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RADIATION TRANSPORT ALONG CURVED RAY PA'fHS 

Chau-Wa lau and Kenneth M. "-Tatson 

Department of Physics and lawrence Radiation laboratory 
University of California) Berkeley, California 

Janua,ry 8, 1970 

ABSTRACT 

The transport of radiation in a turbulEmt) refracting 

medium is studied. It is shOim that the conventional t.rans-

port equation must be generalized. Path integrals are taken 

along curved ray trajectories. When these ray paths lave 

torsion a rotation of· the polarization vectors needs to be 

taken into account. 1\0[0 derivations of the transI{ort 

equation are given. One is phenomenolOGical and one is 

based on Maxwell's equations. Some discussion is given of 

cross polarization of radar backscatter. 

\ 

, .d 

": ... . . ~ ... ., ..... 



-1-

I. INTRODUCTION 

1 2 3 Earlier papers" in this series have presented a derivation 

from Maxwell's equations of the radiation transport equation for scattering 

bya turbulent medium.
4,5 A transport equation of conventional form was 

. derived making two k~ of approximations. The first of these amounted 

to treating the scattering from a single "turbulent eddy," or a single 

correlated cluster of scatterers, in the distorted wave Born approximation 

(DWBA). The second approximation made was the assumption that coherent 

propagation in the refracting medium could be treated in the eikonal 

approximation and, furthermore, that the ray paths of the eikonal 

approximation could be replaced by straight lines. 

It was observed in I that the restriction to straight line ray 

paths is quite unnecessary for deriving the transport equation. In the 

present paper we shall drop the restriction to straight ray paths. The 

resulting transport equation differs from the conventional one in the 

appearance of a rotation operator acting on the polarization indices and 

depending on the radius of torsion of the ray paths. 

To make our discussion definite, let us consider the physical 

situation studied in I and illustrated in Fig. 1. The scattering medium 

is· of finite extent and surrounded by empty space. The source of the 

radiation is at a great distance from the scatterer. Thus the incident 

radiation at the scatterer can be considered to be a plane wave, with 

wave number vector (say) k . 
'Y 

The detector is also at some distance from 

the scatterer. Evidently, this particular choice of boundary conditions 

is incidental for the derivation of the transport equation. 

In T the scatterer was assumed to be a plasma. This is evidently 

easily generalized to other scattering systems by replacing the Thomson 
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scattering amplitudes by those appropriate for the system of interest. 

The eikonal approximation, although not required for the formal 

derivation of a transport equation, seems necessary to obtain the 

conventional form with its usual geometrical interpretation. In Sec. II 

some required properties of the eikonal approximation will be reviewed. 

A phenomenological derivation of the transport equation, generalized for 

curved ray paths, is given in Sec. III. In Sec. IV the same equation is 

derived £'rom Maxwell's eq,uations. [The corresponding q,uantum form can' 

be obtained, as was done in Ref. 4).] Several applications, including 

a discussion of cross polarization for radar backscatter, are given in 

the final sections. 

Before considering the generalized transport equation let us 

review briefly the conventional form of this and the derivation given in 

I and III. In the classical theory the qUantity 

A 

I (x, ,n, m) drl.A dill 
rv ~ p (1.1 ) 

represents the flow of radiant energy per unit area, per unit time, 

having angular frequency m within d~ and propagating parallel to 

p within the element of solid angle 
"" 

dQA • ' When the shift in frequency 
p 

due to scattering may be neglected m appears as just a parameter in 

the transport equation. If in ,addition the bandwidth of the radiation 

is sufficiently narrow that frequency dispersion in the scattering may 

be neglected, the transport equation ma.y be expressed in terms of the 

quantity 

( Ap) I x, 
"" 'V 

A 

p, m)dm • 
'V 

(1.2 ) 

{>, 

... 

Vi 
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It is for this case tbatthe derivation in I was given. The eq,uation 

for I(x, p, w), including freq,uency shift, was obtained in III. 
'" "" 

4i:, 
To describe polarization it is necessary to generalize (1.1). 

As described above, we suppose that an incident plane wave with wave 

number vector ~. illuminates the scattering medium. At a point along 
A 

a ray path we suppose the tangent vector is p TWo more unit vectors 
"" 

are then defined as 

A 

For curved ray paths we take p as the local tangent in Eq,s. (1.3). 
'" 

The electric field vector fora wavelet propagating along the 

given ray path is therefore of the form 

E 
'" 

(1. 4) 

and the generalized intensity is [here (i,j) = 1,2] 

* . = const x [EA (i)EA(j)] 
P P 

The "const" here is chosen so that 

[The constant will be given an explicit form in Eq,. (3.6) below.] 

The radiation transport eq,uation obtained in I was of conventional 

form: 
6 
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1 ( ""p) + -;; I .. x, 
,fJ ~J '" '" 

( Ap) = B .. x, , 
~J '" 

(1. 6a) 

(1. 7a) 

Here the derivative in (1.6a) is taken along the straight line parallel 

A-
to p, 

"" 
£-l(~) is the absorption coefficient, and (ij , M(p,p') 1st) 

'" '" 
is the scattering function. In more compact matrix notation we write 

E~s. (1.6a) and (1.7a) in the form 

d ( p) + 1 I(x, p) B(x, p) - I x I , ds "'. ",' "" '" '" '" 
(1. 6b) 

B(x p) J d~, M(p,p') I(x, p' ) 
"" ",' '" p ,....,."" "" '" '" '" 'V 

(1. 7b) 

E~uations (1.6) and (1. 7) are applicable when thefre~uency change with 

scattering may be neglected. 

The case specifically considered in I was scattering by a plasma 

containing N electrons with coordinates~l' ~, "'~N' The probability 

distribution for these coordinates was written as PN(~l'·· '~N), 

normaliz ed so that 

3 3 
d z ···d z 1 N 

A set of distributions Pl(~l)' P2(~1' ~), • ',PN- l (~l'·· '~N-l) may 

evidently be obtained from PN by integration, and P2, P
3
•·· were 

developed in terms of two-particle, three-particle, "'correlation 

functions. In particular, P2 was written as 

", , 
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(1.8 ) 

We shall here assume, as was done in I,that the pair correlation function 

g has the approximate form 

This assumption is not necessary for the derivation of the transport 

equation, but does simplify the equatioils by leading to a scalar) 

isotropic refractive index. 

The' quantity !1 was then obtabed in I in the form 

(1.10 ) 

where 

( ij 1m I st) == (1.11 ) 

and 

== R)exP{i n (x)k(p' - P)'H}' . r "" ~ """ "'" 

" (1.12) 

Here 

(1.13 ) 

is the electron density and CJ is the appropriate cross section for 

Thomson scattering: 

where rO is the classical electron radius and v 
c 

(1.14 ) 

is the electron 
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collision frequency. [Evidently the theory may be adapted to other 

elementary scatterers.] Finally, n (x) is the real part of the 
r'" 

refractive index given in first approximation by [seeEq. (4.13)] 

n 
r 

2 2 n 2 
1 - ill / (lJf- + v ), 

p c 

with ill the electron plasma frequency. 
p 

where 

and 

The absorption coefficient has the farm 

1 
T 

c 

1 
1 2k n. 

l 

is the imaginary part of the refractive index, 

(c is the speed of light). 

(1.15 ) 

(1.16) 

(1.17) 

(1.18) 

As an alternative to Eq. (1.12) we may suppose the medium to be 

characterized by a dielectric constant, depending on certain random 

variables, and at time t and point ~ to have the value E(r, t). 
'" 

This may be written in terms of its fluctuations 5 E as 

E (1.19 ) 

where If( ••• ) If represents an average over the random variables. ' 

' . . ' 

,Ii> , 
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In this case Eq. (1.12) may be re-written in the form 

2 2 f d
3

R ( ~ €(<S' a == (k ) 0) 5 E (;15 + B, 0 ) ) 
g 4:rr 

-xexp{i n (x) k(p' - l')OR} . 
r '" '" 

(1.20 ) 

The transport eCluation for the case that freCluency shift must" 

be considered was obtained in III. This has the form 

~. I (x, 
A ill) 1 

I(x, 
A ro) B(x, 

A ro) (1.21) p, + .e p, == p, . 
s '" "" '" '" '" '" '" '" '" 

where now 

r ,-

B(x, 
A ill) dm) ~A, (A A ill'- ro') I(X A, ill' ), p, == ~ p, p'; p , 

...... '" P 'V "" 
...... ",' 

'" 
'" 0 . (1.22) 

and 

(1.23 ) 

For the case corresponding to ECl. (1.12 )we have 

(
A A, n) a p.p, "6 

g 'V '" 

x exp {. i n (x)k (p' - p). R } .' r.-....,; "'" ~,...,." 

, (1.24) 

Here . g(~) R, T) is the time dependent pair correlation function for a 

stationary random process. Alternatively for the case corresponding to 

ECl. (1.20) we have 
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22 
(~) 

(. 

dT /1 d 3R (f) E.(X,t) C) E(x+R, t + T) 
'" "V '" j 

-co 
) 

exp fi n (x) k(p' l r'" 

where k =u::/ c • 

The approximations re~uired to derive the transport e~uation from 

the wave e~uationare given in detail in references I and III. We 

briefly review these here: 

1. » R,. where 
c 

R 
c 

is the correlation range, or the 

characteristic distance over which correlations contribute to 0. As 
g 

noted in II, for plasmas this condition can often be replaced by the 

condition 

4 
sCm 1m) «1, 

p 

where S is the relative mean s~uare fluctuation in electron density. 

2. n. « n. This assumption is interpreted as permitting us to 
~ r 

neglect ni . in E~s. (1.12), (1.20), (1.23), and (1.24), where only n 
r 

was kept in the exponentials. That is, we assumed that (R If) « 1 
c 

in these equations (this is convenient, but not of course essential to 

our discussion). Assumption (2) will be used also in the next section 

[see E~. (2.17), for example]. In addition to the above condition, we 

shall re~uire that 

E~.(2 .29). 

Iv n. I be small, 11. restriction made more precise in 
~ 

3. The eikonal approximation may be used to describe coherent wave 

propagation. We express the condition for validity of this approximation 
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in the form 

IV' n I r 
« 2 

k n 
r 
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4. The bending of eikonal ray paths maybe neglected and these may 

be considered to be straight lines. 

5. k.e» 1) which we interpret as meaning that successive 

scatterings occur in the wave zone. This assumption is necessary if 

we are to use the eikonal approximation to describe wave propagation 

between scatterings. 

The purpose of this paper is to obtain the transport equation 

without making assumption (4). 
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II. THE EIKONAL APffiOXIMATION 

In this Section we review several aspects of the eikonal 

approximation which will be needed for obtaining the transport equation. 

. 7 
We shall follow the treatment of Born and Wolf, generalizing this to 

obtain the Green's function and to include acornplex refractive index. 

For an electromagnetic wave of frequency m ~ kc propagating 

in a medium of finite extent and having a refractive index n(r ), 
'" 

the 

Maxwell eqUation for the electric field E(r) 
'" '" 

is 

o . (2.1 ) 

Let us suppose that in the absence of the refractive medium the field 

is ;§O(£), where 

(2.2 ) 

As illustrated in Fig. 1, we suppose the source of ~O to lie far 

outside the refractive medium. 

The field ;§ may be expressed in terms of ~O and the dyadic 

Green's function QO(£,~) for infinite space:
8 

£i(£) £io (£) + f d
3

x QO (£, .15) • £i(15) 

X { (k
2 /4. Hn2 

(if,)- 11} . 
Here satisfies the equation 

(2.4) 

where j is the unit dyadic. That is, 

~,' 

... i 
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o G (r, x) 
'" ""' ""' 

[~ 

with R - r - x. For kR »1 we have 
""' ""' ""' 

where 
o . 

G (;(, ~) 
ikR 

e 
R 

Finally, we desire the dyadic Green's function G(r, x) 
""' "" ""' 

the refracting medium. This satisfies the e<luation 

v x V xJ G(r, x) 
r r '" '" '" 

LA 

- 4rc c.) 0 (r - x). 
. '" ~ 

'" '" 

(2.6) 

for 

Let us now write the electric and magnetic field vectors in the 

respective forms 

ikS(r) 
E(r) e(r) e '" 
'" '" '" '" 

, 

H(r) h(r) e 
ikS(,t) 

(2.8 ) = , 
'" '" '" '" 

where theeikonal S is expressed in terms of its real and imaginary 

parts as9 

S 

Since Q and .:§ satisfy the same diffE~rential e<luation, except for 

boundary conditions, we may write 

(2.10 ) 
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Now we consider e to be a dyadic satisfying the same differential 
'" 

equation [Eq. (2.12)] as the vector e • 
'" 

Substitution of (2.8) into Maxwell's equations give the two 

differential equations of the eikonal approximation for Sand e 
'" 

[we are using the notation of Born and Wolf] 

2 
n , (2.11 ) 

+ 2(\7 S)·\7] e 
"" 

o. 
(2.12 ) 

In addition, we have 

h (\7 S) X e , 
'" '" 

(\7 S) '. e 0 
'" 

(\7 S) . h := 0 (2.13 ) 
'" 

in the first order. 

The time-averaged Poynting vector is [following Ref. 7, weare 

using unrationalized Gaussian units] 

* 
-2kS. 

J 
c ( Re[ e x h ] }e ~ 

'" g; '" '" 

* 
-2ikS. c (\7 S ) ~ (2.14 ) 8rt e'e e r '" '" 

The real and imaginary parts of Eq. (2.11) lead to the two real 

equations 

(\7 S ) 
r 

n 
r 

2 

(\7 S.) := nn 
~ , r i 

(2.15 ) 

(2.16 ) 

e' , 
, ! 

! 

i.tj 

I 

" ! 
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to these of the form 

with (V S.)2 « 
1 
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2 
n. 

1 

2 
«n we look for a solution 

r 

Following the discussion of Ref. 7, we write the e~uation of a 

given ray path as r = r(s), where 
'" '" 

s is the path length measured from 

some reference point on the ray. We let 

dr 
rv 

(2.18) , ds 

be ,the tangent vector to the given ray path at the point £ and write 

V S 
r 

A pn 
'" r 

E~uations: (2.18) and (2.19) permit us to "solve" (2.'17) in the form 7 

ds 

S (r) 
r'" 

V.l in n , 
r 

J nr ds , 

p 

(2.20 ) 

(2.21) 

(2.22 ) 

E~uation (2.20) determines a given ray path and (2.21) permits us to 

construct Sr' the integral being taken along the ray pa~h passing 

through ,t. 

Equation (2.16) may now be re-written in the form 

p:\7 S. 
'" 1 

(2.23 ) 
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This may be integrated to give 

S. l n. ds + 5 S. 
1 1 1 

where 5 Si is subject to the condition 

Thus, 5 Si is constant along each ray path. The boundary condition 

~ becomes e'lual to ~o if we follow a ray path backwards outside the 

medium tells us then that 5 Si :=: O. For the Green's function the 

boundary condition at ~) implied by Eq,. (2.7), also then specifies 

that 5 S. :=: O. We therefore have 
1 

form 

where 

phase. 

S. 
1 J n. 

. 1 

P 

ds . 

We now turn to E'l. (2.12) for 

A 

e 
~ 

ia A 
A e e 

'" 

is the magnitude of 

, 

e • 
'" 

Let us write e 
'" 

is a unit vector, and 

(2.24 ) 

in the' 

(2.25 ) 

is a 

The discussion given in Born andWolf7 permits us to obtain 

directly the e<luation 

dA -~n:~) A • 
:=: 

ds 
(2.26 ) 

For and A 
obtain the e'luations a e we 

"" 

da if S. 
1 

ds 2n 
(2.27) 

r 
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and 

ds 
- p (v .en n) . e 

'" 
(2.28 ) 

To check the consistency with Eqs. (2.13), we use 'Eqs. (2.20) and (2.28) 

to'obtain 

e . v in n 
'" 

This vanishes if we can consider the contribution from 

to be negligible. This will be the case if 

I p 

Iv n. I 
___ 1:;.;...._ ds 

n 
r 

« 1 

n. 
1 

in Eq. (2.28) 

(2.29), 

everywhere along a given path. We shall assume that the condition (2.29) 

is ,satisfied and that we can write (2.29) in'the approximate form 

ds 
A 

- P 
"" 

(v.l .en n ) • e 
r "" 

The same approximation lets us set ex == 0 in Eq. (2.25). 

If r and x are two points along a ray path, we may integrate 
"" '" 

(2.30) to give 

e(x) , 
'" '" 

Per, x) 
'" '" '" 

== , 

using a somewhat terse notation. 
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We areparticularly interested in the eikonal representation· 

for the Green's function G(r j x). To simplify the appearance of some 
. "V "V "" 

of our equations we shall use interchangeably two notations for G, A, 
'" 

etc. For a set of coordinates ~l' z j ",zN' we write .- "'2 '" 

The unit tangent vectors p = p(x) 
'" '" '" 

(2.32 ) 

in Eqs. with a I ~ = 1, 2, ···N. 

(1.3) satisfy Eq. (2.20). These will be written as Ap = Ap(Z ), etc. 
;t,(X ",. "'CX 

The eikonal is written as 

n ds • 

In matrix notation we use the representation (1.3) to write, 

for i, j = lj2, 

(j I Gat3 I i) - ~ (j) 
.. ~ 

• G • 
~ 

using Eqs. (2.25) and (2.31). We emphasize that here 

are determined by Eqs. (2.21), (2.24), and (2.26). We may a~eo write 

GNA ~p (j) • p . ~p (i), 
'-0/ m "'of3 .q) 

where 

• ,. 
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The expression (2.35) represents the eikonal approximation to the 

scalar "equation 

[\7 2 + l n2 (z)] G(z, x) = - 4:rr 5(z - x). 
z "" "" "" "'. f"'V 

The observation that Eq. (2.26) does not depend on n. 
]. 

lets us 

introduce the Green's function, expressed in the eikonal approximation, 

(2.37) -

This is the eikonal approximation to the solution of 

2 22':" 
[\7 + k n ] G (r, x) 

r r '" '" 
- 4:rr 5 (r - x). 

'" '" 

It is known
lO 

that 

= e (x, r) , 
'" '" 

from which we obtain the important symriJ.etry relation 

= (2.40 ) 

Let us now choose three points ~O' ~l' and ~ all on a given 

ray pa.th. We construct a flux tube of raypa.ths all pa.ssing through ~O 

and enclosing the original pa.th on which ~l and ~2 lie. We ~:uppose 

the solid angle 5 QO formed by the tube at ~O to be very small. The 

respective cross sectional areas of the flux tube at ~l and ~2 are 

5 ~l and 5 ~2' This geometry is iliustrated in Fig. 2. 

We assume for the moment that n. = O. 
]. 

Then we can represent 

the Green's function G· by G, Eqs. (2.37) and (2.38). The condition 



that energy is conserved [i.e., ni 0] in the flux tube [see Eq. (2.14)] 

leads us to the relation 

(2.41 ) 

Here we have written nr(l) - nr(~l)' etc. If we choose ~l to lie 

sufficiently close to ~O' we have 

and 

5 So 
where 

(2.42) 

Thus, we obtain from (2.41) the result 

" " 1/2 

" ~(. nr(O) ,(oS \1 l 
~O ~ I' nr (2y) \~) J 

L. . 

'" 

for two arbitrary points ~ and ~ we have 

== "[/ nr (fj) \ (CLa) -1 11/2 
Aafj \nr(~)J \~ J 

Since Eq. (2.26) does not involve n., we can consider Eq. (2.43) to be 
~ 

valid even when ni t- 0 [but of course subject to the conditions imposed 

on it]. 

Equations (2.34), (2.35), (2.43), etc. provide the eikonal 

representation of the Green's function which will be required for our 

applications. 
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III. HEURISTIC DERIVATION OF THE TRANSPORT EQUATION 

In this Section we shall give a phenomenological derivation of 

the transport equation for the case that curvature of the ray paths must 

be taken into account. Consistent with our assumption [see Eq. (1.9)J 

that m~an properties of the medium do not change significantly over a 

correlation distance R, we shall assume that the scattering strength 
c 

B in Eq. (1. 6) and the scattering function M are not modified. 
'" rv 

Let us assume that the dielectric properties of the scatterer 

are described by the dielectric constant E [see Eq. (1.19)] which 

depends on certain random parameters. The electric field ~, which. 

depends parametrically on these same parameters, satisfies the equation 

o 

Remembering that "("')" is considered to represent an average over 

these random variables, we introduce the coherent field at as 

< E (x) ) 
'" '" 

The coherent field satisfies the wave equation (2.1); that is, as was 
. 11 

shown in I, 

[k2 2 
Vx. \7xJE o . n = 

"'c 

The field E may be written as 
'" 

.E L ~"- ' 
"-

where the sum runs over scattering from different fluctuations in E 

and includes E 
"'c 

We suppose that these terms are so chosen that the 

different ~"- are mutually incoherent. Thus, 

,/ 
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o for 

An expression is required for the radiation intensity 1.. (z, p) 
~J '" "" 

[Eq. (1.5)j we do not write explicitly the frequency dependence here]. 

Referring to Fig. 3, we consider a flux tube of ray paths all passing 

through a given point ~O within a small s~lid angle b QO' The electric 

field at ~O associated with these ray paths will be of the form (3.4). 

The index A is assumed to refer to a scatterer at the point ~A 

contained within the volume of the flux tube. At the point ~A .the 

area of the flux tube is b~. 

If we write each ~A in (3.4) in the eikonal form (2.8) and 

use Eqs. (2.14) and (3.5), we see that 

1. . (zo, PO) 
~J '" '" 

The unit vector s here are defined by Eqs. (1. 3 ) with ~o - ~ (~o ) . 

. Using Eq. (2.43), we have 

n (A) 
r 

n (0) 
r 

To obtain the final form here, we have used Eq. (2.40). Equatien (2.25), 

with a = 0, lets us write 

~. 
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where s~ is the source intensity at ~~. Finally, (3.7) and (3. 8) 

let us rewrite (3.6), replacing ~O by a general point ~, as 

( Ap) I .. z, 
~J '" '" 

where the 

2 n (z) exp[ ~2k S.(z) 
r '" ~ '" 

c~ are independent of z • 
'" 

(3.9) 

To obtain the transport equation we consider the change in I 

if we displace the point ~ by a small distance 5 s along the ray 

path. First, let us assume that in the interval 5 s then is ho energy 

added by scattering from other ray paths. [This will later be accounted 

for by including the scattering strength B • ] 
'" 

Use of Eqs. (1.16) and 

(2.24) gives 

From Eqs. (2.20), (2.38 ), and (1.3) we obtain 
I 

= 

where 

¢ = (p·Ylp)( kl) ~(2)·\7.en n • 
'" '" '" "'p . r 

In Eq. (3.10) we have adopted the following special notation. When 

i = 1) 
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when i == 2, 

With these expressions, we obtain from (3.9) the expression 

- ~ Iij(~' p) + (-l)j ¢ Iij+l(~' £) + (_l)i ¢ Ii+lj(~' p) 
2 

'\"-

2." 
(ij IR I st) \t . ('3.12 ) 

s, t==l 

In the first term we have introduced the notation 

1 
L 

1 
I 

d 
ds 

2 
.en n 

r 

The second term describes the rotation of the polarization vectors as 

the radiation moves along a ray path. 

Scattering within the interval D s was omitted in obtaining 

EQ. (3.12). If we include this, we must add ~ to the right-hand side 

of (3.12). This gives the generalized form of the transport eQuation 

(1. 6): 

where '~is given by EQ. (1.7). If freQuency shift due to scattering 

must be taken into account, we obtain the generalized form of EQ. (1.21): 
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Let us write out in detail E'ls. (3.14) and (3.15). For either 

case, the form is 

~I 
ds 11 

d I 
ds22 

For many applications the Stokes parameter representation is 

more convenient than that of E'ls. (1.3). In this representation we 

write 

112 = ~ (13 - i 14) 

[The detailed form of ~ in this representation was given in II.] 
, 

E'luations (3.16), when expressed in terms of the Stokes parameters, 

become 



dI3 
ds 

== 

1 
L 

1 
L 

+ ¢ I 
3 

1 
L 14 + B4 · 
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+ 

+ 

A somewhat more "natural" choice than (1.3) for the illlit 

polarization vectors is illustrated in Fig. 4. At each point on a ray 

A 
path e2 lies in the osculating plane along the principal radius of 

curvature. Thus, 

A 

~ 
R 

P 

, 

where R is the principal radius of curvature. Then 
p 

and we obtain 

d~ 
A 

"'1 ~ 
ds == , 

Rt 

A A A 

d~ P ~l '" -- == - + ds R R
t p 

Here Rt is the radius of torsion of the ray path. 

l' \ 

,. , 
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If we define ~,Eq. (1.11), and 1, Eq. (3.6), with ~l and 

~ replacing the polarization vectors (1.3), the only change in the 

transport equation [Eqs. (3.14) or (3.15)] occurs in the rotation 

matrix R. After a simple calculation using Eqs; (3.21), we obtain 
'" 

dl
ij 

ds 
1 

- L Iij I i +lj 1.. 1] l.J+ 
+ B ..• 

l.J 

These have the same form as do Eqs. (3.16), but with ¢ replaced by 

-1 
R

t 
. 

The form (3.22) will not be used in this paper. 
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IV. DERIVATION OF THE TRANSPORT EQUATION 

We turn noW to the derivation of Eq. (3.14) from Maxwell f S 

e~uations12 (the corresponding derivation of Eq. (3.15) following the 

method used in III, is straightforward]. For this purpose we can use 

the development given in I with only superficial changes--mostly of 

notation. 13 To avoid repetition of the complete development in I we 

shall just indicate here these changes. 

As in I, we shall suppose the scattering system (plasma) to 

consist of N nonrelativistic electr.ons confined to a finite volume 

and having the probability distribution PN(~l' "'~N) described in 

Sec. I. This is illustrated in Fig. 1, where the source and detector 

are shown as being a large distance -from the plasma. [The extension 

to other scattering systems is evidently straightforward. It is only 

necessary to use the appropriate scattering amplitudes f .. 
l.J 

in 

Eqs~ (4.3), etc.] The multiple scattering representation for the 

electric field was given by Eqs. (13.1) and (I3.2)14 

::::EI(Z ) 
'" AIQ: 

+ 

N 
\--

'> L __ 
f3 Va )::::1 

) 
;' i. __ 

j::::l 

~af3'( j) F cif3 (j) . (4.1 ) 

Here ~(j) , j 1, 2, defined by Eqs. (1. 3 ) with . ~ parallel to 

z ~ and 
"'0: 

~(?S) (4.2 ) 

represents the incident radiation, taken to be a plane wave at the 

scatterer. The Faf3 are defined by the equations 
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+ 

(4.3 ) 

The notation of r has been used here, with 

0_0 
G0f3 = G C~-a' ~) , (4.4) 

as defined by Eq. (2.6), and 

(4.5 ) 

The quantity (-fO) is the classical electron radius divided by 

(1 - iv 1m). c 

If we expand Eqs. (4.1) and (4.3) in a sequence of scatterings 

and express the result in vector form, we have 

E(z ) Er(z ) + ~ [0 2 L Q0f3 
0 

G 
0 

= ! fO G + fO . 
'" '""CX '" '""CX L...._ '""CX<Y ""t3<Y 

<Y t3 

+ f 3 L GO • GO 0 ... \ . ~r (~<Y) , . G + 0 "0.131 "'131 t32 "'132 <Y 

J t31,t32 (4.6) 

. ··0 _ 0 
where ~== Q (~ ~) is the expression (2. 5b) and no two adjacent 

subscripts a, t3
1

, ••. above are equal. 

For a coherent sequence of scatterings we obtain (13.22.) in 

the form 
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G G 0 
+ fO LJ~o . Q(3CJ Pl (~) a3 = z(3 "'O:CJ "'O:CJ 

(3 

!, 

+ f 2 I (GO • G ' G 
0 . J ~ "'(31(32 "'(3 CJ _ 1 2 

(31' (32 (/(31) -

where g is the pair correlation function of E~. (1.8), etc. We 

emphasize that E~. (4.7) is just E~. (13.22) rewritten in vector 

notation. 

For I~ - ~ I :5 R ,we can rewrite E~s. (13.23) and (13.24) 
1-'1 -1-'2 c 

as 

G '" ~ exp [ i fir (~1''l) ~\ cr R ]}G 
"'(32 CJ ;q3 2(31 '''1\ CJ , (4.8 ) 

r~ 1 " exp~ h (~ )k R~ ~ )1f~ ~ '" 
A .~ , l G - R 

;q31(32 
QJ 

~1(32 ~1(32 J r 1 1 2 1 2 

(4.9) ," 

Here ~ CJ is the wave number vector at ~ . for a ray originating 
1 . 1 

at z This represents a generalization approximate to curved ray 'Va 

paths of the notation used in I. We observe that [see E~s. (2.13)J 

o . (4.10) 
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Use of Eqs. (4.8), (4.9) and (4.10) lets us rewrite (4.7) as the 

vector generalization of Eq. (13.25): 

G 
"-0:0 

where 

)' (z ) 
"" 

== 

o r 
G + 1 "'aa 

'J 

P(~)fO' + 
2 2 r 

p (~) fO ) 

x g(z; R) 
"" 

[~[1 + 

1 

d3R (q A)2 
] } • R 

l '" 

i n (z) k(R _ q-R) ]1 L _ 
r "" "" '" f II{ 

is just the expression (13.26b). 

, 2 2 
n (~) == 1 + (4rr/k) )'(~) 

We may therefore use the eikonal representation ,(2.33) for G 
"-0:0 

Equations (13.31) and (13.32) may now be rewritten as 
N 

== E (z ) + ~ A (j) Er'JA (j) , "'c "-0: 'eA ""+-' ' "'lh 
f3 ( ,==1 

E(z ) 
'" "-0: 

t 
£, j==l 

(4.11 ) 

(4.12 ) 

(4.13 ) 

(4.14) 

, 1 
~6) E~o (j)J -+ I 

(4.15 ) 
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In Eg,. (4.14) we have written ~ (j) - e,.. (jj a,f)), j = 1, 2, 
"'p ""p 

to 
:u:x w 

indicate the unit vectors (1.3) on the ray path joining ~f) and z . 'Va 

[When no confusion will result we shall use the abbreviated notation of 

Eg,s. (4.14) and (2.33).) In Eg,. (4.15) we now take 

( 4.16) 

etc. The coherent field E is just the g,uantity (3.2). It satisfies 
"'C 

Eg,. (3.3) with ~ as the incident field. At a point ~ the tangent 

vector to the ray path of E will be written as 
""c 

(4.17) 

Then, 

E (z, j) - ~p (j) . E (z) • 
c '" .- "'C '" ",c 

(4.18) 

Finally the Green's function (i , G0:f3 I p,) in Eg,s. (4.15) is defined 

by Eg,. (2.33). 

The transport eg,uation is now derived just as in I. To describe 

the coherent intensity we use the a-function [as in I) 5[p, p (z)) , 
"" ""'C ~ 

having the property 

J f (p) a[ 13, P (z)) d~ = f (Pc) , 
. - '" ""c "" p . _ 

( 4.19) 

'" 

where .f(~) is nonsingular at A A 

P = P • '" ",c 
Then, Eg,. (15.8) is written in 

the form 

( "p) I ~ '" ~ ic (:fa) 0[£, £c (:fa) 1 + c nr (~,,) J (:~) ds (~) lU'" ~). 
(4.20 ) 

.,. 



." 
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The first term here represents the intensity of the coherent field at 

~ From Eq. (2.14) we see that 

(J (z)) = 
c '" ij 

The integral in the second term in Eq. (4.20) is taken in the reverse 

direction along the ray path which passes through ~a with the local 

tangent ~. The notation of Eq. (2.43) has been used, with 6~ 

being the area at ~ of a flux tube of ray paths which pass through 

~ with tangent ~ and lie within the small solid angle 

The quantity Q(a, (3) is defined by [Eq. (15.14)] 

l!(a,~) " ~* ~ ~ { [c Dr(%W
1 ~(a(3, ~O) :l:c (%) 

+ Jd3
Z M(cxt3, (30') U«(3, a)} . 
a"'''' 

. . 
. . 

6 fl • a 

(4.21 ) 

Here ~ is defined by Eqs. (1.10), (1.11), and (1.12), and we have 

used the index pairs (0f3 ) and «(30' ) to indicate the direction of the 

unit vectors p and ~' at ~ in Eq. (1.10). The notation 

* ~ ® ~ is used to denote the open product (i 

From Eqs. (4.20) and (4.21) we obtain the transport equation 

[
n (z) ] J X . ~. d~ Mfp(x), pI) 1(x, p') . 
n __ \¥: ) . P' "" ~ '" "" ,...., "'" "" 

r '" '" . 

(4.22 ) 

Here p(x) is the tangent at ~ of the ray path passing through ~ 
",",,"'"' 

with local tangent A 

P • 
"" 
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Equation (4.22) can be simplified using Eqs. (2.33), (2.39), 

and (2.41). Since 

2 
A (z, x) 

'" '" 

n (z) 
r '" 

n (x) , 
r '" 

we obtain 

z 

( "'p) I z, 
'" '" 

'" I (z) 
"'c '" 

5[r, ~c ('") 1 + f -dS (if) r exp( _flo 
. x 

'" 

Both path integrals here. are taken over the ray passing through ~. with 

local tangent '" p • 
'" 

The quantities P here are matrices with elements 
'" 

( 4.24) 

- ... 

where ~. is the quantity (2.31). 

To further simplify Eq. (4.23) let us define the matrix 

(4.25 ) 

This has matrix element's, for i, j, s,t = 'i, ~; 

.. , 

(ij I V(~ ~) 1st) e".. (s) ] 
"'p 
~ 

... .... 

(4.26) 

.1. 

, ,. 
~ , 



.. 
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Use of Eqs. (3.10) and (3.11) lets us obtain 

d (ij Iv(z, x) 1st) 
ds '" '" 

(_l)i ¢(i + Ij Ivl stY + (-l)j ¢(ij + 1 Ivl st), 

(4.27a) 

This is equivalent to 

d - R(z) V(z, x), 
"'" '" "'" I"V ......, 

v(z, x) 
ds '" '" '" 

where R is the matrix introduced in Eq. (3.12). 
'" 

Finally, then, we rewrite (4.23) as 

( ..... p) I z, 
'" '" 

AI) P . 
'" 

(4.27b ) 

(4.28 ) 

The coherent intensity in Eq. (4.23) has here been abbreviated by writing 

(4.29) 

More generally, when there are several sources or incoherent sources, 

we may interpret I in Eq. (4.28) as the intensity of unscattered 
"'e 

radiation. 
-"':'. 

Equation (4.23) represents the integral form of Eq. (3.14). 

Indeed, on differentiating (4.28) along the ray path with tangent 

p , we obtain the differential form (3.14) .. [Comparison of Eqs. (3.9) 
'" 
and (4.28) makes this obvious.] 
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V. DISCUSSION OF THE COHERENT INTENSITY 

Let us first suppose that scattering can be neglected so that 

B= 0 in Eq. (3.14). In this case we have only the coherent intensity 
'" 
I of Eq. (4.28). This satisfies the differential equation 
"'c 

d 
ds + ( -L

l 
+ B ) I (z, ~) 

""C "'" ,...." 
o . 

We consider the case of a single coherent source, so through any point 

~ there passes only one ray path [with the exception of possible singular 

points]. 

In terms of the Stokes parameters [see Eq. (3.17)] 

I - 11 + 12 

Q - 11 - -12" 

U 13 

V = 14 ' (5.21 

Eq.. (5.1) becomes [in the remainder of this section we drop the subscript 

n II 
C from I ] 

"'c 

cIT 1 I o J - + = ds L 

dV + 1 V o , 
ds L 

d)i 1 - + Ijr + .£ 1jr 0 . 
ds L "" 

Here we have written 

_,i 

.• 



• 
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C 
\ 

\ 
\ 
\ 
I 
I' 
I 

r - 2i ¢ rJ 
'" Y 

/ \ 
! 0 1 \ 

\ 
¢ 

i \ - .2 I ! . 
\ 0 j \-1 ,. 

If ~ and ~1 are two points on a given ray path, we may 

integrate Eq. (5.3): 

In the second writing here we have introduced T(2, 1) for the function 

which translates I at ~1 to the point ~2' 

From Eq. (5.4) we evidently obtain 

To integrate Eq. (5.5) we first define 

/(2, 1) ~ 2 1 '!:Q ¢ ds . 
. z 

"'1 

Then the integrated form of (5.5) is 

T(2, 1) [cos /(2:,1) U(~lJ ~1) .; sin §(2,1) Q(.el' ~1)] 

(5.11 ) 



The above results let us write the solution to Eq •. (5.1) in 

the form 

I (?o.n' P2) 
~c .-c.. """" 

- T(2, 1) is defined' by Eq. (5.8) and V by Eq. (4.27). 
'" 

Here T(~2' ~l) 

From Eq. (5.11) we can extract the mattix elements of V. These are 
. '" 

givein in Table I for the I, Q, u, V representation and in Table II 

for the 11, . 12, 13' 14 representation. 

The energy flux vector at a point ~l is 

J I (zl' p)d~ .,....,,'" """" 1: 

Referring to Fig. 5, we construct a tub= of ray paths passing through 

~l with solid angle 5 Ql' The tube has a cross section of area 

5 1:0 at some fixed reference point ~O. Differentiation of Jln 
'" r 

along the ray path then leads to the eq'Ua:tion' 

,... 

d I ,[(1) ] d J Cljnr ) dQl d~ L nr (1) 
= . ds 

J (l/nr )( ~ r d d1:0 • = ds 

Now, according to Eg. (2.43 ), 

CLo) 2 n (0) 
AOl 

r 
.. dQl 

= n (1) r 

2 n (0) 
r 

== A10 n (1) 
r 

I 
I 
I 

-I 
I , 
; 

t ! 
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Substitution of this into (S.14) and useef Eqs. (5.3) and (2.26) leads 

to the differential equation 

\ / if 
\, 

\ 

J(z) S 
\ / J ~ (il \ d ...., ...., 11 r \ (rv '.' 

j \ n- , R ! 

illZ) == - 1- + i n-i ds i.e n ...., 
r ...., I 

, r / \ r) . r I , \ , \ .. 

(5.16) 

The scalar flux 

is seen from (S.16) to satisfy the equation 

~s (:;) - [ !. .e (S .18) 

This agrees with Eq. (37), p. 116, of Born and Wolf. 7,lS 

A slightly different version of the above discussion can be 

given as follows. We first integrate both sides of Eq. (S.8) over the 

A 
solid angles of El' There results 

~ I(~, ~2) dQ1 ~ T(2, 1) J(l) . 

Now, 

From Eq. (2.26) we obtain 

r (~2 
exPj I 

L .1z 
"'1 

ifs 
n 

r 

r 

(S .19 ) 

(S .20) 



Substitution into Eq. (5.19) leads to 

J(2 ) [n (2)/n (1)] 
r r == 

in agreement with the similar result of Ref. 7 and an obvious integral 

of Eq. ( 5 . 18 ) . 

The result (5.21) permits us to integrate the set of Eqs. (5.16) 

in the form 

Here J(~) is specified by Eq. (5.21), Y by Eq. (4.27), and ~ is a 

constant column matrix specifying the polarization at ~l: 

Since J(z) is the total flux, we must have 
",. 

1 

in Eq. (5.23). 

..~ , 
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VI. RADAR BACKSCATTER IN THE DWBA 

In this Section we discuss radar backscatter in the distorted 

wave Born approximation (DWBA). This is illustrated in Fig. 6 where 

the transmitting and receiving antenna is located a point l very far 

from a plasma scatterer. In the DWBA only a single scattering is assumed 

to occur. This means that the flux of energy may be obtained from ECl. 

(4.22) as Iassuming no coherent backscatter] 

n (y) r 
x) r (') J d~,' '" n x p 

r '" '" 

Since 

this may be re-written in the form 

== ,d3X' exp I - ,'" J" r fY 
, L. x 

'" 

Nos, from ECls. (1.10) and (loll) we see that 

where 

(ij I (? 1st) 

== a (-1) 
g 

M k ( ) A ')1 ( At) 
,-v \!: ~ , ~ ; ""'c ~,~ ., 

(6.1 ) 

(6.2 ) 

(6.3 ) 

(6.4) 
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in the representation of E~. (1.11). 

We shall assume the incident radiation to be a plane electromagnetic 

wave.. The ~uantity .!lc (?,S) has, according to E~. (5.22), the form 

J (x) 
·"'c '" 

A 

where J 
'" 

has the form (5.23) and specifies the polarization of the 

incident radiation. As the point ?,S moves outside the plasma along an 

incident ray path, J (x) assumes the constant value J (y) 
c'" c~ 

Since 7l n (y) = l. 
r '" 

y 
'" 

lies outside the plasma, When x and 
'" 

are both outside the plasma 

Thus, 

- -x ~- «- -y- -,-

as ?,S moves outside the plasma along an incident ray path. Therefore, 

we may write 

J c (;r) A2 (", ,{)i exp [ - f ds/t J 
J (x) 

c '" 
n (x) . 

r '" 

(6.6) 

That is, the ~uantity on the left satisfies the differential e~uation 

(5.18) and the appropriate boundary condition on an incident ray path. 

The above results let us write E~. (6.2) in the form 

( -2) r- 3 
y J d x 

(6.7) 

,-
It , 

~. 

!-, 
j., 

t', 
f-

t, 
~. 
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In the usual Born approximation ':l = 1 , the unit matrix, 

ri (x) = 1, and J (x) = J (y). Thus, iri the Born approximation 
r""' C'" c", 

r 
~(l) " [Jc(l')(j?Vi]) d3xag (-1). {6.8) 

.,. 
To further simplify Eq. (6.7) let us use the I, Q, u, V 

representation of Eq. (5.2). In this representation 

" \. I I \ 
/ Q \ 

( -u) 
\ -V 

With the grouping of terms implied by Eqs. (5.3),(5.4) and (5.5), we 

may write 

/) 
(1 = C1 ® C1 

"'Z "'Z 

R = 2i ¢ 1 eg. C1 (6.10) 
'" '" I",y, 

where 

G 0) C1 = 
"'Z -1 . 

.-

Also, 

l!(2,1) ". exp [-i.0(2,1) .t ® fly ] , .. (6.11) 

where ff is defined by Eq. ,(5.10). We see that (£2 1 ® 1 and 

-R • 
'" 



-42-

Thus, 

(6.12) 

and we may re-write E'l' (6.7) as 

:rC;:) ~ (!i'yY2) J a.3x "g(-l) J c
2

(!i)[nr
2

(!i) Jo(l)l-l . (6.13 ) 

The lack of cross-polarization on backscatter characteristic of 

the Born approximation is therefore also found in the DWBA. We emphasize, 

of course, that we have shown this only in the eikonal form of the DWBA 

and also when the approximation (1.9) is valid for the pair correlation 

fllilction. 

• 

'. 
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VII. THE DIFFUSION APPROXIMATION 

When the cross section () . (p . pI). is sufficiently strongly 
g '" "" 

peaked in the forward direction the scattering function ~ can be 

simplified by making the diffusion approximation. The appropriate form 

was derived in II. We <luote this here. 

Using the representation (3.17) and polar coordinates for p 
'V 

[that is, writing r == r (~, 8, ,0) Jwith 2 as polar axis, we have 

Here 

1 r . 
(1 A p' ) () (p E') ()t == 3) d1' 

- p . . , 
"" '" g "" 

and P is the matrix with elements 
. '" 

P31 == -P32 == 2 cos e , 

all others vanishing. 
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TABLE I 

Matrix elements of Y(~2' ~l) in I, Q, U, V representation. Here 

I == §(1,2). in the notation of E'l. (5.10). 
0'. 

~) 

1(1) Q(l) U(l) V(l) 

1(2 ) 1 0 0 0 

Q(2 ) 0 cos§ sin .ff 0 

U(2 ) 0 - sin ff cos .i 0 

V(2 ) 0 0 0 1 

.. 

'~'. 
~"':'~"'.:: 
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TABLE II' 

Matrix elements of ~(~, ~1) in 11, 12, 13' 14 representation. Here 

i .~ }"(1,2) in the notation of EC!. (5.10). 

II (1) 

1 
11 (2) (1 + cos I) 2 

12 (2) 
1 (1 - cos §) 2 

13 (2) sin.! 

14 (2) , 0 

1
2

(1) 

~ (1 - cos J) 

1 
2 (1 + cos j) 

',' . 
".' 

sin.! 

0 

13 (1) 14 (1) 

". 

1 . § 2'sw 0 

1 I - - sin 2 - 0 

cos}' 0 

0 1 
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FIGURE CAPrIONS 

Fig. 1. Illustration of the conditions for scattering considered in this 

paper. 

Fig. 2. A narrow tube of ray paths all passing through the point ~O' 

Fig. 3. The intensity at ~O results from sources at points ~~ in 

the flux tube. 

Fig. 4. Illustration of the unit vectors introduced ,in Eqs. (3.19) and 

(3.20). 

Fig. 5. Illustration of the flux tube on which Eq. (5.14) describes the 

intensity. 

Fig. 6. Backscatter, using the same antenna for transmitting and 

receiving. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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