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ABSTRACT 

The HFB equations with generalized isospin pairing are numerically 

solved without any approximations, except imposing certain self-consistent 

symmetries. Realistic forces are used to make definite conclusions concerning 

the shapes of nuclei and the existence of isospin pairing. Comparison with 

previous approximations shows that in the s-d shell the HFB equations may not.· •.. 

be quantitatively approximated by HF + BCS, HB- BCS, or by iterating between 

HF and BCS. Isospin pairing restores axial symmetry to 
24Mg and 32s and offers 

' 36 an explanation for the existence of low-lying vibrational states in Ar. 

; 
. 'I 
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I. INTROD]JCTION 

Nuclei in the first half of the s-d shell exhibit rotational features 

suc·h as energy level spacings obeying an I(I+l) law and enhanced electromagnetic 

transition probabilities between states i·rithin a rotational band. A very useful 

technique for calculating the wavef'unctions of such states involves the construe-

tion of an intrinsic state and the subsequent projection of angular momentum using 

the Hill-Wheeler integraJ
1 

or various approximations based on the adiabatic 

nature of the rotational motion.
2 

Intrinsic states have been calculated using 

deformed potential models 3 and mqre recently they have been calculated using 

Hartree-Fock (HF) theory. For a review of HF calculations in the s-d shell see 

Refs. 4 and 5. 
20 

The HF description fails for the N = Z even-even nuclei beyond Ne. 

These failures have been discussed in detail in a previous publication6 hereafter 

referred to as I. However to summarize the most important points of this dis-

cussion we note (l) there are several experimental investigations which strongly 

indicate that the intrinsic shape of 
24

Mg is prolate and ax,ial while HF unam

biguously predicts the shape to be triaxial, (2) for 
28

si HF predicts both a low 

lyin~ oblate and an orthogonal low lying prolate intrinsic state which is in 

contradiction to the experimental spectrum, (3) for 32s HF predicts a triaxial 

shape 7 with 13
2 

= 0 again in contradiction to the experimental spectrum, and 

.. 36 (4) experiments suggest that Ar can be interpreted phenomenologically as a 

vibrator while HF predicts a well deformed obl~te intrinsic state giving low 

energy rotational levels. If we are to adopt the concept of an intrinsic state 

then a more complicated one must be used. 

In I we pointed out that the Hartree-Fock-Bogoliubov method (HFB) rriight 

be useful for describing the intrinsic states in the s-d shell. Recently such 
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8 9 calculations have been carried out by two groups ' who both conclude that for 

N = Z even-even nuclei the usual J = 0 pairing does not occur. As clearly 

pointed out in Ref. 9 and in I this result can not be taken to mean that HFB 

will not produce new intrinsic states since these authors have omitted neutron

proton correlations which have been shown to be important for N = Z nuclei.
10 

In (I) we solved the HFB equations including neutron-proton correlations using 

11 an approximation similar to that employed by Kumar and Baranger. In this 

paper we solve the liFB equations exactly and make a careful examination of 

approximations most usually employed in their solution and we also comment on 

the relevance of pairing in the intrinsic states of the N = Z even-even nuclei 

in the s-d shell. He will use realistic interactions in this paper in order 

to make our conclusions about the existence of neutron-proton pairing and the 

shapes of these nuclei in a parameter free fashion. In Sec. II we briefly 

develop the formulation of HFB and discuss in some length the concept of self-

consistent symmetry in HFB and the importance of the particular phases that we 

introduce. We also comment on the various approximations to HFB that have been 

used in discussing pairing. In Sec. III we describe our calculations, attemptto 

justify the solutions, and discuss the effects of truncation and the imposition 

of self-consistent symmetries. In Sec. IV we give the results of our calculations 

discussing the validity of previous approximations, while in Sec. V we discuss 

the implications of paired intrinsic stat'es on the interpretation of experimental 

data in the s-d shell. Finally in Sec. VI we present our conclusions. 
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II. A SUiviMARY OF HFB THEORY 

A. The Quasiparticle Transformation 

We assume that the nucleus can be described by a two body H81lliltonian 

H = L < iJ..dTijv > c! c. + .14 L < if;Jjvlv lkpM 
. . lfJ JV . "kn . a lJ lJ Yv . 

fJV fJVpo 

-1. .,_ 

> C
1 

C
1 c c 

i)J jV M kp 
( l) 

where T is the kinetic energy and V is some effective two nucleon interaction. 

Since we choose to work in an oscillator basis, I iT ) denotes a wave function with 

quantum numbers ln.£.j.m.T) 
l l l 1 

The Hamiltonian is next transformed to one written 

in terms of quasiparticles 

(2) 

where the u . 
Cl.fJ' 1 \) 

and v . 
CXf;l,1\J 

are complex coefficients of the HFB transformation. 

They are determined by requiring that the quasiparticles are Fermions and that the 

Hamiltonian describes independent quasiparticles except for a residual interaction, 

i.e: 

where 

H' = H - AN = E' + 
0 

iv 

t c. c. 
1\J l\J 

is the number operator , 

E 
CXf;J 

A = A IP )( p I + A In ) ( n I , 
p n 

p and n refer to the isospin indices 

Lagrange multipliers, and E are the 
CXfJ 

( 3) 

( 4) 

( 5) 

for the proton and peutron A and A 
p n 

quasiparticle energies. It is H' rather 

H that must be transformed for when HINT is neglected the quasiparticle vacuum 

are. 

than 
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.lciJ
0 

> is an eigenstate of the independent quasiparticle Hamiltonian but not of the 

neutron and proton number operators. The Lagrange multipliers are chosen so that 

( N ) = Z 
p 

( N ) = A - Z. 
n 

(6) 

'The part of H' which must be transformed to give the independent quasiparticles is 

written 

H' 
2 z (JC- A). . 

t 
= C. C. 

ll.J,JV l\.l JV ij 
l.JV 

l +-
2 l: 

ij 
l.JV 

t 
6. . 

ll.J ,JV 
C. C. 

l\.l JV 

l z 6. . c: c·~ + -
2 

ij ll.J ,JV ll.J JV 

l.JV 

( 7) 

where the normal order is taken with respect to the quasiparticle vacuu.'!l and 

JC. . = T. . + r. . 
ll.l,JV l\.l ,JV ll.J ,JV 

( 8) 

r. . = L ( i l.Jkp I v I j v Q,a ) p .Q, k 
ll.J,JV k9- · a 0, p 

( 9) 

p0 

!::.. . 
l L < il.Jjvlv lkp9-0 > tk 9-= 

l\.l,JV 2 k.Q., a p, 0 
(10) 

p0 

p is the single particle density matrix and t is called the pairing tensor 

and they can be written in terms of the quasiparticle transformation 

t. . 
. ll.J,JV 

= < <Po I c t c . I <Po > = 
JV ll.l l: 

cw 
* v . v . , 

OO,JV arJ,ll.l 

- < ciJo I c . c . I <Po > 
JV l\.l 

= L u . v* . 
00 

aa,.JV aa,ll.l 

(11) 

(12) 
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'rhe vacuum energy is given by 

where 

and 

E = 
0 

= L (T-A + ~ r). . p. . + A z + A (A-z) 
ij lU,JV JV,lU p n 

uv 

= ~ z= 
ij 

t 
IJ.. . t. . 

lU,JV JV,lU 

uv 
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( l3) 

The coefficients in the transformation (2) and the quasiparticle energies are 

given by the solutions of the HFB equations 

(14) 

The matrix to be diagonalized in ( 14) is often referred to as the K matrix. 

Since the potentials depend on the solutions to the equations, the equations 

must be solved by iteration until self-consis·~ency is achieved. 

·B. Self-Consistent .Symmetries 

The HFB equations contain both the HF and BCS equations as limits. The 

generalized BCS equations result from choosin{; an initial transformation of the 

form 

t 
a. 

lU 
I ( u. . c ~- + v. .,... c.,. ) • 
· V lU,lV lV lW,lV lV 

(15) 
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where 1 r > is the state time conjugate to 1 i > and l.i > is some single 

particle state chosen so that for 2.ny relevant set of isospin indices 

I ( i. j I V a I i ' j > I< < I< i j I V a I i j > J 

I< i i' jv lj j >I<< l<i Ilv lj j >I . a a 
(16) 

The HFB equations may then be approximated by the usual 4 x 4 system of 

Bcs t
. 10 

equa lons. It is of course not obvious a priori that such single particle 

states can be found and it will be one of our important conclusions that such 

approximations are not valid in the s-d shell. The HF equations can be obtained 

by simply choosing trial wavefunctions such that all t .. = 0. 
lJ 

By Eq. (10) this 

insures ~ = 0 and from the structure of Eq. (14) we see that at each stage of 

the iteration ~ will remain zero and finally upon convergence will give the 

HF solution. 

This is an example of a symmetry which when initially built into the 

HFB equations propagates through to the final self-consistent solution. We will 

call these propagating symmetries (PS). It is important to consider such sym-

metries for a seemingly arbitrary trial wavefunction might contain one or more 

of them and so it may be impossible to obtain the solution with the largest 

binding energy from such an initial guess. Moreover the solution of a completely 

unrestricted HFB problem is impracticle even in the s-d shell for from Eqs .. (2) and 

(14) we see that this would involve diagonalizing 48 x 48 complex matrices until 

self consistency is achieved. Thus it is imperative to use PS's to reduce the 

numerical problem. To this end we wish to specify a subset of the PS's which we 

will call self -consistent symmetries ( ~)CS) and which can be uniquely defined. 
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It should be stressed that there are other PS 's which to our knowledge can not 

be uniquely defined and which from time to time we have discovered numerically. 

A SCS is defined as a uni ta.ry or anti linear unitary operator S which 

commutes with the H2 part of the H&"li1tonian (see Eq. (7)). Sufficient con-

ditions for such an operator to be a SCS are 

1) The total Hamiltonian (3) is invariant under the symmetry operation, i.e. 

[H '. ,s] = o 

2) "The trial wavefunctions is invariant up· to a phase under the 
I 

symmetry operations, i.e. 

3) S maps the single particle basis states into themselves. 

( l7) 

(18) 

The proof of this theorem and a rather complete discussion of SCS's 

13 has been recently given by P. u. Sauer. If H' 
2 

commutes with s, then of course 

the + + quasiparticle states a and a 
a]J a']J' 

= Sa 
+ s-1 are 
ctll 

degenerate and may be speci;... 

fied by the labels of the irreducible representations of the symmetry group S. 

'rhus if we can show that our trial wave function satisfies conditions I, II, and 

III for some operator S and if the matrix Eq. ( 14) is reduced to block form 

because of this symmetry, then because we "have a PS we need only diagonalize the 

smaller blocks effecting a large saving in effort. Moreover for discrete sym-

metries such as time reversal one need only solve one half the problem since the 

time conjugate states may be obtained from the relation 

+ 
a -

c:t]J 
(19) 
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For every SCS introduced the generality of the theory is reduced, but often 

the dynamics of the problem suggest that such symmetries will be contained ~n the 

physically relevant HF or HFB solutions, 
14 

i.e. even if the SCS is broken in the 

trial wavefunction, it will be recovered at the end of the iteration process. We 

will now list the SCS 's used in this work and briefly discuss their implications. 

Parity. The quasiparticles are labeled by the parity quantum number 

and so the K matrix is diagonalized separately in spaces of positive and nega-

tive parity. There can be no inversion non-invariant deformations in the intrin-

sic state. 

Time reversal, Use of this SCS allows one to further decompose the 

K matrix into blocks which define quasiparticles connected by time conjugation. 

In this paper we use harmonic oscillator basis states and choose our phases so 

that 

T I n ·R, j m T > = ( -1 ) j -m + Q, I n Q. j - m T ) • 

Because T acts only on the space-spin coordinates, we will supress the isospin 

coordinate for the discussion of time reversal. We divide the basis states into 

two sets, the first containing states with m-1/2 = even integer and denoted by 

{ I i ) J ; the second contains those states having m-1/2 = odd integer. They are 

chosen to be the time conjugate states of the first set and denoted by f 1 r >f. 
In this paper we will restrict the pairing to be between time conjugate states, 

i.e., we write the transformation (2) either with u . a,1 and v -a,i 
or us ... 

,l 
and 

vS,i' Making this restriction in the trial wavefunctions breaks the K matrix 

into blocks and introduces a PS. However since we are dealing with even-even 

systems we can choose time reversal as a SCS. This implies the restr1.ction 



... 
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t 
a = f3 

which yields the relations 

* u- - = u . , a, i a, 1 
* v- . - - v .,.. a, 1 a, 1 

and finally the HFB equations reduce to 

(20) 

( 21) 

(22) 

where in contrast to (14) J(' = (J(') .. , 1'!. = (!'!.).-:-, and both J(' and 1'!. are hermitian. 
lJ l,J 

Axial symmetry. This introduces a new quantum number rl (the 

z-projection of angular momentum) into the specification of the quasiparticle. 

This symmetry is introduced by restricting the quasiparticle transformations to 

states li} with the same value of m and states II} with -m. Although 

this symmetry is too restrictive5 in HF (in 
24

Mg and 32s the lowest solutions 

triaxial) it is one of the main p~rposes of this paper to examine whether this 

is any longer true in HFB. 

are 

Rotational symm~. The quasiparticles are specified by the quantum 

numbers jm. Such a symmetry may be introduced by restricting the transformation 

so that t:pe set Jli >f have the same jm and. the set f li >J have j,-m. This 
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symmetry is in general too restrictive and in !IF is valid only for doubly magic 

nuclei. We find within the framework of HFB that the lowest solutions in the s-d 

shell do not have this symmetry. 

Rotations in Isospace. Since we have a general transformation which 

includes the coupling of neutrons and protons there may be various SCS's in 

isospace. For example we might demand rotational invariance. However this would 

restrict us to N = Z nuclei and T = 0 pairing. Since we limit ourselves to 

N = Z even-even nuclei in this paper this would be a possible symmetry. However we 

want to examine if we can not lower the energy by allowing nonconservation of iso-

topic spin in the intrinsic state. One might also demand rotational invariance about 

the z-axis, but then we would restrict ourselves to neutron-proton pairing and 

we wish to allow for neutron-neutron and proton-proton pairing as well. For N = Z 

nuclei, it is physically reasonable to expect that the ground state has the pro

perty that ( T) = -o. 15 This can be ensured by choosing an 

operator T' = 1 K (1 is two times the y 
y y component of isospin and K is the com:.. 

plex conjugation operator) in isospace as a SCS. \H th this symmetry the trans-

formation in isospin space is written 

t 
0 ct al u -v -v 

1,1 1,1 1,2 p 

t * + 
a2 0 u -v v c' 

1,1 1,2 1,1 n 
= ' ( 23) 

al v v u 0 c 
1,1 1,2 1,1 p 

- * a2 vl 2 -v 0 ul 1 c 
1 ']_ n 

' ' 



. 

•• 
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and further we choose the matrices v to be real. 
1,1 

formation the pairing potential 6 may be written 

(~pp ~ ) (j, = pn 

t:/ -6. 
pn . pp 

where 

T-1 T=O 6. = 6. - + i (j, 
pn pn pn 

A 1 • t• 18 f A c ose examlna lOn o . u. shows that diagonal elements of 
T=O 

(j, 

UCRL-19506' 

With this trans-

(24) 

(25) 

vanish if 

we choose the PS that all coefficients are real, a result independent of any 

SCS in isospace. Consequently a complex HFB transformation is required for 

simultaneous T = 0 and T = 1 pairing. 

In our discussion of time reversal we showed that restricting the pairing 

to time conjugate states gives time reversal as a SCS. This however excludes 

a possible mode of neutron-proton pairing where both particles.are in the same space-

spin state a .and are coupled toT= 0, i.e. we could consider aa pairing in addi-

tion to the usual aa pairing. Such a mode could in principle be included in the gen-

eral transformation but would make the numerical calculation essentially impossible 

since one looses the advantage of breaking up the space into time conjugate blocks 

(although the solution could still have time reversal as a SCS) and further we 

no longer can have rotational invariance about the z-axis as a SCS. In the next 

section we will calculate this mode 'and attempt to argue numerically that it is 

much less coherent than the usual mode and so can be safely neglected. The lack 

of coherence of the aa type of pairing can be explicitely demonstrated in the 

16 
case of a simple J = 1 force. 
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C. The Canonical Basis 

In this subsection we wish to describe several approximations to the most 

general HFB formalism and also to describe our method for presentation of wave-

functions. This may best be done -by using a theorem similar to that of Bloch and 

Messiah
17 

which states that the most general transformation B is given by the gen -

product of three transformations: 18 

1) a transformation D in particle space which defines the canonical 

basis and is obtained by diagonalizing the density matrix; 2) a generalized BCS 

transformat.ion B ; and 3) a transformation R in the quasiparticle space. 
sp 

B = .R B D. gen sp (26) 

Now the well known BCS approximation consists of assum;i.ng that we know a priori the 

canonical basis and further that X and ~ are diagonal in the space-spin part 

of this basis. Then the K matrix breaks into 4 x 4 blocks. If there is no 

neutron-proton pairing the K matrix further reduces to the familiar 2 x 2 matri-

ces yielding the gap equation for the pairing of identical particles. In the HFB 

calculation of Ref. 11 this simplification is achieved by use of the pairing plus 

quadrupole Hamiltonian in which case ~ is trivially diagonal in the HF represen-

tation of the Q · Q force. The approximation that we used in I is to take the 

coupled Hartree-Bogoliubov19 and BCS equations which are equivalent to the HFB 

equations up to a unitary transformation and note that if the off-diagonal ele-

ments of · ~ ar.e small then they reduce to coupled generalized HF and BCS equations. 

Although this might intuitively seem a better approximation than BCS it still depends 

on ~ being diagonal in the canonical basis. In any diagonal ~ approximation 

R is the unit matrix. One of the major points to be explored in the present pap~r ' 

is the extent to which the non-zero off-diagonal elements of ~ affect the solution. 

In Sec. IV we will discuss the various approximations numerically and it will 

be useful to express the wavefunctions in terms of the three transformations. 
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\' D · c7 L r]J , i v l v (27) 

iv 

'rhe isospin structure of this trans formation consistent with the se:; '~, is 

( 28) 

where D = D 
pp nn With our choice of SCS's the second transformation B may 

sp 

be written in terms of the submatrices 

arl 

= 

0 

0 

r r 
-vll -vl2 

0 

0 

i· 
c rp 

,l. 
I c rn 

Crp 

Crn 

where r 
ull and r 

are real numbers and v
12 

is complex. 

formation is written 

-r 
a 
all = L 

rv 
R 

a]J,rV 
t a rv 

and the isospin st~ucture ~onsistent with our Scs's betome~ 

R = ·[ Rll 0 .·] ' 
0 R22 . 

( 29) 

The third trans-

(30) 

(31) 

,where R11 = R22 . The general transformation can thus be specified by giving 

the real orthogonal matrices DPP and R11 , and the coefficients 
r r 

ull' vll' 

and vi2 . It is interesting to point out that the canonical basis is doubly 
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degenerate and so by taking appropriatel8 linear combinations of the degenerate 

solutions it is possible to define the pairing beh,reen two single particle states 

which become linear combinations of proton and neutron states with complex coef

ficients. These are the states which define the Bloch-Messiah canonical basis . 1
'7 

We do not use this mixed neutron proton canonical basis for convenience in com-

paring with previous results. 

III. DESCRIPTION OF THE CALCULATION 

A. Method of Solution 

To solve the HFB equations (14) it is important to have reliable initial 

guesses. In the first place using ~ompletely random guesses may introduce 

undesirable PS's and moreover such bad guesses may take a prohibitively long 

time to converge. We solve this problem in the following way: 

1) We first solve the HF equations which give various HF solutions. 

In particular we find axially asymmetric and both prolate and oblate axially 

symmetric solutions, and often we find several solutions having the same shape. 

The HF single particle states may be written as 

=L 
i 

D' . 
a)..l,l)..l 

c! 
l)..l 

(32) 

2) We next calculate the coefficients of a generalized BCS trans-

formation 

a
al 

a
a2 

= 

u a 

0 

v a 

v' a 

0 

u a 

v' 
a 

* 
-v a 

-v -v' ct 
a a ap 

-v'* v ct 
a a an 

(33) 
u 0 a c-ap 

() u c-a an 

I; 
I 
I' 

r 
l 



,)< 

-15- UCRL-19506 

where u and v are real and v is complex. The method of solving for a a a 

the u.' s and v's 15 
has been given in an earlier paper. 

3) The sta.1.·ting values of the HFB transformation coefficients are now 

given as 

u = D' u 0 a)l, i v a)l, i v a ]l,V 

I 

( 34) v = -v = D v al,il a2 ,i2 al,il r:~ 

* D' v' v = v = al,i2 a2,il al,il a 

4) The starting value of A is also obtained from solutions of the 

generalized BCS equations. 1 5 

5) With these starting values, we obtain the final solutions by iter-

ation until self-consistency is achieved. 

Once the HFB transformation has been determined we express it as a 

product of the three Bloch-Messiah matrices discussed in the last section. The 

procedure for determining them is outlined below. 

1) The canonical basis is CJbtained by diagonalizing the density matrix 

( 11). This gives us the trans formation D of Eq. ( 27). p and t are then 

determined in the canonical basis. 

2) We now express p and t in terms of the coefficients of the 

second transformation Bsp' Eq. (29). We then have the following relations 

r r 
p = p 
pp nn 

= 
I 

r 2 + I r .,2 
vll vl2 (35) 



r r 
p = p = pn np 

tr r r = ull vll PP 

tr r r* = ull vl2 pn 

where r 
p~v = pr~,rv · and 

0 

= 

= 
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- tr 
nn 

t r* 
np 

tr = t _ . 
~v r)J,rV 

( 36) 

( 37) 

(38) 

r 
u11 may be obtained from Eq. ( 35) as 

(39) 

We choose 
. r 
u ;;;::o 

11 
r and then v
11 and can be obtained from Eqs. (37) 

and (38). 

3) Since B , D and B are now known R can be determined from gen sp 

Eq. (26). Further details can be found in Ref. 18. 

B. Choice of Force 

In I, we used a Rosenfeld-Yukawa force in our calculations. Since the 

existence and importance of the isospin pairing correlations depend on the 

nature of the effective interaction (for example, the relative strength of 

T = 0 vs. T = l matrix elements or the s-wave triplet to singlet strength), we have 

used three types of force in this work, the first two of which are conunonly 

regarded as realistic. The rational for using such forces in both the HF and 

HFB calculations is that these calculations are to be regarded as a caricature of an 

exact shell model· calculation in a sufficiently large model space. 

l. Yale t-matrix. The Yale potential20 was determined by very accurate 

fitting of the nucleon-nucleon sca-<:.tering data. Since a hard core is included, 

one must repla~e t~~matrix elements of V by those of t. The t-matrix 
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I. 

elements used in this paper are those calculated by Shakin et a1. 21 from the 

Yale potential. As is customary, the dependence of the t-matrix on the single 

particle waveftinctions and energies (double self-consistency) is ignored. The 

shell model space is confined to the lowest three oscillator shells. The oscil-

lator parameter (b = /:hjmw) chosen is ~ fm. This choice of force and para

meters enables us to compare our results with previous HF calculations. 22 

2. Nestor-Davies-Krieger-Baranger (NDKB) potential. 23 This potential 

was specifically designed with no hard core for Hartree...,.Fock calculations. The· 

effect of the hard core is simulated by using a velocity dependent term in the 

potential. In fitting the force parameters (we use set number 3), primary 

emphasis was given to reproducing the binding energy and equilibrium density of 

nuclear matter, in such a manner that the second order corrections to the 

binding energy are small. 

3. Rosenfeld-Yukawa effective interaction. This force has been widely 

used in the s-d shell (see discussion in I). For the HFB calculations we trun-

cate to the N = 2 oscillator shell and replace the kinetic energy by single 

particle energies (see I and Ref. 4). As in I we use single particle energies 
' 

which correspond to the experimental ones found in 17o (Rosenfeld 1) and also 

to energies which were used in the HF calculation
24 

of 
24

Mg (Rosenfeld 2). We 

use this force in order to compare with the results in I and for the possibility 

of comparing with the results of exapt shell model calculations. Since the 

HFB method is used here in the spirit of approximating an exact shell model 

calculation, such a comparison should be carried out in the future. 
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C. Validity of Number Non-Conservation Approximations 

In I we compared number non-conserving BCS with the results of exact 

number projection for T = 0 pairing. Although we found that the total energies 

do not change appreciably, the pa:L ring energy ~oras reduced by approximately 30% 

in the number conserving case and this. was due to the drastic reduction of the 

dispersion of the particles across tbe Fermi surface (see Fig. lin I). For 

number non-conservation to be accurate we would expect that the binding energy 

should vary linearly with N. Because of the importance of n-p pairing this 

linearity will be particularly important between odd-odd and even-even N = Z 

nuclei. A cursory glance at the experimental mass symmetries of the s-d shell 

even mass nuclei, shows the presence of a sharp discontinuity at the N = Z even-

1 . F 1 th d" t· "t t 24M · even nuc el. or examp e e mass 1scon 1nu1 y a g lS 

24 26 24 22 
liM( Mg) (= M( Al) -2M( Mg) + M( Na)) = 10.5 MeV. However this experimental 

discontinuity is of no relevance in pairing theory. Rather it will be the 

discontinuity calculated with the underlying HF wavefunctions. It is interesting 

to note that with the triaxial HF so1ution calculated in Ref. 22, LIM(
24

Mg) = 

11.3 MeV. This is due to the presence of a large gap in the triaxial solution. 

In I it was shown that it is just this gap which prevents the (number non-

conserving) pairing field from building up in the triaxial HF basis. On the 

other hand using the axially symmetric prolate HF solution given in Ref. 22 one 

gets 24 liM( Mg) = -3.8 MeV. Since the mass di~:continui ty is relati ve1y small in 

this case, a strong number non-conserving •r = 0 pair field builds up on this 

solution (see Sec. IV and I). Hmrever this djscontinuity is large enough to 
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severely limit the accuracy of the number non-conserving BCS method. 'l'o our 

knowledge a number conserving HFB calculation has not been carried out. We do 

not attempt to do so in this paper,. however one can get a rough estimate of 

the validity of the number non-conserving method by calculating the discontinuity 

for the canonical basis. Using the canonical basis functiohs given in Sec. IV "lfe find 

(
24 ' . . . ·32 

£1M Mg) = -3.7 MeV, llM( S) = -7.1 MeV, and 
36 

llM( Ar) = 5.0 MeV. This suggests 

that the number non-conserving method is not any more valid in HFB than in BCS. 

D. The Absence of a-a and T = 1 Pairing 

In Sec. II it was pointed out that we have not included the possibility of 

aa pairing in our calculations but in I it has already been shown that a dominance 

of a pair field of one kind pr~cludes the build up of other pairing fields. For 

example T = 1 pairing is supressed by the T = 0 field for all N = Z even even nuclei. 

This remains true for the solutions presented in this paper. With the Yale force 

and a space of three oscillator shelis we also investigated a.a pairing and find 

24
Mg has a binding energy of -130.53 MeV, while 32s and. 36Ar have binding energies· 

of -225.12 MeV and -291.07 MeV respectively. These solutions are obtained with the 
i 

nuclei artificially constrained to be axially syn@etric. When this constraint is 

removed the nuclei either gain 'V 0.3 MeV in binding energy or fall into the triaxial 

-HF solutions. For pure aa pairing the binding energies for these nuclei .are 

--132.53 MeV, --229.66 MeV, and -291.76 MeV. The relative lack of coherence of the 

aa. pair field is clear. It is therefore expected that this field will be supresse~ 

-by the stronger a.a pair field in a: more genE'Tal calculation.although this h~s not 

yet been investigated numerically. 
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IV. NUMEJU CAL RESULTS 

A. Comparison of the HF and Canonical Basis and the Validity 

of the Approximation used in I. 

!n Table I -vre give the HFB vavefunctions for the solutions -vrith the 

largest binding energy in terms of ~he three Bloch-Messiah transformations 

defined in Eqs. (26) - (31). These ,wavefunctions -vrere obtained with the Yale 

t-rnatrix with three oscillator shells. 
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As pointed out in Sec. II, a measure,of the deviation of our previous approxi-

mation from the complete HFB is given by the deviation of R from the unit matrix. 

It can be seen from Table I, that this deviation although appreciable for 
24

Mg and 

32 . 36 
S, lS very large for Ar. A similar measure can be obtained by compairing the 

HF wavefunctions D' given in Ref. ::.'1 with the canonical wavefunctions D of 

Table V. Again large.deviations are due to the fact that 6 is not diagonal in 

the canonical basis. In 'l'able II we give the matrix 6 in the canonical basis 

24 328 36 for Mg, , and Ar. Not surprihngly we find that 6 has a large off dia-

gonal elements for all three nuclei. 
. 211 . 

Although Mg has large off diagonal elements, 

the canonical basis is remarkably similar to the HF solution and the dispersions 

calculated from the HFB and the diagonal 6 approximation of I are also very 

similar. Thus for this particular case only the third transformation is effected 

by the non diagonal elements of 6. We lmow of .no criteria that will tell a 

priori whether. 6 will be diagonal in the canonical basis so we therefore con-

elude that in the s-d shell the complete HFB is necessary since the diagonal 

6 approximation may be misleading. This is especially true for excited state 

calculations which depend on the quasiparticle energies and wavefunctions. 

In Table III we compare EHF' EPAIR' and ETOTAL for the HF + BCS approxi

mation,10 the diagonal 6 HFB approximation of I, and the complete HFB of this 

paper. From this comparison we may conclude that HFB .always gives the largest 

binding energy. Second, we observe that the pairing energy increases in the HFB 

(largely at the expense of HF energy) often by more than a factor of two~ Thus 

is understandable because the HF wavefunctions were derived to maximize the HF 

. :I 
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binding energy. When the pairing field is allowed to build up simultaneously 

and self-consistently, it should be expe2ted that the pair field will gain energy 

at the expense of the HF field. 

B. Physical Properties of the HFB Solutions 

In Table IV, we list certain properties which describe the intrinsic states 

for all the paired HFB solutions we have obtained for all the N = Z even even s-d 

shell nuclei with all the forces we have discussed in Sec. III. The NDKBl solu-

tions were obtained in a space of three oscillator shells using the Nestor-Davies-

Krieger-Baranger force. The NDKB2 solutions were obtained using the same force 

but in a space expanded to include fd>ur oscillator shells. The parameters charac-

terizing the HFB intrinsic states that we shall discuss.are defined below. We 

specify the shape of an intrinsic state by giving their quadrupole and hexadeca-

pole moments 

= ( 

(40) 

It is also usual to define the shape of a nucleus with the size independent shape 
! 

parameters S
2 

and s4 which for axially ,symmetric deformations i;3.re defined by 

(32 
41T Q20 

::; 

5 R2A (41) 

(34 
41T Q4o 

::; -
1 R A 4 

(42) 
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where ,R2 is taken to be the root .'nean square radius 

l 
A 

2 
R2 = 2:: r. 

A 
i=l 

l 
( 4 3) 

and 

l 
A 4 

R4 = ( t= r. ) 
A l=l l 

(44) 

and A is the mass number. From Table IV 1-1e make the following conclusion. 

HFB theory is less ambiguous than HF + BCS in the sense that as many as four 

different HF + BCS solutions converge to the same HFB solution. All of the forces 

lead to more or less the same conclusions about the physical propertie~ of intrinsic 

states. Also we observe that the energy gaps are on the average 20% larger in 

the HFB solutions compared with the HF + BCS approximation indicating an increased 
I 

stability for these solutions. Fina~ly we observe that increasing the shell space 

I 

to include the next major shell has the expected property that deformation increases 

due to core polarization, reflected by a substantial increase in S2 of approxi

mately 40%. 

Also from Table IV one can see there is a definite tendency for the in-

crease of pairing energy as one expands the shell model space. The .9.lllount of 

increase is only. 20% at 24Mg but inqeas es to 90% at 36 Ar. The effective energy 

gap of two quasiparticle excitations· displayed in the last column of Table IV 

increases from 20% in 
24

Mg to 45% in. the case of 36Ar due to the enlargement .of 

the space. This demonstrates that the solutions be:come more stable as one 

enlarges the shell model space. 

'rhe effect of various factors on the underlying self-consistent field 

such as the truncations of the shell space or the inclusion of pairing 
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correlations can be demonstrated in a pictorial manner by plotting the mass 

distribution defined by 

Figures 1-6 present the equidensity contours of various HF and HFB solutions. 

All of these plots show the projection of the density distribution on a plane 

which has the axis of symmetry as the vertical axis. The densities are normalized· 

with respect to the corresponding maximum density taken arbitrarily as unity. 

32 
In Fig. 1 we plot the contours of constant density for paired S calcu-

lated with a space including only three oscillator shells. A similar plot but 

now including four oscillator shells is given in Fig. 2. Apart from the con-

spicuous increase in the overall deformation, a comparison of the two figures 

reveals that the enhancement of pairing correlations is associated with a con-

siderable shift of mass towards the center of the nucleus. The effect of pairing 

correlations on the nuclear shape and. in particular the tendancy toward higher 

symmetry due to pairing is demonstrated with Figs. 3 and 4 by cci~paring the 

density distribution of the prolate HF solution and the prolate HFB solution for 

24
Mg. In this case it can also be seen that there is an alpha particle clustering 

in the HF solution and that this effect is reduced in the HFB solution. A similar 

comparison is given for 36Ar in Figs~ 5 and 6 where we plot the density distri-

butions for the oblate HF and HFB solutions respectively. Here again a big 

reduction in deformation due to pairing is clE·arly demonstrated. It will be shown 

later that this reduction is responsible for correcting the discrepancy in the 

HF description for 36Ar. 
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The changes in shape of the HFB intrinsic states are also reflected in 

the total angular momentum contained in each state. It is interesting to compare 

the values of ( J 2 ) calculated with the wave functions given in Table I and the 

solutions with largest binding energy; which are quoted in Ref. 22. When the values 

2 2 24 . 
of (J) areexpressedinunitsof h acomparison,shows Mg(22.4vs. 24.1+), 

32 ( .. ) 36 ( 6 ) S 19.5 vs. 25.4 , and Ar 13.0 vs. 1 .5 where the value from the HFB calcu-

lation appears first. The decrease in angular momentum for the 
24

Mg and 32s iiFB 

! 
intrinsic states is because the HF solutions are triaxial and such non-symmetric 

shapes contain large amounts of angular momentum. 

Before we conclude this section we would like to mention that the inertial 

h2 
parameter A(= 2';f= where ':f' is the moment of inertia) is

1 
calculated using the Inglis 

cranking model.25 

state is 

~ = 2 2: 
ij]J 
k9-V 

(J 

' 
The expression for the moment of inertia for an HFB intrinsic 

E - E 
(J 0 

* * V . U VS n US . ap,lJ..l ap,kv T,hv T,JJ..l 
( 46) 

In this expression E
0 

is the vacuum energy and E is the energy of a two 

quasiparticle state (E
0 

= E0 + Eap + EST) and where the sum on a is made in 

such a way as to avoid double counting the t1w quasiparticle states, One might 

expect on observing the structure of ( 46) that since the gaps increase in HFB 

over the values obtained from the HF + BCS approximation that the inertial para..;. 

·meters .will be. somewhat larger. The limitations of the cranking model have· been 

discussed in I, 
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V. COMPARISON WITH EXPERH1ENT 

It was pointed out in Sec. III that the HFB solutions with the largest 

binding energy exhibit only T = 0 pairing. This was also a feature of the calcu-

lations in I and the reasons for this phenomena are discussed there. Another 

general feature of the HFB solutions is the near degeneracy [in ( H > J of several 

solutions. These solutions have a large overlap and so only one of them is 

physically relevant as far as the low energy spectrum is concerned. Self-consistent 

field calculations are usually unable to make the proper choice among these nearly 

degenerate solutions because of the neglect of many higher order corrections 

(see discussion in I). Nevertheless it is often possible to compare properties 

predicted by the various intrinsic states with experimental information and so 

eliminate the non-physical states. Below we will consider the nuclei individually. 

HF 

20N, e. 

l t
. 26 

so u lon. 

The ground intrinsic state is adequately described by a prolate 

. 27 
.For this solution pairing corrections are small and can not 

be calculated by our methods (see 

. 24 
discussion in I). 

24M 
_!!B.· For Mg HF theory d . t 28 h d t t h t b t . pre lC s t e groun s a e s ape o e rl-

1 

axial (in agreement with su
3 

theory29 ). In I we discussed in detail several 

pieces of experimental evidence which show that this nucleus is best described 

b . 1 1 t . t . . t t 30 ' 31 
y an axla. pro a e ln rlnSlC s a e. Since then an exact projection of 

angular momentum has been carried out 32 which shows that this intrinsic state 

. does not produce an I(I+l) spectrlli~ for either the K = 0 or K = 2 bands which 

feature is in sharp contradiction to experiment. Further the K = 0 and K = 2 

band splitting is underestimated by l. 7 MeV. With Yale-Shakin t-matrix elements, 

the HFB equations give almost degenerate solutions: 1) the triaxial HF state 

with (H >= -133.14 MeV, 2) a prolate paired state with (H >= -132.53 MeV, and 
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3) an oblate paired state where ·(n >= -132.05 MeV. From the discussion in the 

last paragraph we rule out the H~ solution as a suitable intrinsic state. 

24 . . 33 
Recently, the quadrupole moment of the first 2+ state of Mg has been measured 

and is found to have a negative sign consistent with a prolate shape for the 

intrinsic state. This rules out the axial oblate solution. The axially symmetric 

prolate solution seems to be consistent with experimental data. It trivially 

gives the I(I+l) spectra for the K = 0 and K = 2 bands. The cranking value of 

the inertial parameter for the ground band is found to be 0.33 MeV, and the 

unperturbed position of the lowest K = 2+ two quasiparticle state is 4.81 MeV. 

The paired prolate intrinsic state gives a much more consistent description of 

experimental data than any HF state-. 

288. I . 
L t lS well known thBt HF predicts two nearly degenerate and 

orthogonal solutions, one being axially symmetric prolate and the other oblate. 

· The ordering of the two states, based on the value of ( H ) , depends on the 

t . 1 f d 22,34 . . par lCU ar orce use . Experlmentally one does not see two low-lying K = 0 

bands and it has been theoretically shown that the bands can not be separated 

35 ' 36 by mixing.· Furthermore recent experimental measurements of the quadrupole 

moment of the first 2+ state show that the band is in fact oblate. But the 

ground state band deviates considerably from an I(I+l) spectrum since the J = 0 

•member of the band is too low. 37 It has recently been suggested · that this 

depression could be explained by the interaction of the J = 0 member with a 

coexisting spherical state. However HF calculations with realistic forces pre;.., 

diet a spherical state that is much too high to be associated with the coexist;..' 

ing spherical state seen at 4. 98 MeV. UnfortJnately the solutions to the HFB 

equations also give force dependent results. The Yale t-matrix gives identical 
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results to HF because both the prolat·e and oblate HF solutions have too large 

single particle gaps to permit pairing correlations using our methods. However 

with the NDKB potential, we find ru1 isospin paired axially symmetric prolate 

solution almost degenerate with the prolate and oblate HF solutions. This H:F'B 

prolate solution has a significant overlap with both the HF solutions since all 

the single particle states are partially occupied because of the pairing cor

relations. With this potential one can discard the prolate HF solution because 

of its small energy gap and the prolate HFB solution because of its large overlap 

with the oblate HF solution. The latter solution appears to be in essential 

agreement with experiment if the coexistence picture is accepted. However we 

are unable to produce a low energy spherical solution with any of the potentials 

used. 

32s. HF theory preaicts a triaxial intrinsic shape for 32s. This state 

is very peculiar having the inertial parameters about all three axes equal and 

a vanishing quadrupole distortion pararneter. 7 Physical predictions made from 

such an intrinsic state do not agree with experiment. However it is possible 

to interpret the experimental data using an axially symmetric intrinsic state 

if one allows for the coexistence37 of a spherical intrinsic state \vhich appears 

·at 3.(8 MeV. The solutions to the HFB equations again give three solutions 

with similar binding energies. With the Yale t-matrix we find the triaxial HF 

solution with ( H ) = -227.74 MeV, a paired axially symmetric oblate state with 

( H ) = -229.66 MeV, and a paired axially symmetric prolate state with 

( H ) = -224.53 MeV. All three solutions have significant overlap and only one 

can be an acceptable intrinsic state. The asymmetric-state can be eliminated 

from the experimental data. However since there has been no experimental measure 
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of the quadrupole moment of the first 2+ state, we can not choose between the 

oblate and prolate axially symmetric solutions. . 288. As 1n the case of 1 we were 

not able to find a spherical solution with a sufficiently low energy to be the 

coexisting state. 

This nucleus is very interesting because phenomenologically one 

can interpret the low lying spectrU)'l as being vibrational. On the other hand, 

HF calculations give a deformed oblate state ( ( H ) = -291.07 MeV for the Yale 

t-matrix) with a large energy gap and a small value of the inertial parameter. 

This intrinsic state of course predicts low lying rotational structure in dis-

agreement with experiment. The solutions to the HFB equations offer a possible 

answer to the problem. One obtains a paired oblate solution lower in energy 

than the HF solution ( ( H ) = -291.77 MeV). This HFB solution is remarkable in 

that its inertial parameter is unusually large (A= 0.62). This means that the 

rotational states appear at energies comparable with the two quasiparticle states 

with the result that rotational structure will be destroyed. 

A recent paper by de Swiniarski et al. 38 has 
1
used a coupled channel 
\ 

analysis of inelastic scattering data to determine the S
2 

and 13 4 values for 

the N = Z even-even nuclei. In Fig. 7 we compare our calculated values with the 

results of their analysis. The theoretical nmnbers are calculated •..,ri th the 

24 32 . ;6 
wave functions in Table II for Mg, S; and - Ar. We use the wave functions 

from Ref. 21 for 20Ne and 28si. In Fig. 8 we compare the inertial parameters 

calculated with these wavefunctions with the values obtained from experiment 

as discussed in I. We also plot the HF results. A comparison of Fig~ 2 in I and 

Fig. 8 show that the inertial parameter increa.ses in HFB over the HF + BCS approxi-

mation by 20%. As pointed out in Sec. IV, this is understood by the increase in 

the gap. 
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VI. CONCLUSION 

In previous works we have investigated the existence of generalized 

isospin (T = 0 and T = l) pairing with the assumption that the pair potential 

is diagonal in space-spin co-ordinates. The HFB equations have now beeil solved 

without making this approximation and also using "realistic force." All approxi-

mations to the HFB equations (HF and BCS, iterating between HF and BCS and HB 

+ BCS) have serious defects. They fail to approximate the exact (HFB) wavefunctions. 

The first two approximations underestimate the pairing energy (often by a factor 

of 2 or 3). The HFB canonical single particle basis often bears no similarity 

to the HF single particle basis. 

The third transformation of the Bloch-Messiah theorem may not be approxi-

mated by the unit matrix, nor is the pair potential diagonal in the c~onical 

basis. 

Iterating between the HF and the.BCS equations in an attempt to permit 

both degrees of freedom to interact with one another1 is an even worse approxi-

mation to HFB than merely solving the BCS equations with the trivial HF basis 

but allowing HF single particle energies to be modified by pairing. Presumably 

this results from the lack of self-consistency in the former method. To permit 

both T = 0 and T = l pairing it is necessary to use complex quasiparticle co-

ordinates. In practice, however, T = 0 pairing always supresses T = 1 pairing. 

Nevertheless the results regarding the equilibrium shapes remain much 

the same as in I: T = 0 pairing restores axial symmetry to 
24

Mg and 
32s and 

provides an explanation for the nonexistence of low-lying rotational states in 

36A r. We finally conclude that isospin (T = O) pairing is an important cor-' 

relation effect for light nuclei. As far as we .know, this is the only occasion 
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that pairing occurs in nature in other than singlet S states. Furthermore, 

the isospin pairing phenomenon is distinguished by the the largeness of the pairing 

energy. Much work, theoretical and experimental, remains to be done before a 

complete understanding of this phenomenon of isospin pairing is achieved. 
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Table I. HFB wavefunctions for the lowest energy nontrivial HFB solutions for 

24M . 328 d 36A g, an r. Calculations are done with the Yale-Shakin potential 

in the s-p-s-d shell basis. ~n .denotes the component of total angular 

momentum on the symmetry axis and the parity respectively for each orbital. 

E denotes the quasiparticle energies in MeV. The general quasiparticle 

transformation is displayed as a product of three transformations as explained 

in the text. 2 
In the column giving [ Im v 

12
] , (the sign of Im v 

12
) is given 

in the parenthesis. Note that v
11 

= Rev
12 

= 0 for all the solutions. 

A is the Fermi energy. 

Table II. The T = 0 pair potential (in MeV) in the canonical basis, corresponding 

to the solutions in Table I. 

'rable III. A comparison of pairing theories. EHF' EPAIR and ETOTAL denote the 

Hartree-Fock, pairing, and the tota~ energies in MeV. 

Table IV. Paired HFB solution in the s-d shell. Only non-trivial solutions 

are displayed. In the third column denoting the shape of the HFB solution, 

the shape of the trial HF wavefunction is also shown in parenthesis: 

P: prolate, 0: oblate, S: spherical. In case there is more than one HF 

solution of a given shape, they are distinguished by an additional member 

e.g. , Pl, P2, etc. The numbers in the gap column are the sum of the two 

smallest quasiparticle energies. 
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Table I. HFB Wavefunctions. 

lt1T E Transformation R [Imv12 J 2 Transformation D 

24Mg 

ld5/2 

5/2+ 3.777 1.000 (+)0.034 1.000 

ld5/2 1d3/2 

-3/2+ 2.651 0.167 0.986 (+)0.008 0.347 -0.938 

7.982 0.986 :..0.167 (-)0.684 0.938 0.347 

..Lsl/2 ld5/2 2sl/2 1d3/2 
I 

-0.747 0.504 
w 

1/2+ 2.158 0.247 0.923 -0.296 0.015 (+)0.014 :J.l43 -0.409 '-J' 
i 

5.058 0.926 -0.134 0.351 -0.036 (-)0.317 0.024 -0'1617 -0.175 -0.767 

6.503 0.285 -0.361 -0.888 0.021 (+)0.953 0.067 0.672 -0.622 -0.396 

49.655 0.024 -O .. Oll O.Oj6 -0.999 ( +) l. 000 0. 987 0.029 O.Jc55 -0.027 

lp3/2 

-3/2- 19.334 1.000 (-)0.997 1.000 

1P3/2 1P1/2 

1/2- 16.958 0.990 0.139 (-)0.996 0.570 0.821 c 
·::1 
:::;:: 
c< 

26.094 -0.139 0.990 (+)0.998 0.821 -0.570 I 
t--' 
\C 

\ = -9.150 MeV \.)""1 
0 
0', 

Cc0!1tinlieC1) 
,, . 



Table I. continued 

Sin E Transformat·ion R [rmvl2]2 Transformation D 

328 

ld5/2 

5/2+ 7.073 1.000 (-)0.981 1.000 

ld5/2 ld3/2 

-3/2+ 2.931 0.906 0.422 (+)0.527 0. 712 0.702 

5.337 0.422 -0.906 (-)0.949 0.702 -0.712 

lsl/2 1d(' ·.-
)/'-

2s1/2 1d3/2 

I 

1/2+ 3.238 0.322 0.937 -0.136 O.Oll (-)0.107 0.106 0.487 -0.533 -0.684 w 
()'\ 
I 

5.425 0.378 -0.260 -0.884 0.086 (+.)0. 480 0.039 0.643 -0.306 0.702 

6.468 0.868 -0.235 0.435 -0.052 (-)0.974 0.158 -0.591 -0.765 0.199 

55.521 0.010 -0.000 0.100 0.995 (-)0.999 0.981 0. 011 0.193 0.014 

1P3/2 

-3/2- 29.564 1.000 (+)0.997 1.000 

1P3/2 lp1/2 

l/2- 21.848 0.998 0.068 (-)0.991 0.734 -0.680 c:; 
0 
::d 

28.358 0.068 -0.998 (+)0.996 0.680 0. 734 r 
I 
f-' 

A. = -14.245 .MeV 
\0 
'Vl 
0 
()'\ 

(continued) 



C1' .... , 
;~ • 

·, 



DTI 

5/2+ 

-3/2+ 

1/2+ 

-3/2-

1/2-

Table II. T = 0 Pair Potential in the Canonical Basis 

24Mg 

1.372 

1.428 0.678 

0.678 -2.604 

1.189 0.378 -0.116 1.058 

0 . 3 7 8 -2 . 5 89 0.845 -0.458 

-0.116 0.845 2.547 

1.058 -0.458 0.367 

.-2.178 

-2.264 -0.022 

-0.022 2.537 

0.367 

1.656 

32
8 

-1.934 . 

3.355 0.466 

0.466 -2.166 

-3.707 -0.365 -0.530 -0.402 

-0.365 3.561 -0.103 0.019 

-0.530 -0.103 -1.940 -0.989 

-0.402 0.019 -0.989 -4.104 

3.411 

-4.153 -0.015 

-0.015 3.524 

36Ar 

-1.372 

2.508 0.425 

0. 425 -1. 526 

-3.862 -0.553 -0.264 -0.610 

-0.553 2.755 -0.256 0.039 

-0.264 -0.256 -1.360 -0.310 

-0.610 0.039 -0.310 -4.016 
··-

2.620 

-4.003 -0.034 

_;0,034 2.707 

I 
w 
()::> 
: 
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Table III. A corpparison of Pairing Theories. 

Method EHF EPAIR ETOTAL 
.. ~) 

24 
~ Mg 

HF + BCS -126.02 -6.31 -132.33 

Approx. HFB -126.53 -5.58 -132.11 

HFB -1211.73 -7.80 ~132.53 

328 

HF + BCS -219.01 -4.75 -223.76 

Approx. HFB -218.94 -4.88 -223.83 

HFB -215.32 -9.21 -224.53 

36 I 

· Ar 

HF + BCS -283.71 -3.39 -287.10 

Approx. HFB -282.76 -3.92 -286.68 

HFB -282.24 -9.52 -291.76 



Table IV. Paired HFB Solutions in the s-d Shell 

Nucleus Force Shape Mode EPAIR ETOTAL Q20 Q4o Gap 

20Ne Rosenfeld 2 Oblate ( 0) T = 0 -7.625 -41.697 -5·9 25.9 4.78 

Prolate (P2) 'l' = 0 -6.587 -41.444 '2. 7 -53.5 4.76 

Yale Prolate (S) T = 0 -2.324 -101.505 15.4 80.0 4.74 

24Mg Rosenfeld 1 Prolat.e · ( P2) T = 0 -6.438 -77.526 15.6 -14.9 5.68 

Oblate (01,02) T = 0 -6.551 -77.238 -13.0 40.8 5.44 

Rosenfeld 2 Prolate (Pl) T = 0 -4.576 -95.170 15.6 -0.5 5.20 
I 

Oblate (01,02,03) T = 0 -6.858 -93.865 -12.4. 58.1 4.80 
.(::"" 

0 
I 

Yale Prolate (P) T = 0 -7.802 -132.527 19.0 -12.1 4.32 

Oblate (01,02) T = 0 -17.205 -132.049 -12.1 31.4 5.98 

NDKB 1 Prolate (P) T = 0 -8.121 -110.388 15.9 13.4 4. 98 

Oblate ( 0) T = 0 -11.802 -109.301 -12.5 47.5 4.22 

NDKB 2 Prolate (P) T = 0 -9.637 -116.651 22.5 6.0 5.76 

Oblate ( 0) T = 0 -15.887 -114.131 -16.6 52.8 5.28 

28Si Rosenfeld l Prolate (02) T = 0 -7.234 -123.420 0.13 116.0 4.70 
c::: 
0 
::d 
t-< 
I 

Rosenfeld 2 Oblate ( 02) T = 0 -2.207 -150.041 -0.5 -96.5 5.72 
1-' 
\0 
\J1 
0 

Prolate ( 03) T = o -6.050 -147.808 0 .11~ 110.5 3.80 
0\ 

·(continued) 
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Table IV. continued 

Nucleus Force Shape Mode EPAIR ETOTAL Q20 Q4o Gap 

NDKB 1 Prolate (P ,S) T = 0 -9.933 ...,140.610 15.1 -20.9 3.76 

Prolate ( 02) T =0 -14.375 -138.733 3.1 -84.0 3.72 

NDKB 2 Prolate ( 02 ,S) T = 0 -8.359 -146.853 24.9 -72.0 4.40 

328 Rosenfeld 1 Oblate (02,03) T = 0 -5.835 -178.385 -1.3 -110.0 5.62 

Prolate (P) T = 0 -7.276 -1"(8.179 6.5 -94.5 5.76 

Prolate (S) T = 0 -12.724 -176.173 3.4 37.9 4.74 

Rosenfeld 2 Oblate (01,03) T = 0 -1.385 -212.901 -1.5 -95.8 5.30 

Yale Oblate (NDKBl-O)T = 0 -13.233 -229.658 -n.o 2.5 5.86 I 
+:--
!--' 
I 

Prolate (p) T = 0 ~9.208 -224.531 13.6 -66.3 4.58 

NDKB. l uulate (o} T = 0 -6.988 -179.696 -1.5~5 5. 5? .... ~ 3.24 

Prolate (P,S) T = 0 -6.031 -179.266 12.8 -38.2 3.94 

NDKB 2 Oblate ( 0) T = 0 -9.977 -183.910 -20.4 0.9 4.14 

Prolate (P,S) T = 0 -10.953 -183.153 16.8 -52.6 5.94 

36Ar Rosenfeld 1 Prolate (P ,S) T = 0 -7.722 -237~234 4.9 -26.3 4.36 

Rosenfeld 2 Prolate (P,S) T = 0 -5.079 -277.826 3.9 -21.5 3.74 

Yale Oblate (P ,S) T = 0 -9.523 -291.765 -11.3 -37 .o l+. 58 c::: 
0 
!:1::1 
t-< 

NDKB.l Prolate (P ,S) T = 0 -5.904 -224.664 6.0 -17.7 2. 72 I 
!-' 
\() 
\Jl 

NDKB 2 Prolate (P) T = 0 -11.260 -226.519 7.5 -19.9 3.94 0 
0\ 
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FIGURE CAPTIONS 

Fig. 1. Constant density contour plot for the oblate HFB solution of 
32

s 

within the space of s-p-s-d oscillator orbitals. The calculations were 

done for the NDKB or Rms radius = 2.877 fm. The densities are given in 
. -3. 

units of 0.276 fm . 

Fig. 2. Constant density contour plot for the oblate HFB solution of 32s 

within the space of s-p-s-d-p-f orbitals again using the NDKB face. Rms 

radius = 2.870 fm. -3 The densities are given in units of 0.296 fm . 

Fig. 3. Constant density contour plot for the prolate HF solution of 24Mg 

obtained with the Yale-potential. Rrns radius = 2. 853 fm. The densities 

4 -3 are givenin units of 0.2 0 fm . 

Fig. 4. Constant density contour plot for the prolate HFB solution of 24Mg 

obtained with the Yale potential. Rms radius = 2. 856 fm. The densities 

are 'given in units of 0.246 rm- 3. 

Fig. 5. Constant density contour plot for the lowest oblate HF solution of 

36 Ar obtained with the Yale force. Rms radius = 3.017 fm. The densities 

-3 are given in units of 0.302 fm . 

Fig. 6. Constant density contour plot for the oblate HFB solution of 36Ar 

obtained with the Yale potential. Rms radlus = 3. 018 fm. The densities 

are given in units of 0.300 rm- 3 

Fig. 7. The calculated values of distortion parameters S2 and S4 are com

pared with the experimental values of de S\riniarski et al. 38 For 20Ne and 28si 

the theoretical value corresponds to the HF value. 

Fig. 8. The theoretical value of the moment of inertia parameter h /2~ (in 

MeV) are compared with the experimental values. ""' 28s· d 32s t.h · for l an , e experl-

mental values given are as extracted in Ref. 37. 20 28 
For Ne and Si the HFB 

value corresponds to the HF value. 
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Six orbitals 

X BL6912- 6350 

Fig. 1 
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32 s l: 
!. 

N DKB H FB 

10 orbitals 

XBL6912-6346 

Fig. 2 
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24Mg 

Yale HFB 

XBL6912 • 6349 

Fig. 4 
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36Ar 

Yale H F 

--------0.3 7-------
....._ _____ 0.23-,-· ----

-----0.09------

XBL6912- 6351 

Fig. 5 
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36Ar 

Yale HFB 

XBL6912-6347 

Fig. 6 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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