry is valid for a
vcertﬁin physical proéess, it is walid for ﬁhe analytically continued

30

funCtions and, consequently, for the procesées related by crossing.



Table II.

Na = number of fermions in state a

Effect of invariance under various discrete symmetry operations on the MC functions

Symmetry Mc(Kbi K_a) ’ Mc(K'b; K,)
’ SAAN o 105 G
s — —
(-1) 7 npop M (K5 K)
N o
PCT (“l) nPCT M (K 3 K'b) () - a’ Ob o () ab
Q5 % J gk a (J o ky
& Tper Q m a>aa D P <mb Aab M ((I; -, :_i) .
, a’
s &, e |
o M (K5 K ) (-1) " onp MO(K5 K)o '
. VRN
<ab < kb> e >< > y (Kb, K i <ab>/\ Y <aa><1m k) R R
abab ol " ooy _ a0, s &
ALY -' |
()% g (R &) (1) o () &
o 0y e ) 1y D & (©, *D b (c)c-lbab (R, 5 Kb)
(1) nTDJ <m a) " & 1%\; MK K ) ) , o Gy
a Jaof N 0%, ol o o K S
. N
(-1) % o MR K)
o (-l)N i ) ' &g Oy .
Q3 O (Ja) E.k> % (Jb)/a- % 3 )
.. Top D (= D - MK, K,
s e
c ne MUK K,) n, M(K5 K,)
O3 O %3 %y

=Le-



-28-

'ﬂ,B; -FunctiOﬁs'withbﬁéfinife Parify‘Signature.

‘EVeﬁ'whéﬁ spatial inversioh is not a symmetfy of the process
under cbhéideration, one cah find it.uﬁefulitovdecompose the M°
functidns~for twp ingominé and two outgoing_partiéles into farts having
' positiVé aﬁd ﬁegativé'parity'signature.v in the_pﬁysical region of.‘
the proée#é!'tl + t, = t5:+ th let usbdefipé the fﬁﬁctiops

'Mec.(Kbv_; K,)
| %i'd | D )
| 28> (3 RS

oty m"/a"d" 4

for e = +l. With the aid of (A.lE) we find that .

o (8 (7 (3,)
M, (Kb, K ) b %abd‘b < ) d' M, (Kba R.)» (33)
| 95 a, O% a' |

which indicates that the functlons deflned.by (32) have definite parity

51gnature (see Table II).

~One may analytlcally continue the functions M+c and’-M_cv
deflned by - (32) over all of 1%?( +) and the follow1ng decomp031tlon

is valid at all p01nts k on that domaln

M?(Kb; K,) = M+°(Kb; Ka) +M (K K) B ¢S
0y A |

By'comﬁafing (33) and (34) with Table II, we see that if spatial

inversion symmetry is valid with Ny = +1  then 'M_C = 0.
' +
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'.Accordihg to the remarks in Sec. III,'Part-B; the points k"
and -; Lin the andthically continued relation (33)'lie on the samé
;Zf+ orﬁit on .vfﬁ?(+) 'ﬁnless they ére r o= 2;ﬂ£h =‘3 'points. If
they-aré;'? =2, n=3% points»then‘remark‘Hé:(ﬂ)fshoﬁs.thaf they lie
on twd different E</+ orbits on 1ﬁe(+). haviﬁg-the same T =n =2
'limit.?éints; it is well known that ézz_covéfiéncé lea@s to 1inear
relations:between the funcﬁibns héviﬁg the same‘ﬁarify signatufe atv
all r = n poihfs. :We will révieW'this.reéuit‘in‘order to exféndﬁit
to r.; 2,' n = 3 points. |

_ BecaUSé ofvﬁhé D(ji.(h;'ki/mi). matriéésifhat act on the MEc
fﬁnctioﬁs“under the parity operation defined by (33), it is much simpler
to use thé connected parts of the S-matrix elemeﬁts td‘COunt the number
of iﬁdependent functions, ‘The s¢ functions-havé kinematical singulari-
ties aiiéing from the "boost" matrices that relate them to the M®
functions, as in (4). These éingularities, unlike those of the M®
funqtidns; aré not Lorenti”ihvériant, SO we can aiWaﬁs find points.bn
any Orbit at which the Sc functions are'analjtic_if the Mc functions are
holomopphic.Bl |

| By application of the proper boost matrices»to.(Sé) and (33),

we obtain

]
nof -

5,500,5 K) = B I8°0,5 k) ¢ SR KL, (35)
%3 & LSS

where’

2

]
m

5. °(Kys Ky) = €8S K). S (%6)

O3 Oy _ v voﬁ; a

Qe



| —‘I'o- 'se;e' the ‘restrictions at' r - j" ' 3 or 2 points on Tﬁ it
is best to choose a point k = {kb, k }- on & given orbit such that all
spatial components are normal to the 2 axis, then a rotation of =
about this axis carries k € f??; into- k. Since the matrix A(k )
in (A ll) corresponding to the ngner rotation is equal to A when,'Av
is unitary, and since the requlred rotation matrlx for spin J is

now slmply the matrix. D (C) in (A 5), (3) gives us

Sk '
' AT ) (350 |
s (Kb, K ) L A S -~ (37)
S Lo :iab;-ﬂ%a:i o :
Equation (37) allows us to conclude that at any r=3 point'
on the domaln of regularity of the Me functlons, disregarding possible
restrictions due to other_symmetry operations, thejnumber of Meﬂ
functions whose values are independent is R A o
N = % (23 + l) : R O 8)
€ 2 i ? - . : S
‘ i_l S N - _ '
if there are fermions involved in the process. On'the other hand, the
number is | o
. I

y 3

-:,f(231 + i):+‘e(4i)i=;_ 2 ;L o (39)

if all the particles are bosons.
In order to‘obtnin»the:reStrictions at r=n =2 points on

7ﬁ?vm note that, in terms of -the Ses functions, (22) becomes



"

=31

‘Sle_(Kb’ I_{a) = 0 | if a + ozg ;éoz5 *:%_',
O Gy

(vo)

Then (37) restricts the number of Mec functions whose values are

independent to exactly half the number allowed by (40) alone, if some

‘of the particles are fermions, and to that humbe£ plus

% e(-l)l?l » if all the particles are bosons. The number
by (ho)_aloné has already been given in Table I.
" -From remark H2. (b) in Sec. IIT, we know ﬁhat an r

point is related to its’spatial'inverse only‘By“an impfoper

‘allowed

=2, n=3%

Lorentz

transformation. However, on ”1«7(+) the limit (25) must be valid for

the Mec,‘functions also and we do get restrictions at r

points. In particular, in place of (26) we have

AT WP S
O

if k(t>, as definedvby'(23),is an r =2, n=3 point on

LA

and k is an r =n =2 limit point of Etf+k(t) of the form (18).

_Similarly, in place of (27) we get

: ab;aav i=1
| !

1
(o]
[N
H
[N .
\Y
(@
-

, Mgcécb(-); Ka(_-)>

% % o=

(k2a)
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but there are no restrictions on the components not ‘accounted for by
| (ul) or (ue) | | o
a By 1nspectlon of (hl), we see that at the r=2, n=3 peint
under con51derat10n, the M functlons satlsfylng 2: a = 0 are
subJect to the same restrlctlons as they are subJect to at the
r =n =’2: limit point of the orbit. Therefore, the number of indepen-
dent fmncfions with 2: (x = is the same asvthe'mumber mentioned in
the sentence follow1ng (hO) Addlng to this the number of functions
not restricted by either (L1) or (42), we find that the number of Me
funcﬁions.Whose values are not subject to any linear restriction among
themselves is exactly the same at any 'r = 2,v.n = 3 7point on-‘7ﬁ2(+)
as<the“number at‘any r = 5_fpoint en ﬁ%’emthisvnumber‘is given by
cither (38) or (39 ). o | R
C;.’Restrietions.in Speciai»Cases
- Invariance of a scattering process under any discrete symmetry
other?than-spatiai inversion can reStrict the humber of independent
MC funetions only in special cases in which the.point in mementum space
resultlng from the symmetry operation lies on the same ;Z:: orbit as
the orlglnal point. We will cons1der the restrlctlons for r =3
points by working in the phy31cal reglon of a partlcular center~of-mass
system w1th the 1 and 3 axes orlentated as in Flg. l and with the 2 axis
p01nt1ng out of the paper. The restrlctlons thus obtained are easily

extended to all r ='% points on 1&? and also tovthe points on

%(J’) with r < 3.
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For example, for a scattering précess of the form
tl + tlif§t3 + t3, the exchange symmetry for 1dentical partlcles leads
to :a.néstrﬁc%ion, when ‘one s1mu1taneously exchgnges the
ordersvoffhe initial.particles among.thémselveévand_of the final
particles among themselves;: 0 In the'referghcé sysﬁem 6f Fig.\l,

a rotation of x about the 2 axis carries the transformed momenta

back into the origingl orientation and we have

E: s%(x ,Ku, 1Ko )

3,ozu, al,a

(3;5+a;)
( l)z:':l |

S (Ka’Ku;,Kl’KE) ’ | fdfv}tl = t, .andl ty =t -
“Cly y Qo 3=, = S -
L ?’ T (43)
:»Ehe fhnctions fortthe crossed process -
tl + t3 —;Ei +_t5 have fhe saﬁe ngmber of indépendent compqnents as
those allowedvby (k3). This restriction could also have been obtained
by applying the PCT relation (28) in the new éhannel. For a process
of the fofm .t.+ t -t +t with t = E, the PCT:?élation and the"‘
symmetry under.the éxchange Qf identical particles:simultanebusly lead
to restrictions ih the'same channel. »Iﬁ therréfefence frame of Fig. 1

a rotation of n  about the 3 axis-carries the p01nt on the rlght-hand

side of (28) into that on the left and we obtalnj

PCT : SC(KB,Kh; K ,K,) = SC(KB,Kﬁ; Kl,Kg),v
050, 3 dl,dtg -al,-oze;—dB,-&u-
for tl=t2=t5=th=t=€.. ' ()-l-)-l-)
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Time-reversal invariance restricts the number of indepéndent

_componeﬁts-only in-an-eléStiC’two—particle processﬂﬂ In the reference
frame of Fig._l,-the required'exchange of the four-momenta is brought

about by a rotation of n about the 1 axis and (30) becomes, with Np = 1,

T =}S§(K5QK45 K ,K,)
: "ch,ozu; ézl,d2

1, -, =0 - L : :

= v(-l)a¥,'2 57k SC(K3,Kh; K 5Ky, for t, =t

and 1t
3 v

o = Ty~

gl?a2; aj’dh (hs),,

Equations (37) and (43)-(k45) are sufficient to find all possible
restrictions at r = 3 points on 74?.
In Tables III, IV, and V. we have listed the number of independent
-Mec functions v having definite signature under the relevant
symmetry operations, for those cases in which spatial inversion is not
the‘onlyIPOSSible'symmetryAthat can give a reStfictidn. In Table IV
we have - allowed only those terms satisfying (-1) = 1

when taking:(ME) into account. This is because the additive quantum

numbers indépendent;of the Lorentz group must be the same for
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tl and t3 ‘}n-a process of the form  t, + tlv~>t3 + t5, and in

nature all stfongly interacting particles with half odd-integer:spin

1

apparenﬁlyfﬁaVe odd baryon.nﬁmber, while those wifh:integer spin have
even béry§n:ﬁumber, |

Of_éourse, when spatial inversion is' a symmetry. for all
processes'ih ﬁature,"onlyvterms with € = P = +1  ére nonvanishing iﬁ
any of thenﬁables,29 and when time reversal is a"syﬁmetry for the
elastic prbcesses in Tables III and V only terms witﬁ T =+1 are
nonvanisﬁipé{‘ If neither E vnor T is a symmetfj, but PT 1is, then
only terﬁéLwith PT = +1 are nonvanishing in Tables III and v.32

Ahy process not accountedhfbr in Tables III, Iv, ahd V«fbr which
a discretelsymmetry other than spatial in&ersion»cah_restrict the numﬁer
of'indepénﬁenf Mc functions. is related throughicroséing to
one in the_table. For example, in the process ti +.¥i —?té + Eé
_charge—cdnjugation invariance can yield a restriétion, but this is
exactly the same restriction given by PT symmetry forthe process

tl + t2 —fﬁl + t2.

' ‘Aithough Tables III, IV, and V were derived for r = 3 points,
they alsovﬁell us how many independent Mec functioﬁs having the giVen,
symmetry_ﬁfoperties tﬁere'a:e at r =2, n =3 points on 1‘?(+).

We haveJSéeﬁ at the end of Part B of this section that éRf.:.covariance
allows the number of independent Mec functions to be the same at an
r =2, n,; 3 point on 1%€(+> as at the r =3 points, the latter

of which form a dense subdomain of 1%?+).
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The'tables derivedvfrom the considerations of this section are

1mportant for the appllcatlon of the crlterla to be presented 1n the

"_next-one In checklng any set of covarlant polynomlals to see. whether.e

they glve 1nvar1ant amplltudes free of klnematlcal SLngularitles it is
useful_to‘know 1n'advance how many of any‘discrete symmetry signature

one—should_have;

AL
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Table III. . Number of indepen&ent Mec:functions‘@aving

@efinite signature under T and PT for the process

tl +vt2 _>tl + t2.

 The§e results hold at any point on the :I+-éatuiated kernel of
the domain of regularity where there are three lineérly independent four-
momenta. Exceptional cases inwhich exchange symmétfy or PIC (or both)
must give a restriction are: b(l) ty = b3 (2)‘ t) = Eé; (3) voth

tl = tl and t2 = tg.

'~ the processes in Tables IV and V or - .. related to them through crossing

These exceptions are either given direcﬁLy by

(a) If at least one of the incoming particles is a fermion:

~

e =P T PT - Number of terms
. E s Hesyr 1)(2iyr 1) (bigi 23+ 23+ 3)
i - - p(Ragr 1)(23+ 1)(h3 3+ 23+ 25, 1)
- - %(éjl G 1)2(23é'+ 1)2
- -+ %(231 +-1)2(2,j2 +1)° :

(v) If both particleé are bosons:
€ =P T PT, Number of terms

+ + + %[(2jl+ 1)(2j2+ l)(hjlj2+ 25+ 232+'3) + 1]
. - - L3+ 1)(232+-1)(h5132+.231+ 2j,- 1) + 1]
S - C IR R R b

- - + %[(231 + 1)2(232 £ 1)% - 1]
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Table_IVi‘vNumber of iIndependent Mecéfunctions for'the
ﬁTOcegéj_tl + % -;tﬁ + tj with vtl %;tff . |
Thése results hold at any point onvthe-HI+—saturated kernel of

the domaiﬁ'ofiregularity where there are three linearly independent
four-momehta. Sihce the additive Quantum numbers that are independent

of the Lbrentz group must bé the same for t ”agd' t_, such a process

3

apparently occurs in nature only when tl and tﬁ. are both fermions

1

or both bosons. The table is valid even when % = Ei.

(a) When particles t, and t5 aré fermions:

1

€ =P Number of terms -

- (2 + 1)(245+ l)(43i35+ 23+ 235+ 3)

T >, . 2
- H(?Jl + l)v(QJ5 + })”

(b) When t, and t3 are bosons:, _f 

€ =P ‘ N Number of terms

e (203, + 3y + 3, + 1)
S 195 TI1 Ty -

L - (D5 4 4 4.4 3 W25 5 4 4. +9 +1

- C 0 (Ragdsr 3yt 35)(R 0, ht s )
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Table V;_'Number of Independent Mec-functidns having
definite signature tnder T and PT for the process t + t —t + t.
 Théée results hold at any point on the"I;-saturated kernel of

the domain of regularity where there are three linearly independent

fourfmoméntg.
(a) When.particle t is é fermion:
"é ;'P?‘  T .' fT o ;ﬁuébér of terms .
+.” - + | o+ | %(EJ + l>(8j? +,1252 % 185 + 7)
. - B . %(23 + ;)(833 + 125° ; 25 - 1)
. - L F |
e ey

(b) When particke +t is a boson. If,_iﬁ addition t = t,

‘then only terms with PT = + are allowed by the PCT theorem.

e=P T PT Number of terms
R o 4 ' 2jh'+ 430 + 652 + 43 + 1
v - - 0525 +1)°
- + - 33 +1)(25" + 23 + 1)

. ] s 33 + 1)(252 + 23 + 1)




o
V. INVARIANT AMPLITUDES |
'  A}.'Extenéion of the Theorem of Hepp #ﬁd Williams
 Wé:ﬁave-b§en considering the Mc functiohé'ﬁor two'iﬁcoming and
two dﬁtgéiné particles with spin aé functioné of theirvfour—momenta'
~on the maésfshell; The aboVe‘discussibn 'éf kinematical constraints
on funcfions having definite parity signature, ﬁégetherAwith a result
of‘Hepp and:Williams,_willvenable us to describe*the ahalytic properties
in termélof _;(:_ invariants. Because of the masélshell‘condiﬁioﬂs'and
four-momenta conservation, one can form‘only two independent Exf;
: invarian£s; Theése can be taken to be twb of fhe thiee linearly relatéd
Mandelstam invariantss s.--.-.(k1 + k2)2, t = (k k3) , and
. (kl _.ku)g .
‘let us first consider a process for whi§h al1 foﬁr'partigles
are spinless; that is, one for ﬁhich“the Mc'funétidﬁfis 7;5;

invariant;

(k) = MS(AK), - . (46)
for any point k on-the domain. of regularity. 7434
Accordlng to a4theorem of Heppl and Wllllams5'any such function
.can be exnressed as a holomorvhlc function of. the 1ndependent ;Zf

invariants on the image of the I -saturated kernel ‘2{ (+) of each

sheet ?(Cﬁ
™ (K) - A((k) t(k)) = A(s,t). | | (LLj)

Thus (h?) defines an analytic function A over the invariants s Vand

t. The domain of regularity of this function is the image of 7ﬁj(+);55

v
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"tActually the.restriction to tne image of fhe 'I+-safnra£ed
kernel is not necessary—-the domain of regularlty of the functlon A
deflned by (h7) is the image of the full domaln of regularlty of M
This extens1on_of the result of Hepp and_Willlams.arises from the fact
that 7Q is aut_omati.cally" I, saturated; i..e,‘..', —R("') - *ﬁ: |
LemmaAll.nLet the domain of regulerity‘of the-fnnction ¥ ‘be a

domain' %(F) lying over %/

5"
1nvar1ant on ’7%7(F) Then 7%7(F)' is I, satnrated, i.e., the r =n

Suppose the function F 1is ;Zf;'

limit p01nts of every r f n orbit on 7‘7(F) also lie on 7‘?CF)

. The proof of the above lemma, due to H P Stapp and thls author,
is glnen in Appendlx B.

| B. Standard Covariants.

_'We would like to generalize the pfecedingvnconSiderations of this
section to the'casee'in which one or more of nne.four particles has -
sPin; Tna£>is,vwe would like to be able to express the -ME? fnnctions
for any brocess with two incoming.and two outgoing particles in terms
of_invarianf functions that are holomorphic in.the 525;' invariants,

s and - f everywhere on the 1mage of the subset ﬁal (+) of each
E<f+-1nvar1ant sheet 6&":: . ‘The spin dependence and, - consequently,
all the k;nematlcal properties of the M€ funct;onsbw1ll be accounted
for by‘polynomials in the fonr—momenta referred:to as "standard
covariants." TFirst we will precisely define'fhe-latter.

Definition. Consider the M® functions for a seattering process involving
two 1ncomlng partlcles of spins jl and 32 and two outgoing particles

of splns and J). A set of spinor functions Y (g)(k) for

g =1,"°,N Lo end Y _ (g)(k) for g = l,---,N_, where



B
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N +'ﬁ;V=’l I (2ji + l),'is said to be a setiof standard covariants

. for thls process (and thevprocesses related by cxoss1ng) 1f.they

‘satlsfy the following five propertles.' l o

|  7SCl. They are polynomlals in the four momenta for the process,
subject.to the mass shell and four-momentum oonservatlon constralnts..,i:

» (They are therefore holomorphlc everywhere ) |

| | {sée.i They are véz:+ covarlant, 1.e.,;{fr

RO ) e

v © ) - Wg, "Dty *r @ . ae)

O3 Oy, _ S g5 oy
3 SC}.‘_They have definite signature under the spatial inversion
.operation: | '
Ye(g)(k).
oy

(h9)

SC#. The functions of each of the two parlty signatures are

‘separately linearly 1ndependent at all n = 3_ p01nts. That 1s, 1f we

 form the functions

_ré<k) | Z r ¢ ‘g)<k) - N O
ab’ =1 ab’ a, . . ’ o
‘ where ther (g),s are real or complex numbers, then at. any n. 3-‘point
k = {kb, k, }, the only solution to the equatlons T (k) =0 for all

0%,aa-

_veluee of ‘{Oﬁqug} is'_Ye(g) = 0, for all ‘gl='l,'°',N€.



;hj-

_SCS. If the number of M functlons whose values are
1ndependent is restricted by any discrete symmetry other than parity
then each of the spinor functlons Y (g)(k) has deflnlte signature,
+1 or -fl, under this operation ,.'v (the form-of the symmetry opera-
tion is thé same és that fof the Mc'functions.in Table II}.

- The above pfdpertiés of the'stdﬁdard'govariants lead to the
following lemma, the proof of which is given intAppéndix C:
Lemma é.'»Consider a set of standardvcovariants fdr the Mc functions
descrlblng a process with two 1ncom1ng and two outg01ng particles. Then,
Ll. At any r = 3 point, the standard covarlants of parity
signature +1 are linearly independent of those of parity signature 1.

'L2. For each value of ¢, ﬁe = N_ as‘given by (38) if
there aré some fermions involved in the process;:or ﬁ€'= N€ as given
by (39) if all the particles are bosons. |

LB. In those cases in which pfoperty SC5 holds, the number of
standard covariants having a given signature under any of the applicable
symmetr& operations is in agreement with the number in Tables I1II, IV,
and V; | | | |

The choice of a set of standard covariants for any process is
by n@ means unique. If we havevfound a set Ye(g)(k), for g =1,"*°,N_,
satisfying the reQuired properties, ahd if we can write

N ,

r B - ) 2560 1w, NG

g'=1
such that the~coeffiéients f gg'(s t) are globally holomorphic

) t
functions of the Mandelstam invariants with det(i €8 (s, ti) nowhere

zero, then the Y_ (g)(k) s also form a set of standard.-covariants.
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Cf fInvariant Amplifudeé for Scattering Functions With Spin
,Wéfare now ready to_consider_the-possiﬁil;ty of expanding thé

Mec fﬁnctibns for é given procéss in terms of~$taﬁdard covariants.
having thg same.discrete_Symmetry sighatures;using the propertieé of
the sfandard covériants iﬁ the definitidh and iéﬁm& of Part B of this.
section. }Our results are'expressed>by the following theorem:
Theorém; 'Consider the M° funcfions describing‘dibrocesé‘with two
incoming particles and two oufgoihg particles. Qn the I+—saturated
kernelf *f?(+) of the domain of regularity 7‘7  of the Mc functions

one may write the following global decompositions:
: N , }
c _ o (8)y (&) R
I €2

‘where the Ye(g){s are any‘sét of-sfaﬁd#rd covariants for the process.
The "invariant amplitudés" A€<g), for g ='l,-'?,N€, are holomorphic .
functions of the Mandeistam invariants s a#d._t..dn the image of the
I, -saturated kernel @(a“) of each x%-invva:.rvia;nt' sheet qaC'P
| If the Mec functions for a particular value of € ‘are

identically zero;_thevaboye-resultvis trivial ﬁith vanishing Ae(g)'sﬁ
In our proof of the»theorm for nonffivial cases we ﬁill first completely
"ignoré those cases invwhich the number of independeht M€c-functibn
components is less than the number in (38) or (59) at n=3% p§ints'on‘
.1f?(+)o The necessary ﬁodificatibns for the éxceﬁtional cases will be
easy to make. | .

‘For “our proof we will first try writing on the subset %z(aF+).

of a'particular‘sheet 4&(3;:347v,



%K) =Za(g)<kw‘g’<k> P (53)
%3 0 & %I
which corresponds to (52), except that we regard the 1nvariant amplitudes
(:7 (g)‘ as functions of the four-momenta for the present We will show
that (55) is invertible; that 1s, we w1ll solve for the amplitudes
(;(e(g) in terms of the M€ functions and show that this does not
intfodnce any singularities not present in theb M ¢ functions'themselves.
Finally, the theorem of Hepp and Williams will allow us to express the
analytic properties of the invariant amplitudes in terms of ;if’
invariants. Recall that,_according'to the last paragraph, we are
ignoring the exceptional cases for the present. ”

Consider the scalars

. : _ D30 ‘
ag(f:’f)(k) - Ye,(g')(k)' Ye(g)(k) S (54)
€ S0 o ‘

'

Each of the above invaiiant functions is holomofphic everywhere on ?7?;
and the determinant formed from them, det(f (iziiil cannotkvanish at
any r = 3 point. The only way the determinant at such a point could
Vanish would be for sone of the stendard covariants to.be linearly
dependent, contradicting statements SCh and Ll. Since the standard
covariants are not all linearly independent et_an' r=2 point,

det(j (' ,g?) must vanish at such a point. |

The determinant just introduced consists of four blocks, the

(g :g) the

upper left-hand one hav1ng components of the form ?%{+l 10
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lower right-hand one (8'58)  the upper right-hand one (g',8)
4 ’

' -1,-1. _ » o +1,-1
and the lower left-hand one (g ,g,). However, it follows from (49

“that ? (g ,g) 0, since one has an invarianf function of three
mdependent four-—vectors that has nega.tlve 51gnature under spatlal
1nvers1onv, and such a functlon vanl,shes 1dentlcally. Consequently,

the dete’rminant is factorizable::

aet(gbzg;s,;g) W ]{aet(iyﬁ . o
/575) por ae(Y 58 |

point. Since (55) must vanish at r = 2 p01nts we must have

and neither det » can vanish at any

det( (e ,g) GN( )k ,k ) where kl’ , and. k, are any three of
2 2 3
the momenta and N is some integer. -
The 6{+-invariant functions

| %% o
% (k) - Ck) Y (8)(k) . g.=.l,°-',N€, (56)
Ob’q o
are ho'lom_ovrphic everywhere on the particula.r'dq'mé;in' @{a(+) under
consideration with %ggze £ 0. From (53),-.(5&), and (56) we obtain
the set of equations ‘
g)
Z a.w Y& - My & =em,.
, o - - ‘ (57)
'At least at r = 3 points, where det( (g ,g)) cannot vanlsh,
(57) is soluble for the invariant functions a (g) in terms of the
”}?}igg's.. The solution of (57) has the form
b .

g (g)(k)

:CjZé(g)(k)' Gﬁ(k 3 g = l,-‘-,N;, .(58)

-
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where eech :;L(g) is seﬁe combination of the”‘%/ég;’g);s and the
@7@), o SRR SRS

'_ ihe numerator :7 () on the righf-hand side of (58)'15
holomorphlc on the given domain 6&’ (+). The:oni&-possible singulari-
ties of the invariant amplltudes on the left-hand side of (58) on this
domain i;/ (+) are poles at points where the rank of the Gram deter-
mlnant is less fhan three. ‘

'_Let us look at (53) once more. We ha#eveiready seen:that the
invarianﬁ'amplitudes on the'right-hand side ofdthe equation-are heio—
morbhic on the image.in 1&?; of the r=3 p01nts on the domain
6&&( (+ ). Since these r = 3 ‘points form a dense subdomain of €Z/ (+)
as we approach any r < 3 p01nt on ?Z( (+) the limit of the right-
hand side of (53) must exist and be equal to the,value of the left-
hand.side et the given point. If the limit éoiﬁt isean r=2, n=3
point, ﬁhe standard covariants. are all linearly independent eﬁ the
point and there can be no cancelling 51ngular1t1es in the invariant
amplltudes, i.e., the limit at such a p01nt must exist for each
invariant amplitude in (58) separately and not just for the right-hand
side of (53) as a whole. | |

The above considerations show that there ex1s£s some nelgh—
borhood of each r =.2, =3 p01nt on the domsain f&/ (+) under
consideration such that ::7 (&) ~in (58) has the form
27 (g)(k) i?y (g)(k)GN where fﬁ/ () is holomorphic in the given
neighborhood. From (58), C;?e(g)(k) :;V’(g)(k) is holomorphlc in

that neighborhood.



8-

"‘_"’Ihe § 'X;-invariant sheets whose union ‘is" ﬁ can be chosen
to overlap, and the particular sheet @( for which the decomposu:iori -
_(53) was carried out was arbitrary. Thus, the above_v procedure defines a
unique Set of . functlons a (g) for g = l,b-‘-.-,rNé. The domain of
regularity of each function q (g) is & domain ’R(a (g)) over |
%3, and a (8) is Z+ invariant on ‘&Q(q(g)) We have seen
that each domain %(q (g)) contains all n = 3  points on %“)
Because of Lemma 1 each domain %(d (g)) also contains all
r = = 2 points on % |

| Because o:f‘ the theorem of Hepp and Williams we may express each

invariant amplitude as a function of % 1nvar1ants on the image of the

I.;-saﬁtiraiied k.ernelh i{ar” of each sheet %Cﬁ

' degg)(k)‘ = Ae(g) s(k)_,i:(k)), = Ae(g)(_s,_t_); g =1,000,N,
o | o _v (59)
with the po_ssibie eicception of 'r =1 points.o'nv the domain Q(a(“L).
But, at‘._'r = 1 points k- kj - 1—min'1'j for ali vvalue.s of i -and j..
'Consequently, -such points are isolated in the space of the %+
invariants. It is well known that an analy‘tic"fur.lction of seversl complex

3l

variables-'cannot have isolated singularities.

. EQuation (59) therefore defines functions Ae(g)? each o'fvwh‘ose

domain cf regularity is a domain over the space of the Mandelstam : -
invarients s -and t. This domain is the image of all points on ﬁ(”,

so the proof of the theorem is completed--for those cases in which the

number of independent Me f‘unctions is given by (38) or (39). 35
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In the exceptional cases in whlch.propertles SC5 and L3 are applicable
the scalars i%{(g ,8) in- (54) formed from standard covarlants that
have. oppos1te 51gnatures under any of the appllcable dlscrete symmetries
vanish 1dent;celly. Then the determinant in /55) spllts up further,

that is, _détcz/ e’gi) for each value  of €, -can itself be written

c .

as a prodgqtvéf smaller determinants. Furthermore,‘when the M,

functions-haﬁe definite signature under the symmeﬁries in Question,
the scalars in  (56) 1nvolv1ng standard covariants w1th dlfferent
symmetry propertles also vanish 1dent1cally. The solutlon of (53)
proceeds very much as befbre, except that ‘now only the standard
covarlants‘haV1ng the co:rect.symmetryvpropertlesvneed be used in the
expansion,ﬁand the set of eqﬁetions to.be solved is of smaller order.
Since the s£andard covariants continue to be iiﬁeafl& independent at
r = 2, v1;;-3 points, which was the erucial factof'ih our previous
proof we have no singularities in the. 1nvar1ant amplltudes at r <3
points on’. 1&?(+)
‘ 'We have seen in Sec. v, Part“b,“that 'j;(: covariance requires’
the variou‘s_liMQc functions to satisfy'certain.li@ear{relations at all
poin£5'on_bjﬁ?(+).v Because of the properties ofzﬁhe:standard_covariants
the decompositien on the right-hand*side of (52)~aﬁ£omatically satisfies |
these relefions Therefore, there is no p01nt at whlch some linear
comblnatlon of the invariant amplltudes must vanlsh 1n order for this
decompos;tlon to satlsfyithe required klnematlcal'constralnts; i.e., the

invariant amplitudes are free of '"kinematical zeroes."
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VI. SUMMARY ANb DISCUSSiON'

The main results of this paper are as follows:

(a) If the domain’ of regularity .1<7 of the\scattering runctions
Mé.for a ,2 -2 process contains a point at ﬁhich only'two‘of.the‘
external four-momenta are linearly independent then, as is.weli known,

_ “ﬂ(’ oontains also.points“having the same scalar invariants but with
three linéarly independent momenta. At any of these p01nts EZ/;
covariance requires the number of linearly 1ndependent components of
M to be less than the dimensionality of the spin space. |

(b) Let '?c) be the parity operation for the M° functions and
let M_€ = —[M + ?ﬁpM ] The number of 11nearly 1ndependent compon -~
ents of.the functions Mec is the.same st all ﬁoints oﬁ.their'domain
- of'regularity at which therevare.three iinearly independent momenta.
This result-continues to hold if one imposes additiondl discrete
symmetry requirements. |

(c) If one expresses the individual functlons M+c and M_c
as sums of covariant polynomials times invariant functions, then these
invariant functions ﬁill be holomorphic in the-Mandeistam invariants
s asd,tt except at the image of the singularities in four-momenta
spéce'of the corresponding Mec functions, provided;ts) the total number
of basis polynomials equals the dimensionality.of the spin s?ace and
(b) the vasis polynomials for each of the two parity signatures are
separstely linearly independent at all points at which the number of

lineérly independent momenta is three.
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Vbur result allows thevaﬁkward comparisopvté_the basis sets of
Hepp.and;Williams tobbe.avoided;. It reduces fhé:pyoblem to the
essen#ia} §ne of the linear independence propérties of the proposed
- basis- s'é.i: |

iﬁ another paper we intend to discuss the problem of checking
the'linear independenée'of the polynomials Ofigach‘parity signature.
Several fheorems thatvgreatly simplify the pfdétieél procedure will be

given, t6gether with many practical applications.
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APPENDIX A: SPINOR CALCULUS AND LORENTZ TRANSFORMATIONS

<

'This appendix serves to clarify the'nofation of the main part
of the paper and other sources should be consulted for more complete

detaiis. 4,5,14-17,24,36

We use the superscrlpt T, to indicate the
transpOSevof any matrix and + to indicate the Hermitian conjugate.

The Pauli matrices are

1 0 | o 1
Nej = > g = . s
0 0O 1 1 1 0
0 0
0, = s o = ' , (A.l)
° i 5 -1

and the convention for any real or complex four-vector 2z is that

Any two matrices A and B:eSL(2,C), the group of two
dimensional unimodular matrices, define a A(A,B) € 521, the group of

propéfvoomplex Lorentz transformations, through the relation

o+ A(A,B)z = A o- zBT. | . , (A.2)

In paptioular5 if B = A*; A(A A*)be vaf is a real.proper ortho-
< 7 chronous' Lorentz transformatlon. |
The full complex Lorentz group is d X U f , where
any :AI.e ;t’_ is an improper Lorentz transformation with det AI = -1.
Iﬁ cohﬁrast to the real Lorentz group, which;has four cOmponents.because

the unit matrix, I e ﬁT, and the simultaneous reflection of all four



b

coérdingte'akes, -1 e.Liﬁ.are not related by aﬁ&gebntinuous transforma-
tion, fhe:EOmplex Lorenti group has only two components, ;Zi and
. ;Z’;, becausev I and ‘-I are connected by a.cdntinuous path in ':<&+.
By the usual methods, one obtains a. 23 + 1 by 23 + l matrix
(J)(A) correspondlng to any A ¢ SL(2,C). There always exist real
parameters g and ) such that ene cen write (J)(A) = D(J)(H) D(J)(V)
with '

2w - e@@'g(jb' e - (A.3D)

The (J)'s are the famlllar generators of rotations.
The generalization of (A.2) to arbltrary integer or half odd

1nteger j 1is then

D(j)@'A(A,B)i) - 29a) p)(0.5) ) (aTy, (Aka)
or, more specifically, . ' B
D(j)(c-A(A,B)éj_)aé = @@ @ @ (_,B)éé' D(a’)(c.z—)a,é”
| | (A.h4b)
which.serves to clarify‘the meaning of lower?dstted and lower undotted
spinor'indices.. In particular, for real Lorentz‘transfqrmations a
' dotted:spinor index transforms like the comp;ex’gonjugate of an
undoftedvone.

The matrix D(J)(C)‘ is defined by



]
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S L @B L (i e,  (asa)
RO dDe)ys - (1) @ Lye, (a.50)

Ah important property is:
oy el |
D(J)(C) D(J)(A) D(J)(C ) = D(J)(A: )!. B (A.6)

(J)(C ), actlng from the left on any lower spinor index, turns it
into an upper spinor indek. Upper undotted sﬁiﬁbr indices are therefore
acted on from the left by D('j)(AT l) and upper dotted ones are
acted on from the left by D(J)(BT ) Contractlon of an upper undotted
index with a lower undotted one, or of the corresponding dotted indices

with each other, yields a scalar.

In addition to (A.6) one has
p@ () o (2. 2y 2D ey = 2. wy, (a.7)

where Eu = d = (Oo,-g).
' Let k be any real four-vector on the mass shell; that is,
k2 = m2, where m # O 1is the mass of the particlé under. consideration.

Its rest-frame value is k = (m,0) and the "boost" L(k) is the:

Hermitian matrix in ﬁz defined by
k = L(k) k. | . (A.8)

One may write L(k) A<3ﬁ?(k),'ég*(k;>, where the Hermitian

- matrix’ ?é?(k) e 8L(2,C) is given by -
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I

feam ) F e v e (a9)

o o
B - (o-x/m?
Corresponding to any A e ﬁT and any real four-momentum k
on thé mass shell, one may define the "Wigner rotation"
RGN = LT ALK), | (A.10)
which is well known to those familiar with the unitary representations

of the inhomogeneous Lorentz group. One may‘wfite_ R(k,A) =.A(§(k),A(k)t>,

where _'A(k) ¢ SU(2) is given by
oA = B s B (a11)

_  The'following relation is valid for any complex value of k

on the mass shell:

';v b(j)(c. k/m)-D(j)(g -k/m). = I. >‘  : ’ (A.12)
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| APPENDIX B: PROOF ' OF LEMMA l
The detalls given here are due to H. P. Stapp and thls author.

. Some deflnltlons we - make use of are:

_ % ¥ The points “ k = (k e+ k, +l in complex' fo'u'r.-vector. spa’c_:e
/ siibj’eét to the conditions’ k, - k, (m ) > o, i = 1‘,---,'z+1,
and- Z €; k; =0, where ¢ = 4.

I : The mapplng tha‘c takes sets in k space to thelr 1ma.ges S(k)
in the spa.ce of the % invariants, i. e.,‘_ ' _
| S(k) I (k) ((k) P(k)> where I(k) is the set of all
1rmer products formed from the k 's a.nd P(k) is the set of
a.ll pseudosca.lars ~formed from them. }. '

972 + -The space of ;\/ invarlants correspondlng to the pomts of :

| %,, i.e., @77 ‘I (%()

“To prove Lemma 1 we need

image of a nelghborhoqd of a point k ¢ %3 1s a nelghborhood of

s(k) = I+(k) in ?73_‘_; i.e., the ma.p I %/ ?% is open.

Prdof of Lemma 1. According to remark Hl.(b) in Part B of Sec. III

there is a one-to-one mapping between orbits 1n Z : a.nd p01nts

s 3+% I (%)  Thus ?(s) defined by ff’@(k)) F(k)

"is uniquely defined for all r = 3 points k lying on "&? (F). The

set of po’ints r <2 is a set of codimension l in invariant space,

since it is defined by G(k) G(S(k)) 6(s) =0. Ifany r=n
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: Because of (h9) and (50),

(33 ‘)_* 7

'If we multlply each spinor indéx: in (D 5) from the left by D
and théniméke usebbf (D.h);'ﬁéygetf

) - T = 0. (e
aba oy 30, S .

The con51stency of (c. l) and (C 5) requlres that

T (k) (c.6)

"oy, 30,

i
O
\a

for both ';,_ +1 and 'e‘; ;l for ali ch01ces of {ab, a }. - But ‘as
.mentloned after. (50) in property SCh, the llnear 1ndependence of the
'standard covarlants of the same parlty s1gnature at any n ;,3 p01nt
means that (C 6) cannot bé true there for nonzero (g) .  Cbnsequently,
(c.1) cannot be true and statement Ll of the lemma is valid.59

We now consider ététémént L2 of the.iéﬁma; First note that ‘each
component ‘Ye(g)(k) , for a fixed value of g,vbut different values. of

o 50, . S R ,

(a%; dé],'is éctually a'differeﬁﬁ_funcﬁibn.'bHowevéf, as was the:cése
for fhgsMec:functions'in Sec. IV,(#Q) means that ét mqsﬁ Nel of - their .
valueé;fwhere N- is glven by (58) -or“(jg);_q whiéhevéf}is appropriaté,
can actually be chosen 1ndependently at any n ;‘5‘ péint, . Thus, the |

'number of'standard covariants':Ye(g)(k) that are linearly independent

¢
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for a given':e cannot be greater than Ne; i.e,, ﬁ < Ne’ Since

N, + N-v=fi.}'<2ji +1) =N, +N_, one must have  N€f% N_.

:Finélly, consider statement.LB of the lemma.
If, for‘é#ample, ml = m3 and .mg = mh; wevr¢qurefthat
standar@ cdyariaﬁts have definite signatufé undér}the simuitaneons
éxchanggém_(kl,ai) e—a(ks,aj) and (ke’aé) e~>(k4;dh), which is the
same asfthe;PT operation for the M® functions in Table IT. Then the
same considéfations that led to Table III tell uéshéw many linearly
independentiéovarianté at most can have a parti¢ular signature under
this operation, and considerations such as thosé in the proof of I2
shOWGﬁhét fhis equals the actual number of,such's£éﬁdard covariants,
: Note that;fby choosing.our covariants to have définite PT signature,
we automatically assure that they have definite signature under - T.
' The above considerations are easily extended to the case
m, = m2' ahd m3 = m,, when the covariants are chséen to have definite
signature.qnder the simultaneous exchangeé (ki?dl) é_’(k2’a2) and
(k3,05) e—&(kh,ah), and to the case of all equal?mgsses, when |
definitesignaturesunder both types of exchangeszméntioned in this

paragraph are chosen.
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constraints are present) as a holomorphic'functién of the
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kernel of its domain of regularity. However; with more than four

‘functiohally independent vectors (e.g.; & scattering amplitude =
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It 1s worth notlng that 1f k isan r =2, n=3 point then

.~>

k  lles on a dlfferent ;{4 orblt accordlng to H2 (b), and (C 2)
is not valid for any choice of A e SL(2, C) In this case it is

p0531ble to satisfy (C l) with T (k) £0 -and r_(x) #£0,
- Gy e
infcohtrast to the re$ult-(c.6) for an r = 3 point. The standard

covgriants bf'signatﬁre +1 are not linearly:indepéndent of those

'of signature -latany r=2, n-=3 pdint;‘at such a point the

total number of linearly indepeﬁdent,standard covariants in the two

sets is the same as the number given in Table T.
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FIGURE CAPTIONS
Fig. 1;"Spécial referencefframe used for obtaining discrete symme try

- restrictions. The 2‘axis points .out of the'paper.
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