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ABSTRACT 

- It is shown that any basis of covariant polynomials 

for a two particle scattering process yields· invariant 

amplitudes free of kinematical singularities,provided 

(a) the total number of basis polynomials equals the number 

of spin space components of the scattering amplitude,and 

(b) the polynomials of each of the two parity signatures 

are separately linearly independent at all points where 

three of the particle four-momenta are linearly independent • 

. This result allows one to directly identify good basis sets 

without going through the very t~dious algebra involved in 

comparing them to the sets of Hepp and Williams. The latter are 

not usefUl for practical applications because the spinor 

indices belonging to different particles are coupled and 

these sets do not transform into themselves under the 

relevant discrete symmetry operations. 
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I. INTRODUCTION 

The description of a scattering process in terms of invariant 

amplitudes is useful because they have simple analytic properties and 

can trivially satisfy the various symmetry requirements. For this 

purpose one must find a covariant basis that exhibits the appropriate 

symmetries and moreover ensures a decomposition into invariant amplitudes 

free of kinematical singularities. In this paper we prove a theorem 

that enables one to check by inspection whether a given basis is a 

satisfactory one. 

HEppl has rigorously proven that any set of holomorphic covariant 

functions M(k) can be written in the form 

M(k) == 

i 

i 
A.(s)Y(k), 

1 

where the t'standard covariantst' yi(k) are matrices on the spinor 

indices and polynomials in the four-vectors 

invariant amplitudes Ai(s), which are functions of the independent 

invariants s = {sl' ••• '~m} formed from the kits, are holomorphic 

except on the s-space image of k-space singularities of the functions 

M(k). In general, a minimal set of standard covariants, Le., a set 

whose number is just the number of values that the spinor indices 

take on, does not exist. But for the case of scattering amplitudes 

describing two incoming and two outgoing particles, and subject to the 

mass shell and four-momentum conservation constraints, Hepp proved 

that one can find a minimal set of yi(k)ls having positive and 
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negative signature under parity and whatever other discrete symmetry 

operations transform the particular process under consideration into 

itself. 

To find the relevant standard covariants for any given M(k) 

one must find a set of polynomials such that all covariant polynomials 

with the same spinor index types can be expressed in terms of them for 

all allowed values of the complex four-vectors k. Hepp'sproof is, 

in effect, a proof that such a basis exists and that any such basis 

gives a hoiomorphic decomposition (one free of kinematical singularities) 

into invariant amplitudes of the given holomorphic functions 'M(k). 

Any other form for physical scattering functions is equivalent to the 

2j + I spinor form, so Hepp has given a rigorous justification of the 
, 2 

prescription originally developed by Hearn for perturbation theory. 

Recently Scadron and Jones3 have found some of the relations needed to 

apply this method to two-particle processes with arbitrary spin~ and 

many other relations have been found by the author of this paper. 4 

Several examples of sets of covariants that give a holomorphic 

decomposition have been given by Hepp and independently by Williams,5 

but these do not transform into themselves under the discrete symmetry 

operations. To find a satisfactory basis it is sufficient to show how 

anyone of these sets can be written as linear combinations of covariants 

having definite signature under P, C, T,and exchange symmetry, 

with coefficients that are polynomials in the invariants. For those 

processes in which two of the four particles are spinless this procedure 
4 6 " 

is not too tedious and all the required covariants have been found. ' ,7 

( L· ., 

l,l 
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When more than two spinning particles ar~ involved, the algebraic 

3 4 7,8 problems become rapidly unmanageable as the spins increase. " . Thus, al-

though the prescription of Hearn and Hepp solves the problem in principle, 

it does not solve it in practice. 

The main aim of this work is to exhibit, in .ooncrete terms, the 

origin of the difficulty in obtaining holOm.€)rphic invariant amplitudes 

and to d,evelop a simple criterion that allows one to verif'y directly 

whether any given basis ~ives amplitudes that are free of kinematical 

singularities. The criterion is essentially thisl any minimal set of 

covariant polynomials is a good Bet if all the covariants of positive 

parity signature are linearly independent and all the covariants of 

negative parity signature are linearly independent at all points where 

three of the particle momenta are linearly independent. 

The core of the argument is a detailed description of the 

constraints that Lorentz covariance and analyticity impose in neighbor-

hoods of points where only two of the particle four-momenta are linearly 

independent. Once the nature of the constraints is clearly understood, 

the essential requirements on the standard covariants will be easy to 

see and the proof of the theorem will be straightforward. 

Aside from the Hearn-Hepp procedure, the only good criterion 

that has been previously given for justif'ying the absence of kinematical 

singularities in a set of invariant amplitudes is that of 'Williams.5 

However, Williams' arguments were for a particular set of covariants 

that has no simple relation to the discrete symmetries. 
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One reason that the standard covariants given by Hepp and 

Williams have not found practical application is that all spinor indices 

with the same properties under proper Lorentz transformations are 

coupled with Clebsch-Gordan coefficients.9 . 
.. . 

These couplings join 

together·parts having different discrete symmetry properties and also 

make the results impracticable for substitution into the unitarity 

relations. Any useful basis must avoid coupling spinor indices 

belonging to different particles, and this does not na. turally emerge if one 

starts from the sets of Hepp or Williams. BY our simple criterion, 

any proposed basis can be checked directly without comparing it to all 

the· other polynomials having the same spinor index types or to the 

sets of Hepp or Williams. 

To apply our criterion the linear independence of the basis 

sets of each parity signature must be checked. This problem, although 

not trivial, is simpler than the one involved in previous methods. A 

paper dealing with procedures for checking the linear independence of 

basis sets is being prepared. 

The general background material needed for this work is scattered 

in various places and some of it is unpublished& Many of the essential 

results are obscured by the abstruse mathematical forms of the original 

paper~ and there is no satisfactory account of the general situation 

anywhere in the literature. A secondary aim of this paper is therefore 

to provide a systematic simple description of the previous results that 

form the basis of the present work. These include a theorem of stapp,lO,ll 

which states that scattering functions are covariant under proper 
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complex Lorentz transformations at all points where they are regular, 

d . b' t· f t f 1 f .' t 12 -an some aSlC proper le.s 0 .se s ocomp. ex . our-:yec ors. We also 

discuss and extend a theorem of Heppl and Williams5 that allows one' 

to expresi) a multisheeted invariant function.of four~vectors as a 

function of invariants formed from them. 

We confine our discussion to those cases in which, all four particles 

are massive, since Zwanziger13 has ~ound all the ... standard covariants 

having definite parity signature when one or two are massless • 

.:I}.. ..1 . 

I , 

' .. ", .. 

' ..... -

, 
:, 

..~ 
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out 'of the physicai region. of theorigina.l process" . This, in turn, 

leads to somewhat complicated crossing relations between the amplitudes 

for the various ph;ysical processes that are connected by analytic 

continuation. Tosimplif'y the crossing, analytic, and Lorentz transfor

mationproperties it.is convenient to introduce thespinor amplitudes, 

. - i4-l7 
or Mfunctions. 

The M functions with lower undotted spinor indices assigned to 

outgoing particles and lower dotted indices to incoDling particles are 

defined by 

M(~; Ka) 

Db;&a 

(4) 

where .-8Cki ), defined in (A.9), is the Hermitian. niatrix in. _ SL(2,C) . 

corresponding to the Hermitian "boost" L(ki ) in (A.8) that-carries 

k
i

,," (ini'0) . into k
i

" Then,using'A';' A(A,A*), the following simple 

covariance property is easiiy verified from (3), (4), and (A.il): 

M(~; ~a) 
~;O:a 

(j ) .Ct.b 
= D b (A)~ • 

. One can use instead the M functions With all iower undotted 

indices. It maybe verified from (5), (A.4), and 

that 

(6) 
.S 
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The choice of index type has no effect on· the phys ics or on the 

analytic properties. The matrix that transforms a particular spinor 

index from one type to another is a holomorphic function of that 
" 

particle's four-momentum. 

For a given process, M(Kb; Ka ), where we suppress the spin or 

. _.ns 
indices, is expressed as a sum of a "no-scattering" part M (Kb; Ka,) 

and a "connectedpart" 18 

Equation (8) defines MC functions that are free of' conservation 

delta functions. To avoid specifying spinor index types one may write 

their physical region covariance properties, of' which (5) and (7) are 

particular examples, in the form 

The M
C functions are said to be LIf\ covariant . . + . 

in the physical region of the process tl + t2 ~ t3 +t4 ~ If' all four 

particles are spinless, then A (A,A*)= I on the right~hand side s 

of (9) and the single MC function is said to be L1 invariant in the 

given physical region. 
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III. PROPERTIES IN COMPLEX FOUR-MOMENTA SPACE 

A. Stapp's Theorem 

Let if 3 denote the set of points k = (kl ,k2,k3'k4 } in 

complex four-vector space that satisfy: the four mass-shell constraints 
. 2 . 

k. 0 k. = (m.) > 0 
~ '. ~ ~ 

and the four conservation-law constraints 
c ". . . ... 

The M functions defined by (8) are assumed in 

S-matrix theory to be analytic functions over ~3 except for 

d ·'1· 1 ·t· 10,14,19 Th t' t:;1/. b t f th 
ynam~ca s~ngu ar~ ~es. e se 113 ~s a su se 0 e 

space of 4 complex four-vectors. The notion of analyticity on such a 

20 subsetis'a standard mathematical concept. 

As usual we use the termholomorphic to designate the 

property of being analytic and single valued. A domain is a connected 

open set and, for our purposes, it is sufficient to regard the 

"domain of holomorphy" of a functiqn as a union of sheets, a sheet 

being the maximum domain whose points map one-to-one onto points in 

~3.21The sheets may overlap; in fact, the boundaries of the sheets 

are somewhat arbitrary, and any point on the domain of holomorphy lies 

on the interior of some sheet. One does not include poles and branch 

points on any sheet, even though it is . customary in physics to speak 

of a pole as lying on a particular sheet when it lies on the boundary 

of that sheet. 

For a given scattering process there is an MC.function 

corresponding to each combination of values of the spinor indices. 

Following stapplO,ll we define the domain of regularity, ~, of 

this set of MC functions to be the intersection of their domains of 

., ... 

,j 
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( 

holomorphy; i.e., ~ is the largest (multisheeted) domain to which 

all of these MC functions can be simultaneously analytically continued. 

The MC functions are known to be L~ covariant [see Eq. (9)J at 

points lying in the physical region for which they were originally 

defined, but what can be said about covariance at other points on ~? 

Before stating stapp's theorem, which gives a precise answer to our 

question, we require a few definitions~ 

A set of tensor-valued functions F(k) is said to be .~. 

covariant on a set of points A E ~ if 

(10) 

whenever k and A(A,B)k are in JeI. As explained in Appendix A, 

the matrices A and B are in SL(2,C) and A(A,B) E £+' the group 

of proper complex Lorentz transformations. The notation on the 
(j. ) 

right-hand side of (10) indicates that the matrix D 1 (A) acts from 

the left on the i th spinor index of F(k) if it is a lo.wer undotted 
- (j ) 

one" whereas the matrix D i. (B) acts on it from the left if it is 

a lower·dotted one. 

The ;(+ orbit ,'i{+k, of any point k € ~ is the set of 

all points Ak = {~, ••• ,Ak4} obtained by letting A€~ take on all 

possible values. 

10 11 22 c Stapp's Theorem: " Let the M functions for a given process be 

L1 covariant and holomorphic on a real open connected set in ~; 
corresponding to physical points. Then the domain of regularity, ~ , 

of these MC functions has the following properties: 
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S1. a union of ~+-invariant sheets ~a; i.e., if. 

the image in of a sheet~a contains a point k then this 

image contains all points on ;.( + k. 

S20 The M
C functions are <. covariant on' each' sheet 1..;{ a . 

That is, if the image in ~3 of a sheet dl( a . contains a point 

then 

k, 

= (11) 

for each A(A,B) E 'i+. 
on 11( is S3. Any bounded connected set of physical points 

contained in some single .....".. '~a' .23 0(.. -invariant sheet + . 

?l+ 
is 

For a process involving four spinless particles one may replace 

covariant -by" ;(~ -invariant in statement S2. A function F(k) 

ot: + invariant on a set of points .A' in ~3 if it satisfies 

(10) with A (A,B) == I s 
whenever k and A(A,B)k are in .sJ . 

B. "ii(+. Orbits in If;' 
We intend to investigate the constraints that ~+ covariance, 

as specified by stapp's theorem, imposes at certain points on the 

domain of regularity of the MC functions. But first we need some 

properties of points k in ~3 and their ~+ orbits. 

At any point k = (kl ," ·,k4 ) in ~3 we may define the 

scalar invariants For the case of an arbitrary number of 

particles, one should also consider the pseudoscalar invariants formed 

by contracting the completely antisymmetric tensor E~v~P with the 

four momenta. The invariants taken together are then referred to as 

\ 

, 
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;;(+ invariants, since they are invariant under any A€e;(+,while 

the scalars alone are referred to as ;;(' invariants, since they are 

invariant under any A€J( = ;;(' + U~, where ;;(,_. is the set of 

implDoperLorentz transformations. In the case under consideration the 

pseudoscalars vanish identically, because four-momentum conservation 

allows at most three of the momenta to be linearly independent at any 

point. Consequently, it makes no difference whether we refer to two 

distinct points as having the same ~+ invariants or the same ~ 
invariants, and we will use the former of these two terms. 

All points on the same ~+ orbit have the same ~+ 
invariants. But one cannot always specifY orbits by the values of 

their invariants, since two distinct points with the same ~+ 

invariants do not necessarily lie on the same ;,(+ orbit, as will be 

discussed below. 

Consider any real or complex point k = (~, ••• ,kn,kn+l,···,k4}' 

where the vectors are ordereds0 that the first n are linearly 

independent at the point under consideration. Because of four-momentum 

conservation, n < 3, and, because the mass shell condition prevents 

the four-momenta from vanishing identically, n > 1. Let us define the 

Gram determinant 

kl • k2 k • 
1 

G(kl ,k2,k
3

) 
2 

= det k .. k (m2 ) k2 • k3 2 1 

2 
k3 • kl k3 • k2 (m

3
) (12) 
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and let r be the rank of this determinant at 1;;he point k. Hall and 

. 12 
Wightman gave the following relationship between the rank of the Gram 

determinant at any point and the number of linearly independent four-

vectors at that point: 

r n 

3 3 

2 2 or 3 

l' 1 or 2 

The possibility of having n > r is, as will also be seen below, a 

consequence of the fact that one can have complex lightlike vectors in 

the space orthogonal to the first n vectors when n < 3. 

From the considerations of Hall and Wightman regarding the 

properties of complex four-vectors we can make the following remarks' 

about points and orbits in ~3: 
HI. (a) At any r = n = 3, 2, or 1 point, one can write 

r 

k i = r..Qijkj , 
j=l 

for i=r+l,"',3 

where the aij,s are finite scalar coefficients. (Recall that the 

first r = n vectors are linearly independent at the given point and 

that k4 is globally determined by four-momentum conservation.) 

(b) If k and k' are any two r = n points with the 

same ~+ invariants, they lie',' on the same -0(+ orbit • 

H2 .. (a) There exist r = 2, Ii = 3 points with the same ~ 
invariants as any given r = n = 2 point. For example, consider the 

+ 

I J.' ;J.,! 

,-
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point k determined by (13) with r = 2. In the spatial direction 

orthogonal to the two linearly independent vectors kl and k2 one 

may define real unit space-like vectors @1 and ~2 such that 

",1 2 e • @ = o. Then define 

= (14) 

It follows that W ± • kl = W ± • k2 = 

such that k(±) = 

points 

and k 
(-) 

k (±) 
3 

Here 

while 

and 

kl ,k2, and k3 are the same as for-the .r = n = 2 point in (13), 

C f 0 is an arbitrary real or complex number. The points k(+) 

k( -) are' two distinct n = 3 points with the same at:.. invariants . + 

as the r = n = 2 point obtained by puttingC = 0 in (15). They are 

related by an improper Lorentz transformation 
.. 
that changes into W + 

w'" while leaving kl and k2 the same. ., 

(b) The points k(+) and k(-) determined by (15 ) 

and the r = n = 2 point obtained by putting .c = 0 in that equation 

all lie on different ;l orbits. + Any other r = 2, n = 3 point 

with the same cf..+ invariants lies on either the ot+ orbit of k(+) 

or the orbit of (-) k . Any point on one of these two orbits is 

related to any point on the other by means of an improper Lorentz 

transformation. As a consequence of Ill.(b), we may state that, for 

any set of values of the -J' invariants for which the rank of the <)(..,+ 

Gram determinant is 2, there exist three different ~ 
+ 

orbits. 
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(e) Consider the limit C -+0 -in (15), which yields an 

r = n = 2 point with the same 0( 
+ invariants. This means that any 

.".' . . ' 

neighborhood of an r = n = 2 point contains points of every r = 2, 

n = 3 orbit with the same~+ invariants. 

H3. (a) Similar remarks enable one to construct an infinite 

number of r = 1, n ~ 2 orbits with limit points on a given 

r = il = 1 orbit. In this case, however, any two r = 1, n = 2 

points related by an improper Lorentz transformation lie on the same 

<1:+ orbit. 

(b) The occurrence of r = 1 points in ~3 is possible 

only if the sum of some of the masses equals the sum of the others. 

This follows from the conservation of energy and the fact that every 

r = n = 1 orbit contains a point of the form ki ~ (±mi'O) for all 

k. Ek. 
]. 

H4. We define the little group tb +(k) of a point k to be 

the set of proper complex Lorentz transformations that leave k 

invariant; i. e., A E if (k) -+ det A = 1 and Ak = k. At any + 

k with n = 3, the only matrix in 2J +(k) is the unit matrix. 

However, if r = n ~ 2,~+(k) is an infinite. set. 

C •.. The I -Saturated Kernel of the Domain of Regularity 
+ 

point 

We emphasize the fact that to a given point kE *3 there 

can correspond many points on the domain of regularity, -R, of the. 

MC functions for a given process, although at most one painton any 

sheet ~aC:~. In the remainder of this paper when we speak of a 

point kwi th certain values of rand n lying on ~ we 

actually mean a point on -I? whose image k in v;( 3 has these 

values of rand n. 
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Thus stapp's theorem in Part A of this section says essentially 

that (a) -I? is a union of ~+ orbits; i. e ~ , if .a point k lies 

on f? there is an ~+ orbit, ;;(+~, that lies on -f( and 

contains the given point, and (b) the MC functions are "i(+ covariant 

on ~ ; i.e., the MC functions at any two points k and A(A,B)k on 

the same ;( + orbit on ~ are related by (11). [If all four 

particles are spinless the M
C function is -..r' invariant on -R; ot+ 

i.e., As(A,B) B I in (11).] 

If an r = n <3 point k' lies on -1(, then every r r. n 

orbit for which it is a limit point 

is some ·full neighborhood "l7 in 

lies on fl· This is because there 

1( of the point such that there 

in 1 and points in a 

H.2 (c) and H.3 (a) N(k' ) 

is a one-to~one mapping between points 

neighborhood N(k')e ~--acCOrding to 

contains points of everyr r. n orbit in ~3 for which the r = n 

point k' EN(k') is a limit point. By stapp's theorem -I( must 

contain the full ;(' + orbit of any point in ?; . 
If an r 1 n 'point lies on ~, the r = n limit points 

of its '0('+ orbit do not necessarily lie on ~.l The I+ -saturated 

kernel, .~ (+), Of-/? is the subset obtained by deleting from -I? 
all r 1 n orbits whose r = n limit points do not lie on -R .1,5,11 

All physical points on --I? .. lie on -R (+) because their image in 

~ 3 is. real and the construction in (14) and' (15) shows that r f. n 

points in ~3 are always complex. 

the set 

In the remainder of this paper the symbol U (+) designates 
a 

is some ~ -invariant sheet on 
+ 
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.1f ; i. e., "l( a ( + ) is the. set obtained by 

r "n orbits whose r = nlimi t points do 

C)1·
a

(+) G{. as the I+-saturated kernel of the 

deleting from 1t a all 

not lie on -t(. We refer to 

~+-invariant sheet 

D. Kinematical Restrictions 

. The number of'Mc functions for a given process is the same as 

the number of different combinations of values of the spinor indices. 

This is given by 

N (16) 

Equation (16) gives the number of independent scattering experiments 

at a fixed physical value of' the four-momenta, at least on a dense 

subset of the physical points. Of course for the Me functions under 

consideration discrete symmetries can lead to a relation between the 

results of various experiments, so that the number that are independently 

determined is less than the number in (16). Such restrictions will be 

. ignored in this section and will be the concern of the next one. 

We will show that at any point on-f« +) at which the rank 

of the Gram determinant is less than 3, ;(.+ covariance leads to 

linear relationships between the MC functions; i.e., there are kinemati

cal restrictions at such a point. 26 For any r = n = 2 point k on 

~. this statement follows by letting ACA,B) be a matrix in the 

li ttle group, .~ + (k), defined in remark· H4. Then the ~+ covariance 

relation (11) becomes 

= 
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We willaiso find kinematical restrictions at anY t = 2, n = 3 point 

.;.;;,n... ( +) • 
lying on.n The trivial extension of OUr results to r = 1 

points will not be needed in this paper. 

We .. resttict our attention to a single point on any given 

orbi t on . -I<. ( +), since the number of MC functions whose values are 

independent 'is the same at all points on the orbit. Any r = n = 2 

orbit on ... -f? contains a point whose image ke .. ,-tJ;'. is such that ea.ch 

of the vectors k i ek has no components along the 1 and 2 axes. 

Then, from (A.l), 

o 
C1 • k .. 

1 o 
(k.) - > (ki)V 

, i=1,···,4 ~ 

1 

(18) 

Let us now make the following choice for the matrices A and 

B e SL(2,C) , . where A- is any complex parameter: 

.... (XP(:"/2) 0) A = , 
exp(A-/2) . 

B = (XP(:/2 l 

eXP(:"/2) 
From (A.2) it follows that A(:A,B') k. = k., for all i = 1., ••• ,4, 

1 1 

(l9a) 

(l9b) 

. when k·· is a point in 1{ 3 of the form in (18), so A(X,B') belongs 

to the little group .JJ + (k) • 
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Because of (A .3) ,:' we have, 

(j. ) (j. ) 
D ~ (A) = exp[-t... J

3 
~] , (20a) 

(j. ) (j. ) 
D ~ (B) == exp[t... J

3
_ ~ ] (20b) 

Suppose that the particles are ordered so .-~ that the first £ 

have lQwer undotted spinor indices and the remaining 4-£ have lower 

dotted ones, the assignment of index types to individual particles being 

completely arbitrary. Then, because of (17) and (20), we have, at any 

point k of the form (18) lYlng on -tI(, 

, (21) 

where 
';.' 

= ~i+l ••• e4 are not to be confused 

wi thth~ outgoing and incoming spinor indices of the _preceding section. 

Equation (21) requires' that 

o if (22) 

Therefore, the MC-functions have "kinematical zeroes" 

at any such point. At other r = n = 2 "pointsothe . 

relationship among the values of the~C functiohs, as 'given by (17), 

will be more complicated, but the number of such linear relationships 

will be the same as the number of "zeroes"in (22). It is convenient to 

continue to use the term "kinematical zeroes" to refer to the 

restrictlons at these latter points. 

V 

;or 
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Now consider any· r = 2, n = 3 orbit on 1<. (+) for which 

the r=n=2 point k on -;( that we have just considered is·a 

limit point· There is a point on the orbit whose image k(+) or 

k (-) in 1(3 is such that each vector k. (t)€ k(t) 
1. 

has the form 

k. (±) k h k = . + C.w , were . 
1. 1. 1. ± 1. 

is given by (18), C. is a real or complex 
1. 

number, and w+ = @l ± i @2 is a complex light-like vector in the space 

ortho~onal to the k. •. Choosing the real space-like vectors 
1. 

~l e and 

g2 to be parallel to the 1 and 2 axes respectively, we have from (18) 

and (A.i) .. 

= . (23) 

Using A(A,B) defined by (19) and (A.2), but restricting our-

selves to real values of ~,we find that 

lim 
~~ +00 

A(A' B)k. (±) , T 1.• -1 ..• I. -, ,!of, 

withki . given by (18). Since the MC functions are continuous at 

the point k on i?, we have, using (11), (20), (24), and the 

obvious notation Ki (:t) = (ki(:t) , tJ, 

(24) 
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In particular, (25) implies that 

MC (K( ±») 
(0:)(6) 

= . MC(K) 

(o:)(~) 
if (26) 

Furthermore, for the limit in (25) to be consistent with the result 

in (22) for ther =n =2 point k on ~we must have 

-._.------

MC (K(+D = 0 if L 0: <[ St ' 
(0:) (f3,) 

s 
s t 

M
C Gc(~~ = 0 if L 0: > L 1\ . . s 

(o:)(S) s t 

However, there is no kinematical restriction on the values of the 

MC functions with 2:0: > L 8~ at a point on -I? ( + ) whose 
-1/ s s . t 

(27a ) 

(27b) 

imageinf)3 is k(+) and no such restriction on those with 

L 0: <L St at a point whq~e image is k ( - ). Either of Eqs. 
sSt " 

(27) is therefore sufficient to·determine the number of kinematical 

zeroes at an r = 2, n = 3 point on 11?( +), this number being 

exactly half the number given by (22) for an r = n = 2 point on 

-R.27 
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By adding up the number of MC functions not restricted by (22) 

or (27) we get the number of such functions whose values are free of 

. ..LJ. (+). kinematical constraints at any r = 2 point on V\ The result 

is given in Table I, which is actually val:thi for M
C functions with any 

number of particles, but for which at most four have spin. 4 



Table I; Number of independent MC functions at an r = 2 point. 

These results are valid for the case when at most four particles have spins, although the 

total number of particles can be arbitrary, and are valid on the I+-saturated kernel of the domain of 

regularity. Herer = rank of Gram determinant.. We take j1 + j2 and j3 + J4 both t() be integers, . 

with j1 + j2 ~ j3 + j4 and j1 ~ j2' j3 ~ j4~ 

Number of linearly independent 4-vectors, n 

n = 2 n = , 

Case I 

j1- j2 ~ j3+ j4 (2j 2+ 1)(2j
3

+ 1)(2j4+ 1) (j1+ 1)(2j2+ 1)(2j
3
+1)(2j 4+ 1) 

, 

Case II 

j3+ j4 ~ j1- j 2 (2j 2+ 1)(2j
3

+ 1)(2j4+ 1) (j1+ 1)(2j 2+ 1)(2j
3

+ 1)(2j4+ 1) 

j1-· j2 ?:: j3- j4 -~( j 2+ j 3 + j 4 - j 1)( j 2 + j 3 + j 4 ~ j 1 + 1) i(j2+ j3+ j4- j1)(j2+ j3+ jl+- j1+ 1) 

• (j 2 + j 3 + j 4 -j1 + 2) .. (j2 + j 3 + j 4"'" j 1 + 2) 

Case III 

j3- j4 ~ j1- j2 (2j4+ 1)[(2j2+ 1)(2j3+ 1) (2j4+ i)[(j1+ 1)(232+ 1)(2j ,+ 1) 

-~j4(j4+ 1) - (j + j - j4- j ) 
3 23. 1 

-gj4(j4+ 1) - ~(j + j - j4- j ) 3 ·22,·1 

-(j2+ j3+ j4- j1+ 1)] a(j2+ j,+ j4- j1+ l)J 

.. 

~ c ~; -

fu .+:-
I 
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IV. DISCRETE SYMMETRIES 

A. Identical Particles, PCT, P, T, and C 

In this section we determine the number of independent MC 

... L)(+) functions at various points on " if the functions have definite 

signature under the discrete symmetry operationS. The main object is to 

establish the results at points where the number of' linearly independent 

momenta, n, is 3, but the rank of the Gram determinant, r, is 2. The 

understanding derived from this discussion leads to the results of the 

following section. 

Invarianceunder PCT and the connection between spin and 

statistics are both consequences of the bas:i,.c principles of S-matrix 

19 . 24 28 theory . and of f1.eld theory.' In terms of the connected parts of 

the S matrix in canonical form, the PCT identity reads 

PCT SC(~; ~a) 
Db·; aa 

11
4 (.) , J. a. 

= ~PCT D 1. (C)a. 1. 
i=l 1. 

where TlPCT is a phase factor. Here K1.' = (k.,t.} with 1.1. 

t. = (m.,j.,-q.) indicating an antiparticle. The spin-statistics 1. 1. 1 1. 

(28) 

connection states that exchanging the.order of the momentum variables 

and spin components of any two identical initial or any two identical 

final particles of spin j changes the sign of the scattering function 

by (_1)2j • 

The assumption that transition probabilities are invariant under 

a change of direction of all spatial components of the four-momenta 

leads to the relatiion 



p . 
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c '" '" = ~ S (K ; K ) P --b. a 
a." a: 

0' a 

in the physical region of the process t l + t2 ~t3 + t4" Here 
I"v "'V • I"v 0 
K1. = (k."t.), w1th k. = (k. ,-k.), and 1') = +1, the "process 1 1 1 1 ",1 p-

intrinsic parity" is the product of the "particle intrinsic parities" 

of the particles occurring in the process" 29 

It is straightforward to show that if transition probabilities 

are invariant under time reversal, which involves exchanging initial 

and final states and changing the sign of all three vectors, one has 

for physical points 

T 

where ~T = +1 is required for an elastic process. 

It may happen that PT is a symmetry, even if P and Tare 

not" Then the PCT identity (28) requires charge-conjugation invariance, 

c . 
a." a: -0' a 

. 
a." a: -0' a 

The relevant symmetry relations for MC functions with spinor 

indices of the types introduced in (4) and (6) follow easily from (28)

(31) ,and are given in Table II. If a given symmetry is valid for a 

certain physical process, it is valid for the analytically continued 

functions and,consequently, for the processes related by crossing. 30 

I 

.. 
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Symmetry 

peT 

p 

·T 

PT 

e 

'--:-
., ..,.. 

Table II. Effect of invariance under various discrete symmetr.r operations on the M
C 

functions 

N number of fermions in state a 

N 
(-1) a 11peT M

C (l<a; ~) 
Cia; ~ 

a.°a - n' a 
TJp MC(~; Ka) 

MC(~; Ka) 

~;Cla 

a 

(j ) (a o~~ (ja)(a
o k~' MC(K; K ) 

Db_ D m 0 -"a 
IJ

p ~ ~a;, a ClaCl~ at,; CI~ 

N Cia; ~ 
(-1) a ~ MC(Ka ; ~) 

Na a _a D -; 0, . a'-" 
(JO)(aok0 (jb) (a 0\,,\ MC(Ko.K) 

(-1) T]T D . m CI 0:' \.~ / ~<Xi, 0:' ; a' " 
a. aa."- a -n 

N 
(-1) a IJ

PT 
MC(Ka ; ~) 

IJc MC(~; !C
a

) 

~; Cia 

O:a; ~ 

," 

N 
'(-1) a IJpeT MC(~a; ~) 

Cia; ~ 

MC(~; Ka) 

.~; Cia 

(j ) ~/ 7J0 ka) CI~ (jb) 00 ~ ~ ex;, MC(K ; ~) 
D a e-- 0 DIll. .~) . a 0, 

IJ
peT

·· ma. CI n . / ~ d '; a: 
"" a a b 

. N ~; Cia 
(-1) a IJp MC(~; Ka) 

/ k.~ (o')QT Ok\' ~ 
_. D(jb) I_a_ 0 __ 

0 . D J a ~) 0 ,MC(~; ~a) 
- IJ

p ~ ~ / ~at, a. ClaCia at,; CI~ 

(ja) a~ D(jb) (e)o a;, MC(Ka; ~) 
Tl D (e)a ~ 0:' 0 a.' 
"T a a' -n 

N . 
(-1) : IJPT MC(Ka ; ~) 

O:a; ~ 

(ja) 7J 0 ka) CI~ (jb) (a o.~) ~ C .' 
IJpT D \e-.m- 0 D \ -- e M {Ka; ~) 

"-... a Cia \:. ~ . ~ 0:' 0 a.: 

IJC MC(~; Ka) 

~; aa 

a' -b 

I 
I\) 

-..;J 
I 
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B. Functions with Definite Parity Signature 

Even when spatial inversion is not a symmetry of the process 

under consideration, one can find it useful to decompose the MC 

functions for two incoming and two outgoing particles into parts having 

positive apd negative parity signature. In the physical region of 

the process tl + t2 ~ t3 + t4 let us define the functions 

for € = +1. With .the aid of (A.12) we find that 

which indicates that the functions defined by:" (32) have definite parity 

signature (see Table II). 

One may analytically continue the functions M c and M c 
+ 

defined by (32) oyer all of -jf(+) and the following decomposition 

is valid at all points k on that domain: 

MC(~; Ka) = M+C(~; Ka) + M_C(~; Ka) 

~;~ ~;~ ~;~ 

By comparing (33) and (34) with Table II, we see that if spatial 

inversion symroetryis valid with 11 = +1 
p -

then M C == o. 
+ 

• 
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According to the remarks in Sec. III, PartB, the points k 

and k in the analytically continued relation (33)- lie on the same 

J orbit on 0(...+ 
..L>(+) 
-" unless they are r = 2, n = 3 points. If 

they are r = 2, n = 3 points then remark H2. (b) shows that they lie 

on two different ~+ orbits on ~(+) having the same r = n = 2 

limit points. It is well known that ~+ covariance leads to linear 

relations between the functions having the same parity signature at 

all r = n points. We will review this result in order to extend it 

to r = 2, n = 3 points. 
(j. ) 

Because of the D l. (:11. k/mi ) matrices that act on the M c 
E 

functions under the parity operation defined by (33), it is much simpler 

to use the connected parts of the S-matrix elements to count the number 

of independent functions. The SC functions have kinematical singulari-

, . c 
ties arising from the 'boost" matrices that relate them to the M 

functions, as in (4). These singularities, unlike those of the MC 

functions, are not Lorentz invariant, so we can always find points on 

any orbit at which the SC functions are analytic if the MC functions are 

holomorphic. 31 

By application of the proper boost matrices to (32) and (33), 

we obtain 

s+cCKb; Ka) 
1 [ScC~; Ka) SCC~; '" 

= "2 + Ka) ], -. . . 
~; ex ~; ex ~; ex a a a 

where 

S/(Kb; Ka) 
c '" '" 

= E S (Kb; K ). E a . . 
~; exa ~; ex a 
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To see the restrictions at r = n =3 or 2 points on i? it 

is best to choose a point k= (~; ka } on a given orbit such that all , 

spatial components are normal to the 2 axis;. then a rotation of 1( 

about this axis carries . k € ~3 into k. Since the matrix A(ki ) 

in (A.ll) corresponding to the Wigner rotation is equal to A when A 

is unitary, and since the required rotation matrix for spin ji is 
(j. ) 

now simply the matrix' D 1. (C) in (A.5), (3) gives us 

. 
a."a· . 0' a 

Equation (37) allows us to conclude that at any r = 3 point 

on the domain of regularity' of the MCfunctions, disregarding possible 

restrictions due to other symmetry operations, the number of ME c 

functions whose values are independent is 

+ 1), (:~8) 

if'there are fermions·1nvolved in the process. On the other hand, the 

number is 
. 4 

~ft
4 . L 

1 ." i~ 
= 2' . '.' . (2j i + 1) +~( -1) -

. 1=1 . 

if' all the particles aiebosons. 

In order to obtain the restrictions at r = n = 2 points on 

-R ,,,,e note that, in terms of ·the S c functions, (22) becomes 
E 
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c Then (37) restricts the number of M functions whose values are 
E 

(40) 

independent to exactly half the number alloweci by (40) alone, if some 

of tbe particles 4 . are fermions, and to that number. plus 

.. L ji 

1 €(_l)i=l 
2: , if all the particles are bosons. The number allowed 

by (40) alone has already been given in Table I. 

From remark H2. (b) in Sec. III, we know that an r = 2, Ii = 3 

point is related to its spatial inverse only by an improper Lorentz 

transformation. However, on ~(+) the limit (25) ~ust be valid for 

the M c functions also and we do get restrictions at r = 2, n = 3 
E 

points. In particular, in place of (26) we have 

4 

MEC(~; Ka) - M c(~ C:!:L K (~~ for L a. = 0, 
€ ' a ' ~ 

(41) 
Clb' a . Clb; a i=l , a a 

if k(:), as defined by (23), is an r = 2, n=:3 

and k is an r = n = 2 limit point of ~ +k(:) 

....0:.. +) point on -IT' 

of the form (18) . 

. Similarly, in place of . (27) we get 

4 

ME c (~ (+); Ka ( + ~ = ° if L a. < 0, 
~ 

(42a) 

Clb; a i=l a 

4 

M € C (~ ( - ); Ka ( -») = ° if [ a. > 0, 
~ 

(42b) 

Clb; aa i=l 
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but there are no restrictions on the components not accounted for by 

(41) or (42). 

By inspection of (41), we see that at the r = 2, n 3 point 

under consideration, the M c functions satisfying 
E 

L ex. = 0 
1-

i 
subject to the same restrictions as they are subject to at the 

are 

r = n == 2 limit point of the orbit. Therefore, the number of indepen

dent functions with [ex.:: 0 is the same as the number mentioned in 
• 1-
1-

the sentence following (4o)~ Adding to this the number of functions 

not restricted by either (41) or (42), we find that the number of M c 
E 

functions whose values are not subject to any linear restriction among 

themselves is exactly the same at any r = 2, n = 3 point on ~(+) 

as the number at any r = 3 point on ~ --this number is given by 

either (38) or (39). 

C. Restrictions in Special Cases 

Invariance of a scattering process under any discrete symmetry 

other than spatial inversion can restrict the number of independent 

MC functions only in special cases in. which the point in momentum space 

resulting from the symmetry operation lies on the same ~+ orbit as 

the original point. We will consider the restrictions for r = 3 

points by working in the physical region of a particular center-of-mass 

system with the I and 3 axes orientated as in Fig. I and with the. 2 axis 

pointing out of the paper. The restrictions thus obtained are easily 

extended to all r = 3 points on -'I( and also to the points on 

~(+) with r < 3. 
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For example, for a scattering process of the form 

tl + tl '.-7 t3 + t3 the exchange symmetry for identical particles leads 

to a I16stri c't'ion , when 'one simultaneously exc~nges the 

orders of the initial particles among themselves and of the final 

particles among themselves. In the reference system of Fig. 1, 

a rotation of n about the 2 axis carries the transformed momenta 

back into the original orientation and we have 

E 

= and 

... The functions for.the crossed process 

tl + t ~ tl + t have the same number of independent components as 3 . . 3 

those allowed by (43). This restriction could also have been obtained 

by applying the PCT relation (28) in the new channel. For a process 

of the form t + t ~t + t with t = t, the PCTrelation and the 

symmetry under the exchange of identical particles simultaneously lead 

tores,txictions in the same channel. In the reference frame of Fig. 1 

a rotation of n about the 3 axis carries the point on the right-hand 

side of (28) into that on the left and we obtain 

PCT SC(K3'K4 ; KI ,K2) = SC(K
3

,K4 ; ~,K2)' 
0:3'0:4 ; al'<X2 -0:1 , -0:2 ; -&3' -&4 

for tl = t2 = t3 = t4 = t = t. (44) 



~j4- . 

Time-reversal invariance restricts the number of independent 

components only in an elastiC two-particle process. In the reference 

frame of Fig. 1, the required exchange of the four";momenta is brought 

about by a rotation of n about the 1 axis and (30 ) becomes, with ~T: 1, 

= for 

Equations (37) and (43)-( 45) are s"ufficient to find all possible 

restrictions"at r = 3 points on 1<.. 
In Tables III, IV, and V. we have listed the number of independent 

M c functions 
EO 

having definite signature under the relevant 

symmetry operations, . for those cases in which spatial inversion is not 

the only possible symmetry that can give a restriction. In Table IV 
2(jl +j3) 

we have allowed only those terms. satisf'ying (-1) = 1 

when taking (43) into account. This is because the additive quantum 

numbers independent of the Lorentz group must be the same for 

.,. 
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tl and t3 in a process of the form tl + tl ~ t3 + t
3

, and in 

nature all strongly interacting particles with half odd-integer spin 

apparently have odd baryon number, while those with integer spin have 

even baryon number. 

Of course, when spatial inversion is a symmetry, for all 

processes in nature only terms with E = P = +1 are nonvanishing in 

any of the tables , 29 and when time reversal is a symmetry for the 

elastic processes in Tables III and V only terms with T = +1 are 

nonvanishing. If neither P nor T is a symmetry, but PT is, then 

only terms with PT = +1 are nonvanishing in Tables III and V. 32 

Any process not accounted for in Tables III, IV, and V·for which 

a discrete symmetry other than spatial inversion can restrict the number 
, c 

of independent M functions is related through crossing to 

one in the table. For example, in the process tl + tl ~t2 + t2 

charge-conjugation invariance can yield a restriction, but this is 

exactly the same restriction given by PT symmetry forthe process 

Although Tables III, IV, and V were derived for r = 3 points, 

they also tell us how many independent M
E

C functions having the given 

symmetry properties there are at .4')(+). r = 2, n = 3 pOints on " 

We have seen at the end of Part B of this section that ~ covariance 
+ 

allows the number of independent M c functions to be the same at an 
E 

2 3 · t ~(+) as at the . t th 1 tt r = ,n= pOln on ~ r = 3 pOln s, e a er 

of which form a dense subdomain of ~ +) • 



The tables derived from the considerations of this section are 

important for the application of the criteria to be presented in the 

next one. .' In checking any set of covariant polynomials to see whether . 

they give invariant amplitudes free of ·kinematical singulari.ties it is 

useful to know in advance how many of any discrete symmetry signature 

one shouJ.d have. 

..., 

' .. 
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Table IlL Number of independent. ME c?f'unctions~~ving 

dJefinite signature Under T and PT for the process 

These results hold at any point on theI+-saturated kernel of 

the domain of regularity where there are three linearly independent four-

momenta. Exceptional cases in"wh1lch exchange symmetry or PTC (or both) 

must give a restriction are: (1) tl == t 2 ; (2) tl == t 2 ; (3) both 

tl == tl and t2 == t 2 • These exceptions are either'given directly by 

the processes in Tables IV and V or ,related to them through crossing 

(a) If at least one of the incoming particles is a fermion: 
, 

E == P T PT Number of terms 

+ + + ~(2jl+ 1)(2j 2+ 1)(4j lj2+ 2jl+ 2j2+ 3) 

.'. fr( 2j l+ 1)(2j 2+ 1)(4j l j 2+ 2jl+ 2j2- 1) +, - -

- + - 1 - ')2 . 2 4( 2jl + 1 (2j2 + 1) 

- - + ~(2jl +1)2(2j2 + 1)2 

(b) If both particles are ,bosons: 

E == P T PT Number of terms 

+ + + *[(2j l+ 1)(2j 2+ 1)(4j l j 2+ 2jl+ 2j2+ 3) + IJ 

+ - - ~[(2jl+ 1)(2j2+1)(4jlj2+ 2jl+ 2j2- 1) + 1] 

- + - ~[(2jl+ 1)2(2j 2+ 1)2 - 1J 

- - + fr[( 2j l + 1)2(2j 2 + 1)2 - 1] 



Table IV.; Number of independent M c ·~f'unctions for the 
€ 

process tl + tl -+ t3 + t3, wi th tl I t). 

i.i./ . : ..... ..' 

These results hold at any point on the I-i--saturated kernel of 

the domain of regularity where there are three linearly independent 

four-momenta. Since the additive quantum numbers that are independent 

of the Lorentz group must be the same for tl aIld· t
3

, such a process 

apparently occurs in nature only when tl and ~. are both fermions 

or bothbosonso The table is valid even when tl = tlo 

(a) When particles tl and ~ are fermions: 

€ = P Number of terms' 
. 

+ ~(2jl+ 1)(2j
3+ 1)(4jlj3+ 2jl+ 2j

3 + 3) 

- ~(2jl + 1)2(2j
3 

+ 1)2 

.. 

(b) When tl and t3 are bosons: 

€ = P Number of terms 

+ (2j l j
3 +jl + j3 + 1)2 

- . (2j j + jl+ j)(2j lj + jl+j + 1) 
1'3 3 :3 3 
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Table V. Number of independent 
c . 

M -functions hav:i,.ng 
E 

definite signa tureunder T and PT for the process t + t ~ t + t. 

These results hold at any point on the I+-saturated kernel of 

the domain of regularity.where there are three linearly independent 

four-momenta. 

(a) When particle t is a fermion: 

E = P T PT Number of terms 
'- . 

. + + + !(2j + 1) C8j 3 + 12j2 + 18j + 7) 8 

+' - - g(2j + 1)(8j 3 + 12j2 + 2j - 1) 

- + - g(2j + 1)4 

- - + g(2j + 1 )4 

(b) -When particle t is a boson. If, in addition t = t, 

then only terms with PT = + are allowed by the peT theorem. 

E = P T PT Number of terms 
. 

+ + + 2j4 + 4j3 + 6j2 + 4j + 1 

+ - - 2j2(j + 1)2 

- + - j (j + 1)(2j 2 + 2j + 1) 

- - + j(j + 1)(2j2 + 2j + 1) 
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V. INVARIANT AMPLITUDES 

A. Extension of the Theorem of Hepp and Williams 

We have been considering the MC functions for two incoming and 

two outgoing particles with spin as functions of their four-momenta 

on the mass shell. The above discussion of kinematical constraints 

on f'unctions having definite parity signature, together with a result 

of' Hepp and Williams, will enable us to describe the analytic properties 

in terms of' ~+ invariants. Because of' the mass shell conditions and 

f'our-momenta conservation, one can form only two independent ;;( of 

invariants. These can be taken to be two of' the three linearly related 

Mandelstam invariants: 

2 
u = (~ - k4) • 

2 
t = (kl - ~) , and 

Let us first consider a process for which all four particles 

are spinless; that is, one for which the MC function-is -;;t.+ 
invariant; 

c 
= M (AlC)" 

f'or any point k on the domain· of regularity ~. 
According to a theorem of' Heppl and Williams5 any such function 

can be expressed as a holomorphic function of, tlle independent L + 

invariants on the image of the I-saturated kernel ~ I (+) of each + (...(a 

Thus (47) defines an analytic function A over the invariants sand 

. ..0(+).33 t. The domain of regularity of this function is the image of p 1 

., 
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Actually the restriction to the image of the I+-saturated 

kernel is not necessary--the domain of regularity of the function A 

defined by (47) is the image of the full domain of regularity of MC
• 

This extension of the result of Hepp and Williams arises from the fact 

that -f< is automatically I+ saturated; Le., -R(+) = -((: 

Lemma L. Let the domain of regulari tyof the function F be a 

domain -R(F) lying over 1(3· Suppose the function F is ;Z+ 

invariant on 1? (F). Then tr(F)" is I+ saturated; 1. e., the r = n 

limit . points of every r ., n oiibit on ~(F) also lie on -fI(F) . 

The proof of the above lemma, due to H. P. Stapp and this author, 

is given in Appendix B. 

B. Standard Covariants 

We would like to generalize the pre·ceding considerations of this 

section to the cases in which one or·more of the four particles has 

spin. That is, we would like to be able to express the M c functions 
E 

for any process with two incoming and two outgoing particles in terms 

of invariant functions that are holomorphic in the 0<:+ invariants, 

sand t' everywhere on the image of the subset U (+) of each . a 

;;( + -invariant sheet czt f:'f(. The spin dependence and,· consequently, 

all the kinematical properties of the M
E
c functions will be accounted 

for by polynomials in the four-momenta referred to as "standard 

covariants." First we will precisely define the latter. 

Definition. Consider the MC functions for a scattering process involving 

two incoming particles of spins jl and j2 and two outgoing particles 

of spins j3 and j4· A set of spinor functions Y (g)(k) 
+1' for 

g - 1 ••• N -, '+' and y_l(g)(k), for g = 1 ••• N , , ._' where 
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. 4 
N + N_ =d (2j i + 1), is said to be a set .of .standard covariants 

+ .. . i=l 

for this process (and the processes related by cl'ossing) if they 

satisf'y the following five properties: 

BCl. They are polynomials in the four monienta for the process, 

subject to the mass shell and four-momentum conservation constraints. 

(Th,?y,are therefore.holomorphic everywhere.) 

SC2.They are .~+ covariant; i.e., 

Y
E 
(g)~(A,B)~ 

<1,; O:a 

(j) 0:.' (j) 0:' 
~ D b (A)b D a (A) a I (g)(k) 

~ O:a ·.E 

ext,; o:~ 

(48) 

SC3.They have definite signature under the spatial inversion 

operation: 

y (g) (k) 
E 

.= ~(J • k.) . (j ) ~(J' k~. ( ) '" -~ D. a . m a .. '. Y g (k) 
~. a 0:."0:' . 0:.0:.,. .0:0:' -b'a 

-b' b . a a 
(49) 

SC4. The functions of each of the two parity signatures.are 

separately linearly independent at all n = 3 ·points. That is,if we 
form the functions 

N 
E 

rECk) = L r (g) y (g) (k) , 
E .E 

<1,; O:a g=l Clb ;'O:a 

where the r (g L s .are real or complex numbers , then at any n= 3 point 
E 

k = {~; ka }, the only solution to the equations r (k) = 0 for all. 
E 

0:. '0: -b' a 

,. 
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SC5. If the number of MC 
.. functions wh~se values are 

independent is restricted by any discrete symmetry other than parity 

then each of the spinor functions y (g) (k) 
€ 

has definite signature, 

+1 or :-1, under this operation (the form·of the symmetry opera-

tion is the same as that for the Me functions in Table II). 

The above properties of the standard covariants lead to the 

following lemma, the proof of which is given in Appendix C: 

Lemma 2. Consider a set of standard covariants for the MC functions 

describing a process with two incoming and two outgoing particles. Then, 

Ll. At any r = 3 point, the standard covariants of parity 

signature +1 are linearly independent of those of parity signature ;;;1. 

L2. For each value of €, N = N as given by (38) if 
€ € 

there are some fermions involved in the process, or as given 

by (39) if ~ll the particles are bosons. 

L3. In those cases in which property SC5 holds, the number of 

standard covariants having a given signature under any of the applicable 

symmetry operations is in agreement with the number in Tables III, IV, 

and V. 

The choice of a set of standard covariants for any process is 

by no means unique. If we have found a set Y
E 
(g)(k), for 

satisfying the required properties, and if we can write 

NE 

y (g) (k) 
E =[ 

g'=l 

g = 1,··· ,N , 
E 

(51) 

such that the coefficients f
E

gg' 
(s,t) are globally holomorphic 

functions of the Mandelstam invariants with det ~ € gg '( s, t ~ nowhere 

zero, then the Y (g) (k) IS 
E 

also form a set of standard,cov:aria.nts .. 
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C. Invariant Amplitudes for Scattering Functions With Spin 

We are now ready to consider the possibility of expanding the 

M c functions for a given process in terms of· standard covariailts 
E 

having the same discrete symmetry signatUres, using the properties of 

the standard covariants in the definition and lemma of Part B of this 

section. Our results are expressed by the following theorem: 

Theorem. 'Consider the MC functions describing a process with two 

incoming particles and two outgoing particles. On the I -saturated + . 

kernel f(+) of the domain of regularity ~ of the MC functions 

one may write the following global decompositions: 

M c 
E 

= 

N 
E 

A (g) Y (g) , 
'E E' 

where the y (g),s are any set of standard cQvariants for the process. 
E 

The "invariant amplitudes" A (g) 
E ' 

for 

functions of the Mandelstam invariants 

t1J/
a

(+) I+-saturated kernel ~ of each 

g = 1,···,N , are holomorphic 
E 

sand t on the image of the 

;;( + -invariant sheet ~a C i>. 
If the M c functions for a particular value of Eare 

E 

identically zero, the above result is trivial with vanishing 

In our proof of the theorm for nontrivial cases we will first completely 

ignore those cases in which the number of independent C 
ME -function 

components is less than the number in (38) or (39) at n = 3 points on 

..L1(+). _" The necessary modifications for the exceptional cases will be 

easy to make. 

Q I a( +) For our proof we will first try writing on the subset V( 

of a particular sheet ~aC::~ 

-,. 



M c(K) 
€ 

a.·a 
~b' a a a 

, 

which corresponds to (52), except that we regard the invariant amplitudes 

~ (g) as functions of the four-momenta for the present. We will show 
€ 

that (53) is invertible; that is, we will solve for the amplitudes 

a. € (g) in terms of the M c functions and show that this does not 
€ 

introduce any singularities not present in the 
c ' 

M functions themselves. 
€ 

Finally, the theorem of Hepp and Williams will allow us to express the 

analytic properties of the invariant amplitudes in terms of ~ 
invariants. Recall that, according to the last paragraph, we are 

ignoring the exceptional cases for the present. 

Consider the scalars 

a. 'a ~ b' a 
y (g)(k) 

€ 

Each of the above invariant functions is holomorphic everywhere on ~ 
and the determinant formed from them, det~~(~::~~, cannot vanish at 

any r = 3 point. The only way the determinant at such a point could 

vanish would be for some of the standard covariants to be linearly 

dependent, contradicting statements sc4 and Ll. Since the standard 

covariants are not all linearly independent at an r = 2 point, 

det~~(~:;~~ must vanish at such a point. 

The determinant just introduced consists of four blocks, the 

upper left-hand one having components of the form ~i~::~), the 
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lower right-hand one 4.J ~gl,f :lg), th. e upper right-hand one 1..1 (g' ,g) 7f . 1/ +1,-1 ' 

and the low~r lef't-hand one 1-~~::~). However, it f'ollows from (49) 

that ~. ~~_~g) == 0, since one has an. invariant function of' three 

independent f'our-vectorsthat has negative signature under spatial 

inversion, and such a f'unction vanishes identically. Consequently, 

the determinant is f'actorizable: 

det l qJ (g",g)\ == [dettq.l(g' ,gl\lrdet~ (g' ,gN (55) 
\~if E' ,E Y '7+1 ,+1/Jl' 'tf" -l,-l)J ' 

and neither det lq) (g' ,g)\ nor det tcu. . (g' ,g~ can vanish at any 'at +1,+1 ) \:br -1,-1 

r == 3 point. Since (55) must vanish at r == 2 points we must have 

det(~(~::g) '" <!(kl'k2,k
3
), where ~,~, .and ~ are any three of 

the momenta and N is some integer. 

The ~+-invariant functions 

== M ,c(k) 
E . a.·a 

-b'. a 

.' ~;aa 
y (g)(k) ; 

E 

(56) 

are holomorphic everywhere on the particular domain ~ (+) under 
. a 

consideration with e?n(g) - 0. From (53), (54), and (56) w~ obtain 
"~I E,-E 

the set of' equations 

== 1/lg)(k); 
E, E· 

g :::: 1,···,N . 
E 

g' (57) 

. At least at r ~ 3 points, where det (~~~~ig~ cannot vanish, 

(57) is soluble f'or the invariant functions ~E(g) in terms of' the 

% (g), s.. The solution of' (57) has the f'orm 
f V( E, E 

a. (g)(k) 
.E 

:.~ (g)(k) 
'e E g == 1,· •• ,N

E
, == 



where each <;} (g) is some combination of the .q; (g' ,g), S 
·?/.E,E 

and the 
E 

?h? (g).,: ..... . 
/I(S. 

E, E. 

The numerator ':! (g) 
E 

on the right-hand side of (58) is 

holomorphic on the given domain tJtt (+). The only possible singulari
a 

ties of the invariant amplitudes on the left-hand side of (58) on this 

~ la( +) domain l1 are poles at points where the rank of the Gram deter-

min ant is less than three. 

Let us look at (53) once more. We have already seen that the 

invariant amplitudes on the right-hand side of the equation are holo-

morphic on the image in ~3 
tf) la( +). 

of the r = 3 points on the domain 

G( Since these r = 3 points'form a dense subdomain of 0/(+) 
L1a ' 

~ la( +) as we approach any r < 3 point on ~J the limit of the right-

hand side of (53) must exist and be equal to the value of the left-

hand side at the given point. If the limit po~nt is an r = 2, n = 3 

point, the standard covariants. are all linearly independent at the 

point and there can be no cancelling singularities in the invariant 

amplitudes; i.e., the limit at such a point must exist for each 

invariant amplitude in (58) separately and not just for the right-hand 

side of (53) as a whole. 

The above considerations show that there exists some neigh

borhood of each r = 2, n = 3 point on the domain ~ (+) under 
a 

consideration such that r:;;' (g) in (58) has the form 
E 

~ E (g)(k) = ~E (g)(k)~, where ~E (g) is holomorphic in the given 

neighborhood. From (58), (Je(g)(k) = ;('E(g)(k) is holomorphic in 

that neighborhood. 
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·The .?( + -invariant sheets whose union is -R can be chosen 

to overlap, and the particular sheet '1!a for which the decomposition ."-

(53) was carried out was arbitrary. Thus, the above procedure defines a 

unique set of functions a€ (g) , for g = 1,··· ,N€. The domain of 

regularity 

1<. 3' and 

of each function C1 € (g) is a domain -R ( 0/ g) ) over 

a€ (g) is ;t+ invariant on -I(Cl(g». We have seen 

tha t each domain rR (C( € (g» con tains all n =3 points on 

Because of Lemma 1 each domain also contains all 

r = n == 2 points on 

Because of the theorem of Hepp and Williams we may express each 

invariantampli tude as a function of or: invariants on the image of the 

. I -saturated kerneL q J (+) of each sheet t:'ll cR: 
+ t-fa "fa 

~ A (g)(s,t); g = 1,···,N , 
€. € 

(59) 

with the possible exception of 'r = 1 (?j laC +) • points on the domain ~ 

But, at r = 1 points k .• k. = +mim. 
~ J - J 

for all values of i and j. 

Consequently, such points are isolated in the space of the 0( 
+ 

invariants. It is well known that an analytic function of several complex 

variables cannot have isolated singularities. 34 

Equation (59) therefore defines functions A (g) each of whose 
E ' 

domain of regularity is a domain over the space of the Mandelstam 

-4"J( +), invariants s and t. This domain is the image of all points on 1'(' 

so the proof of the theorem is completed--for those cases in which the 

number of independent M c functions is given by (38) or (39).35 
€ 



• 

-49-

In the exceptional .cases in which propertiesSC5 and L3 are applicable 

the scalarscy~·~~,g) in (54) formeQ. from standard covariantsthat 

have opposite signatures under any of theappiicable discrete symmetries 

vanish identically. Then the determinant in (55) splits up further; . 

that is, det(~~:~ ,g~, for each value of E,can itself .be written 

as a prod~qt of smalle.r determinants. Furthermore, when the 

functionshaye definite signature under the symmetries in question, 

the scalars in (56) involving standard covariantswith different 

symmetry properties also vanish identically. The· solution of (53) 

proceeds very much as before, except that now only the standard 

covariants having the correct symmetry properties need be used in the 

expansion, and the set of equations to be solved is of smaller order. 

Since the standard covariants continue to be linearly independent at 

r = 2, n::: 3 points, which was the crucial factor·in our previous 

proof, we have no singularities in the invariant amplitudes at r < 3 

.--/J ... (+). points on -1\ 

We have seen in Sec. IV, Part B, that covariance -- requires 

the various M c functions to satiSfY' certain linear relations at all 
. E . 

p01" nts ·on 1). ( + ) • " Because of the properties o.f the. standa.rd covariants 

the decomposition on the right-hand side of (52) automatically satisfies 

these relations. Therefore, there is no point at which some linear 

combination of the invariant amplitudes must vanish in order for this 

decomposition to satisfY the required kinematical constraints; i.e., the 

invarian.t amplitudes are free of "kinematical zeroes." 



VI.. SUMMARY AND DISCUSSION 

The main results of this paper are as follows: 

(a) If the domain of regularity ~. of the scattering functions 

MC for a 2 ~2 process contains a point at which only two of the 

external four-momenta are linearly independent then, as is well known, 

~ contains also points. having the same scalar invariants but with 

three linearly independent momenta. At any of these points ~+ 

covariance requires the number of linearly independent components of 

let 

be less than the dimensionality of the spin space. 

(b) Let ..fY be the parity operation for the MC functions and 

M c = ![Mc + E ~McJ. The number of linearly independent compon
E 2 

ents of the functions M c is the same at all points on their domain 
E 

of regularity at which there are three linearly independent momenta. 

This result'continues to hold if one imposes additional discrete 

symmetry requirements. 

(c) If one expresses the. individual functions M c 
+ 

and M c 

as sums of covariant polynomials times invariant functions, then these 

invariant functions will be holomorphic in the Mandelstrum invariants 

sand t except at the image of the singularities in four-momenta 

space of the corresponding ME c functions, provided (ii) the total number 

of basis polynomials equals the dimensionality of the spin space and 

(p) the basis polynomials for each of the two parity signatures are 

separately linearly independent at all points at which the number of 

linearly independent momenta is three. 

". 
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Our result allows the awkward comparison to the basis sets of 

HeppandWilliams to be. avoided. It reduces the problem to the 

essential one of the linear independence properties of the proposed 

basis set. 

In another paper we intend to discuss the problem of checking 

the linear independence of the polynomials of each parity signature. 

Several theorems that greatly simplify the practical procedure will be 

given, together with many practical applications. 
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APPENDIX A: SPINOR CALCULUS AND LORENTZ TRANSFORMATIONS 

This appendix serves to clarif'y the notation of the main part 

of the paper and other sources should be consulted for more complete 

details. 4,5,14-17,24,36 We use the superscript T to indicate the 

transpose of any ma.trix and -t to indicate the Hermitian conjugate. 

The Pauli matrices are 

0'0 = C: :) , 0'1 = (: :) , 

0'2 = C ":), 0' = C>"J' 3 

and the convention for any real or complex four-vector z is that 

IJ; 0 
z, = (z ,~c 

(A.I) 

Any two matrices A and. B, € SL(2,C), the group of two 

dimensional unimodular matrices, define a A(A,B) € ~, the group of 

proper complex Lorentz transformations, through the relation 

cr· A(A,B)z T 
= A cr· zB . (A.2) 

* In particular, if B = A , 1-A(A,A*) € L is a real proper ortho-
+ 

chronousLorentz transformation. 

The full complex Lorentz group is 0(' = c;(.+Ut-, where 

any A E ~_ is an improper Lorentz transformation with det AI = -1. 
. I 

In contrast to the real Lorentz group, which has four components because 

the unit matrix, I € Lt, and the simultaneous reflection of all four 



coordinate axes, -I ELt are not related by any~continuous transforma

tion, the complex Lorentz group has only two components, ~ and 

;;( -..' because :t and -I are connected by acontihuous path in ;( +. 

By the usual methods, one obtains a 2j + 1 by 2j + 1 matrix 

D(j)(A) corresponding to any A E SL(2,C). There always exist real 

parameters 

with 

= 

The J(j),s are the familiar generators of rotations. 

The generalization of (A.2) to arbitrary integer or half odd 

integer j is then 

(A.4a) 

or, more specifically, 

D(j)(aoz) . 
a'~' , 

(A.4b) 

which serves to clarify the meaning of lower dotted and lower undotted 

spinor indices. In particular, for real Lorentz transformations a 

dotted spinor index transforms like the complex conjugate of an 

undotted one. 

The matrix D(j)(C) is defined by 
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= 

An important property is 

(A.6) 

n(j)(c-1 ), acting from the left on any lower spinor index, turns it 

into an upper spinor index. Upper undotted spinor indices are therefore 

acted on from the left by n(j)(AT-
l

) and upper dotted ones are 
( -1 

acted on from the left by n j)(BT ). Contraction of an upper undotted 

index with a lower undotted one, or of the corresponding dotted indices 

with each other, yields a scalar. 

In addition to (A.6) one has 

(A.7) 

where o~ = ~ = (aO'-~)' 
Let k be any real four-vector on the mass shell; that is, 

k2 2 
= m , where m -i 0 is the mass of the particle under consideration. 

Its rest-frame value is it = (m,O) and the ''boost'' L(k) is the 

Hermitian matrix in L1 defined by 
+ 

k = L(k) k. (A.8) 

One may write L(k) = A(Ji (k), ~*(k~, where the Hermitian 

matrix ~(k) E SL(2,C) is given by 



= 
1 

(a. k/m)2 = 
o _.1. 0 

[2m(m + k )J 2 [m + k +~. ~]. 

~ Corresponding to any A E L+ .and any real four-momentum k 

on the mass shell, one may define the "Wigner rotation" 

(A.10) 

which is well known to those familiar with the unitary representations 

of the inhomogeneous Lorentz group. One may write R(k,A) = A~(k),A(~)', 

where A(k) 1;0 SU(2) is given by 

(A.ll) 

The following relation is valid for any complex value of k 

on the mass sheli: 

(A.12) 
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APPENDIX B: PROOF"OF LEMMA ,1 

.'l;'hedetails. given here· are due to H •. P •. Stapp and this author • 

. Some definitions we make use of are: 

~: The points 

suqject to 

£+1 

k - (k.. ••• k .} in .complex four-vector spac. e - --l' . , :£+1 

the conditions ki • ki = (mi)2 > 0; i = 1,'" ,£+1, 

and·· [ , Ei k
i 

= 0, where E. = +1. 
1. 

I+: The mapping that takes sets in k space to their images S(k) 

in the space of the 0(. invariants; i.e., 

S(k). = I+(k) = ~(k) )P(k~, where I(k) .is the set of all 

inner products formed from the k. 's 
1. 

all pseudoscalars"formed from them. 

and P(k) is the set of 

The space of ~ invariants corresponding to the points of 

~; Le., 11;£+ == I+(1(£). 

To prove Lemma 1 we need 

Williams'. Lemma37 (Open mappings from 

image of ~ neighborhood of a point k E 

S(k) = I+(k) in '11
3

+; Le., the map 

to ~. ). The I+ 
"/3+ ... 

is a neighborhood of 

~ -+ ~+ ·is open. 

Proof of Lemma l. According to remark Hl. (b) in Part B of Sec. III 

there is a one-to~one mapping between orbits in ~ and points 

S € ~3+= I+(~). Thus o/'(S) defined by =7Z (s(kV = F(k) 

is uniquely defined for all r = 3 point~ k lying on -I?(F). The 

set of points r < 2 is a set of codimension 1 in invariant space, 

since It is defined by G(k) = G(S(k» =. G(S) = O. Ifany r = n 
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(~.4) 

If we multiply each spinor index in (0.3) from the left by 
(j. )(" a· k~. 1 1 D '. ' 

. ·m. 
1 

and then make use of (D.4), we get: 

r (k) = 0. 
a. ·a 
-b' a 

.The consistency of (C .1) and (C.5) requires that 

r (k) = ° 
Ea.·a -b' a 

, (c.6) 

for both E == +1 andE = -1, for all .choicesof {a.; a }. But, as -b a ' 

mentioned after (50) in property SC4, the .linearindependence of the 

standard covariants of the same parity signature at any n = 3 point 

means that (c.6) cannot be true therefor nonzero Consequently, 

(C .1) cannot be true and statement Ll of the lemma is valid. 39 

We now consider statement L2 of the lemma. First note that each 

componeht Y E (g) (k) ,for a fixed value ()f g, but different values of 
a. ·a 

b' a 

{Db; aa}' is actually a di fferent function. However, as was the case 

c . 
for the ME functions in Sec. Iv,C4'9~ means that at most NE of their· 

values, where. NE is given by (38) ;.or(39), whichever is appropriate, 

can actually be chosen indepe~dently at any Ii = 3 point. Thus, the 

number' of standard covariantsY E (g) (k) that are linearly independent 

'", 
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for a given E cannot be greater than N€; i.e~, 

~ N+ + N ,,:, '.1 (2j i + 1) = N+ + N_, one must have 

N < N • 
€ € 

Since 

N N. 
E E 

i~l 

Finally, consider statement L3 of the lemma. 

If, for example, ~ = ~ and m2 = m4'. we require that 

standard covariants have definite signature under the simultaneolls 

exchanges (kl,al ) ~ (k3,a
3

) and (k2,a2 ) ~(k4,a4)' which is the 

same as the PT operation for the MC functions in Table II. Then the 

same considerations that led to Table III tell us how many linearly 

independent covariants at most can have a particular signature under 

this operation, and considerations such as those in the proof of L2 

shoW'·that this equals the actual number of such standard covariants. 

Note that, by choosing our covariants to hav~ defin;Lte PT signature, 

we automatically assure that they have definite signature under T. 

The above considerations are easily extended to the case 

~ = m2 and m3 = m4' when the covariants are chosen to have definite 

signature under the simultaneous exchanges (~,al)·~ (k2 ,a2 ) and 

(k
3
,a

3
) ~ (k4,a4)' and to the case of all equal ~sses; when 

definite signatures under both types of exchanges .mentioned in this 

paragraph ar.e chosen • 
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to be holomorphic and either Ll' covariant or 
+ ~+ covariant on 

some arbitrarily small real or complex domain that does not have to 

be on the mass shell. It is a generalization of earlier work showing 

that functions originally defined to be holomorphic and Li' 
+ 

covariant on the so-called "future tube," such as the Wightman 
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functions in axiomatic field theory, have a single-sheeted a<'.-
+ 

covariant extension to the "extended tube," which is the union of 

the J orbits of all points on the "future tube. IT "'+ See A. S. 

Wightman,.J. Indian Math. Soc. 24, 625 (1960),and R. Jost in 
'. . 

Lectures on Field Theory and the Many-Body Problem, edited by E. R. 

Caiartiello (Academic Press,New York, 1961), p. 127. See also 

Ref. 24. 

24. R. Fo streater and A. S. Wightman, PCT,Spin, and Statistics, and 

All That (W. A. Benjamin Inc., New York, 1964). 

dJ"a(+) The usual definition of the I+-saturated kernel ~ 

~ + -invariant sheet lIa on the domain of regularity, 

of an 

~, 
of the MC functions for a given process is: "t:tt (+) is the 

a 

largest subset of tz! a such that if "2(a (+) contains a point 

then d1~a(+) t . . t h . . vt con alns every pOln W ose lmage ln If; has the 

same ;;( + invariants. (see Refs. 1, 5, and 11). However, for a 

function defined over ~3 our defini tionof the I+ -saturated 

kernel of an < t -invariant sheet 1.,( a is equivalent to the 

usual one. This is a consequence of Lemma 4 of Ref. 5. 

26. A general discussion of linear relationships for physical values of 

the four-momenta using helicity amplitudes is given by J. Daboul, 

Linear Symmetries of Scattering Amplitudes, Temple University 

preprint, Nov. 1969. 

27. We will rtot discuss the restrictions that Lorentz covariance places 

on the derivatives of the MC functions at r = 2 points. The 

considerations'heI'e will prove to be sufficient for specifying the 
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properties of the "standard covariantsl' introduced in Sec. 5 when 

c the decomposition of the M functions into invariant amplitudes is 

considered. 

28. R.J:"ost, The General Theory of Quantized Fields (American Mathe

matical Society, Providence, Rhode Island, 1965). 
\ 

29. H.P. Stapp, Phys. Rev. 128, 1963 (1962). ··Analyticity and the 

superposition principle require Ti =:t1. p 
The cluster decompo-

sition law then requires l) = +1 for an elastic process. 
p 

The 

"particle intrinsic parities" can be chosen to be real if the 

only conservation laws are additive ones. This means that Tip = +1 

for a process of the form tl + tl ~t3 + t3. 

30. For a discussion of the crossing properties see Refs. 17 and 19. 

31. Note that, because of the kinematical branch points in the ''boost'' 

matrices, the mapping from the MC functions to the SC functions 

at any point on the domain of regularity of the former is not 

single-valued. This fact is not of any imp'ortance for the 

application we have in mind here. 

32. We call attention to the fact that in Table III the total number 

of terms is (2jl + 1)2(2j2 + 1)2, in agreement with (16), but the 

total number is less in Tables IV and V, because S-matrix theory 

and field theory forbid the occurrence of terms with the wrong 

signature under exchange s~etry and under peT. 

33. In its more general form, the theorem of Hepp and Williams says 

that one can express any multisheeted invariant function of any 

number of four-vectors (regardless of whether or not mass-shell 



constraints are present) as a holomorphic function of the 

independent;;( + invariants on the image of the 1+ -saturated 

kernel of its domain of regularity~ However, with more than four 

functionally independent vectors (e.g., a scattering amplitude 

with more than five particles), it is not possible to use the 

same set of ~+ invariants globally; in other words one must 

use "local" Z+ -invariant coo~dinates. The result of Hepp and 

Williams is a generalization to arbitrary domains of a theorem of 

Hall and Wightman (Ref. 12) that enables one to express an ~-

invariant single-sheeted function regular everywhere on the 

"extended tube" as a function of "local" o(-invariant coordinates. 

(See also Ref. 23.) 

34. R. C. Gunning and H. Rossi, AnalytiC Functions of Several Complex 

Variables (Prentice-Hall, Inc., Edgewood Cliffs, New Jersey, 1965), 

p. 21. 

35. Our theorem generalizes the approach of Williams (Ref. 5). 

Williams' arguments were for his particular basis and depended 

on a certain physically irrele:Vant decomposition of the scattering 

functions into "tensor" and "pseudotensor"parts. 

A. S. Wightman in Dispersion Relations and Elementary Particles, 

edited by C. de Witt and R. Omnes (John Wiley and Sons, Inc., 

New York, 1960), p. 159. 

37. Lemma 5 and Appendix IV of Ref. 5. 

38. Reference 34, p. 19. 
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390 It is worth noting that ifk is an r = 2, n = 3 point, then 

k lies on a different .;(' + orbit, according to H20(b), and (Co2) 'J." 

is not valid for any choice of .~ € SL(2,G)o. In this case it is 

possible to satisfy (Col) with r+(k) -I 0 and rjk) 1°, 
a.·a a.·a 
~O' a -b' a 

in contrast to the result (C06) for an r = 3 point. The standard 

covariants of signature +1 are not linearly independent of those 

of signature -1 at any r = 2, n = 3 point; at such a point the 

total number of.linearly independent standard covariants in the two 

sets is the same as the number given in Table I. 
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FIGURE CAPTIONS 

Fig. 1. Special reference frame used for obtaining discrete symmetry . 

restrictions. The 2 axis points out of the paper . 

'."-
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Fig. 1. 

k ...,1 

X BL702- 2362 . 

... 



'-to 

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or.his employment with such contractor. 
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