Submitted to J. of Mathematical Physics UCRL.-19466
Preprint
| - C. 2
CEIVED

Lo RERCE

RADIATION LABOR
waR 11 1970

ATORY

Chau-Wa Lau and Kenneth M. Watson

‘ January 8, 1970

AEC Contract No. W-7405-eng-48
4 )
TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which niay be borrowed for two weeks. . @
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

s
n(-.uit@xn T

LA
- -

LAWRENCE RADIATION LABORATORYAS!

\ UNIVERSITY of CALTFORNIA BERKELEY %

oN
DA



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any Specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommeridation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Govemment or any agency thereof or the Regents of the
University of California.




.

<

UCRL-19466

. v .
RADTIATTION TRANSPORT ALONG. CURVED RAY‘PATHS
-Chau-Wa ILau and Kehneth M. Watson

| : oo . .

'Départment_of Physics andeawrence'Radiétion Laboratory
- University of California, Berkeley, California

January 8,.1970

APSTRACT

The trahsport'of radiétion in a turbuiépt, refracfing -
medium is studied. It is shown that tﬁevconVentional trans-
pbrt equation must be generalized. Path integrals are taken
élong curved ray trajectories. When these ray paths.have
torsipn a rotétion of,ﬁhe polarization vectors needs to be
taken into account. Two derivations of the transgért
equétion are given. One is phenomenological and one is
based on MaXWell's:equations. Somé discussion is given .of

cross polarization of radar backscatter.
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I. INTRODUCTION
1,2,3

Earlier papers in this.series have presented a derivation

from Maxwell's equations of the radiation transport equation for scattering

v . _ "
by a turbulent medium. »2 A transport equation of conventional form was

~derived making two kinds of approximationé. The first of these amounted

to treatiﬁg the scattering from a single "turbulenﬁ'eddy,” or a single
correlated cluster of scatterers; in the distorted wave Bofn approximatioﬁ
(DWBA). The seéond.approximation made was the assumption that céherént
propagation in ﬁhe refracting medium could ﬁe treated in the eikonal
approximation and, furthermore, that the ray paths of the eikonal
approximation could‘be replaced by straight lines.

It was observed in I that the restriction ﬁo straight line ray
paths is quite uhnecéssary fof deriving the transport eqpafion. In the
present paper wevshall drop the restriction to straight ray paths. The
resulting transpdrt equation differs from the conventional one in the
appearance of a roﬁation bpérator aéting on the poiarization indices and
depending on ﬁhe radius of tofsion of the ray paths.

To make our discussion definite, let us consider the physical
situation studied in I and illustrated in Fig. 1. The‘scattering med ium
is.- of finite extént and surrounded by empﬁy space. The source of the’-
radiation is at a great distance from the scatterer. Thus the incident
radiation_aﬁ the scatterer can bevconsidered to be a plane wave, with
wave number vector (say) k. The detector is also at some distance from
the scaﬁtefer. Evidently, this ﬁarticular choice of boundary conditions‘
is incidental for the derivatiﬁn of the transpért equation.

In T the scatterer was assumed to be a plasma. This is evidéntly 

{
N

easily generalized to other scattering systems by replacing the Thomson

=
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scattering amplitudes by those appropriate for the sYstem of interest.
The eikonal approximation, although not required for the formal

derivation of a transport éqﬁation, seems neceséafy to obtain  the

conventional form with its usual geometrical interpretation. In Sec. II

=

some required propertieg of the eikonal approximétion will be reviewgd.

A phenomenqlogical.derivation of the transport eQuation, generalized for

curved ray paths, is given iﬁ Sec., ITI. In Sec. IV the same equatién is

_derived ffom Maxwell's equations. [The corresponding quantum form can’

be obtainéd,'as was done in Ref. 4).] Severél applicétions, including

a discussion of cross polarization for radar backscatter, are given in

the final sections. | | - | s

| Befbre coﬁsidering the generalized transport équation let us

_review‘brief1y4the conventional form of’this and thé'derivation giveh in

T and ITT. in the classical ‘theory the quantity - |

I(x, B ) A%y do (1.1)

represents the flow of radiant energy per uﬁit areé, per unit time,
having angular_ffequency ® within da%,énd propagating parallel to

% within the element of solid anglé ase, . 1When_the shift in fréquency
dué to SCatteringAmay be neglected w a%pea:s as.just a parameter in
the transport equation. If in addition the b.andwidth of the radiation
is sufficiéntiy nérfow that frequénéyadispersion in the scatﬁering may .

be neglected, the transport equation may be expreséed in terms of the v Vf

quantity

]

I(x p) I(x, D, w)dw . - - (1.2) |
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It is for this case that the derivation in I was given. The equation
fbr I(x, ﬁ; ®), including frequency shift, was obtained in III.

To describe polarization it is necessary.to generalize (1.1).

'As described .above, we suppose that an incident plane wave with wave

number veetor k illuminates the scattering médium. At a ﬁoinﬁ along

. : ~
a ray path we suppose the tangent vector is p . Two more unit vectors

~

are then défined as

8.() = c®Dxk,

P ~

8~ (1) = 8(2)x D . (1.3)
2 b ~ '

For curved ray paths we take % as the 1océl tangent in Egs. (1.5);
The electric field vector for a wavelet propagating alohg the "

given ray path is therefore of the form

~

5 =-"E§<1>‘s/\<1> " Ee) @), O aw

and the generélized intensity is [here (i,j) = 1,2]

Iij(g, @, w)  = const [Eg*(i)gg(j)] . . - (1.5)

The "const” here is chosen so that

I o= I, o+ Iy,

2

{The constant will be given an explicit form in Eq. (3.6) bélow;]

" The radiation fransport equation obtained in I was of conventional

form: : ' ' - e

[N



d + 4, o 1 Ay L Ay
where
Bij(g, B) = Y (13 !Mf st) I, (x, B") . (1.72)

s,t 1

Here the derivative in (1.6a) is taken along the straight line parallel
to % 5 ﬁ_l(g)_ is the absorption coefficient, and (ij [ M(5,2') | st)
1ls the scattering function. In more compact matrix notation we write

Egs. (1.6a) and (1.7a) in the form

a .
ds ,I_,(?SJ ,ﬁ) + n I(,}S; ,I\)) = ,@(%) ?‘) PR (l*6b)
Blz, D) = %, M(5,5') I ') - (.T)

Equations (1.6) and (1. 7) are appllcable when the frequency change with

scatterlng may be neglected.

The case specifically considered in I was scattering by a plasma

containing N electrons with coordinates *.Z

&1 2 "Ry

. - The probability
distribution for these coordinates was written as Pﬁ(gl,-"gN),'

normalized so that

R 5, -
By &7z ---d7zy = 1,

A set of distributions Ei(él)’ Pb(gl, 52), may

'PN-l(%lf"'%N-l)

evidently be obtained from P by integration, and 'Pé, P ... were

N 5

developed in terms of two-particle, three-particle,-++correlation

functions. In particular, Pé was written.as

©



Bz, %) = Rl) B+ ey, ). (1.8

We shall here éSsume, as was done in I,;that the pair correlation function

g has the épproximate form

elzpozy) oz oelgy oz -zl) . N

This assumption is not'necessary for the derivation of the trahsporﬁ
equation, but does simplify the equatiofis by leading to a scalar,
isotropic refractive index.

The quantity M was then obtaized in I in the form

M3 B') = cg(@-%’)%, o _' o - (1.10)
Whére | | _ v
(W Im lae) = (30 - B NEGIB @1 G
and . . ”
0,88 = o°(x) o(3-3") f &R g(g; R)exp{in (x)k(B' - )R}
' ' (1.12)
: ﬁere _
) = WG @)

isbthe electron density and ¢ is the aﬁpropriate cross ‘section for

Thomson scattefing:
33 - _1_«0/(1 e v 2y, PR ()

where Ty 'is the classical electron radius and Vé.‘is the electron

FERN N
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collision'fréquency."[Evidently the theory may be adapted to other
elementary scattereérs.] Finally, nr(§) is' the real part of the

refractivé index given in first approximation by [see Eq. (4.13)]
T

n ~ 1 - UJQ/(QF + v 2) , L _ (1.15)
b e _—
with a&- the electron pldsma frequency. -
The absorption coefficient has the form
11 _ - - |
7 = 7T * = 2kn | , (1.16)

where n, is,ﬂhe imaginary part of the refractive index;

f A%, (15 M(B '13’)‘.[ ss) =v6 {E /I | AA 2]
) 3 SER K L3
- |

~

lH

i

6ij R
and

v%ZV'= {aig/(a? . VCE) | (Vc/c) :‘ : o (l.lB)
(¢ is thé'speedvof light).

As an alternative to Eq. (1.12) we may suppose the mediuﬁ'to‘be
characterizéd by a dielecﬁric cmstant, depénding on certain random
Variables,'gnd atvtime 't and point r to have the vélue 6(5, t).

This mayvbe'Written_in terms of its'fluctuationsr & € aé N

€ = 5 e +(e),. | (1.19)

where "(++-)" represents an average over -the random variables.
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In this case Eq. (1.12) may be re-written in the form

) o = 7)) [ AR ely 0) 0 el 4R 0))
. - x exp {in (x) k(B -8Ry . ~ (1.20)

. The tfansport equation for the case that frequency shift must:

‘bevconsideréd was obtained in ITI. This has the form

a1l B o) + 7 Ix B @) = Blx, o) (1.21)

where now

® - . ,
Mo b o - | e @pus - Ko g @)
0 ) (1.22)
and _
g(g,:g'; 2) = c‘g(’g-g', Qm . B L (L)

For the case correSponding to Eq. (1.12) we have

. Aoy 2 A~ iflT .
o (B350 = e (x) 0(33) f d"rf &’R g(g; R,7) e
- | o S

X expiin (k@ - B)R) .

N o Here g(z; R, T) is the time dependent pair correlation function for a
stationary random process. Alternatively for the case corresponding to

' Eq. (1.20) we have



k2 2 i,f 5 B
(5.5 Q — - } . » .
cg(g P ) (H;) dT !_ a°’R (& 6(5,t) & é(é + R, b+ 7))
o J
x e%QT exp (1 nr(§) k(ﬁr'_ %),5 L (1'25)

where k‘=.a/c'.

.The approximations required tovdefive the. transport equation from
the wave_équationvare given in detail in.refereﬁces T and III. Wé
briefly‘réview these hére:

1. _ﬂt >> .Rc" wheré Rc is the correlation range, or the
chafacteristic distance over which correlations contribute to Og;' As
>noted inlII; for plasmas this condition can dften‘bé replaéed-by thg

condition
§<a>p/w) << 1,

where _§' is fhé relative mean square fluctustion in electrén depsity.

‘2.' ni §< hr' This aséumption is interpréfed as perﬁittiﬁg us to
‘neglégtl n; in Egs. (1.12), (1.20), (1.23), and (l;EH),‘where only n,
was kept in the exponentials. That is,.we assumed that (RC/E) << 1
.vin theée'equations (this is qonvenient, but not of course essential to
our discussion). Assumption (2) will be used also in the next section
[see Eq. (2.17), forvexample]i In addition to the above condition; we
shall require that ,V nil be small, a restriction made @ore precise in
Eq. (2.29).

5. The eikonal approximation may be used to describe coherent wavé

propagatioh. We express the condition for validity of this approximation .

€

&

rol



in the form
2

Wn| << kxn-°.
r _ T
ﬁ. :Thé bending of eikonal ray paths‘méy.be négleéted and these ma&
be considered to be straight lines. |
5. kﬂv“>? .l; which we interpret as meaning that suécessive
scatterings occur in the wave zone. This assumption is'neéessary if
we are tovuSe.the éikonal approximation to describe wave propégation
between scatterings. |

The purpose of this-papef is to obtain the ﬁransport équatibn

. . without making assumption (L4).
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IT. THE EIKONAL APPROXIMATION

.-fInvthis Section we review several aspects of the eikonal

approximatibn which will be needed for obtaining-ﬁhe transport equation. "

We shall follow the treatment of Borﬁ and Wolf,7 genérélizing this to

I

obtain the Green's function and to include a complex refractive index.
For an electromagnetic wave of frequency = ke propagating
in a medium of finite extent and having a refractive index n(r), the

Maxwell equation for the electric field E(g) is

(¥ n° r) - Vx Vx]E({E) = 0. | (2.1)
Let us‘suppbse_that in the absence of the'refractivevmedium the field
is Eo(g), where

v-[kgl - Vx Vx] E(x) = 0. (2_'._'2'):--

vAs illustrated in Fig. 1, we suppose the. source of . EO to lie far
outside the refractive medium.
‘The fiéld £ may be expressed in terms of EO and the dyadic

‘Green's function G (r, x) for infinite space:

3

BE) = BE | @x Pn) . B
X f(_ke/un)[n?(%) -11). | (‘2.3)" | i
Here go'.satisfies the équétion | | .
- vx v, 0% x) = -l o 8 - %), (2.4)

vhere ) is the unit dyadic. That is,



Ly

.11

P ) =9 +xPv v 1R -9 e/ (36 8(R)
| (2.5a)
with R = 'r - x For. kR >> 1 -we have
%Q(Er x) T [d - BR) GO(;;;%)-,. ' ~ (2.5b)
where
¢ (x %) = g - (2.6)

Finally, we desire the dyadic Green's function G(r, x) for
the refracting medium. This satisfies the equation

1€ () - vx vxlgly x) = W a(g -g). (2.7

~

Let us now write the electric and magnetic field vectors in the

" respective forms

L

iks(x)
E(r) = elr) e s
| ikS(x) -
Hix) = nlg) e , , - | (2.8)

where the eikonal S is expressed in terms of its real and imaginary

9

parts as
S = 5. + i8, . | o (2.9)

Since G- and E satisfy the same differential equation, except for

boundary conditions, we may write

G(r, x) = e, %) exp ij;s(s, X)) . | (2.10)

L .



Now we conéider g to be a dyadic satisfying the same differential
equation [Eq. (2.12)] as the vector g .

Substitution of (2.8) into Maxwell's equations give the two
' differential'eqpations of the eikonal approximation for S and g

[we are using the notation of Born and Wolf]

v s)P = &, | - (2.11)

[-(v2 é) + (V S)(V fn n2) + 2(Vs)Vvle = o.
g . o , (e.12)

In addition, we have

h = (VS)XSJ

98 e - 0
@ g) - ho=o0 - o -(2.5)_

in the first order.

The time-averaged Pbynting vector is [following Ref. 7, we-are :

using unrationalized Gaussian units)

c | * -kai
4 = B { Rele x 2 ] Je
= = (Vs.) ere e-giksi ' (2.14)
= 8‘3_{"' ! R'% . .

" The real and imaginary parts of Eq. (2.11) lead to the two real

equations
(% Sr)2 - (v Si)2 = n° - n°, (2.15)

(Vs - si)_ = 'nl;v-n‘..v o | (2.16)
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. ) o) ,
Because of our assumptions that n, R G n,owe look for a solution

to these of the form

Vs T n | _ (2.17)

(o

' \2 2
with (Vs ) < @8 ) .
i r .
" Following the discussion of Ref. 7, we write the equation of a
given ray péth as ¢ =71(s), where s 1is the path length measured from

some reference point on the ray. We let

4epd

@ =& | | (2-28)
be the tangent vector to.the given ray path at the point r and’ write
Vs = Pn_ . ' - (2.19)

: Equationsi(é.lS) and (2.19) permit us to "solve" (2.17) in the form'

ap . :

Eg = VY, in n,o, . o (2.20)
s,(x) = ﬁr ds , - - (2.21)
' P

v =V - BpV. (2.22)

Equation (2.20) determines a given ray path and (2.21) permits us to
construct Sr » The integral being taken along the ray path passing
through r.

Equation (2.16) may now be re-written in the form

g.v S, = my . ' ~ - (2.23)




~1h-

This may be integrated to give

5., = n. ds -+ & S. ,
i i i v
“P.
where & S, 1is subject to the condition : : «
R v
7 - 0.
p B Si 0

Thus, Si‘ is constantAalong each ray path. The boundary condition

E beCOmes equal to EO if we foilow a ray path backﬁards outside the
'medium tells us theq that & Si =tO. For the Green's function the
bOuhdary condition at r ¥ x , implied by Eq. (2.7), also then specifies

that_ e} Si = 0. We'therefore have

S. = ‘n, ds . _ (2.2&)
i _ i ' . v
' Y
We now turn to Eq. (2.12) for e . Let us write ¢ in the

form

€ = Ae €, - (2.25)
where . A is the magnitude of '% B %I is a unit'vector,.andrv o 1is a
Pphase.

o The’discuésibn,given iﬁ Born and'Wolf7 permits us to obtain

directly the eguation : | v .

# s, :
= -{ = A . | (2.26)
r

dA
ds

For o and % we obtain the equations

" g o
o 5 ' - |
ds 2nr (2.27)




W

Lo
N
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and

& 65

- -3 @mn) -8 . | ~ (2.28)

To check the consistency with Egs. (2.13), we use Egs. (2:20) and (2.28)

to obtain

A N » ’ T )
(6p) = €+Y #an_ - €-Vinn.
~. ~ . T ~

919
16)]
x>

This VaniShes if we can consider the contribution from ny in Eq. (2.28)

to be negligible. This will be the case if

' Y ni! ‘ o ‘ .
—ds <« 1 ' (2.29).
: R T . . .
b

everywhere along a given path. We shall assume that the condition (2.29)

is satisfied and that we can write (2.29) intthe approximatevform

e - R .
= = -D (V tn nr)' e . . - (2.30)

The same approximation lets us set o = O in Eq. (2.25).
If 'r and X ére two points.along a ray path; we mayvihﬁegfate

(2.30) to_gi&e

; 8(v, #nn)asp ,  (2.31)

using a somewhat terse notation.
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We areparticulariy‘interested'in the eikonal représentationj
for the Green's function _g(g, 5) . To simplify thebappearance of some
of our equations we shall use interchangeably two.notations for Gy, A, 4

7. 5 We write .

etc. For a set of coordinates 215 Zp ez

Gp = Yoy z)s - e

with o # 8 =1, 2,---N. The unit tangent vectors P = D(x) in Egs.

‘(1.5) satisfy Eq. (2.20). These will be written as 25. = @(ga), ete.
- The eikonal is written as o
Z
~B
%%3 = - on ds“
Roy.
In matrix notation we use the representation (1.3) to write,

for 1i,J = 1,2,

G |

Cep | i) = "sga(s) . gaa - gga(l)
Coa g e(iks ) B () By, - G (1), o
e () B () kg By (0,
| (2.33)
using Eqs;'(2.25) and (2.31). We emphasize that SOB and Aaﬁ here

are determined by Egs. (2.21), (2)2&), and (2.26). We may aléo write

|

Glo, 11) = 6 8 (3) B - 8a (1), (2.34) ol

l o B ~p, ~0B B ? i

where | i
Cop = G(z ., zﬁ) = Ap exp(ikSaB) . - (2.35)



&
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The expression (2.35) represents the eikonal approximation to the
scalargequation

-

'V[VZQ + ng(g)].G(g, x) = = lx 6(%.- 5); (2.36)

The observation that Eq. (2.26) does not depend on hi lets us’

_introduce the Green's fuhction, expressed in the.eikonal approximation,

s x)] . (2;57)»

Gz x) = Alg, x) explik S (r,
This is the eikonal approximation to the_solution of

V2 + ¥ 0”18 x) = - bnolz - ). (2.38)

Tt is known © that

G, x) = 8, ), k - (2.39)
from whichfwe obtain theJimportant symmetry relation

AOBV = Ay | : : (2.%0)

: Let us now choose three points Zy 2y and Z, all on a given
ray path. We cohstruct a flux tube of ray paths all passing through 20

and enclosing the original path on which 2 and - 52 -lie. We §pppose.

the solid angle © Q. formed by the tube at Zo

0 to be very small:, The

: respeétive cross sectional areas of the flux tube at z and 2 are

1 ~2

6'21‘ and © ZQ . This geometry is illustrated in Fig. 2.

. We assume for the moment that n, = 0. Then we can represent

the Green's function G- by G, Egs. (2.57).and (2.38). The,condiﬁion
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that energy is conserved [i.e., . ni'= 0] in the flux tube [see Eq. (2.14)]

leads uS'fQ-the relation

" 2 2. ; '
5 I, AQO  nr(2) = 5% A nr(l) . (2.41)
Here we have written nr(l) = vnr(%l)’ etc. If we choose z, to lie
sufficiehtly close to %O s We have .
S -1
Ao 7 Byo
and
) - R.°5Q
210 7 By 88
Wwhere
’BCXBv = '%a - '%B . . '(2.}4-2)
Thus, we obtain from (2.41) the result
: - 1/2
. . -1 1
A0 (22 . |
=l : ‘ ;
20 n_(2) \?QO |
. -’ » 0‘- . A- v
for twoigrblﬁrary.pplnts Zq and %ﬁ we ha;e
' . ' ' 11/2
A/ n )\ for \7H |
JNUREIE | G R 1 . L (2.43)
o \nr(ot)/ =Y :
, N

i)

Since Eq. (2.26) does ndt involve ni,'we can chsidér Eq. (éjh5) to be‘
valid evén when ni % 0 [but of course subject to the>conditions imposed
on itl].

| Equations (2.34), (2.35), (2.43), etc. provide the eikonal
representation of fhe Green‘s>function whiéhvwill be required for our

‘applications.

%
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iII. HEURISTIC DERIVATION OF THE TRANSPCRT EQUATION

Inithié Section we shall give a phenomenologiCal>derivation of
the transport equation for the case that curyaturé of -the ray paths must
be taken:info account. ansiStent with our aésumption [see Eq. (1.9)]
that mean bfoperties of the medium do nét change significantly o&er a
correlation distance Rc, we shall assume that the scattering strength
B in Eq. (1.6) and the scattering function M are not modified.

Tet us assumé that the dieléctfic properties of the scatterer

are-described by the dielectric constant € [see Eq. (1.19)] which

depends on certain random parameters. The electric field E , which.

depends parametrically on these same parameters, satisfies the equation

¥ e - W WIE = 0. | (3.1)

Remembering that "(+-+)" is considered to represent an average over

these random variables, we introduce the coherent field at x as

CEBE(x) = (E® ). - (3.2)

The coherent field satisfies the wave equation (2.1); that is, as was
shown_in'I,ll

[ n° - w g, = 0. (3.3)

The field E may be written as .
i Z N | G

where the sum runs over scattering from different fluctuations in €
and includes Ec . We supposé that these terms are so chosen that the

different E, are mutually incoherent. Thus,

A



o0

K; Y = 0 " for | %r#'*' - (3.5)

An expression is required for the radiation intensity Iij(%’ o)
[Eq. (1.5); we do not write explicitly the frequency dependence herel.
Referring to Fig. 3, we consider a flux tube of ray paths all Passing

through a-given point zo within a small solid angle © QO. The electric

field at Z, aSSOCiated»with these ray paths will be of the form (3.4).
The index XN 1is assumed to refer to a scatterer at the point Z\
contained within the volume of .the flux tube. At the point 2z, the

area of the flux tube is 5'Zx.

If we write each E, in (3.4) in the eikonal form (2.8) and

A
use Egs. (2.14) anda (3.5), we see that

ijw~

.I--(Zb:»go)"= é%’(nr(o)/é 90)<f‘j£:vexpt-2k Si(%o, %X)]QA (i)fgx*
_ , SN ) 4 .

A L\ .
X €% (3)) - (3.6)
o ~O
The unit vectors here are defined by Egs. (1.3) with ﬁb = P(z.) .

 Using Eq. (2.143), we have

'/dZ?\‘ "l
- |
59, = \g | 8%
N o/
o n.(M)
SN ) %
, » n(\)

= Ay TTOY 5z, . - '(33‘(‘)'

To obtain the final form here, we have used Eq. (2.40). Equation (2.25),

with o = 0, lets us write

&
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~ 1) '
g = Ao 820 s - G8)
where s, is the source intensity at z, - Finally, (B.T)vand (3.8)

let us rewrite (3.6), replacing z., by a general point z, as

0
. . 5 . - .
AN . N ~ RV SN . ~
;{2 B) = n(g) expl -2k 5;(z) 1 /G S, &G /

(5.9)

where the Cx are independent of  5 .
To dﬂtain the transport equation we consider the change in I

if we displace the point 2z by a small distance - s: along the ray

path. Firét;'let us assume that in the interval 8 s then is no energy

added by séattering frqm'other ray paths. [This will later be accounted

forlby including the scattering strength B .] Use of FEgs. (1.16) and

(2.2k4) gives:
. o
= (v2k-Si) = 1/2 .

From Egs. (2.20), (2.38), and (1.3) we obtain

LSBWY - (W REDE (5.10)
where .
¢_ = (@'E/I% X'E[) %?(2)‘? £n nr . . - (3.11)

In Eq. (3.10) we have adopted the following special notation. When

i=1,

]

§§ (1 +1) &) ;

~
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when 1 = 2,

e (1 +1)

(1)

~

s’

With these éxpressions, wé obtain from (3.9) the expression

d_ 1 Ay (Y ' ~ i
5 4
_ 1 T |
= -7 Iij vv} (15 ,Rf st) Ist" (3.12)
s, t=1
In the firét term we have introduced the notation »
1 _ 1 a 2 )
T ® 7 - 3 fn. . (3.13)

The éecond term describesﬁthe rotation of thé poiarization vectors as
the.radiétion moves along é ray path. |
Scattéring within the inferval & s was omitted in obtaining
(5.12)} If we include this, we must add B to the right-hand side
of (3.12). This‘givesbthe geheralizedvform of the tfénsport equation

(1.6):

o
L—'l}—‘ i

16 B -

d e ) + Bl D= 2 D, G-14)

where ‘B -‘is given by Eq. (1.7). If frequency shift due to scatterlng
must be taken into account, we obtain the generalized form of Eq. (1. 21)

1 .
as ,I,(?éy ilv ) + Eg(,}é) @: ®) + R E(%} ',I:?) w) = ,@(?&: /é) w) .
. (3.15)

The scattering strength B  is now given by Eq. (1.22).



»

o
‘Let us write out in detail Egs. (3.14) and. (3.15). For either

case, the form is

Thy 7 cphy - Al Ie;j ¥ ?il
=1, = - L1 4 g1 I,,] + B

s 12 L ‘12 T e 12

;.%3'121' - -1 Toy 7 ALl - Tl + szl
| %E_IQQ = - % Ios +  '] LI12 + 121] + B

e (3.16)

For many applications the Stokes parameter representation is

more convenient than that of Egs. (1.3). In this representation we -

" write 4
17
Izv - .122'
_Iié = %-(13 -11)) = 121% SR (3.17)

[The detailed form of B 1in this representation was_given in II.]

Equations (3.16), when expressed in terms of the Stokes parameters,

become
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a1 '
1 1

& - "th - # 3+ B

aIz :
I 1

= ° f %ot i} I, + B

dIB' o
= = -~ I * 2¢[Il -] o+ By
-(.i-_I_Ll' = ‘-- £ I + B

ds L 4 T 74

(5.18)
A sorﬁewhat more 'natural' choice than (1.5.) for the unit
polarizatién.\}ectors is illustrated in Fig. L, Af'.each point on a ray
rath 'ég lvies in the osculating plane élong the principal radius of

curvature.  Thus,

&g

, | " (3.19)

where .RP is the principal radius of curvature. Then

g - gg x 3, (3.20)
and we obtain

“/\ N

=2

ds R’c ?

A . ”~ N .

T, _E R | (3.21)

ds R R ’

D £ ;

Here Rt is the radius of torsion of the ray path.



B

If we define m, Eq. (1.11), and I, Eq. (3.6), with §, and

§2 replacingvthe polarizatioh vectors (1.3), the only change in the

transport equation [Egs. (3.1L4) or (3.15)] occurs in the rotation

matrix R . _After a simple calculation using Egs. (5.21); we obtain
4ar : L ' .
i3 . oL Loyt | (-1)Y
& - "Lt "R ()7 Ty v ()7 Iy,
(3.22)

These have the same form as do Egs. (3.16), but with [l replaced by

-1
Rt . |
' The form (3.22) will not be used in this paper.

B, .
ij
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TV. DERTVATION OF THE TRANSPORT EQUATTON
We turn now toithe‘derivation.aqu.(5.1M) from Maxwell's
equatidnslz»(the corresponding dgrivatioﬁ of Eq. (5;15) following the
method used in III, is stréightfbrward]. For this ﬁurpose we can use
the development giveﬁ in I with only suﬁerficiél»Changes;—mostly of

13

notation. To avoid repetition of the complete development in I we v
shall just indicate here these changes.v.

As in I, we shall suppose the scattering system (plasma) to

 consist of N nonrelativistic electrons confined to a finite volume

LR NA
B V]

Zys° N) described in

and having the probability distribution PN(

Sec. T. 'This-is illusﬁrated in Fig. 1, where'thé'source and detector
are shoWn‘aé being a largé distance from the plasma. [The extension
to other_sééfﬁering systems is_evidently.straightfqrward.  It is only
necessary'tg use the appropriate scatterihg amp;itudes  fij in.'
Egs. (L4.3), étc.] The multiple scattering repregentation for the

S v _ L
electric field was given by Egs. (I%3.1) and (15.2)1s

. A 2 ,
;Kga) =.'§I(§a) + ->> '“§> ‘ §Qﬁfj) FdB(j) . (k1)
o BlAr)-1 1 o
Here gdé(j) , §= 1;72, defined by Eqs. (1.3) with. 3 pgréllel to
ga_— %ﬁ and | '
BG) = 8(1) E () e

represents the incident radiation, taken to be a plane wave at the

‘scatterer. The F are defined by the equations

of
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.y _ ~.0 : SN\ ' YT“ 0
Fop () = op £;,(08, BO) B (z5) + >~' ) G T33(0Bs POITG
| o(#)=1 =1 |
| k (1.3)

The notation of I has been ﬁsed here, with

. 0. _ 0, v . '

: Goﬁ = G (,%a) ’%ﬁ) > (L.b)
as defined by Eq. (2.6), and

£, (08, EO) = % gpl) -8 . (h3)

The quantity (-fO) is the classical electfon radius divided by
(1 - iv /o).
c o .
If we expand Hgs. (4.1) and (4.3) in a sequence of scatterings

and express the result in vector form, we have

| | N 0 2 o . 0o
Ezy) = E(z)+ ) {58, * T Zi S Spo
R o B

3 | 0. .0 0 1
'+‘f - G e e + .....E(’% )
0 | EE: ﬂoﬁl ~ﬁ152 ~620 I‘~o’

Prfe o | j (u.é’)

wheré' G ‘O: = go(

~0B8

subscripts a, Bl,"' above are equal.

Zop g@) is thergxpress1on (2.5b) and no two adJapfnt

For a coherent sequence'of'scattérings we obtain (13.22) in

the form



)

0 . 0 3
Cos = oo * To | G % Palg) B |
B . . s

* 1o N fp, " S8, oo

x P diz d5z

(2. ) Pz ) e(z. » 2. ) , (4.7)
1%, 7 "1%, 7 8% 7 g By 7B,

where g is the pair correlation function of Eq. (1.8), etc. We

emphasize that Eq. (4.7) is just Eq. (I3.22) rewritten in vector

notation. '
‘For. - < . | i ;
For l'%Bl ’%BQI S R, we can rewrlté Egs. (I3.23) and (I3.24) l
as ' ' S !
G, . ¥ {exp|i k. - R ] G, -
<0 o Ll.nr(Esl) R e N
* 1o - : 11 expii n (z ; ' .
~P1Po ~P1By PP L T8 PRl lf PP o
(4.9)
Here 55  is the wave number ‘vector at Z"B for a ray originating N
1 : 1

at Zs ¢ This represents a generalization approximate to curved ray .
péths of the notation used ih I. We observe that [see Eqgs. (2.15)]

e = 0. . '(l@.'.lo) "
’léﬁld ﬂﬁlc . | . ‘ o
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Use of Egs. (4.8), (4.9) and (4.10) lets us‘rewrite (4.7) as the

vector géneralizéﬁionvof Eq. (I3.25):

., 0 ( 0 . ‘ 3 ' b11)
S = Sos T 1 Cop * Spo 7(56)d Zg > . (k.11)
y ,
wheré
. f. .
7(z) = .b(Z)fO' + 0% (z) fO2 PR {31+ (g - R
~ ~ o J \L o =

ad

x glz; R) expl i nr(%)'k(R - @-5) j ‘/é . (4.a2)

is just the expression (I3.26b). , _
It follows from Eq. (2.4) that G, [defined by Eq. (4.11)]

satisfies Eg. (2.7) with
n“(z) = 1 + (Lo /X°) 7(z) . _ (4.13)

We may therefore use the eikonal representation .(2.33) for G

 Equations (I3.31) and (I3.32) may now be rewritten as

Elz,) = E(z,) + ; s () Ep(3) o (h.14)
L 2 o
Bg(1) = Z { (1 1cy | 2) 2, 6, 50) B (2, 3)

v £, j=1 :

N

. Z BRGNP BG)EBG(J)} :
o (B)=1 |
, , : (A.ls)

1/



In Eq. (4.14) we have written & (j) = & (§5 o,B), J =1, 2, to
indicate the unit vectors (1.3) on the ray path joining Zg and  z .

[When no confusion will result we shall use the abbreviated notation of

(4.14) and (2.33).] In Eq. (4.15) we now take

£,5(0B, o) = 588 (45 0B) - & (35 Po), (k.26)

~B ~B

etc. The coherent field E  1is just the quantity (3.2). It satisfies

Eq. (3.3) with E.  as the incident field. At a point z the tangent

vector to the ray path of E_ will be written as
3, = B3.(z) . . (4.17)
Then,

E (2, J) (4.18)

I
0>

aSS
-~

=
N

Finally the Green's function (i" G . | £) in BEqs. (4.15) is defined

op
by Eq. (2.33).

The transport equation is now derived just>as in I, To describe

the_coherent intensity we usé the S-fuﬁction [as in I] 5[%; hs) (z)] ,

having the property

ff(?z) 88, B (2)) azy = £(3)), (4.19)
where .f(@) is nonsingular at P = ﬁc . Then, Eq. (15.8) is written in
the form
I a o [ 3z, |
E(EQH g). = Qc(éa) 5[2, Ec(%a)] +c nr(ga) \ 5@;_ ds(gﬁ) y(a,B).

(4.20)

L
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The first term here represents the intensity of the coherent field at

%, » From Hq. (2.14) we see that

@) = (/o) n(e) B (z, 1) B_(z, J)-
The integral in the second term in Eq.v(h.EO)‘is takeh in the reverse
direction along the ray path which paSseé through gz, Wwith the local -
tangent %i,‘ The notation of Eq. (2.43) has beenbused, with 6%8

. being the area at .%B of a flux tube of ray paths which pass through
D and lie within the small solid angle o .

~

Zq w1thvtapgent
The quantity Ule, B) is defined by [Eq. (I5.1%4)]

o B) = Gy ® Gy { e n, (2,017 M8, BO) I, (z,)

+ ‘[de(T M(as,'ac) ue, o)) . (k.21)

" Here M is defined by Egs. (1.10), (1.11), and (1.12), and we have
used the index pairs (of) and (Bo) to indicate the direction of the

unit vecforsv D and P’ at %ﬁ in Eq. (1.10). The notation

*

o N
S Q§'9o£ is used to denote the open prgduct» (i IGOB | 3) (zIGdB];).
From Egs. (4.20) and (4.21) we obtain the transport equation’
:A . azx N
AN o
L B) = 2(2) 805 B.(x)] + S as(x) £ (2 2) ® ¢lz x)
: nr('%) A 7 .‘ A » A 3
b ! 1]
X % u®x), 3 1(x B - (4.22)

Here P(x) 1is the tangent at x of the ray path passing through gz

with locdl tangent % .
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Equation (4.22) can be simplified using Egs. (2.33), (2.39),

and (2.41). Since

3%

X 2 nr(%)
gg; A(Za,yz) = m,
we obtainv
2 z
I(z, B) = i-(%)' 3[3, D (z)] + | ds(x) |exp( - - ds/Z)Y [n 2(g)/n 2(5)]
& = ~ ~c 'B ~e _ S r r ,

o - X

Both ﬁath integrals here'are\takén over the ray passing through z. with

. local tangent ﬁ .'.The.quantities Y here are matrices with elements

(i | Plz 2,) l;) - gioa(i; %8) * B ~g§6<s; joz,f_s)., O (kak)

~of

where P . is the quantity (2.31).
To further simplify Eq. (4.23) let us define the matrix

~o

V(z, x) = Pz, 2) ® Bz, x) -~ | (4.25)
This has matrix elements, for i, J, s,'t_= 1, 2,

(13 | V(z,, gﬁ) | st) =
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Use of Egs. (3.10) and (3.11) lets us obtain

L (15 (g )| s6) = (-0 g+ 15 vl se) + (1) glag + 1 v st).
| | | (h.272)

This is equivalent to
& ¥z x) = -R@) ¥ x), | o o (w2)

where R 'is>the matrix introduced in‘Eq. (3.12).

Finally, . then, we rewrite (L. 23) as-

iz, %)‘ = 1 (z, %) + - ds(x) exp(’ Jl’ ds/? (n 2(%)/hr2(§)]

l).

3>

- (k. 28)

The coherent intensity in Eq. (4. 23) has here been abbrev1ated by wrltlng

J(z) 3B, $.(z) 1 . S (4.29)
More.generally,'when there ere-seVeral sources ef_incoherenf sburces,
we may_ihterpret I iﬁ Eq; (4.28) as the intensity of unseattered
radiatiOn.‘

Equation (4.23) represents the integral form of Eq. (3.14).
~ Indeed, on_diffefentiafing (h.28) along the ray path with tangent
D, we obtaih the diffefentiai;form (3.1k4). Comparlson of Egs. (3.9)

~

~and (u;ea) makes this obvious.]
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V. DISCUSSION OF THE COHERENT INTENSITY
Let.usvfirst suppose that.scattering'can be néglectéd so that

B=0 in Eq. (3.14). 1In this case we have only.the.coherent intensity

I, of'Eq.'(h.EB). This satisfies the differential equation

L ¢ (BrR)LEd -0 Ga)

~C A

We consider the case of a single coherent source, so through any point
z there pasées only one ray rath [with-the exception of poésible singular
points].

Tn terms of the Stokes parameters [see Eg. (3.17)]

I = Il + 12

“ =L :

P

T n o ea

" Eq. (5.1) becomes'[in the remainder of this section we drop the subscript

"e" from I ]

~C

at 1 o - : _ -
as Tt 0 (5.3)
- 4dv 1 _ : - '

ag + i ,V —. 0 ’ . ‘ (5.&) 
ay | . ,

: 1 - . , _
&= Yy rEyo= 0. o _(5-5)

 Here we have written
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Q \ ,
e | | | |
y = b (5-6)
u ! ' ]
» . Lo ;/ O l ‘,g( o . )
r=2fo =.2¢| L. (5.7)
8 y , “"l' O / v

If z, and gz, are two points on a given ray path, we may

integrate Eq. (5.3):

A
~

exp[- - dS/,@} (2@ W) 16z, 8))

i

N

(2, 1) I(z;» ) - B 6.8

In the second writing here we have introduced T(2, 1) for the function

Which'translatés I at z to thé point 2z

&) R
From Eg. (5.4) we evidently obtain
V(g By) = T(e, 1) vz, B)) - - (5.9)

To integrate Eq. (5.5) we first define

%2

| B2, 1) = 2 g das . o (5.‘10)

21

Then the integrated form of (5.5) is

]

Qlzes By) = T(2, 1) leos §(e,1) alzys By) + sin §(2,1) Uz, ;)1 »

l,'gi) o sin.QKE,l) Q(%l’ %l)j';m

T(2, 1) [cos @'(2,1)U(5
LS (5.11)
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The above results let us write the solution to Eg.. (5.1) in

the form
. ) | R -
Iz By) = T(zy 2)) Vlzpr 2,) I.(2p5 By) - (5.12)
Here T(z,, z,) = T(2, 1) is defined by Eq. (5.8) and ¥ by Eq. (4.27).

From Eq. (5.11) we can extract the mattix élements of V . These are
givein in Table I for the I, Q, U, v fepresentation and in Table IT

fgr‘the 115.12’ 15, Ih representatlonf

The energy flux vector aﬁ a point 2, is

;I(l) = j L (z 23)452% . | (5.13)

Referring to Fig. 5, we construct a tubs of ray paths paséing.through

Z1 with solid angle d Ql . The tube has a cross section of area

) Z, at some fixed reference point gz Differentiation of J/n

O".' T .

along the ray path then leads to the eqiation” o

St TN

o3 BP L]
Pamn Y
’.—l

Hl ~—

)| - & f (l/nr)vdfﬂl |
: ' : 3%
— %s— j(g/nr)

Now, according to Eg. (2.43), -

2le

-1

o

dz . (5.14)

7
)
@)

azo v" 5 _nr(O)
{3 = fop n (1)
5 nr(O)
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Substitution of this inmto (5.14) and use of Egs. (5.3) and (2.26) leads

to the differential equation

a ‘/ rq,(f%) \ ;l % Sr\", (/rg \\ - /.g \\
el i o= =i T o+ j{— 1~ R — |
ds nrz,% ) /} l\ﬂ | n, - / \\nr ) | ~nr /{
' ' _ (5.16)
. The scalar flux
J(z) = j( 1(z, ’g)' sl " (5.17)

is seen from (5.16) to satisfy the equation

@D

g (=
7,15

ds
\'r
This agrees with Eq. (37), p. 116, of Born and Wolf.
A slightly different version of the above discussion can be

given as follows. We first integrate both sides of Eq. (5.8) over the
solid angies of 'f)l . There results |
(5.19)

N
F‘I(ge, 32) ag, T(2, 1) J(1) .

Now, v
e\ /e \t
. o | \
-ddy = 4% L 55 ) | osg
. \ 2/ 1
N .
= oan, (A°/a %) (o @)/n (1)) .
2 o1 /P r T
From Eq. (2.26) we obtain ' v
2, 2 | [% v? Sp } | (5.20)
Ay /A02 = exp; / = dsJ . 5.
. L.Jl r
21 :
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Substitution into Eq. (5.19) leads to
B [ (By P |
J(2) = [nr(E)/nr(l)] exp| - [ | 7 + dsJ‘ J(1),
A , ,

1

(5.21)

in agreeméht with the similar result of Ref. 7 and an obvious integral
of Eq. (5.18).
The result (5.21) permits us to integrate the set of Egs. (5.16)

in the form

(o

I(z) = 3(z) ¥z, z.) (5.22)

~ ~

Here J(z) is specified by Eq. (5.21), V by Eq. (4.27), and g 1is a

constant column matrix specifying the polarization at %l:

/

{9

i )

; ! >
4 = ~ (5.23)

J

p)

7

L

Since J(z) is the total flux, we must ha ve

J,o+ J, = 1 , (5.24)

in Eq. (5.23).
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' VT. RADAR BACKSCATTFR TN THE DWBA
Invthis SéctionIWe.diScuss radar backscatter in thg distorted
wave qun;approximatidn (DWBA). This is illustratéd in Fig;.é where
the transmitting and receiving'anteﬁna is located.a'point y very far
frém a ﬁlasmd écatterer. In the DWBA only a singie scatteriné'iS'assumed
to occur.: V

This means that the flux of energy may be obtained from Eq.

_(h.22) as lassuming no coherent backscatter]

I
<
"

il

‘Since

this may be re-written in the form _

oy

RO IS ‘expzt LT s v 0 680, 8,00)
@)
X-—Tj-nz ey,X)J(g). (6.2)

Nos, from Egs. (1.10) and (1.11) we see that

M(-D, (x), ﬁc(;‘g)) = o (-1) 6), | | (6.3)
' wheré | | | ' o

AT L o

(13 [T 1st) = (s 5, (6.1)
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in the representation of Eq. (1.11).

We shall assume the incident radiation to be a plane electromagnetic

wave. The quantity gc(§) has, according to Eg. (5.22), the form
”n .
gc(§) = Jc,(,}é) M(%: Z) :l ) (6.5) ‘

where 3 has the form (5.25) and specifies the_polarization of the
incident radiation. As the point X moves outside the plasma along an

incident ray path, Jc(5) assumes the constant value Jc(y) .
. —— o p

Since y 1lies outside the plasma, nr(y) = 1. When X and v
are both outside the plasma
-1
Aly, x) = Ix -yl
Thus,
2 : .
- ,A_(§’ _y)y2 —. l_’ R e <<,

as X moves outside the plasmé along ‘an incident ray path. Therefofe,

we may write

' 2 > & S 3 (%) o
I.(y) &7 (x g)y exp | - ds/2 | = e (6.6)
e y N v

That is; the guantity on the left satisfies the differential equation = -

(5.18) and the appropriate boundary condition on an incident ray path.

The above results let us write Eq. (6.2) in the form

~

(6.7)

e SR

& - TS P A N
0 - G jf Px o (1) 3 2(x) { nf@qc'(g)} {X(g, g);{/’y(z, y)3 |

N R e AL SN ST N

LT TR Y T TH ST T TR T TR T
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In the usual Born approximation y = 1, the unit matrix,
‘n'r(5):= 1, and Jc(?é) = »Jc(y) . Thus, in the Born approximation
B D a2 3 (6.8
W) = WG] | Prola) . 68)
To further simplify Eq. (6.7) let us use the I, Q, U, V

representation of Eq. (5.2). In this representation.

/1 o //I\\..A o
VAR ; Q : / Q \ :

b = (6.9)
(L 1ou -U | ,

\ v

With the grouping of terms implied by Egs. (5.3), (5.4) and (5.5), we

may write
1 "Q\"-\;
I = &® ;
v U
)
(J, = %, @ %
R =2ig 1® g, (6.10)
where
1
Also,
y(2,1) = exp,(-iﬂ(e,'l) 1 @g,y] ;o (611)
. where ﬂ is. defined by Eq. (5.10). We see that L = 1 & 1 and
52 44
sl - -8

-

<



Thus,

N
s
d )

Avp 00 - e 1™, 62

o
Fa¥s

and we may re-write Eq. (6.7) as

e g 2 2 P |
G =03 ) /r_dBX 0,(-1) 77 (n,"x) I (1 . (6.13)
- The lack of cross-polarization on backscatter characteristic of
the Born approximation is therefore also found in the DWBA. We emphasize,
of course, that we have shown this only in the eikonal form of the DWBA.

and also when the approximation (1.9) is valid for the pair correlation

function:
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VII. THE DIFFUSION APPROXTMATION
’When the cross seCtion }oé(@ . @f), iS‘sdfficiently strongly
peaked in ﬁhe.forward directionrfhe écattefing.fonotion B cén be
simplifiéd by maXing the diffusion approximation...Tﬁe'appropriate form
wa.s derived”in IT. We quote thié hefe; |

‘ U51ng the representatlon (3.17) and polar coordinates for §

‘ [that is, wrltlng I

|

Ix, s, ﬁ)] with ﬁ as polar axis, we have

g

. o 1 ;i 55 'i : é ,’ ) al ‘
B(x, e,lg) =20, E (sin ©) |7 %5 (1 - u') 5o

2
oAt 2
T 0y _ M ¢Q :

(7.1)
Here
o = L (1-“-'13')0(?5'-?»'), C(7.2)
and P is the matrix With elements
szf —P15,= .cos 6,
7 Pél-f_ _PBE = 2 cos © s o - (7.3)

- all others vanishing.



Matrix elements of )\[(52, '%l’)' in I, Q, U, V

gf = ﬁ(l,Q) ~in the notation of Eq. (5.10).

J B TV

TABLE I

representation. Here

() Q(Il)

va) )

»I(é)
Q(2)
u(2)

v(2)

sin _{Z | 0

cos _ZT 0

3
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 TABLE II

Matrix eleménts of X(%E’ %l) }n Il’ N Ij’ Iu' representatlon. Here

# = §(1,2) in the notation of Eq. (5.10).

L) LW Lo 50
| Il(g)' v%'(l + cos_jD %1(1-- coskﬂov 5 ;in;f{ 0
.'12(2) 5 (1 - cosjg) 5 (l.+ cosjz) - 5 sin ﬂf 0
13(2) _" ' - sinjg. . sinjg o ' coéji‘ 0

Iu(e)' 0 0 .0 | 1
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FIGURE CAPTIONS

Illustration of the conditions for scattering considered in this

paper.

~N

A narrow tube of ray paths all passing through the point 2 -
vThe'intensity at .%O results from sources at points 1z, . in

the flux tube. |

Illustration'of thé unit vectors introduced,in Egs. (5.19) and
(3.20).

Illustration of fhe flux tube on which Eq. (5.1&) describes ﬁhe
intensity. | |

Backscatter, using the same antenna for.transﬁitting and

receiving.
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This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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