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ABSTRACT 

A generalized quasiparticle transform~ation is 

presented which includes- n-n,p-p, and n-p (T = 0 and T = 1) 

pairing correlations. The quasiparticle co-ordinates 

are required to be complex. The resulting gap equa ti.ons 

for N = Z even-even nuclei are solved for the nuclei in 

the sd shell. To oermit interaction between the Hartree-. .. 
Fock (BF) and pair potentials, the Hartre~-l?oc~<-Bogoliubov 

(HF3) equations, including both T = 0 and T = 1 pairing, 

are also solved for these nuclei. 

Although T = 1 pairing correlations are not significant, 

T = 0 pairing- correlations play a ver-.1 important role, 

rectifying many of the failures of the HF theory in this 

region. T = 0 pairing restores axia.l symmetry to the 

equilibriu1n shapes of t·ig24 and s32 and explains the 

vibrational nature of Ar 36• These conclusions are 

reproduced by the following nucleon-nucleon interactions: 

the Yale ~ -matrix (s-p-sd), the Nestor-Davies-Krieger

Baranger effective interaction (s-p-sd and s-p-sd-pf), 

and the Rosenfeld effective interaction (sd). 

Evaluation of various approximations to HFB is 

facilitated by deriving the canonical form of the density 

matrix and the pairing tensor for generalized isospin 

pairing. The general quasiparticle tL"a.nsformation .is 

equivalent to the orod~ct "6f three tra:n~formations:. "(1) an . . . 

isospin-conserving rotation in particle space (canonical 

. 
• 

• I 
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basis), (2) an isospin-gen~ralized .. special" qu9-siparticle 

transformation, (3} a rotation in quasiparticle space. 

The canonical basis often bears no resemblance to 

the corresponding HF basis. The third transformation 

may not be approximated by the unit transformation, nor 

is the pair potential diagonal in the canonical basis. 

The BCS approxirra tion of neglecting elerr.ents of the 

pair poten-tial connecting different spatial orbitals is 

thereforeunjustified. Iterating betueen the HF and the 

BCS equations in an attempt to permit both degrees of 

freedom to interact \>Tith one another is an even worse 

approximation to HFB .. than merely solving the BCS equations 

with the trivial HF basis. 

The HI!'B equations are derived by a variational 

principle. The self-consistent symmetries of the HFB 

solutions are discussed. Usage of the same effective 

interaction in both the HF and the pair potential is 

justified. 
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INTRODUCT!ON 

A satisfactory theory of nuclear structure should 

explain the properties of nuclei in terms of the inter-

actions betHeen their constituent particles. It is 

' convenient to neglect relativistic effects and the 

possible e~dstence of many-body forces. The Schroedinger 
-

e::{uation -vrith bvo body interactions should then provide 

a fundamental description of a many nucleon syste:-:l. T'.ne 

first order description one should arrive at is the shell 

model. 

T'.ne nuclear shell model of ~-layer and Jensen (1950) 

~-ms the first successful attempt to explain some 

elementary properties of nuclear structure in terr~s of 

an independent particle model. Each nucleon moves in a 

stationary orbit determined by a central potential lvhich 

is assuned to represent an .average effect of the actual 

internucleon forces. As tJ:le~e forces are short-ranged 

and strong, it is not evident that they give rise to 

such an independent particle description. The early 

shell model maJ<es no attempt to derive the average 

potential from the real forces. 

The Brueckner-Goldstone theory of nuclear matter 

supplies this fundamental justification of the shell 

model'for an infinitely large nucle~s containing an 

equal number of uniformly distributed .protons 

~- .. 

. ... 
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and neutrons. The Coulomb force is ignored. The 

value in considering such a system is that the single 

particle wave functions are knmm to be pla,ne 't·Tclves. 

Unfortunately real nuclei are finite. Obtaining the 

¥laVe function becomes a formidable part of the theory·~ 
I 

Hartree-Fock (HF) theory is a good first approximation 

in our a tter.ipt to justify an independent par·cicle model. 

It has the advantage of providing a self-consistent 

potential. An independent particle description of nuclei 

did not seem plausible before the I··~yer-Jensen shell 

model and the Brueckner-Goldstone theory. It is for this 

reason that HF 't·Tas first applied to nuclei. (1963) so 

long after it had been successful in determining the v.>a ve 

func~cions of atomic electrons (1930). It has been most 

extensively applied to nuclei in the 2s-ld shell. The 

intrinsic state properties (deformation,moments of 

inertia) of many nuclei in this shell are not correctly 

predicted., by HF theory. 

The shell model or HF potential does not account for 

a.ll effects of the actual inter-nucleon forces. Residual 

cor~onents of these. forces introduce additional correlations 

into the vmve functions. One such correlation is the 

pairing effect• Two nucleons in time-reversed degenerate 

orbitals have a large spatial overlap and therefore form 

a pair.with an increment in binding energy. ·A theory·of 

pairing correlations Has obtained ,.,hen the Bardeer;-Cooper-

Schrieffer (3CS) - Bogoliubov 
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theory of superconductivity was adapted to nuclei by 

A. Bohr, B.R. i•bttleson, and D. PineG and by s. Belyaev. 

~1e independent modes of the system are no longer 

particles but quasiparticles ( a linear combination of 

particle and hole). In the most familiar forr;1 only 

proton-proton (p-p) and neutron-neutron (ri-n) pairing 

are considered. ~'le find that such correlations are 

not important in the 2s-ld shell, and therefore do not 

explain the fail1..2.re of :i:IF. 

~ere are compelling physical arguments to demonstrate 

the likelihood of neutron-proton (n-p) pairing being 

an important correlation in N = Z even-even nuclei. 

~e neglect of n-p pairing cannot be justified. t·le 

present a generalized quasiparticle transforr:Btion \•7hich 

includes p-p, n-n, and n-p (T = 0 and T = 1) pairing 

correlations. A simple set of generalized gap equations 

are derived for N = Z even-even nuclei. These gap 

equations "t-lere first derived by Goswami and Chen with the 

Green's function rather than the quasiparticle formalism. 

~e BCS theory has the defect that ... 

the pairing correlations are not permitted to alter 

the underlying single particle basis (HF degrees of 

freedom). A sa tis factory theory should alloH HF 

and pairing degrees of freedom to interact \-ii th each other.: 

in a self~consfstent .fashion. The general quasiparticle 

transformation provides the appropriate formalism:· 

,:·. 

.. j 

. I 

i 
.·'I 
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Hartree-Fock-Bogoliubov (HFB) theory. 

The general quasiparticle transformation is expressed 

in terms of the isospin-generalized "special" quasiparticle 

transforma tior·l to demonstrate the relationship between 

HFB and the various approximations to HFB: HF-BCS,iterating 

· bett·leen Hartree-Bogoliubov (FIB) and BCS, and iterating 

betHeen appro::dmu.te H3 {a modified HF) and BCS. ~"ie 

examine the conditions for which each of these approximations 

is valid. 

The effective interaction appropriate for the HF 

potential is the t -matrix. Pairing correlations alter 

the t -matrix in a fairly obvious fashion. li more 

perplexing problem is whether the t -:Litatrix may be used 

as the effective interaction in the pairing potential. 

The HFB equations, including T = 0 and T = 1 pairing·, 

are solved for the N = z even-even nuclei in the 2s-ld 

shell. T = 0 pairing correlations dominate over T = 1 

pairing correlations in all cases of physical interest. 

1-tlny of the discrepancies of HF are resolved. T = 0 

pairing restores axial symmetry to the equilibrium 

shapes of 1·1g24 and s32 and indicates a Vibrational,rather 
36 

than rotational, structure for Ar • 

. ':' 
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I o THE HAMILTONIAN 

lo Schroedinger's Equation 

A fUndamental theory o£ nuclear structure should 

explain the properties o£ nuclei in terms of the inter-
. . . 

actions between their constituent particleso A bound 

nucleon has a binding energy o£ 5 to 10 Mev and a 

kinetic energy of about 25 Mev.o Since the nucleon mass 

is about 1000 Mev, and the rr - meson mass (lightest 

particle exchanged .between: nucleons) is 137 Mev, it may 

be assumed that a non-relativistic description is a good 

approximationo Inter-nucleon interactions may then be 

represented by a potentialo The .possible existence of 

many-body :forces . is neglected o The Schroedinger 

equation'with two body interactions is therefore chosen 

as the fundamental. equationo 

. Hff'/ == £ IP> 

H~ TtV = 

The techniques developed to solve (lol) are not 

su:f£iciently rei'ined to determine the validity of our 

assumptionso. 1 

(lola) 

(lolb) 
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2o Model S·paces and Effect! ve Hamiltonians 

It is customary to derive the Hartree-Fbck (HF) 

equations beginning with the Hamiltonian (l.lb). The 

HF potential is then described in terms of matrix 

elements in a shell•model basis. 

< <P '"' ( I ) cP i <:z. ) I 4', 2.. I c/)1<. (I) ¢ _q cz..) / 

One then obserV:es that if the interaction Ml. has a hard 

core, the matrix elements diverge, rendering the HF 

equations meaninglesso Brueckner theory is then invoked 

to justifY the replacement of ~ by the reaction matrix 

K (which has well-defined matrix elements). 

When HF is generalized to Hartree-Fbck-Bogoliubov (HFB) 

to include the effects or pairing correlations, we encounter 

a variety of contradictory prescriptions for obtaining the 

effective interaction: 

(a) The same K-matrix used in HF may be used in both the 

HF and pair potentials in HFB. 2 

(b) The effective force to use in HFB is the K-matrix 

renormalized to account for the smearing of the Fermi 

surface by pairing correlati'Ons. 3 

(c) The efrective·force to be used in the pair potential 

is not related to the K-matrixo 4 

We follow a procedure which removes these ambiguities. 5 

Every nuclear structure calculation begins with a 

truncation of the space of basis states. fhis requires 
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the replacement of H by an effective Hamiltonian Heffo 

With certain approximations the effective interaction 

reduces to the reaction matrix. Depending upon how we 

choose the truncated (model) space, we arrive at different 

definitions for the reaction matrix, and different 

conclusions concerning the justifiability of using the 

reaction matrix in the pair renormalized HF potential and 

in the pair potential.· For an appropriate choice of the 

model.space, various nuclear structure theories ( HF, BCS, 

HFB, RPA) should be considered as successive approximations 

to the eigenfunctions of Heff. After determining Heff we 

shall consider these theories. 

The Schroedinger equation for a many-body system with 

two-body interactions was given in (l.l)o A single particle 

pot~ntial 

.., 

U = ~ U,_· 
1.~ I (1.2) 

is introduced. It is chosen to absorb the major effects 

of the two-body interactions 

separated into two parts. 

Af .. 
C.J 0 The Hamiltonian is 

where Ho contains only single particle operators 
A 

H o ~ T t u : ~ ( T .. · t u ~.·) 
,':I 

(1.3) 

(1.4) 

and H. contains the residual interactions unaccounted for 

by u • 
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A 11 

H, ~ v -u == · ~ ;V'" · - ~ u" 
• • . J '':./ '<J :t 

Of course H is independent of the choice of U o However 

the wave-function I PI and energy E will be determined 

through a perturbation expansion in powers of· H, • A 

judicious. choice for U can ensure a .faster convergence 

o.f the perturbaticiri series. 

The single particle. eigenfunctions of .Ho satisfy 

The set {I a:>>} form a complete orthonormal basis of single 

particle states. Many-particle eigenstates of He; are 

A-dimensional Slater determinants constructed i'rom 

different c.ombinatlons of the one particle states. 

I~~) = _!_ 4'c.(l) cp, (I) 4>c (I) ' ' . tP.z. (I} 

fA!' cp~ (2) (j)b(2..J. cPc( z) c/Jz C z) 
q;Q. (:,) tPb C3) (JJc <3) tPr: ( 3) 

C/Jo. ( fJ) (/JJ,(/J) t/Jc(/1) . . . cPt (/)) (1.7a) 

(1.7b) 

where E£ is simply the sum of the single particle energies 

o.f the occupied states. 

£.: : z: €q, . (1.8) 
¢ c.cc~p ;eJ. 
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The unperturbed ground-state -wave function 

ground state energy Eo are obtained by filling the A 

lowest energy orbitals. 

The set { 1 ~t')} . form a complete orthonormal 

basis or A-particle states, so that 

1.' 

Substitute (1.3) and (1.9) into (l.la) and .form,_ the 

scalar product with <.. §,·( • 

~ < ~~-·111/H,I!/) ai =· 1, < Cf,·f £l :Ij> a/ 
. J . i 

or 

~ { £ ,· f ... i t < ?f ~·I H,l f i I J O.J :: t a<-. 
J. 

and 

(1.9) 

{lolO) 

(1.11) 

We have simply rewritten the Schroedinger equation as 

{1.12) 

Be .fore proceeding we must note two di.f.ficul ties: . 
(a) The expansion (lo9) is over an infinite number o.f 

basis states, ,clearly making our Schroedinger equation 

(1.12) somewhat intractable. 

{b) The matrix elements <~dH.!~/) may be expressed 

in terms of the two body matrix elements 

The nucleon-nucleon intera_ction ;V, 'Z. , which is determined 

from two nucleon scattering data, becomes strongly 

' " ~ .. 
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repulsive at small particle separations. This short 

range repulsion is often approximated by a hard coreo A 

schematic representation of the potential is given in 

Figure (lol). 

v 

~---rc~------~--------~· r 
Figure (lol) 

r is the separation distance. The core radius c is 
' . . . . 

about 0.4 fm. The presence of this repulsive core ensures 

that nuclei maintain a finite size. The wave-functions 

~"'I 4') are commonly expressed as linear combinations of 

harmonic oscillator wave-functions, which may have non-zero 

overlap near r:O. Therefore the hard core also ensures 

that the two body matrix elements of N"t:i will diverge. 

This is unfortunate, for it not only renders the 

Schroedinger equation (1.12) useless~ but it also threatens 

to make a perturbation expansion in terms of H, 

(since each t~rm in the expansion diverges) • 

meaningless 

These are certainly formidable difficultieso Yet they 

may.be circumvented. 

The concept of a "model space" is introduced to 

alleviate the difficulty of solving an infinite dimensional 

eigenvalue problem. The states not included in the model 
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space will renorm~lize the interaction so that V is 

replaced by an "effective interaction" yeff. Matrix 

elements of veff will generally be well-behaved, even 

though V contains singularities. The eigenvalue of the 

effective Hamiltonian, Heff = T + yeff is E, the true 

ground state energy of the system of interacting particleso 

The eigenvector of Heff is the "model wave-function", 

which exactly reproduces the component of I !f'> inside the 

model space. The component of IP) outside the model space 

can also be :retrieved. The technique is very powerful, and 

its results are implibit in all nuclear structure 

calculations. 

Denote by D the space spanned by the set {I j,:) 1 • 

Select a number NtJ · of this set to form a ~ 

dimensional model space d. The operator ) projects onto d. 

P = t I ~c'/ < ftc: I 
,·~J 

(lol3} 

The operator Q projects out of do 

G== ~ l.i(.·><~c:f (lol4) 
C:~J 

Clearly 

(lol5} 

The model wave-fUnction is defined by 

- I tFc~ > = PI tp > ~ ~ a.;. 11-/'/ · (lol6) 
. ceJ 

.. 
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Define the Green function 

6=- (¥ 2J t ~-) <. §"c: I 
.:.. (lol7) E-Ho ,·tel £- Ec: 

. The wave funct~on t'$1/ may be re-expressedo ~ 

(lol8) 

Rewriting (loll). 

(1~19) 

Solving (lol9) for Cl.i and substituting into (lol8) 

(lo20) 

Define the effective interaction Hfff o 

(lo21) 

•• 
Substitute into (lo20)o 

Substitute (lo22) into (lo2l)o 

(lo23) 
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The effective interaction Hyff is therefore determined by 

(1.24) 

where the E dependence of the effective interaction 

(through the energy denominator in G) has been explicitly 

noted. The matrix representation o.f Hyf:f is 

< Qc: J H(( 1 ( E> 1 ~ i / == <~(:I H,t ~J / +-

~ < ~c:l Htf ~I< I< ~I< I H/ff (e) t.¥.; > · 
l<tfd c. -£1<. . 

(1.25) 

To obtain the counterpart of (1.11) for the model space, 

substitute (1.21) into (1;19). 

(1.26) 

Expanding .. / WJ > as in (1.16) provides the eigenvalue 

equation :for the model space.· 

· _ eH 
. .~ { t ,· [" j + < ~ d If, . ( e J 1 .Ii > J a J ~ e a,_. 

Jc..J 
(1.27) 

This'equation is valid for all i, not just :fori E d. 

Consider the set o:f equations in (lo27) :for which i c do 

They constitute an Nd dimensional eigenvalue equation. 

(1 .• 28) 

One o:f the eigenvalues o:f 

H eff <£) ~ H()+ H,eff (£) (lo29) 

. •. 
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is the exact ground state energy of the system of inter

acting particleso The corresponding eigenvector of Heff 

exactly reproduces the component of I~) in do (lo25) 

and (lo27) are coupled through the E dependence of Hfff o 

One must first. guess E, then solve (lo25) for H!ffo 

Solving (lo28) determines a new value for E which is used 

to re-calculate Hi.ff o The procedure is continued until 

the results are the same on two successive iterationso 

Selecting icd,. j6d,. (lo25) and (lo27) are solved :for E and 

the component of l P> in do Then choosing if d, jf d, (lo25) 

and (lo27) may be solved for the component o:f I q;) outside 

of do ·Equations (lo25) and (lo27) therefore constitute 

a restatement of the Schroedinger equation (loll)o No 

information has been lost nor have any approximations been 

madeo 

Unfortunately, since Heff is a function of E, the 

eigenvectors of Heff will in general not be orthogonalo 

(Even though the various solutions I~) are orthogonal, 

their projections onto the model space might not be 

orthogonalo) 

Choose the model wave function to be normalized to 

unityo 

Then 
(lo30) 

(lo31) 

By iterating (lo24) we obtain an equivalent expression for 

·Heff 1 0 

(1.32) 
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Define the effective interaction ye.ff by 

Combining (lo4), (1.29), and (lo33) 

veff CE) ~ Hfff u:.) + u .. 

(lo33) 

(lo34) 

Equation (lo33) is a natural starting point.for nuclear 

structure rialculations. If the choice ot the model space 

is such that its dimensionality is too large to permit 

exact diagonalization of Heff, then other methods must be 

considered 'to obtain approximate eigenfunctions· of Heffo 

HF, BOS, HFB, RPA. .may then be interpreted as successive 

approximations to an exact diagonalization of He.ffo There 

is an alternative interpretation of these theorieso To be 

more explicit we consider various choices for the model 

spaceo 

Ao The model space d is equivalent to the ent1r.e space Do 

.From (lol6), J Pd)-= If'> o ftom (lol7) G = 0 so that 

Hfff = H1 (lo24), and (lo27) is equivalent to the 

Schroedinger equation (l.ll)o 

B. The dimensionality of d is f1nite but greater than 

unityo 

.Fbr example,let U be the harmonic osc1llator(HO) 

potentialo 

(lo35) 

.. 

. " 
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Then H0 = T+ UHO has eigenfunctions 

where N = principal quantum number 

1 = orbital angular momentum 

j = total angular momentum 

m = projection of j on body-fixed Z axis 

r = isospin projection ( + i for proton, 

- i for neutron). 

(lo36) 

Number tl:le orbitals in the order of increasing energy: 

• Choose an energy . 

cv>tiJ. (1.37) 

Choose the model space to consist of all A dimensional 

Slater determinants where the single particle orbitals 

are HO states with CL"~ E"v • 

The HO spectrum is presented in .Figure (1.2). 

tJ=3 

N = Z 

-----------tv. 
l. 

Hs11. 
( 

2. f'lt~ 

l.f''~ I 1/"l. 

-- -- - -- ._ - - -- t:. v, 

( 

fchf.a. 
'2. s,,"&. 
I c:t 5/-a. 

l--
(--- 151/l. 

Figure (1. 2) 

.'.· •. ; '· .•. ,, ,.4. ' .• 



22 

For nuclei filling the 2s-ld shell the dashed lines in 

Figure (1.2) are two reasonable choices for Ev • Suppose 

we chOose Cv = Cv • The number of proton states with 
I 

cc ~tv is 20 • Mg24 has 12 protons. The number of 

ways of putting A indistinguishable particles in N states i ::: 

IV! # . 

The number of possibilities for 12 protons in 20 states.is 

125,970. Similarly for the neutrons, so that the total 

number of configurations is (125,970)2 o If we choose 

€v = tvl.. , the number of neutron or proton states is 40, 

giving rise to (4,116,628,880)2 configurationso Even 

considering Mg24 as ari inert o16 core with 8 particles 

in the 2s-ld shell leaves 4 protons (neutrons) in 12 states: 

with (495)2 = 245,025·configurations •. Clearly we have 

exceeded the bounds of even the most sophisticated computer. 

Methods for obtaining approximate eigenfunctions of Heff 

are deve·l-op.ed in the following chapters. 

The effective interaction must now be determined. For 

a suitable·set of approximations it can be reduced to the 

reaction matrix. Expand equation (1.32), recalling that· 

H1 = v- u o 

H,elf (£) = { V+ VGV -t VGVGL/ + •·· - U} + ··· 
.rP 

= { V ~ (GV)
171 -U}+··· 

(1.38) 

111LO 

The terms outside the bracket contain at least one U 



,, 

23 

.factor. . I.f they are neglected 

lob m 
H,eff(t) = .v ~ C GV) - U · (approximation) (1.39) 

m-=-c 

Combining (1.33),(1.39) 

V eff(£) (G V) I'YI (1.40) 

or 

(1.41) 

To obtain .the reaction matrix it is assumed that the 

only important intermediate states consist ·Of multiple 

scatterings between two particles. More precisely, it is 

assumed that 

Q ~ Q .. p (approximation) (1.42) 

where G-Lp .= ·~·· I £J<:C'Z.pJ ) ( §.1< cz.f) / , {1.43) 
. KC-z.f') .. · . 

The ·state 1 ~1<. npJ) has two particles in states Lm) , · ~n) 

with{m,tn'>~v, the remaining particles having 6,:~6v • 

It is also assumed that all particles except the pair under 

consideration remain inert. The matrix element 

<:!.'-·( veff(£)1 !i) then reduces to the two body 

matrix element 

i.f particles 3,4, ••• A have identical states in con.figuratlons 
. ' \ 

l~c:)1 /i£i). Otherwise <2,·1V{'ffl£i):::O. 

'' ·,,: ·. ~:,, I 
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Q2P then reduces to 

~ tmn)<mnl. (approximation)(l.44) 

€m) en> cv 

With these approximations veff becomes the reaction matrix. 

K (e.) -= AT + ;if ?~u" K (E) 
(1.45) 

The reaction matrix is a two-body effective interaction. 

Even though Q = Q2P• if we had not required that all 

particles remain inert except the pair undergoing 

multiple scattering, then the ,effective interaction would 

contain many-body terms. The two-body interaction 1'\J",·j 

can therefore give rise to many body effective interactions 
eff 

Nt}K·,. • 

K (E) has the matrix representation 

< L'J I K ( £ ) I J. I > = < L' J 1 ,N I ,4 .P ) + 

. i,' <: t' ,( I IV I m Yl ) < m 11 I J< <E.) I _A f ) · 
€~,t¥) )ev £.- H o (1.46) 

Actually this representation of K is deceptiveo The 

energy denominator 1/(E - H0 ) depends not only on the 

active particle states .Lm), ln) .and the passive hole 

states 1k) , )1) • It also depends upon the energies of 

all the passive particles. 

= I 
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where Ei is the energy of the state J fi:) t'rom which 

I !.t t'2. p>> is derivedo Therefore K depends not only on 

E. It is also a function of the configuration 1 ~i) • 

For. each I :fc:) there is a different K (E). This is a very 

undesirable feature. If the variation in E1 is small 

compared to typical values of ( el" te.R-tm -en), then K (E) 

will b~ configuration independent. · (This effect should be 

distinguished .from the state, or E, dependence of K.) 

In the following example the physical processes which 

contribute to K will be more thoroughly discussed. 

Co The dimensionality of the model space is unityo 

The model space contains a single configuration l.i •) o 

The model space eigenvalue equation (lo28) is simply 

Er. t- < ~D f H.rff u~-Y 1 ~b)== £ (lo48) 

or IJE = l~. -£ o -= < ~c / H Iff{ ( l J J £ l · 

Inserting (lo32) 

oo . M 

/JC ~ ~ < ~0 I HI { Q H, } I !"~ ) 
nPO £. _ H" 

(lo50) 

where Q :: ~· 1 J_ ,· ') <_ ~,·I . (lo51) 
'-4-0 

This is just the result of Brillouin~Wigner (BW) 

perturbation theoryo As in (lo38) - (lo41), we drop all 

terms in Hfff which contain u·except the term- Uo Then 

the energy added to the system through the interactions 
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< .{D I V eff (E.) l ~&) 

where vef:f is defined in (1.1-+l)o 

As a particular example choose U to be the HF potentialo 

u = UHF. 

< T t U tt F ) c.· I 4> ( (..) '> ~ c <P I <t> ( t.'J > 

(ftUHF) l fHF > ·~ tl{f I~HF'> 
(lo52) 

IJ 

e_HF = ~ (c.: 
.t'=-1 

(EHF has the meaning assigned in (lo8),rather than its 

more :familiar senseo) I~HF) is an A- dimensional 

Slater determinanto Each single particle orbital I 4>) 

is a linear combination of HO orbitals. The A lowest 

energy states are filledo Define a Fermi energyo 

. . .. 
. f,~~n. 

----:- -- ·_-£Jl-t!_t_F 
----- £.,. €_,_, 

l, 
-----~-~ 

€, 

Replace Q by Q2P'' which now has the form 

Figure (lo3) 

(lo53) 

. (Compare w1 th ( 1 o 44) • ) The energy denominator 1/ ( E - H0 ) 
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has the value 1/(£-[HF ttk+t.t .... t,.,·c,J, · where lK) and I J) are 

the hole stateso K then has the matrix representation 

< L. J · 1 K c e J 1 K R) =- < L. i 1 Af' 'K P > t 

2 < l. J'l AT I f17 11 >< rn n I K. tE.) I k J ) 
(lo54) 

Since d consists ofonly one configuration,the problem of 

K(E) being configuration dependent does not ariseo 

. It is now appropriate to note the inco;nvenience of 

calculating E in terms of an infinite series in .which 

each component contains Eo Gold~tone's linked cluster 

theorem provides a solution to this difficultyo If we 

include contributions to E corresponding to linked 

diagrams only then the perturbation energy is 
ob . 

.£1£ :: ·.~ ( ~0 { HI { Q H1 l M / :fo) • 
l'ne.tJ £CJ- H., J L 

(lo55) 

(A linked diagram is one that. can not be separated into 

two parts without cutting any lineso) comparing with 

(1.50), note that the energy denominator 1/ {E - H
0 

) 

has been replaced by 1/ (E0 - H0 ). This f'e~;J.ture is 

especially desirable for large systems, since 
I 

= 
A£ 

which vanishe:s as A increa·seso That is,_ terms in the BW 

expansion past first order yield negligible contributions 
c 

to AE for a large system. The· BW series converges 

extremely slowly.. The factor 1/ (E
0 

- H
0

), however, is of 

~--. .. ·f :~. ·.,> . ' .. ·•·.. . '' .· .. ·: .. ~ . 
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order one for all A. 

For our example, E0 = EHF • The reaction matrix 

(1.54) then assumes its most familiar forll1. 

< if I K I K J > % < t i I Alll<..R) +. 

< c.'j'lATimn)<mn/1<. 
6 K t e.e - em - t_ n 

(1.56) 

Description of the physical processes contributing 

to the reaction matrix is aided by the following diagrams. 

creation of a particle in state 1m) 

where Cm) e F 

destruction of a particle in state ·1m) 

where € m) t F 

destruction of a particle in state I m) 

where Em< tF (creation of a hole) 

creation of a particle in state {rn) 

where Cm < €. F (destruction of a hole) 

particles in states 

scatter into states 

ti.)J tj> 
II<)) I.J) 

Consider the process whereby particles in occupied 

states ti)) l j) forward scatter, remaining in • 

. ' 
' ' 
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The energy contribution is < 1..'/IATI t'J) • Summing 

over distinct pairs 

0!_ Jo· u --· -- ... · :. 1 ~ . <: (. i I /V I c"{) -2. c~.., c.i i( cF (1.57) 

Let. particles in occupied. states I L) 1 I j) sea tter 

in to unoccupied states I I< >; I 1} · . (There by 

creating holes in I i), I j? o At a later time the 

particles in It<), I}) may scatter back to their original 

states (annihilating the holes). This is a second order 

process with intermediate state Emergy 

Eo - H0 = (sum of hole energles) - (sum of particle 

energies). 

l K .. ·.P. i 0--*-. -~-

L 

----- ~,~ ~{ < Er 

(. "' (,q > e.., 
(1.58) 

The third order process is 

~ ~ ~c.'.(IAF/mn)<mni~II<R? <I<R/A.Fit:j) 
(tt'+ €J -€tn -C'nJ( ~,·+ c J- c l< ..- cp) J 

rtJ n 
J :::: 

K. J c c.·
1 
c / ~ c F (1.59) 

.,.._-~- (, r,; t ,e) 6 ~J c." > c f 

and so on. 

Returning to our expression for the reaction matrix 

(lo56), let. i =· k, j = 1, and iterate. 
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< L'i I K I t,' i> - < l.'J'!Arl l'i) + ~ <<J.IAr/1<..1) (I<..! IN" I';,~> 
cc.·+ ci- el< -E.p 

~~<.~ t=JI. >ct 

+ ~ < L'{IN"l ma ) < mt2 /A£ IJ<..R) ( I<R I tv: 1 'J > + · • • 
_ ~ ~ <.' f c i - C';, - C., ) ( c c.'+ 6 ;'- E I<-6) 

c. I<; e.R1 c;,Y'l, e~? > e.F · ·· · . 

(1.60) 

It is therefore clear that 

o---o r a-~~ t Q- ~- -D + ··· 
(1.61). 

:: J.. · ~ < t' J l k I t:j ) · 
"2.. 

Similarly the exchange terms may be evaluated. 

(1.62) 
- I - - 2. ~ < ( / t.K ·I J t' '> 

~c.'; t J' < C F 

The total interaction energy obtained i'rom this ciass of 

intermediate states is 

YL. ~ { < L'i I K I (."i> - < L' i I K I i (..) l . 
~,·, e_J'< ~F 

This constitutes the Brueckner ladder approximation. 

A pair of particles are perinitted to scatter against 

each other any number of times. The two holes and all 

other particles remain inert ~uring ~his ~rocess. 

I 
I 
: - '· 

• I 
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Actually this interpretation is strictly true only 

if U = o. By choosing U = UHF' we use 6i = (T + UHF)i • 

urF includes interactions between the particle in state 

· I L. ) and all other particles in states I J<) , E 1<. < C F 

HF Including Ul in the energy denominator means that the 

pair of particles undergoing multiple scattering are still 

bound in the effective potential created by their inter

actions with all other particles. FUrthermore, choosing. 

U = UHF ensures that in the Goldstone expansion (1.55) 

the terms past first order with U interactions cancel the 

·corresponding terms containing interactions with passive 

unexcited states (lollipops and bubbles). This explains 

the approximation made in (1.39)o 

Even though (L.JltviK.P'> diverges for an interaction 

with a hard core, < t' j f K 1 J< .9) may be ;;ell-behaved. 

This remarkable feature may be easily demonstrated. 

consider the matrix-element (t..lffflj]>, where the bar 

·denotes time-reversal. Assume a separate potential. 

(All other matrix elements are assumed to be zero.) 

Substituting into (1.56) 

~ 

< i L I~ I J J / = .1 N ,·Ali t 

~Nt·Afm <mm If<. I jJ) 
2 (cJ- {,,;) 

(1.64) 

(1.65) 

0 
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since tr: :. e_ 1..' • Therefore 

< i Z 1 k I j J / == A. N i K)' 

where 

K·:: N·t ~ 
J J . Lt 

Solving for Kj 

Substituting 

ANm,_Ki. 

2 <~ ·-c;,) J . 

N.' m 

J_ +-:;. ~ N~ 
_A L. c; (em- eJ) 

tm">tr 

' . . . 

(1 0 66) 

(1.67) 

(1.68) 

(1.69) 

As the strength of the interaction A become infinite, the 

· matrix elements of K remain well-defined. 

The last two choices for the model space may be• 

compared: 

B. The model space contains all configurations formed 

.from HO states with energy below ( v o The effective 

.force may be approximated by the reaction matrix (lo46). 

The intermediate states have HO energies c, c,) cv . 
/ 

K is calcualted in a HO basis with HO energies in the ~ 
"£ 

_,;;-:.:' 

" 
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energy denominator. The number o:f.con:figurations in the 

model space will generally be too large to permit exact 

diagonp.lization o:f Hef:f. HF, BCS, HF.B,RPA should be 

considered as successLve approximations to exact diagonal

ization. The same reaction matrix is to be used in all 

the_se theories o In particular 1 it is to be used in HFB 

to calculate the pair-renormalized HF potential and the 

pair potential. 

C. The model space. contains one configuration ( ~ 6 ) • 

. . . 

, the e:f:fectlve interaction may be 

approximated by the reaction matrix (1.56). The inter-

mediate states h.ave HF energies :f_,.,
1 
~,) E F • K is 

calculated in a HF basis with HF single particle. energies 

in the energy denominator. The E~:f:fective interaction 

contains the projection operator 

,Z I ~,) < .f.c: ( -= 
,·'1-o {1. 70) 

If I ~o/ is altered i'rom I ~1/F) to /2scs) , I ~Hf~) , or 

J ~RPIJ), the operator Q obviously changes, so that veff_must 

be altered. In particular, the :form of the reaction matrix 

changes when pairing correlations are includedo And it 

may not be possible to justi.t'y using any form of the 

reaction matrix in the pair potential • 

. I 

;;.·,i 
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3o Wick's Theorem and Quasiparticle Hamiltonians 

The original Hamiltonian (lol) containing kinetic 

energy and two-body interactions has been replaced by 

an effective Hamiltonian (lo34) containing kinetic 

energy .and effective n-body interactions (n = 2,3,ooo)o 

The effective Hamil ton ian operates in a model space d, 

which is obtained by an appropriate truncation of the 

entire space o If the effective n-body interactions for , 

n ) . 2 can be negl.ected, the reduced ·Schroedinger 

equation is 

(1 0 71) 

where 

IJ 

,·~ 1. 
(lo72) 

The superscript "eff" and the E dependence will no longer 

be explicitly indicatedo Unless otherwise mentioned 
eff 

H, V, Nj_j, should be understood to mean H. (E), 

veff(E), N"Iff (E) o 

It is assumed that exact diagonalization of the 

effective Hamiltonian in the model space is impracticalo 

We now consider methods for obtaining approximate 

eigenfunctionso 

. A description of the ground state and low-lying 

excited states of the system is requiredo Although the 

I .::><.,• 
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e.f.fective interaction is not singular, as is the true 

interaction,. it still results in strong interactions 

between.the particles. It is o.ften possible to .find a 
' . 

cano.nical transformation o.f particle co-ordinates such that 

the particles in the new co-ordinates are approximately 

non-interacting. These transformed particles are called 

"quasipartlcles." 

The ground. state of the interacting system is 

described as a "quasiparticle" vacubm. Low lying 

ex~'itations are described. by "ciu~siparticle" excitations. 

When many "quasiparticles" are present their interactions 

may not be neglected, and the independent iiquas~particle 11 -~ 

description breaks down. 
. . 

In HF the "quasiparticles" are particles whose 

properties are renormalized by forward and exchange 

scatterings with. all other particles. In BCS and 

HFB the "quasiparticles"are Bogoliubov quasipartlcles, 

which are linear combinations o.f particles and holes 

(or to be more precise, HF "quasiparticles" and 

"quasiholes"). In RPA the "quasiparticles"are 

phonons, which are described in terms of HF particles 

and holes or Bogoliubov quasiparticles. 

The goal, therefore, is to express the: effective 

Hamiltonian as 

!I: 

I:-· ..... :--.' 
-. ""'· ·., .,-_ ='-.•.· .. 

(1.73) 
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where E
0 

is the ground state energy of the system of 

interacting particles, Ht·r· describes the elementary 

excitations ( "quasiparticles") and H 't"f'- in f. is 

the (hopefully) weak interaction between the "quasiparticleso" 

The Hamiltonian may be expressed in the notation of 
• I 

second quantization 

where ( r i > } form a complete orthonormal single particle 

basis and 

a! creates and ai annihilates a particle in state 

Since they are Fermion operators they satisfy the 

anticommutation relationso 

[ a'". 1 aJ· J t- - [ a \) a} ] -t = o 

l a tL.) ai Jt :: fL·i 
where 

A system with part~cles in states 

is represented by 

I~->- a 1 a 1 at- 1 o> Kr k'l.···· k.'i 

' 

"(lo75) 

(lo76) 

(lo.77) 

(lo78) 

0 

J ••• 

·:"'..: .. j 
i 



. .. 

37 

where f O) signifies the vacuum stateo The wave 

function is anti-symmetrized,·so that it may also be 

represented by the Slater determinant 

(/Jl<,CIJ (/)k ( I) (/) (I) 

·~ 
. 1. I(• 

=. f cp 1<.' (2) lP.t<l. ( i) .. ¢ .i ( 1} 
jiii . :.~H . . 

.. . 
tPK, C~). cP,~ (f)) .. cpl< (~) 

(lo79) 
.. l. . ·II 

With the aid of Wick's theorem we are able to 

express the Hamiltonian (lo74) in the.form of equation 

(lo73)o This will be very useful in deriving the·various 

self-consistent field .formalismso 

We introduce a reference state, the choice of 

which is arbitraryo A convenient choice is the ground state 

of the systemo Define new operators b+, b such that if 

a state I K) .is unoccupied in. the reference state then 

bk = ak creates a "particle" 

bk = ak annihilates a "particle" 

and if the state 1 K ") is occupied then 
+ bk ::: ak creates a hole 

+ bk = ak annihilates a hole 

The normal product of a number of creation 

t~-
f~--. 

lk __ _ 
rk--

operators b~ and annihilation operators bk is defined as · 

the product of these operators rearranged so that the 
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creation operators are to the left o! t.he anlil,ih1lat1on 

operators. A minus sign is included it an odd number 

o.f operator permutations is required to achieve this 

ordering. Denote the normal product o.fABO ••• by 

N[ABO ••• ]o (A,B,O •• o are linear combinations o.f b+,bo) 

For example 

N [ b L' hr.] ~ - k/J kl·. 

N [b ~· b/i btk b.f 1 == b .,j b 1J< b" b; · 

The reference state expectation value o.f a normal 

product .is zer.oo 

(loBO) 

The annihilation operators are at the right and act di~ectly 

on 1 ~o.,'>. o bk annihilates a "particle''or a holeo 

Since, by def1n1 tion, I ~o) contains no "part.1cles" or 

holes, b,_- I fc)= 0 o 

The contraction of two operators is defined by 

11 

f) B - (I} 8 '> ~ ( .f o J f) /3 1 .fo) • (lo81) 

In particular 

( b T(. bJl :: < b ~- b ~-) :; ( b ;. b j) ::: 0 
(1~82) 

i . . 

<bc.·bj>=ft'/. 

'•!.'·· ., : ..•. . , 
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. ' 

A normal product may contain pairs of contracted 

operatorso The contracted pair may be removed from the 
'-

normal product by permuting oP''erators so that the contracted 

operators are side by side, introducing_a change of sign 

if the number of permutations is oddo FOr example 
I 

r--t . . r~· ' 

N L 11 Be v] ~ - li c f\J ( 8 p J 
~ rt, 

N[iJBCDEF]=-I)C BO N[(f]· 

Wick's theorem states that the product of operators 

ABCoo• is equal to the normal product of the operators, 

plus the sum of all normal products with one pair contracted, 

plus the sum of all normal products with two pairs contracted, 

and SO Ono For example ,., 
f) B = N [ IJB J t 11 }3 

r-7 r--r 
{3 8 C [) -== AI [ fJ B c [)] t- ll B N [ c 0 J -/J c N [ 8 P] 

,..--, ,......., .,--, 
-t /jV N[.8C] tJ3c A/[ IJP]- BJ? N [/1 c] 

11 ,--, , . ,.., ,--, r--1 ,-, 

1 CD 1\1[ fJ8]-r/J8CO-/JC 80+ ~D 13C • 

These two examples of Wick's the·orem enable us to 

rewrite the Hamiltonian (lo74) as 

where Hn is the sum ·of. all terms with n uncontraqted 

opera torso 

(lo83J 
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H"-:: ~- < L./ T lj) < at(.. ai> + 
l J 

<' . . t t 1/2 L.t < c. J 1 Ar II< 2 > < a <..a,<> < a l a R '> f 
LJ~O ~ . 

1
/'{ 2; .<L'JI~/k~/11 <att..a.j><{(;0J<.) -! 

c. J I< p ( 1 0 84 ) 

Ht._ : 2; < (. r T t I'> f\1 [ a t( a J·J t 

2; < _( i tAr/ 1< 2 >~ < a} o, > N [ a t". a I< J f . 
. <JI<R . 

. ~ & < (/ !Ar/.I<R/11 <at~.·{) ~-I AI [tl.p Qk] + 
t. 1 k..P 

I~ ' [ f f] if L:f <L'JIN'(l<R)~ <{lpflJ< '> N a (.·0-i 
t 'J !<. R 

(loBS) 

(1~86) 

It has been assumed that 

De fine a dens! ty matrix ? . 

~ is clearly Hermitiano 

(lo87b) 
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De fine a pai~ing · ten-sor t 0 

· r i ( = < a c: a. J. ) 

-r ; ~.· . ·. ~. < a :· a tL. >. 

Recalling the anti-commutation relation (lo76) it is 

apparent that [ is anti-symmetrico 

/\-' 

(1.88a) 

(lo88b) 

[ ~ - L (lo88c) 

Define a HF potential r o 

Using th~ Her1Iliticity offit i~ easy to demonstrate that 

r is Hermitian. 

r t -= r (1.89b) ·;.._ 

De fine a H F Hamil toni an tf. 

?-./ c·J. == T 'i t r t: l (1.90a) 

1-f is Hermitian. 

(1.90b) 

Define a pair potential Ll 0 

·fj"i = {· ~ <<'J1AI"IkR)/J tt<..~ 
. kl. . . 

(1.9la.) 

tJ ti :: i 4 ( 1<1 t Ar- I c. j > 
11 

[ :.P 
I<.P 

(1.9lb) 

. ~ _, . 

·. ~-
.. ·.: ' 
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Since ( L. i L·\.J [ g p) ::: .- < J L' IN /}( R )11 ' Ll 
IJ 

is 

anti-symmetric. 

(1.9lc) 

H
0 

and H2 may be more simply expressedo 

(1.92) 

H ,_ ~ i ~ l. f N [ a tt; a j J -r · 
c.' 1. 

Since <~.,I N [ ·.. J I ~" > == o J 

. . ' ·. 

< :f'o I H tf £o > = <. ~(J I Hlf I :f6 '; = o; 

Ho • If the reference state 

_ f ~o) is .chosen to be the ground state, then H
0 

is E
0 

, 

the ground state energy of the system. Then for the 

HF,BCS, and HFB theories H2. is H , the independent 
q.po. 

"quasiparticle" terms; and H4 is Hq.p. _ into, 

the interactions betwesn the "quasiparticles." 

The physical significance of the quantities 

invdlved in this representation of H will become 

evident as we use this formulation to derive the 

various self-consistent field theories~ 
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II. HARTREE - K>CK THEORY 

1. Introduction 

Hartree - Fock (H F) theory 1 is the first order 

approximation in a many - body theory of nuclei. It 

determines a one - particle self - consistent potential, 
. . 

and therefore supports an independent particle description 

of finite nuclei. It is instructive to present the HF 

formalism, since pairing theory in its most satisfactory 

form (HFB) may be derived as a generalization of HF. 

For a given nucleus the HF equations typically have 

many solutions o The usual crit:e.tiop for selecting one of 

them as the ground state solution is to choose the wave 

function which provides maximum binding energy. This 

seems to us to be not altogether satisfactory. The 

various minima often vary in ( H )HF by only a few Mev. 

Corrections to the binding energy from higher order 

diagrams, for rotational energy, and for zero-point 

.fluctuation energy are considerably greater than these 

variations in( H)HF• .F\lrthermore,the wave function which 

does minimize< H) HF generally has a large gap betl'Teen 

the last filled orbital and the first empty orbital. It 

is therefore fairly stable against particle - hole 

admixtures and pairing correlations. The other wave 

functions often have small gaps, so that introducing· 

pairing correlations might be expected to lower the 

'.',+ __ ,: 
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energy or these states. These correlations will also 

increase the energy or the lowest elementary excitations, 
. . .. :. 

thereby stabilizing these wave functions·. 

:Fbr these reasons we do not consider the "minimum 

(H).· cri t.erion" to be reliableo Instead the HF 
HF. 

wave furtctions'are here r~garded S:s single particle 

bases which are userul for introducing additional 

correlations, such as pairing. The selection of the 

ground state wave runction can be made only arter 
I 

correlations have been included and the energy is 

calculated to all signiricant orderso Alternatively 

one may consider the experimental data to choose the 

wave runction which is most physically meaningful. 

We shall demonstrate that, with the exception of 

Ne20 , HF theory fails to explain the properties of 

N =Z even-even nuclei in the 2s-ld shell. 

i! 
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2. Derivation of the HF Equations 

The HF approximation restricts the wave function 

to a single Slater determinant. 

(2.1) 

Each single particle state is a linear combination of 

basis states. 

a~ :: ~ D~ a tk 
(2o2a} 

1<.. 

or I ot) = ~ D~ IK) (2.2b) 
k. 

The transformation coefficients are chosen to be realo 

Fbr a system with time - reversal degeneracy, no 

generality is lost with this phase convention.. The 
. _, """ 

inverse _transformation ( D = 0 ) is 

The unitarity ·conditions ·are 

(2.4) may also be derived by requiring that 

1: 
fi 

\ 

(2o4a) 

(2o4b} 

. ' 

i, ;- I 
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The. density matrix has a simple. form in the I o() 

representationo 

,·f /o(,) is t:JCCUfitcJ 

;{ let,) 
(2.5) 

15 unsccuriecl 

f is simply the probability that the state lot) 
.o{ ()( 

is occupied in I !f., 'l . 

The HF potential (1.89a) and Hamiltonian (lo90a) are 

r l. J == ~ - < '". o( ' ,..; ' i ~ 1/j 
« tr<cuf'e"- -

They are symmetric. 

The operator ai aj has non-zero matrix elements 

only when the final and initial states differ by two 

particles. 

<f)'/ QL Qj / IJ);;:O unless /J' = f) -2 _ 

(2o6) 

(2.7) 

Since the HF wave function is a single A particle 

determinartt, the pairing tensor (1.88) vanishes. 

consequently the pair potential (1.91) is zero. 

Alternatively, we may say the HF approximation consists 

in ignoring the abnormal contractions. 

The ground state energy (1.84) is 

£ () :: Z __ < o( I T I o< > -t '1-z. ~ < o( f-> I .ttrl c< ;d >11 
(2.8) 

o( DC(. «(3 0 CC • 

. ·r;:_ ·-.;.·. · ... 
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It contains the kinetic energy of each particle and 

the interaction energy from the forward and exchange 

scattering of each pair of parti-cles. ( The factor i 

compensates for the double counting of each pair in the 

summation. ) 

H2 (1.93) has the simple form 

H,_ == ~ "N-t.·/ N (a+(.. ai J 
c.'/ (2.9) 

The HF equations may be derived from a variational 

principle or by the equ~tion of motion method. we present 

both techniques. 

The variational principle consists in choosing the 

occupied orbitals f o() such that the ground state 

energy is an extremum. The matrix elements of T and 

v '-n the I o( ") basis may be expandedo 

I ~ · oti hera. I k , < o(, ( T rX t.. I ::- ~ D K I v J<. 1. < I< I I T . t , 
~<., 1<.1. 

(2.10) 

Substituting into (2.8) 

£ <' Of t:{ . . I <' C( n/3 DC( D~ . . ' 
()~ ~[/,.[)i(<'/1/J)+t 40,.· vi 1< p <'J/ATlkJ/19 • 

o( oCC"· . Oft t:JCC• (2.12) 
,; j' c. J 1<. I · 

Alternatively the density matrix may be evaluated in the 

I I< ) basis • Using ( 2. 3 ) 

·. ,•·' f. .. '. ;., 
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<a r,_. GJ I = ~ l7: P ~· < a~ a,.) 
tlf!J 

Noting (2.5) we obtain 

t () ~ Of I f ·c :: <a ~.: l( J'> :: z, D '" D : . 
J . c( "CC• 

(2.13) 

Substituting (2ol3) into (1.84), we arrive at (2.12). 
. . 

E0 should be stationary with respect to arbitrary variations 

D~. in each coefficient , • A constraint is that the 

wave functions I o( ) remain normalized. 

(. 
(2.14) 

The variational principle is 

(2.15) 

E« is a Lagrange multiplier. Substituting (2.12) into 

(2.15) provides the KF equations. 

~ { < ( r r ' j > + ~· < c: tJl _,.,. 1 if /11 J o;. = c. Cl o ~· 
J .. p ,c c. . . . 

(2.16) 

or 
. C( 

4 '11 • ·{) - L. Dq' Lt f-li ,·J . i - coc . , . . 
J' 

· (2.17a) 

The HF equations .preserit; an: eigenvalue problem. 

(2.17b) 

or 1f to() ::: ~01 I o< '> · (2.17c) 
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The eigenvectors Dfl( provide the orbitals I o() for 

which the binding energy is an extremum. In this basis 

H is diagonal with elements 0 

co~ -= < C( I T I oc' '; + 2_j < 0( (3 { A.l I cr ~ )11 
fJ c>c.c. (2.18) 

E oc . , the single particle energy, contains the kinetic 

energy and the energy acquired through forward and 

exchange scattering of a particle in state /o() wi tl';l. 

particles in all occupied states If) . 

The HF Hamiltonian is a function of the occupied 

orbitals 1 o() • These orbitals, in turn, are 

determined by Ho This is the source of the self -

consistency feature of the HF potential. The HF equations 

must be solved by aniterative procedure. An initial 

giiess is made for the orbitals.. Hij may then be 

calculated. Diagonalizing 'H- yields a new set of orbits. 

They are used to re-calculate 'Hij. This procedure is 

continued until successive interations produce identical 

orbits. 

Since }tis a function of the set {rol/}occ"-pieJ 

there may be different solutions corresponding to different 

HF Hamiltonians. Therefore, the various solutions I~~~) 

are, in general, not orthogonal. 

The HF equations may also be derived by the equation 

of motion method • We r1ant to reduce the effective 

Hamiltonian, which contains strong interactions between 

p~rticles, to an independent particle Hamiltonian, for 
I 
I 

. ' 
,; I 
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which the eigenmodes o.f the system ~u·~ app~~~:l.m~t.~ly 

non-interactingo H has been expressed as 

If' there is a.basis in which H2 has the f'orm 

H '- = ~ G « · N ( a .,.o( a fl( J (2.19) 
Cl( 

then 

H :: t D -~" Z: (_ C( N [ a 1ol a~ J t H ~ · 
o( 

The HF ground state has one particle in each of' the A 

lowest energy states • 
. ' . ___ . _ ___;..· E.·/}~ i 

-----Eti+J 
-- -.------£,e. Fermi ener~y . . 0 t I 

. 0 . li . E,_, . . F.lgure 

The ground state contains no "particles" or holes. 

There .fore 

(2.1) 

L: L' ( a ~ 1i " t ' ,, J L 0( > c F ., c rea. e ~ a p Q. r l'c e 

(2.20) 

COl ( tF "( aO( (rea.le.s 0. j,()Je ) 
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and 

H ~ E () t ~ e,ot a:, a()( - 2; coc a C( a:, 
Ca >EF c« < CF 

(2 o2l) 

+ '~r ... 2! <c:(, o:1..tN' to(3 a.,)11N@ ~. at011 a~, ao~3 J. 
t(,~2. q'3.q'1 

H4 has zero matrix elements between states with zero or 

one particle or hole. It represents the residual inter

action between ''particles," between holes , and betweeen 

"particles" and holes.. If H4 is n,eglected, H assumes the 

.form o.f an independent particle Hamiltonian. 

H ~ E. D + ~ cO( a tO( a 0( 

e.ot. >C.F 

To determine the orbitals f o() consider the 

commutator [ Hl.) a~J- . Substituting (2.19) 

or 

[ H ~ ) a 1 
ct ] - :: 6 ct ~ p r. a 1,. • 

(. 

The commutator may also be evaluated using (2.9). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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Equating coefficients of at in the last two equations 

~ 'J.I,_·{ 0~· ~ cO( {)~. 
J 

which are the 'HF equationso Of course, this result is 

obtained more directly by simply noting that diagonalizing 

1-f puts H2 (2.9) in the desired form. The equation of 

motion method is presented, however, as it will provide 
.. 

a natural generalization of the HF equations to include 

pairing (H :rn). 

.= ~- : / ' 
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3. s~:mmetrles of the HF Solutions 

The nucleon - nucleon interaction ATij is· invariant 

under time - reversal and parity and is a scalar under 

rotations. Since the HF Hamiltonian does not equal the 

true Hamiltonian, 'H- may not have the same symmetry 

properties as Ho 

For each symmetry type s there corresponds an 

operator So If s is a symmetry of the Hamiltonian H, 

then 

(2.26) 

If theset of occupied orbitals remains invariant under 

one of these symmetry operations 

(2.27a) 

or ::0 (2o27b) 

then the HF Hamiltonian also commutes with s 

[ fl 1 51-=o (2o28) 

and s is termed a "self-consistent symmetryo" 

Consider the definition ofU. 

J.l,'i = <{./Tij> +I<~<: l"kl~lJJI,., f;1<. 
If a self-consistent symmetry is introduced into the 

density matrix, then 1f will reflect that symmetry. 

Consequently j? of the following iteration will 

possess ito Therefore, if the trial density matrix 

contains a self-·consistent symmetry,· then so· will the 

. ,· 

' i 
I ' 

: .\ 
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density ~'trix of the final self-consistent solution. 

Harmonic oscillator Wave - functions are chosen 

as the basis states. 

-=- t [)~ I AI) J tn T '> 
1<. k (2.29} 

For the present vTe choose f o1) to have a definite 

isospin. 

I ot) -- ~ 0~ I N 1 J m1't~ ) 
k. I< 

(2.30) 

Then 

(2. 3la) 

or (2.3lb) 

(except for a constant of normalization ) and isospin 

projection provides a self-consistent symmetry. 

the block form 

frr 0 

f ::. 

0 fnn 

Since the two - body interac-t:ion conserves isospin 

projection, if k and 1 have the same value of '( 

then so do i and j. Therefore 'J-.1. also has the form 

has 

(2., 32a) 

I 

) 
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(2.32b) 
0 

By the same argument, i.f we choose I ot) to have 

a definite parity, then 

. (2.33) 

and f and 'H have the form 

r:· 0 'N -1+ 0 

f -::: 1-1 ·-
f-- o· 'Jol-- (2.34) 

I 

.Fbr nuclei with even numbers of neutrons and protons, 

the orbitals can be ensured to occur in time - reversed, 

degenerate pairs: 1 c() , I c() 0 The time-reversal 

operator acting on a harmonic oscillator state gives 

J'tN.iJm'> == I NJJm > 

(We choose ( [ J J mJ) :: 

choice <ctJm, > = l'-'Y;m 
I 

J-11'1+1 
:: <-J) · IN.JJ-m>·c2.35) 

J 

. ,t 

• For the 
J"'m ;r I J m > = (- t) IJ-m). ) 
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If I c<) is given by (2•30), then I~) is 

-I ot) 

.;,.. 

Phases are chosen so that D ~ 
o( 

- n.... • Since 

-I ct) (2.37) 

we have 

l ~,) (2.38) 

so .that 

(2 .39) 

and time - reversal is a self - consistent symmetryo 

Since the rotation opera tor Ry ( 7T ) is equl valent 

to ;{ P (within a phase) 

F?y 'rrJ ~~~> = I!.> (2.40) 

and 

(2o4l) 

so that rotation by 1T 

consistent symmetry. 

about the y axis is a self-

' ' 
.. ,·.;!.-: ... ,.·: .. •. :.:,.r·,.;.:.; 
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The body - fixed. axes may be chosen to be the 

principal axes. That is, the wave function may be 

chosen to have ellipsoidal symmetry with respect to 

the body fixed axes (reflection symmetry through 

xy, xz, yz planes). This will be achieved if the 

components of t 0() are required to have m - i = 
-even integer, and those of I c( ') there fore have 

l.. m - 2 = odd integer. More specifically, 1 o() contains 

the set of states { I J m ) } , with 

m -= . . . • - 1!7... - 3/2. 
·. ) . ) 

(/o!)) (2.42a) 

and lot) is composed of the set ( /Jm>}'Z.=J(!Jm>},. 
I ;( ) has components wi·th 

( t;;f>) 
(2.42b) 

This choice diagonalizes the inertia tensor.2 

Consider the rotation operator Rz(Q). 

R~(G)IJm>= e-(rne fJm) 

so that 

__ {+- i f J m> 
R~ C-,r) /Jm"> 

t I Jm> 

Noting the restriction (2.42) 

. . . .. "~-: ' 

(2.43) 

<rn- 1/2.) even 
(2.44) 

( 111- '1-z..) oJ J 

. : 
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Re: t7T) lei) -= - L /o() (2o45a) 

--f ( /o() (2. 45b) 

Thered()re 

(2.46) 

and 

(2.47) 

Rotation by 1f about the z axis is a self-consistent 

symmetry. 

Fbr all nuclei (not just even-even ones), if the 

orbitals are divided into two sets in accordance with 

(2. 42), then f connects states with m - i even, 

it connects states with m - i odd. 

m- 11-L m- 'h 
e IIC, oald 

f 0 .· r 
fl?- '2. 
evtn 

-= -

and 

f 
0 f m- '/.,. 

(2.48) t»Jd 

• Since the two-body interaction 

conserves angular momentum projection (M = m1 + mk = 

mj + ml) , 1-1 has the same form. 
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m- rl h'l· 'll. 
~lien cJ.J. 

[: 
0 

] '}1- '2. 
'}./- e,ren ::: -

)f tn-Yt. 
oJJ 

where Hij = ){ I'J • .For even..;even nuclei with time

reversal degeneracy j = ,JJ and R,:. = >-f. • 
By requiring the occupied orbitals to have good 

(2.49} 

isotopic spin projection and parity and to be time - reversal· 

invariant, f and 14 have been reduced to the block :form: 

p 

(2 .so) 

t) 

The dimension o:f the required matrix diagonalization is 

therefore considerably reduced. 

Axial symmetry about the z axis requires 

for Q 11 e . (2.51) 

- i 
' 
I 

i 
: 

• I 
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If R "l:. (6) I~> ~ I o( / for all e , then (2o43) 

indicates that all components of I o1 > must have the same 

• 

r 0( ) -:: ~ o: I N i J mt( Ttx )K 
l~ (2o52) 

Then 

:for all e. (2.53) 

and axial symmetry is a self-consistent symmetry. f and 

;twill connect only states with the same m. 

Spherical symmetry requlres that I o() be an eigenstate 

o:f J 2 ~nd Jz. Then only radial mixing is permitted. 

I r; > -= ~ D~ I N iw J oc me~ 10( ) 
I< 

(2.54) 

Jf I o( ">} occ. = { I o() }occ. is satisfied only i:f all 

m states :for a given J are equally occupied (but not 

necessarily :full}. Then f and U connect states with 

all quantum numbers identical except N, and spherical 

symmetry is a sel:f - consistent symmetry. 

;(' .'' ; .. :• ·,. : 
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4o Separation of Core and Valence Particles 

Choose the model space to consist of all 

configurations with A
0 

particles filling a closed core 

and the remaining Ay particles ( A = Ac + Av ) 

distributed in· the valence shello Then the ground state 

wave fUnction is 

(2o55) 

Let 1 K> ·represent a HO state (II<> ~ I NP J/1? ;>Jo . Then. the 

core component'of I~.,) is 

(2o56) 

:Fbr nuclei in the 2s - ld shell, I Ic > may be chosen as 

the spherical 016 wave function ( ls and lp orbitals tully 

occupied), and I ~v) may be restricted to have 

components within the 2s - ld shello · Deviations of the 

true core wave function f'rom (2o56J (radial mixing, core 

deformation, correlations) and interactions between the 

core and valence particles (other than those contained 

in the HF potential) should properly be accounted for .in 

the effective interactiono 

The separation of core and valence particles is 

attained by choosing as the reference state 

in the Hamiltonian (lo83 - lo86)o ( The selection of 

1 •• .... 

. .. 
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reference state is quite a:rbitraryo It need not be the 

. ground state of the A particle system, nor need it have 

A particleso) H
0 

is then given by (2o8)o It may be 

·referred to as the core energyo 

E, ~ .2; < 1< IT 1 k > +- t. ~ < k I I< L ( Ar I k ,/<.\. >A 
1<. € cote l<. k 1 e <c.r~ 

I:f the ·core consists o:f filled ( N.J J) 

the core energy is 

orbitals, then 

E c :: i I..( 7. J tt) < ( N.l J )/}1 I T I<' AI.JJ) !Y/.)'+ 
(NJJ) e C6re 

'/2 ~· ( 2 :J t I) ( z. T -t!).< <NJJ ), ( NPJ), J" T IAF/ (N.P J), l NJJ J )z.:JT~ . . 

J"T 
<tJ..fJ)J (N,fJ )7... C: core 

H2 is givenby (2ol9)o 

H1.. == t e,< N [at~. a,<] 
I< 

(2.58) 

(2o59) 

The normal ordering is with respect to I ic) . , so that 

-·2;el<.aJ<a: · (2o60) 

I< E core 

The single particle energy is given by {2.18). 

e,< = < 1< r r 1 ~ '> · +- Z: < K 1< ' r N 1 1< 1<' >~ (2o61) 

1<.'~ core . 
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or e. N9J = < (N .I J J m I T I ( N 1' J ) n1 ) +-

I . 
l<lJ+I)~ (2J-tt}(2. T+I)<.(AI.RJ) <N~'J')JTIN"((N.PJ)(N'J'J') JT/11 ' 

JT 
( Af'j'j') e C(Jre 

H4 is given by (lo86)o The Hamiltonian then has the :form 

H -:: £. c + i . e I<. a r~ a/( - ~ 
1<. E va...lence 

+ '!'I 2/ < K. r!< t I N" I I< " I< 'f /,
1 

N [ {1. ~ ,· a ~ ). Q 1<. 'f (j 1< 11 J . 
/<.1 kl. kJ f<'( (2o6}) 

This representation has the advantage o:f reducing the 

dimensionality of the eigenvalue problemo FUrthermore, 

experimental values may be used :for the single particle 

energies. eNlj o The early self-consistent .field 

calculations used a central interaction, which can not 

produce a spin - orbit spliting between the d5; 2 and 

d3; 2 orbitals. Using the experimental single particle

energies corrected this defecto 

we have arrived at this representation by choosing 

I £c) (2.56) as the re.ference stateo I.f the wave .function 

1 J 6 ) is then restricted to the :form (2.55), there 

can be no holes, and the Hamiltonian is simpli.fiedo 

. . 

; . -- ' 
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H=- fc+ t e,~ a-t}<.. a~ 
l<.E v'a../vt(e 

+ 'llf ~ < 1<1 ~l.(N"/k.}k~~ a~, a~t al<t (/1<.3 (2o64) 
f<tkz..I<J f<y 

Restricting the model wave function in this fashion is 

not, of course, an approximation, as all configurations 
. . 

outside the model space are to be accounted for in the 

e .ffe cti ve interactiono 

Wickis theorem may be applied a second timeo . The 

reference state is J ~o) o The Hamiltonian (2o64) has 

the repr~sentation 

(2.65) 

where Ev, H2, and H4 ·are given by (1.84- 1.86), the 

summations being restricted to states in the valence 

·shell, and the expectation values and normal products 

are now with respect to · I f'o / 0 

In the HF approximation the ground state wave function 

is 

with 

I ot) ~ 2! 0~ 1 K) · (2o67) 

I< ! va.l e11 cE> 

The ground state energy is 

:· I 

' ~ '. ,. ' ' 
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where Ey is given by (2o8), the summations being 

restricted to the valence particles. 

~v ~v 

Ev::: ~ <o<l [/~'> t lf1.. i <o<f31ATI~f3>A 

with 

/ 

(2.68) 

< Jm T 1 c /J 'm 'I' ) = e t [ . f · < 2. 69 > · · · J JJ' mm' 1"7 1 

The· HF Hamiltonian is 

IJv 

1=/- t.:/ = < l.' f Z I J>t Z <('«IN"" I Jc~)IJ 
o(-::.J 

(2.70) 

The eigenvalue equation 

(2.71) 

is restricted to the space of valence orbitals. 
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5. Nuclear Deformations 

The various self-consistent field formalisms 

provide a microscopic description of nuclear deformationso 

The many particle wave functions may be characterized by 

their multipo le moments o 

(2.72) 

In second quantized notation 

(2.73) 

so that 
.'• •: 

(2.74) 

In HF theory 

< Q L f1 ) :: ~ ( 0( ( GJ i..M f o( ) (2.75) 
0( occ "'l'ieJ 

If the wave :function displays time-reversal degeneracy, 

(QLM > = ( QL-M ) and< QLM ) = 0 :for odd M due to .. 

reflection symmetry. We calculate (QLM) for L = 2. 

and 4 and M ~ L. The unl ts are .rmL o 

The deformation parameter f3 is related to ( Q20 ) by 
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·f3 -::. 'iTT < Oz.t> > (2.76) 
SIJ <rz.> 

where 

< rL > ':::: I ~- < L/ r l I j >fit. (2o77) ---/J 

The RMS radius of the nucleus is 

J< r'- > F( R M5 

7 
::: (2.78) 

The moment of inertia is calculated from the 

microscopic wave function by the cranking methodo Details· 

of the derivation are availa.ble elsewhere. 3 The result 

for the HF wave function is 

I <ott Jk/f>l
1 

cp - E ct 
(2o79) 

with similar relations for n cXy and • .For 

axial symmetry, Jx =- J '1 and elz = o 0 

If a nucleus is a good axial rotator its energy 

levels follow 

£ :r = (h 1. /2. J) 1 ( I 1- I) - (2.80) 

The experimental spectrum may be characterized by the 

energy ratios 

; 

. 
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(2 .. 81) 

FOr a good rotator 

The experimental value o£ the inertial parameter 

A -:: ('hl/2 J) (Mev) may be obtained . .from the spacing 

between any two rotational levelso 

Ax"l.-I, = Exl..- £I., 
I"l. (I2. t-1)- I I (I, +I} 

(2o82) 

In particular 
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6. Effective Nucleon - Nucleon Interactions 

To determine the dependence on the choice of force 

of the results in this and succeeding chapters, all 

calculations are performed with three different forces. 

a) Rosenfeld; interaction: This effective force has 

been widely used to study the nuclei in the 2s - ld shell. 

It is a central interaction with a Yukawa radial dependence. 

Vo =- 5o Mev a.~ /. 35 fm. 

The oscillator parameter is b = 1.65 fm. (The radial 

wave function is Rnl ,._ e -i (rLb )
2 

, where b 2 = h/mwo 
. 2 . 

~so 1) = 1/b • ) 

ol6 is assumed to form an inert core, so that the single 

particle operator in the Hamiltonian becomes 

<('t[IJ>= eL·l,·i 
where 1 i. )

1 
1 j ) are HO orbitals. A realistic force 

contains a ~.§. component. Therefore different nuclei 

within the same shell should have different spacings 

between I 1 j + i '> and I 1 j - i ) . The absence of the 

L • .§. component . in the Ro senfelc '· force may be compensated 

by altering the single particle energies ei for the various 

nuclei. Also the core polarization changes for each 

'I 
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nucleus, so that· it is prope:r to choose di.f.ferent e
1 

.for 

di.f.ferent nuclei. Two sets o.f single particle energies 

h9:ve been used. 

Rosen.feld 1 . : Kelson. and Bar - Touv single particle 

energies. 

= -1.0 Mev e = o.o Mev 
1d3/2 

Rosenfeld 2 : o17 single particle energies. 

e 1d = -4ol42 Mev 
5/2 

= + Oo94 Mev 

b) Yale t - matrix: The Yale potential was determined by 
4 

.f1 tting nucleon-nucleon sea ttering data.. . It contaj_ns 

central, ·.tensor, spin. - orbit, and quadratic spin - orb! t 

componentso Since a hard core is includ~d, one~ must use 

the t - matrix eleme;nts o.f the potential in nuclear structure 
5 

calculations. As is customary, the dependence o.f the 

t - matrix on the single particle .wave .functions and 

energies (double sel.f - consistency) is ignored. The 

single particle basis includes the ls, lp, 2s, and ld 

orbitals. The oscillator parameter: is b2 = 3ol rm.2 • 

c) Nestor-D~vies-Krieger-Baranger (NDKB) ef't'ective 

potential: This potential was designed .for HF 

calculations. Accordingly, in fitting the force 

parameters primary emphasis was given to reproducing 

·. ~' : 
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the binding energy and density of nuclear matter. Less 

emphasis was given to fitting the scattering data. There 

is no hard core, and second order contributions to the 

binding energy of nuclear matter are small. It contains 

central, tensor, spin- orbit, and repulsive velocity -

dependent components. Explicitly, the interaction used 

is 

} 

where m is the nucleon mass. The tensor operator is 

5 , 1- ::: [ 3 c q:-, • C ) ( ~t • c J - r t < ~ . ~ "l ) J I r L ) 

the orbital and spin angular momentum operators are 

L·· - < r Xf )j h - -
5 I 

( r:r, +Vi. ) ; .z.. ) -
~ and ~ are the relative co-ordinate and relative 

momentum 

r = r, - r1... 

- c.''h v . r 



.'~.~ n .. . · .. 

. r .:;· 
' ·;'· 

.. ·., . 

The subscript j denote's the· _.CO!IlJ>Pn.ents. o·.f the inter

action:·· slnglet ... even (SE)., si-n.glet·- odd (SO), . . . . . . ' 

triplet~ eVen: .. ( TE), · a!ld ·. ~riplet:.od:d (TO) • The .fUnctions 

'Vf(r). a11d W j (r) have a Gaussian .. shape •. 

. . : . 

with the exceJ?~lon o:f the tensor paft · V~ (r). 
' . . ' ' 

' ' . ' 

v{c rJ = ~·IJ/.< 1 rYotJ~J. e>:p (- { r ~let/ J 

.Fbr attractive V j (r), Aj ') 0 and for :repuls1 ve Wj (r), 
. ' -2 

Bj) o. Aj has· units o:f fm , . wh11e J3j is dimensionless. 

£2/m·=:. \1.1;..471-Iev 0 :rm2 •. w~ qhoo~e .the .pet o:f param.eters 

denoted ·.by NDY.:B as .miJctuxe 2 •. (.See table 2ol) 
.· 

.... ·. 

·• ., 

The osqil~.a.tor, parameter l,s b = 1 ~.70tm. · To study the effects'·. 

o.f space truncation, ~11 ca1culatiQ!lS with the NDKB .force 
. . . 

were performed for. tfTO different single particle bases. 

NDKB1. 

·. ·NDK.B2 • 
. . . 

,_., 

., ,. ~- ' ' 

1s,lp,2s,ld. ·· .·. 

· 1s, ;tJ>; 2s ,ld;2p ~l.f 
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1 o HF in the 2s - ld Shell 

We confine our attention to N = Z even - even 

nuclei. Then time - reversal and (if the Coulomb.:_force 

is neglected) proton neutron exchange. are self

consistent symmetries. The calculation and inter-

pretation of wave functions are thereby simplified. 

Parity has been assumed to be a good symmetry. No 

attempt has been made to obtain triaxial solutions 

with the NDKB forceo 

The experimental and calculated binding energies of 

these nuclei are presented in Table 2o2o Fbr the 

spherical nuclei, o16 and ca40 , addition of the p - f 

shell resulted in a small increment in binding. This is 

caused by radial mixing of the lp and 2p orbitals. For 

the strongly deformed nuclei the .increment in binding 

is greater, as an increase in deformation energy . 

dontributes to the in~rement as Yell as the radial 

mixing. Without the p - f shell, the 12 particles 

in the lp orbital must maintain spherical symmetryo 

Admixtures of the 2p - lf states into the lp states 

permits these particles to have a deformationo Inclusion 

of the p-f shell generally increases the deformation 

parameter 
. 21_ 

of the nucleus by about 50%o ~he HF 

gap is also considerably increasedo 

The observed spectra are in F.tgures 2o3 - 2.7. The 

,.-,. 
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solutions to the HF equatio-ns. are ;J:is.ted in 

The ground: state is spherical. Only radial 

mixing is permitted. The experimental and calculated 

single particle energies are in Table 2.3. The 

experimental single particle energies arc obtained1 

i'rom the mass di.fferences 

o16 + n - oi7 = 4.142 Mev 

o1 5 + n - o16 = 5.669 Mev 

and the experimental spectra of o15 and o17. 

( 2 5'/l-) o. f71 Y'l.:t 
( 'J.s;,.) 0 $1z_+ crp,k> .. 0 '11-.-

011 0'!. 
Figure 2.2: The lo\·Tcst positive parity levels in ol7 

15 and the lowestnegative parity levels in 0 • 

Whereas the experimental value ·of the gap between lp 

and 2s-ld shells 1s.ll.5 Mev, the calculated value is 

/V 16 · 1-!ev for both· the Yale and the NDKB forces o 
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The "rotational" levels have en~rgy ratios 

Since a rotator should have R4 = 3 1/ 3 and R6 = 7, 

Ne20 is not a good example of a rotatoro (The rare 

earth nuclei fit the model considerably better. 

for instance, has R4 = 3.26 and R6 = 6.63.) The 

inertial parameters are 

-1'72 
~-u- ' 
' 

A = Oo272 Mev 
2-0 

= Oo187 Mevo 

Their average will be considered as the experimental 

value of Ao 

A = Oo230 Mev 
eXPo 

For all forces, the lowest HF minimum is prolate with 

an J2.. _ i+ occupied orbi talo The properties of this 

state are fairly insensitive to the choice of forceo 

(See Table 2o4.) Angular momentum projection on this 

intrinsic state yields an energy spectrum in very good 

agreement with the experimental valueso 7 HF theory 

therefore provides an adequate explanation for the 

Ne20 energy spectrumo 

'· ' . " ~ 

. : 

. . ,.· ",-

" .; ~ '. l 
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The o+, 2+ and 4+ levels have the energy ratio 

R4 = 3.00. 

The average of.the inertial parameters 

= Oo228 Mev = Ool96 Mev 

is taken as the experimental valueo 

A = Oo212 ·. Mev 
exp 

The large number of HF solutions should be notedo 

Their variation in binding energy is smallo As the asymmetric 

solution is the lowest minimum and has a large gap, it has 

been considered as the intrinsic wave function corresponding 

to the ground stateo This interpretation is no longer 

tenableo 

Giraud and Sauer 8 have -performed the angular momentum 

projection calculation on the asymmetric wave functiono 

(T;he force was a Rosenfeld mixture with Gaussian 

radial dependence)oscillator length b = lo65 trn, strength 
. 17 

V
0 

= 53o2 Mev; and 0 single particle energies·) The 

calculated excitation energies are (experimental values 

in parentheses) : lo36 (lo37) Mev for the first 2+ state, 

2o48 (4.12) Mev and 2o54 (4o23) Mev :for the 4+ - 2+ 

doublet, and 3.85 (5o22) Mev :for the 3+ stateo The 

agreement is not very satisfactoryo Except for the 
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~irst 2+ state, the remainder of the spectrum is much too 

compressedo Variation of the strength V
0 

from 40 to 60 

Mev and increasing the !,o§. splittings by a factor of 

two did not achieve better agreemento 

Experimental data on stripping spectroscopic ~actors 9 
10 . 25 . . 

and the (( branching ratio · of Mg ~a vor an axially 

symmetric rather than an asymmetric shape for the Mg24 

even-even coreo Parikh 11 concludes that the "pro t,ate 

1 solution (Rosenfeld 1, sd) is in best agreement with 

experiments. The .triaxial solution is unable to 

account for the structure o:f the wave functions in spite 

of the fact that it is the lowest in energy o" 

Clearly the asymmetric HF solution can no longer 

be considered as the intrinsic wave function corresponding 

to the ground state and low lying excited states. 

The static quadrupole.moment of the first 2t state 

has been me.asured through the reorientation effect in 

Cou~omb excitationo 

+ = -0.26 - 0.08b 

= -Oo243 ~ Oo035b 

(Refo 12) 

(Re~. 13) 

A negative static quadr~pole mome~t implies a prolate 

deformation in the intrinsic stateo 

Parikh's findings and the measurement o~ Q
2
+ lead us 

to a re-consideration of the prolate HF solution with 

_12. = i, 3;
2 occupied orbitals. (See tables 2.5- 2.9·) 

The. various forces produce slmllar wave functions for 
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this state. They exhibit several deficiencies. The 

HF gap is smail (Oo463.Mev for the Yale force), so 

that this HF wave function is not stable against 

p-h admixtures. The binding energy is 3 - 4 Mev less 

than that obtained with the asymmetric wave function. 

~ The inertial paramete~ is considerably smaller than the 

experimental value. Introducing pairing correlations may 

eliminate these objections. The small H F gap is 

desirable for obtaining strong pairing with little loss 
' 

of H F energy. The pairing will create a gap for 

elementary excitations,thereby stabilizing·the wave 

functiono The gain in pairing energy will more than 

compensate for loss of HF energy, so that total binding 

may increase by sev.eral Mev. Finally, pairing may alter 

the inertial parameter by as much as an order of magnitude. 
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Si28 

Bar - Touv and GostoJami l4 have suggested that the 

first excited o+ state corresponds to a spherical 

intrinsic state. The ground state o+ is lowered to 

its observed position by interaction with the excited 

o+ stat~ •. The experimental value of h should therefore 

be determined from the 2+ - 4+ spacing. 

A2. 0 = 0.299 Mev 

A4 2 = 0.202 1'·1eV 

A = 0.202 Hev exp. 

Coulomb excitation of the first 2+ state yielded a 

static quadrupole moment of 

+ 0.070 b (Ref. 15} 

thereby confirming the oblate deformation of the intrinsic 
. 16 

\-Tave fun~tion. Tewari and Grillot have projected states 

of good J from the oblate and prolate Yale wave functions. 

The calculated spectrum is in poor agreement \<lith 

experiment. Unfortunately all low lying oblate HF 

solutions have large HF gaps. One would not expect to 

be able to introduce pairing correlations into these 

wave functions. 

') -·' 
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832. 

The s32 spect;rum does not seem to have a ready 

explanation,· being neither a good rotational nor 

vibrational spectrum. The o+ state at 3.78 Mev might 

correspond to the spherical intrinsic state. 14 It 

will then .interact ,with .the ground state o+, so that 

the experimental value of P .. should be tal<en from· the 

2 + .- 4+ . ~pac~ng. 

;' . 

R2 = 2.00 

A2-o = 0.374 l-".ev 

A4-2 = 0.161 Mev 

Aexp = 0.161 Mev 

The lo~1est HF minimum is asyrmr.etric with a large gap. 

The Rosenfeld force favors oblate shapes, while the 

NDKB and Yale forces prefer prolate. Several of the 

axially symmetric solutions have small HF gaps, and ar~ 

good bases in which to include pairing. The lowest 

prolate and oblate states are presented in Tables 2.10, 2.11. 

The energy spectrumis characteristic of an 

anharmonic vibrator. The lowest .HF maximum is oblate 

with deformation {3 = -0.10 to -0.15 and inertial 

parameter A. = 0.20 to 0.28 Mev. These values are 

representative of a strongly deformed nucleus. All 
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other HF solutions have small gaps. HF theory, 

therefore, can not explain the vibrational nature of 

Ar36 • It might be expected that introducing pairing into 

the prolate HF wave function \-lill yield a stable and only 

slightly deformed wave function. If the resulting 

inertial param.eter is large, then the excitation 

energy of the rotational states will be greater than 

that of the vibrational states. Characteristic "'ave 

functionsfor the prolate solution are in Tables 2.12, 

2.13. The other forces yie.ld somewhat different wave· 

functions, but the lev.el orderings are similar, the empty'' 

orbital ahmys having = 3/2. 

ca4o 

The ground state is spherical. Single particle 

energies are in Table 2.11. 

. 20 
We may conclude that, with the exception of Ne , 

HF theory fails to explain the properties of N = z 
even - even nuclei in the 2s - ld shell. 

: ... 
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1- 5.785 
3- 5.623 

2- 4.97 
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2+ 1.63 
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Figo 2.3 Ne

20 
energy level diagram (Ref. 18) 
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O·t-

28 
Si 

8.5 

6.887 
6.878 
6.69 

6.27 

4.97 

. 4.61 

1.7787 
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Fig. 2o5 . s128 energy level diagram (Ref. 19) 
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(1,2) 5o80 
2+ 5.55 
3 5·41 

3- 5.01 ..-· 
1+ 4o70 
4+ 4.47 . ' 

2+ 4.29 

0+ 3. 78 

2+ 

0 

Fig. 2o6 s32 energy level diagram (Ref. 19,20) 
.... j 

I 

.; ! 

i 
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(0+) 5.19 
5- 5.17 

2-p-) 4.98 .. 2+) 4.96 

. 
"2(+) . 4.440 
4+ 4.41 

(0+) 4.33 

3- 4.178 

2+ 1.970 

0 

.Ar36 energy level diagram (Ref'. 19) 

' ~ ' . ·. 



Table 2.1: NDKB Force Parameters 

A a B t3 ~ ~ ~ aLS c c 

TE 7.227 0.575 1.0 0.575 0.490 1.20 

SE 2.127 0.903 . 0.6 0.903 

TO 0.219 1.40 0.128 1.40 -0.35 1.0 1.40 0.8 
00 
co 

so -0.128 1.40 0.307 1.40 

~ 
------~------ ------- --- -- --. 

~:..._;_. ____ , ___ .. __ ~-~----~·-·-·- --·----·- -----
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Table 2.2: Binding Energy per Particle (Mev) 

Expt. Yale NDKB 1 NDKB 2 

016 8. 72 5.08 4.75 4 • .83 

Ne20 8.96 . 5.07 4.37 4.62 

Mg24 9.36 5.55 4.51 4. 78 

8.28 .·. 
l 9.71 6-35 5.11 5.35 

_8 32 
9.92 7.11 5.58 5.67 

Ar36 10.10 8.08 6.28 6.35 

Ca4o 10.27 8.87 6.97 6.97 

The "experimental binding energies'.' are obtained by subtracting the 

Cpulotnb energy from the observed binding energies. (Ref'. 17) 
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Table 2.3: Single Particle Energies in o16 (Mev) 

Expt. Yale NDKB 1 
. J 

NDKB 2 

lsl/2 "'-35 -46.34 -47.81 .,.50.61 

lp3/2 -21.83 -20.40 -20.85 -2L89 

1P1/2 -15.669 -16.23 -14.86 -15.41 

ld5/2 -4.142 -0.39 0.61 0.60 

2sl/2 -3.271 0.09 3.49 3.54 

ld3/2 +0.94 4.78 8.23 8.80 

2p3/2 17-58 

lf7/2 16.56 

2P1/2 25.16 

1f5/2 19.16 

.; 
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Table 2.4 Occupied ..IL = 1/2 + 

lsl/2 ld5/2 

Rosenfeld 1 0.821 

Rosenfeld 2 0.715 

Yale 0.038 0.732 

NDKB 1 0.015 -0.831 

NDKB 2 0.016 -0.803 

.. 

·, 

I :' ~ . 

20 
level in Prolate Ne 

2sl/2 ld3/2 

-0.428 -0.378 

-0.581 -0.389 

-0.567 -0.375 

0.431 0.353 

0.474 0.362 
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Table 2. 5: Prolate Mg 
24 (Prolate 1, Rosenfeld 1) 

{"' Jlti ld5/2 2sl/2 ld I 3 2 

-19-382 l/2 .851 -.464 -.247 .. ·. 

-15.054 3/2 -974 0 .225 

-11.991 l/2 .463 .439 • 770 
-10.156 5/2 1.000 0 0 

- 6.169 l/2 .2h9 • 770 -.588 
- 4.054 3/2 -.225 0 -974 

Table 2.6: Prolate Mg
24 (Prolate 2, Rosenfeld 2) 

E« .Jlo( 
ld5/2 2sl/2 ld3/2 

-17.974 l/2 .718 -.626 -.303 
-12.216 3/2 .964 0 .267 
-10.735 l/2 .610 -358 .706 
- 6.901 5/2 1.000 0 0 

- 5-030 1/2 -334 .692 -.640 
- 2.624 3/2 -.267 0 .964 

Table 2. 7: Prolate Mg24 (Yale) 

,. 
c.()( fiot lsl/2:· .. 1d5/2:_. ~~1/2 1d3/2 

-14.982 1/2 .021 • 713 --595 --370 
- 9.505 3/2 0 -951 0 .310 
- 9.042 1/2 .036 -.612 -.271 -. 742 .• ...... i 

- 4.970 5/2 0 1.000 0 ¢ 
' ._ 4.247 1/2 .143 --337 -.745 -557 
i . ' 

- l. 835 3/2 0 -.310 0 ·951 

;· 
' 

Energies ~e in Mev. 

' .-:. . ·' :.· 



' €o( 

-11.619 
- 7.415 

- 5-780 
- 3~852 

-0.546 
1.650 

eO( 

-13.543 
- 8.031 

- 5-920 
- 2.457 

0.753 
3.484 

·.'· . 

Table 2.8: 

JLO{ 

1/2 

3/0 
1/2 

5/2 
1/2 

3/2 

Table 2.9: 

JLO( 

1/2 

3/2 
1/2 

. 5/2 
1/2 
3/2 

93 

Prolate Mg
24 

lsl/2 

.036 
0 
.012 

0 
. ;.096 

0 

0 

0 

0 

24 Prolate .!11g 

lsl/2 

.043 

.013 

.123 

(NDKB 1) 

ld I 5 2 

-.826 

.965 
-.505 
1. ooci 
-~.241 

-.261 

(NDKB 2) 

ld5/2 

-. 795 
-958 

- .527 
1.000 

-.289 
-.288 

Energies are in Mev. 

~51/2 ld3/2 

.469 .310 
o. .261 

--379 -. 775 
0 0 

-. 795 • 548 
0 .• 965 

2sl/2 ld3/2 

.518 .312 
0 .288 
-.341 -.788 
0 0 

-.780 .540 
0 -958 
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Table 2.10: Prolate s32 (NDKB 2) 

"' 

c« fl-Ol lsl/2 ld5/2 2sl/2 ld3/.2 

-19.683 1/2 .031 -.904 .420 .078 

-17-738 3/2 Q -961 0 ·.277 
.. 13.121 1/2 .010 .251 -373 .893 
-11.622 5/2 0 1.000 0 0 

-7.421 3/2 0 -.277 0 •961 
-6.727 1/2 .052 -.344 -.827 .441 

Table 2.11 Oblate s32 (NDKB 2) 

tOI. ../l.Ol lsl/2 1d5/2 2s1/2 ld3/2 

-16.633" 5/2 0 1.000 0 0 

-15.937 1/2 .010 -.827 -.423 -370 
-13.646 3/2 0 .836 0 -.549 . 
-11.317 1/2 .091 .408 -.900 -el2Q· 

-9.803 3/2 0 • 549 0 .836 

-7-595 1/2 .015 -.386 -.051 -.921 

Energies are in Mev. 

·:·, 

~ ; •'. . . • . \ ,,!j_~.:· I 
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Table 2.12: Prolate Ar
36 (Rosenfeld 2) 

" l' 

EC( fl.. d. ld5/2 2sl/2 ld3/2 

·. 
-23.648 1/2 • 730 -.676 -.104 

~22.008 3/2 .980 0 ~199 

-21.549 1/2 .683 ·115 .150 

'-18.352 I 

5/2 1.000 0 0 

-17.530 1/2 -.027 -.180 .983 

-14.892 3/2 -·199 0 .980 

Table 2.13: Prolate Ar36 (NDKB 2) 

<fer _flo( lsl/2 ld5/2 281/2 ld3/2 

-21.477 1/2 .010 -.943 .328 .053 
-20.085 . 3/2 0 .984 0 .180 

-16.960 5/2 0 1.000 0 .o 

-14.982 1/2 .o44 -.301 -. 778 -.550 

-13.472 1/2 .050 -.138 -··533 .833 
-12.402 3/2 0 -.180 0 .984 

Energies are in Mev. 
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Table 2.14: . 40 Single Particle Energies 1n Ca {Mev) 

. 
· Rosenfeld 1 Rosenfeld. 2 Yale NDKB 1 NDKB. 2. 

lsl/2 -79.874 -83.418 -83.144 

lp3/2 -52.443 -51.641 -51.468 

lpl/2 -48.181 -45.134 -45.118 

ld5/2 -27.771 -21~. 913 -27.791 -24.868 -24.835 

2sl/2 -25.278 ~24.349 -211-.307 -18.016 -18.059 

ld3/2 -20.771 -19.831 -21.181 -15.lo8 ~15.;164 

lf7/2 - l. 940 

2p3/2 5-355 

lf5/2 9-738 

~pl/2 10.142 

· .... 



Nucleus 

Ne 20 

t. "':. 

Table 2.:1.5: HF in the 2s - ld Shell 
~-

Force Shape EHF HF Gap ~M '\M A 13 R 
rms 

Rosenfeld 1 Prolate 1 -46.049 8.325 12.7 82.6 0.27 
Asymmetric -43.044 6.055 -6.6 16.2 0.48. 

0 0 0.48 
-68.8 0·15 

Oblate -39.439 1.995 -6.9 18.8 0.11 
Spherical -39.237 6.447 0 0 oO 

Prolate 2 -37-989 0.743 2.6 -67.5 0.02 

Rosenfeld 2 Prolate 1 -37-714 9.390 13.5 70.5 0.34 
Spherical -35.521 8.376 0 0 ct> 

Asymmetric -32.989 6.335 -6.7 17.3 0.52. 
0 0 0.52 

-73.0 0.16 
Oblate -28.007 1.609 -6.9 18.8 0.10 . ..,_ 

Prolate 2 -26.839 0.529 2.8 -69.6 0.02 

Yale Prolate -101.482 5.810 16.3 92.2 0~22 0.269 2. 756 
Asymmetric -96.606 2.945 4.0 -87•3 0.30 0.067 2. 756 

4.9 69.5 0.08 
0.4 0.30 

Spherical -94.337 2.365 0 0 Clt1 0 2.784 

NDKB 1 Prolate -87.523 4.414 13-9 90.6 0.15 0.246 2.666 

NDKB.2 Prolate -92.305 6.212 18.8 107.8 0.21 

For axial shapes: ~M = ~O and ~2 = Oo Q4M = Q40 and Q42 = Q44 = Oo A = Ax = Ay and Az = oo • 

For asymmetric shapes: ~M = (~0, ~2 ). Q4M = (Q40, ~42 , Q44 ) • A= (Ax' Ay' Az)o 

Energies are in Mev. ~ has units of :rm. %M has units of f'mL • 

\.0 
-..) 



Table 2;+5 (continued) 

Nucleus Force Shape EHF HF Gap ~M Q4M A 13 R rms 

'f:/Ig2 Rosenfeld 1 Asymmetric -97· 586 7.324 15.6 -5.5 0.23 
-4.0 -66.8 0.21 

3.9 0.54 
Prolate 1 -94.105 3.063 15.2 -4.1 0.15 
Prolate 2 . -93.505 5.334 7.6 -118.4 0.16 
Oblate 1 -92.181 2.795 -13.3 62.7 0.12 
Oblate 2 -91.248 2.308 -2.1 116.2 0.07. 
Prolate 3 -90.224 4.856 6.8 97.8 0.18 
Oblate 3 -89.588 2.070 -10.8 10.9 0.09 

Rosenf'eld 2 Asymmetric -80.661 8.339 15.2 -23.. 2 0.21 
-4.8 -68.2 0.26 

3.2 0.54 
Prolate 1 -76.427 6.035 6.8 104.2 0.19 
Oblate 1 -75.085 2.031 -13.3 43.0 0.13 1.0 
Prolate 2 -74.605 1.480 16.2 -12.3 0.10 00 

Prolate 3 -73.467 6.284 7.1 -135·7 0.14 
Oblate 2 -69.798 2.643 -12.8 28.8 0.17 

Yale Asymmetric -133.144 5-376 19.8 -11.6 0.18 0.254 2.855 
4.8 77·9 0.17 

1.2 0.40 
Prolate -129.568 0.463 20.0 -6.3 0.05 0.257 2.853 
Oblate 1 -126.307 0.102 -16.6 63.2 0.01 -0.211 2.864 
Oblate 2 -124.828 0.915 -15.4 ... 38.1 0.10 -0.197 2.858 

NDKB 1 Prolate -108.615 1.635 17.3 2.3 0.10 0.237 2.760 
Oblate -104.821 0.770 - 13.0 19.2 0.05 -0.178 2.771 

NDKB 2 Prolate -114.810 2.110 23.2 -1.6 0.14 0.327 2. 727 
Oblate . -108.876 1.249 . - 17.5 27.0 0.09 -0.242 2.751 

::··. 

-·-···-- --· _______ ,,_ --· ·- ----. ----------------- ·----- - -···- ----· --·---.. --
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Table 2.15. (continued) 

Nucleus Force Shape EHF HF Gap ~m '\M A t3 R 
rms 

Si28 Rosenfeld 1 Oblate l -154.717 7-659 -18.7 76.0 0.21 
Prolate -153.244 5.701 19.0 -88.9 0.20 
Asymmetric -151.723 7.000 7.0 29.2 . 0.242 

-3.1 -67.1 0.235 
-57.3 0.19 

Oblate 2 -149.930 5-290 -0.5 -95.4 0~ 25 
Spherical -148.600 5.719 0 0 of) 

Oblate 3 -146.242 2.147 -0.3 117.5 0.07 
-, 

-129.798 8.310 69.8 Rosenfeld 2 Oblate l -20.0 0.23 
Prolate -128.927 7·515 18.6. ..,100.9 0.19 
Oblate 2 -121.053 l. 757 -0.2 123.5 . 0.07 
Oblate 3 -118.095 3·395 -0.4 -113.9 0.17 
Spherical -114.304 3.801 0 0 00 

Yale Oblate -177·941 7-170 -23~:8 88.9 -0.249 
1.0 

0.19 2.927 1.0 

Prolate -174.925 4.040 23.7 - 111.4 0.15 0.248 2.923 
:~ ., Spherical -154-723 - 0 0 - 0 2.922 

NDKB 1 Oblate l -143.007 6.553 -20.3 82.1 0.17 -0.228 2.827 
Prolate -138.220 0.916 21.6 -87.6 0.15 0.243 2.826 
Oblate 2 -136.110 2.093 - 0.3 -119.5 0.12 -0.004 2.834 
Spherical -133.166 0.762 0 0 "" 0 2.832 

NDKB 2 Oblate l -149.805 ~.50!-1- -2·5·9 92.9 0.22 
Prolate -146.411 3.413 28.7 -109.6 0.20 
Oblate 2 -138.111 2.615 -0.3 .. -140.7 0.14 ..;o.oo4 2.800 
Spherical -134.582 1.384 0 0 00 0 2.785 



Table 2.15 (continued) 

,. ,, 
Nucleus Force Shape Ew HF Gap ~M Q4M A f3 R 

• .. -~ rms 
,· 

~2 Rosenfeld 1 Asymmetric -214.883 6.584 -14.1 +3.4 0.21 
-4.2 -72.0 0.25 

-6.6 0.40 
Oblate 1 -212.850 5-316 -1.5 -95-3 0.25 

~ Oblate 2 -212.608 5-279 -4.7 :109.3 0.19 
.. Spherical -211.500 5-719 0 0 00 

Oblate 3 -207.552 3.145 -6.9 - 83.2 0.20 
.. ;:; 

,·. 

Rosenfeld 2 Asymmetric -182.220 7~ 520 -15.4 -5.8 0.19 
-3.8 -74.7 0.27 

-4.3 0.47 
Oblate 1 -179.248 6.357 -6.3 134.8 0.14 
Oblate 2 -177.293 3.409 -1.2 -113.6 0.17 
Prolate -173.852 2.428 13.5 -35-3 o. 25 ,_, 
Spherical -173.488 3.801 0 .. 0 eo 0 

. Oblate 3 -171.612 3.644 ~6.9 . -99.1 0.20 0 
!''~ 

Yale Asymmetric -227.737 4.487 15.7 -71.5 0.16 0.139 2.977 
9-3 -42.1 0.29 

. 54.1 0.21 
Prolate -222.485 1.775 16.1 -78.4 0.15 0.143 2.974 

'. -178.658 3.807 14.0 -47.2 ·. 2.878 NDKB 1 Prolate 0.19 0.133 
-... • Oblate -172.666 1.222 .:.4.6 119.~2 0.11 -0.044 2.882 

Spherical -170.287 0.329 0 0 00 0 2.882 :" 

NDKB 2 Prolate -181.933 4.200 18.1 -63.2 0.24 0.174 2.864 
Oblate -174.698 l. 514 -6.4 147.6 0.12 -0.061 2.865 
Spherical -171.520 0.559 0 0 - 0 2.852 

,. 

.. " 
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Nucleus Force Shape 

Ar3 Rosenfeld 1 Oblate 
Asyriunetric 

Prolate 
Spherical 

Rosenfeld 2 Oblate 
Asymmetric 

Prolate 
Spherical 

Yale Oblate 
Prolate 
Spherical 

NDKB 1 Oblate. 
Prolate 
Spherical 

NDKB 2 Oblate --
Prolate 
Spherical 

Table 2.15 (continued) 

EHF HF Gap ~M '\M 

-280.582 7·392 -:-12.0 -79·7 
-278.189 4.605 - 3.2 57.3 

- 3-9 -45.3 
o.o3 

-276.817 2.442 5.9 -10.2 
-271.988 4. 739 0 0 

-240.955 8.348 -12.1 -90.1 
-238.606 5.858 -3.3 67.0 

-4.1 -:52.9 
7.8 

-235.284 2.638 6.2 -12.4 
-230.172 4. 728 0 0 

-291.071 5· 721 -,.15.3 -100.6 
-285.959 1.459 7-3 -18.7-
-281.901 1.150 0 0 

-225.964 4.508 -13.6 -70.8 
-222.270 0.647 6.3 -.ll. 8 
-221.833 2.795 o· .. 0 

-· -228.610 6.340 ~17.0 -86.7 
-223.192 1.070 8.1 -15.6 
-222.078 3.171 0 0 

Energies are in Mev. R has units of fm. rms 
L 

~ has units of fm • 

.. .. 

A t3 R rms 

0.28 
0.41 
0.23 
0.41 
0.20 

00. 

0.26 
0.49 
0.18 
0.49 
0.22 

OD 

0.20 -0.117 3.017 1-' 
0 

0.14 0.056 3.021 1-' 

oO 0 :J~Oi6 

0.2l -0.112 2.914 
0.06 0.052 2.917 

oO 0 2.927 

0.2~, 
0.11 o.d!$7 2.909 

00 0 
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III. THE SPECIAL QUASIPARTIClJE TRAN.S.FORMA'XION 

1. Pairing in Nuclei 

The HF potential does not account for all effects 

of the effective Hamiltonian. Residual components of the 

effective forces may introduce correlations into the 

presently uncorrelated (except for Pauli "correlations") 

H F wave function. We shall now consider in detail 11 pair1ng 

correlations". Pairs of nucleons in time - reversed 

degenerate orbitals·may have correlated wave functions, 

resulting :'-n an increment in binding energyo It is energeti

cally favorable for two like nucleons to pair to J = 0 

since this configuration provides maximum spatial overlapo 

The ground state angularmomentum of an odd nucleus is 

determined by the J of the odd u.n.paired nucleono 

The HF- potential accounts for :forward and exchange 

scatterings b~tween all pairs of particles. The relevant 

matrix elements are 

<r~cl) f3 (7..) J 1\F /. o( (I) ;3 (2) > 
/J 

:Fbr energies well below the Fermi sur :face, all orb! tals 

are occupiedo The exclusion prlnciple there:f'ore ensures 

that the HF potential accounts for all important scatterings 

below the sur:f'ace o:f' the nucleuso Near the sur:f'ace, her-rever,· 

orb! tals are available. :for other than :forward and exchange 

.... ! 

. . .. . ~ 

. " .. ' 
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scattering. 

Pairing theory accounts for the scattering of pairs 

o:f particles between different pairs of. time ~ reversed 

degenerate orbitalso The corresponding matrix elements 

are 

<~<I) ~(7...) I/\F'/~(1) fJ(2)),c] 

The sharp Fermi surface of the I-IF theory is replaced by a 

diffuse Fermi sur.face (in particle space)o 

I I >· 
o I 

. probo..bili1'1. 
of DCC iA.fO. f1011 

I I >' 

prt~be. .. b i I iG, 
1 

~ f i) c c:. u..r l)...n o 11 

No f~IR.ING WITH P/JIRTNG 

Figure ( 3ol) 

Although this pair scattering produces 

rearrangements only in the neighbourhood of the surface, 

resulting in only a small increment in total binding energy, 

we shall see that macroscopic nuclear properties such as 

deformations and moments of inertia may be drastically alteredo 

The spectrum o.f low- lying excitations is .fundamentally 

changedo Even the underlying single particle basis may be 

significantly modified by the pairing correlationso 
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2. Bogoliubov Quasiparticles 

Although the existence of pairing in nuclei has long 

been recognized, a systematic theory was not developed until 

the BCS theory qf superconductivity (1957) was applied 

to nuclei (1959). 1 ' 2 The Bogoliubov quasiparticle 

method is equivalent to the BCS formulation. 
\ 

The properties of the special Bogoliubov quasiparticle 

transformation will be worked out in considereable detail. 

This is desirable because: 

a) The essential features of pairing theory are most 

easily demonstrated by the special transformation. 

b) 1 T l = 1 pairing can be directly studied with the 
z 

special transformation. 

c) Familiarity with the special transformation will 

enable us to generalize the pairing theory to include 

T = o and T = 1 pairing. 

d.) The most desirable form. of the pairing theory (HFB) 

is derived from the general Bogoliubov quasiparticle 

transformation. The general transformation nay always be 

described in terms of the special transformation in an 

appropriate single particle basis. This is true even if 

T = o and T = 1 pairing co-exist. The ground state wave 

function may always be given in the form of the familiar 

BCS wave function. 

i 

" . : 

. ! 

\ 

..... 
,..,; 
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In I. 3 '-le introduced the notion of "quasiparticles" 

as the elementary excitations of the system. The ground 

state is therefore a "quasiparticle" vacuu.m. In the HF 

description . the "quasiparticles" are ••particles .. 

t/ . oi :: a! ( e. 0{ ) CF) 
( 3.la) 

or holes. 

b tl:l/ = Qcl (C.r:J. <f. f) 
(3.lb) 

If the state { ot) is paired with the time reversed 

degenerate state I ~) 1 the qppropriate generalization 

is the special Bogoliubov quasiparticle transformation. 

( 3. 2a) 

(3.2b) 

hf~ :::. U; a~ -A[" fl. ae~.. (3.2c) 

hit 
It a;;. -iJ&"' ·t 

::u;. QD< (3.2d) 

. . 7.. 
We shall see that /Ncr/ is the probability that the orbits 

{el.) 
I are occupied. 

. u. 
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The quasiparticles are Fermions and must satisfy 

the anti-commutation relations. 

. -1 h-t ] 
[ /oc~} fJ +- = [ b~, b~ ].- ;:: 0 ( 3. 3a) 

L h toe bfo 1 r = J Ci f.> I . 

(3.3b) 

In particular 

[b~JbaJ-t -:.:: I . 

[bt<,b~J-t ::.() 

These com.'"nutatcirs· may be evaluated with (1.76) and (3.2). 

l u o{ I t. t I IV« I \ = I ( 3. 4a) 

(3.4b) 

It is therefore required that 

( 3. Sa) 

• • I 

(3.5b) 

~e choose the pairi~g paramet~rs to be real, with the phase 

convention 

:, :. : .. 
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(3.6a) 

(3.6b) 

Rewriting (3.2) 

. ' 

k/oe =- U« a 1tt. -No( a;( ( 3• 7a) 

(3.7b) 

(3.7c) 

( 3. 7d) 

The conditions (3.4) may also be obtained by requiring 

the transformation 

(3.8) 

to be unitary (u+ U = I) and real so that 

(3 .9} 

(0
-1 - ~) 

The inverse of this orthogonal transformation = 0 is 
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I ~ o ) -:= 7T ( U <>. t AT« a ,.C( fJ tei ) I o ) • 
c( )() 

(3.14) 

This wave function has, the unfortunate property of not 

being an eigenstate of the particle number operator. 

(3.15) 

tve require that .the average number of particles in the 

ground state equals the true particle number N • 
0 

No 

The Hamiltonian H is replaced by H - .A N 

(3.16) 

(3.17) 

where :X 1s a ragrange. multiplier w·hich is adjusted so that 

the constraint (3.16) is satisfied. H' is obtained .from H 

simply be replacing T with T - A • 

'' !l .• 

! 
•, 

'j 

• v ' . ~ 
' 
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4. The Har.:d1 toni an 

With the aid of (3.ll) the density matrix (1,87a) 

may be evah.tated. 

.. t 
= <apaa) 

(3.18) 

= < § l> I CUt b; .t ~ b ;·) ( u"' b (1. t ~ b ~ ) l ! o "> 

Utilizing (3.12) and \_f.,/ b,: b~ /1o'> = 0 

PC(~ ~ /"Jfo ~ < ~ D I b~ h fo,. I !f. 0) . 

i t ' t 
Using I - I - :: ·J - b - b .21_ 

I bfo b ()1. ~~ "' 1-
and ( 3.12) 

The occupa £ion proba:bili ty is • 

The number conservation constraint (3.17) is simply 

T r f :: No ( 3.20) 

or 2 ~ !\!; ,_ ~ No . ( 3.21) 

oC')o 

The pairing tensor (l.88a) may be similarly determined. 

tD(A::: <a act.., ' ,- p (3.22) 
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Let and use (3.llb,d). 

-= [_- -=-o D1f3 . 
( 3., 23a) · 

(3.23b) 

(3.23c) 

[ ;. ~ ::: < a ~ a Ot > = """u b( AF0< f 0(,. 
The adjoint of the pairing tensor (1.88b) 

. {3.24) 

may be obtained directly from {3.23 ). For otJ ~) 6 

(3.25a) 

(3.25b) 

(3.25c) 

The HF potential in the I 0( '> 'basis is 

( 3.26) 

It should be noted that this potential differs from the one 

used in HP theory (2.6) through the occupation probability 

. . . 

,, . ·. 

i 
! 

.. 

.. 
'• 

. ' 
' 

,'; ! 
; :, '·' ! 

r~'·j 
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1. 
tV~ • Since ( cr, f IN I ci'Lf->) /1 

r is syint-netric • 

r 
ot, o('l. 

The HF Hamiltonian is 

It is also symmetric. 

For any system with time - reversal symmetry the 

expression for the pair potential (1.9la) 

may be simplified. Assume tkl = 0 for k, 1 ) 0 or 

k,l. < o. 

( 3. 27) 

( 3.28) 

(3. 29) 

Since t is anti-symmetric· and < L. j I~Jl<...P >A= -< <.• J fAr/.) i<~ , 
the second sum equals the first sum, and 

' 
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For i, j ) 0 or i, j < 0, the matrix element < l. J /IV II<}~ 

vanishes (by angular momentum projection conservation), 

so that non-vanishing elements of have ( '> o , J < 0 

or L < 0 1 J )0 • 

J 

= -~ < t' I 1~1 (<. i ~ [ I<P 
/<.p)o 

(3.30) 

This result is not restricted to the special transformation. 

The pair potential for the special transformation is 

( 3. 31) 

Although 4 is antisym..TUetric, so that 

( 3. 32) 

it is not true that ~ - ~-L) -
o( I eXt. o(l. c(, 

• Since 

< "'· ~ '- IN I~ fo >A -= < (;( I o/ l_ I /V I ,6 /-> ~ = < o(l. ~I IN I(!>;, 111 ) 
the correct symmetry relation is 

(3.33) 

The Hamiltonian 

I I I I H·' H = Ho f!" + '{ (3 .. 34) 

.. 

' 
i .. 
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is now completely determined. (See 1.86, 1.92, 1.93,3.17.) 

Before exp1ici'tly '\-ll"iting H', we present simplifications 

in the form of H
0

' and a
2

• which are valid whenever the 

system has time-reversal symmetry. Consider the pairing 

energy in the ground state. 

(3.35) 

Assume 0 for i, j ) 0 or i, j < o. 

z: 
<.jJ <o 

lJ - . (. J 

Since and t are both anti-sy~~etric, the second sum 

equals the first sum, and 

(3.36) 

Similarly 

-t 2; Ll L j N [ at,_. a ti 1 = ~ Ll (.; N [a tl a 1] · c 3. 37 > 
Lj" (J)O 

For a system with time-reversal symmetry H' has the representa-

tion 

or 
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H l>

1 

~ E.o- A No = ~~ < '- f T-). J J ) (J l f-

'-J 
'/2 ~ <: c / IAr I K .R '> fJ J<.. • f.R 

1
. + 

'"J~<; ,., I J ~,. 

(3.38b) 

i; <:: ( j IN IJ<J "?~1 [ ~ j [ J<.P 
lj/<.R)o 

~.,or the special quasiparticle transformation (that is, 

when (3.14) is the reference state) H' has the representa

tion 

Ho' -:: E. o- A No ~ Z.' < r- ~ .,. i r J 0( c( !V« 1. 1-
I . . 

rl>.c. 0 
( 3. 4la) 

4 /J.d~ Urx Nrx 
or 

IJ(.., 0 

Ho 1 

-;;: £. (>- )..rJ~ = ~ < o< I T - ) I ot '> ;VO{ ' + 
0( 7, 0 

'!L. z: < o<fi' IN lot f) ~ 1. /\T,g 11. + 
c( fo '!:: 0 I) 

~ ~ o( d: J AI' If" /11 Ll 0( IV~ ~ /'1jg 
D(,S )6 

(3.4lb) 

... 
or. •. 

.. 

.. . . 

, I 
I 
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5. BCS Equations 

The occupation probabilities ~ are as yet undetermined. 

The equation which provides their values may be obtained 

by a variational principle or by the equation of motion 

method. 
. . 2 

The variational principle consists in choosing the VO( 

such that the ground state energy is minimized. The orbitals 

are considered as given. The normalization 

condition 
1. 1. 

o.~ . + ~ :: I 

restricts the.variation of V~ • The variational principle is 

d Hr/ = d H ()
1 ;; Hf) l C?U o( 

( 3.42a) - -t == 0 
~~ P'~()( OlUeJ~ (JA}.( 

or JH' -:;~I - 6{ot ?lb.' ~ 0 
(3.42b) 

fL.!_1.Q 
~/Vo< ?%0( Uc:r dt.J.ci 

Substituting (3.4lb) into (3.42b) leads to the BCS equations. 

( 3. 43a) 

(3.43b) 

where ,... 
Ccx denotes and 

(3.44) 

(3.45) 

·~·· .. -· 

I 

! 
. I 

i 

..... ! 

• • .. i 
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The single particle energy c~ differs from its HF 

counterpart ,{2.18) through the occupation probabilities. 

The BCS equations have the solution 

u'l 
ol =J.(/ f .~oe-). ) 

2 /< z. tl . ~0<-i\) t L) t( 
(3.46a) 

(3.46b) 

Just as the HF potential was determined self-consistently , 

·so is the pair potential. The pair field (3.45) determines 

1 the pairing degrees of freedom (3.46), yet it is also determin~d 

by them. The solution is obtained by· iteration. An 

initial guess is made for the set{..{«, .Af"o< and :A 

(consistent with number conservation). and f1 ~ are 

calculated {3.44, 3.45). A new set of parameters '' Ar 
I.A ex , . "v e( 

is calculated with (3.46). ). · is varied so that the 

number conservation constraint (3.21) is satisfied. The 

potentials are then recalculated. ~ne procedure is continued 

until the parameters remain unchanged on successive iterations. 

An alternative approach is to combine the equation for the 

pairpotential (3.45) and the .BCS equations (3.46). For an 

attractive force 

u«vol is therefore given by 

U. e< Nrx - - 1 
2 

and [ have opposite signs. 

(3.47) 
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If is negative, Uet and Vlf may be chosen positive. 

·substituting (3.47) into (3.45) 

The solution.is obtained by iteration,. 

The BCS equations may also be derived by the equatio~ of 

motion method. Tl1e quasipa.rticles .are to represent the 

approximately independent.modes of excitation. It is 

therefore required that 

( 3. 49) 

·rhen H' has the form 

H' ~ E"- J..No.+ < EC( b: bor. + Hv' · ( 3. so) 
q 

If H4,, the quasiparticle interactions, is small, then H' has 

the desired form of an independent quasiparticle Hamiltonian. 

Assume that 

f ((){ (;(' 11\f 1;8 ft >, ! << /(o( ~ IArl~ft )19 /. . (3.Sla) 
. (~,~~) 

Then lf:J.o(~'l ~< I ~o<;.l· (3.Slb) 

It should be stressed that this is a crucial approximation 

in the BCS theory. l'le shall later give m .. ~mples for which it 

\ 
\ 

...... ; 

--· i 

~· ; . ' 
r· . 

. ·.: ' ~' ~ 
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is not justified. 

It is also assumed that 

1 14«o<'l ·<-< I 'J.Ja~ I . ( o( ":f. t(') . ( 3. 52) 

This assumption is satisfied, of course, if 1-1- is 

diagonal in the /c(') basis. That is, I o() could 

be chosen as the eigenvectors of the pair-modified HF 

Hamiltonian (3.26, 3.28). These modified HF wave functions 

may differ from those of the original HF potential (2.6, 2.7). 

We shall later demonstrate that the original HF b:l.sis is 

more desirable than the modified HF basis. The .unmodified 

basis is therefore used, and it is assurned that off-diagonal 

matrix elements of the pair-modified HF Hamiltonian in this 

basis are small. The justification for this seemingly 

inconsistent choice will later become apparent. 

With assumptions (3.51, 3.52), Hi (3.4lc) has the form 

H 1.' ·-= ~ ( {. 0( - /... ) N [ a tO( a-.( ] f 
oo,o 

t; /JO( ( N[a~a~]+N[O;tad])· <3.53) 

r.J?c 

Consider the conunutator [H/
1 
b+e~J-. Using(3.49) 

(3.54) 

Substituting (.3.7a) into (3.54) 

( 3. 55) 

) : 
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The commutator may also be evaluated with (3.53}. 
r H1.' 

1 
b ~ 1_ = f < €10(- )..) u « - L\ « ;tr;.,} a~ + 

f !J()I.t.A.Ot +(co. -).};v-0(} a.& («'>o)C3.56) 

Equate coefficients of a! and a-.01 in ( 3. 55, 3. 56). 

(3.57a) 

(3.57b) 

For time-reversal degeneracy E- = e ~ • Rewrite (3.57) 

in matrix form. 

(3.58} 

?1ultiplying (3.57a) by v 
0( 

and (3.57b) by u 
<It 

and adding 

we arrive at the BCS equation. 

The quasiparticle energy Eo( is determined by · 

(3.59} 

Solving for ECI( 

E Ot ::: I (. € /1( - .::\ ) ~ + fj ! , . (3.60) 

The quasiparticle energy displays the energy gap in the 

excitation spectrum. In the absence of pairing, the energy 

required to lift a particle from a level ·below the 

Fermi surface to an unoccupied level (creation of a 

... 

••particleu- }iole pair)' is :> 
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/ 

( 3. 61) 

l:ex may be very small if the levels in the neighbourhood 

of the Fermi surface are closely spaced. When pairing is 
'. 

present the analog of the "particle" - hole state is a two 

quasiparticle state with excitation energy 

Even if(cct,-A.J and (ec<l...-.:\) vanish, there is still an excitation 

energy 

Ee.; I, :: I [J c( I I + I {J o( 1.. I . (3.63) 

The pairing correlations ther(~fore create an energy gap 

bet\'leen the ground state and lmv-lying excitations. 

:t .: . 
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6. Hartree - Bogoliubov Equations 

There are foriUt-"llisms for which no approximations are 

required to ensure that 

H -a,
1

. ~ ~ E,<. b ~ b 1< • ... 
. k 

1·1ore careful consideration must be given to the choice of 

the single particle basis. A criterion for the "best .. basis 

must be formulated. It \.Jill be demonstrated that simply 

choosing the eigenvectors of the pair modified HF Hamiltonian 

as the single particle basis'is not a consistent method for 

including the effects of pairing correlations on the HF 

degrees of freedom. Furthermore, the eigenvectors of the 

pair-modified HE' Hma.iltoniari are even less desirable than are 

those of the original .HF Hamiltonian. There is a third basis, 

.termed the "canonical basis," which is most satisfactory. 

It is determined by either the Hartree - Bogoliubov 3 (HB) 

or the Hartree-Fock-Bogoliubov (HFB) equations. 

The first derivation of the HB equations is by a 

variational principle. Choose the basis /~) so that the. 

ground state energy (with a BCS \VclVe function) is minimized. 

Since 

<' /) ~· let/=. ~ ... II<> (3.64) 
I'< 

the matrix elements of T and v may be rotated 

<' ~, ~t < o(l I T ( ot "2.. ) -= LJ p I< I {) k l. < I< I I T I I< 1) (3.65) 

I< IK'L . 

' . 

....·I 

• ·l 

. . • I 

·' 
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<c~,~\f/J{ ~>4''1~:: i; (/~. D =~ vz; b1~ < k!f<z.IN1k>I<Y)I9 
· I< 11< ·d<J 1< 'I ( 3. 66 ) 

where the D coefficients are asst~ed to'be real. For time-

reversal degeneracy the phases may be chosen so that 

( 3. 67) 

Substituting (3.65- 3.67) into (3.4lb) 

1-// = E. 0-). N 0 : z: D :. f): 1. N« ~ < k I I T- A /!< l.) t 
o( ,,~ 

k,l<l. 

' Alternatively, the density 1natrix and the pairing tensor may 

-1 -be evaluated in the f I<) basis. Invert (3.64) (D = D). 

I( 

; II<'!=~ Dt< /0{) (3. 69) 
t( 

Then 

Inserting (3.19) 

t > -<' 0 'l' Dor . ,... z ::: < a k, G l<t. -= ~ 1<., I<,.. /V C( 
/<.,_ I< I c( 

(3.70) 

Similarly· 

( 3. 71) 
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(3.68) ·is obtained by substituting (3.70, 3.71) .into (3.38b). 

The pairing degrees of freedom have been varied (3.42) 

to minimize the ground state energy. This variational 

principle resulted in the BCS equations (3.43). 

The variational principle for the HF degrees of freedom 

includes a normalization constraint. 

(3. 72) 

Substituti~g (3.68) into (3.72) leads to 

where J..t is defined by (3.26, 3.28) and ~ by (3.31). 

This is one form of the H3 equations. The quantity in 

brackets is the HB Hamiltonian 

so that 

(3. 75a) 

The HB equations present an eigenvalue problem. 

(3.7Sb) 

or 

J..IHB (o(J /at)-::: eO{ I o<)· (3.75c) 
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It should be mentioned that C.()( is not the single particle 

energy • 

' ' 

As in the HF theory, the HB equations provide a self-

consistency condition. The potentials are determined, in 

part, by the HF degrees of freedom, and vice-versa. 

Solution is obtained by iteration. 

Since the HF and pair potentials each depend upon both 

HF and pair degrees of freedom, the BCS and HB equations are 

coupled to each other. One must iterate between them to 

achieve self-consistency in both HF and pair degrees of 

freedorn. 

Unfortunately ?-{- HS is a functional of C( • Since 

it is a state dependent operator ~.i:ts eigenvectors can not 

be obtaineq in the usual way. ?nis state dependence should 

be distinguished from the state dependence of the HF 

Hamiltonian 1-/- • Although the operator 1-1 is a function 

of the occupied orbits, for a given A particle wave 

function, there is a unique matrix ~epresentation < { 11../. I J.) 

The HB Hamiltonian, however, has a diffel:'ent representation 

( t" ( J.1. Hs<«J I j) for each I r:i) • 

~HB differs from the pair-renorma1ized HF Hamiltonian 

through the inclusion of the pair potential~ The important 

conclusion, therefore, is that changing the original HF 

Hamiltonian to its pair-modified form is not a consistent 

• 
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method of accounting for the effects of pairing on the HF 

degrees of freedom. One might have hoped that iterating 

between the pair-modified HF equation and the BCS equation 

until consistency is achieved in HF and pairing degrees of 

freedom would be a consistent method, or at least more 

desirable than simply solving the BCS equations \-lith the 

original HF basis. Although this procedure may have 

considerable intuitive appeal, we have demonstrated that 

it is not derivable from a variational principle. 

Furthermore, 'He shall numerically demonstrate that· iterating 

between the .BCS equations and the· modified HF equations 

generally results in a wave function \vhich has less in 

common vrith the exact (H3) vJave function than does the 

wave function obtained merely by solving the BCS equations 

with the original HF basis. 

The HB equations have an alternative form. Utilizing 

(3.75c) 

HB < tr I 'if f f>> I ~ > = o .. 

and = 
is sytmnetrice 

- HB H8 
')./ (o() ~ tl (o() 

. . HG HF 
In particular, J:.lc(jS (cO:. 7{/>0( (~J 

Therefore lf~IIJ (o( ~. ~ 7:/ !J (f-'J ;- o . That is 

( 0( :F-~) 

HB 
J..l. 

(3.76) 

• 

4 -. i 

. ' ...... ; 
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These are also referred to as the HB equations • 

.. Further,insight may be gained by expressing H1 in terms 

of the quasiparticle operators. Since the reference state 

is chosen as a quasiparticle vacuum, 

N [ b·~ b ~ ] ~ b t« b ~ (3.78a) 

N [ b" bJJ 1 = b~ b/> (3.78b) 

N [k/tt bp] -:: b tC( bfo (3.78c) 

N[ b" j,~J~~b~h~· (3.78d) 

Substituting the inverse transformation (3.11) into H; (3.4lc), 

and using (3.78), we may express s2 as 

H I ~ H'.H' 
'1.. :::. H II t- . io_ t Ol 

(3.79) 

where~ _contains terms with.m quasiparticle creation 

operators and 'n annihilation operators, and 

H,; ~ i; { ( 1-1- ))D{~ ( Lt" ({~-N« Af~>> 
otf!,?o ( 3. 80) 

- ~ ct~ ( UoA!f + ;V()( U~ ) } ( bfti b,4 + b 1 « b,;. ) 

H~; +I{ o
1

1. = z; f ( f:./- ;t )~tfo < u..Ot ~ + #"ot li~J 
« ~ ~l> 

. } t b t + IJ ~ fo ( Lt. cr Lifo -/IF cc Alfo ) ( b oc ~ 

We have used time-reversal degeneracy 

'J-1. 0( ~ = 1..f. 01 ts = 0 

. 'J..I '& ~ c 'J..I. 0( ~ 

t 

(3.81) 

t b ~ bl> ) ~ 
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(these relations are true even if I /~) 

eigenstates of 1f ), and. the sy~~etry relations 

1-1- C( (?> : 'J.I ;5 o( 

lJ « ~ :: L) ,-6 0( 

in deriving (3.eo, 3.81}. 

In order ' that H2 have the form 

= ~ .Ek~bk 
k 

·,, 
- ·i'._ 

are not 

H' + H' 20 02 
clearly must vanish. It is therefore required 

that 

For c1.. = /> , ( 3. 82) reduces to the BCS equations. 

Consider · q -:p. f> • If the BCS equations are solved 

without special attention to the choice of single particle 

basis, then H2o + vanishes on~y if 

( 3 .. 83) 

These are the assumptions we encountered (3.51, 3.52) in the 

derivation of the BCS equations by the equation of motion method. 

For a non-trivial force, however, (3.83) cannot be satisfied. 

If I o() is chosen so tliat 1-/..,(f$ = 0 (eX -1-f!>) then 40(~ #. 0 

(cl. -:1(3) .. 

; . 
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~ther than make the assumpti<:>n ( 3. 83), we _will 

determine the r.:ingle- particle basis for which (3.82) is 

exactly .satisfied. Multiply (3.82) by ( U r1N01. -l{t91'fis ) • 

Rearranging the terms 

In general the' term i.n brackets must vanish. 

These are simply the HB equations. 

Satisfying the BCS and HB equations therefore ensures 

that H' + H' = O. 
20 02 

Finally·let us consider 

( 3. 84) 

where 

· In particular 

· · E tJt 0( = < 1-1 oe oc - ~ ) < « ~ -~" ) - 2 Ll .. & utA trO( · · 

· _Substit1Jting (3.46, 3.47) 

(3.86) 

-.This is the :Bcs··result. Solving (3.82) for 7/J.O(iA and 

substituting, into (3.85) · 

£"-~ = ( 14 -").)~,a I< UO( Uts -AFOt AT~ ) · (3.87) 



Alternatively (3-.82) may be solved for 14otfo 1 yielding 

(3.88) 

Even after the BCS and HB equations are solved Ec(,d , 
I 

and therefore H11 will generally not be diagonal. It 

should be emphasized that the canonical basis diagonalizes 

neither If nor Ll . . • ·· A further transformation -

a rotation in quasiparticle space - is required to put 

H' in the desired form. A rotation R 
2 

is chosen to diagonalize the eners~ matrix £~~ 

or 

-H 1.
1 

:: ~ E JJ b ~ b y 
J/ 

-If R :1- I 1 then E11 · r! E1111 :: E11• 

( 3. 89) 

• 

( 3. 90a) . 

(3.90b) 

( 3. 91) 

Three transformations have been required to obtain a 

"quasiparticle" Hamiltoni~n. 

u1 : Rotation in particle spnce 

( 3. 92) 

l ... r 

0 -. : 

.. . . 

·. j 
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B
8
P: Special Bogoliubov quasiparticle transformation . 

(3.93) 

u2 : Rotation in quasiparticle space 

b +-y = ·t R ~ b t« 
0( (3.94) 

The final Bogoliubov quasiparticle co-ordinates are 

given by the product of these transformations. 

(3.95) 

The third .transformation, u2 , does not, however, 

affect the ground state prqperties of the system. After 

the first b·70 transformation::; the density matrix is 

and the pairing tensor is 

Substitute (3.93) into (3.94). 

b1 
y = i ( R ~ u C( a t~ - R ': /F~ a ;;. ) 

C( 

Inverting this transformation, and recalling that the 

ground state is a quasiparticle vacuum, p and E may 

be evaluated after the three transformations have been 

performed. 



136 

Since R is an orthogonal transformation 
. -. 

or 

so .that· f is· 

Similarly 

< a~ a~ > = f< F?~ u~ ) c R ~ ~) -= <~ R': R;. ) u/3 ~ 
J/ 

and L. is 

Since the density matrix and pairing tensor are not 

altered by the third transformation, the ground state 

properties remain unaffected. 
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=!·Pairing 

The conventional pairing theory permits correlations 

to exist only betwe~n like nucleons, that is, it accoun:ts 

for p - p and n - n pairing. The appropriate formalism 

is obtained if, in our preceding derivations, I ol) is 

restrictE!d to states of good isospinc projection. . So far 
;: ' ·I· r has been treated on the same footing as the other . 

quantum numbers. We not-~ explicitly label isospin 

projection, so that single particle states are reprel;)ented 

by /ot.i) • 

The quasiparticle transformation is 

(3.96) 

The ground state wave function is 

( 3. 97) 

t t ) 
x 1T ( u 0('-n t ~,_n a D(J." a~ n . I o) . 

o('l.')O ' . 1 

Neutrons and protons need not have identical orbitals. 

Since the number of neutrons and the number of protons 

are each to be conserved, the Hamiltonian is replaced by 

H ! ~ H I '::: H - A. f N r - A 11 N n (3.98) 

where 

"! p ~ ~ a ~ r a « p N n = .2J a :n f1 « n 
o<"'"l(..o · · · ~'l,o 

' ( 3. 99) 

and A f and ) n are adjusted so that 
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< Nr > = ~ (3.100) 

This approach has the disadvantage that H' can not be 

obtained from H by replacing T with T -A.p- .:\., • .i\ more 

satisfactory method is to replace H by 

(3.101) 

where (3.102) 

and is a projection operator 

f'-r -= I r/ <II (3.103) 

so that 

(3.104) 

H' is obtained from H by replacing T \vith T-Jv:.f,-Jv,P,. 
Note that 

. (3.105) 

The density matrix is 

~-~ 
'• 1'1. 

(3.106) 

so that the number conservation conditions are 

2 ~ 4 :" -; A- 2 · (3.107) 
~)0 

The pairing tensor is 

t -
o(, i; J c( 'L ;,_ 

=U 4 f [ · 
ef, I, IY, 71 o( I ~l- T,· /,_ 

(3.108) 

-. ' . ' 

.... : 
' 
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The HF potential is · 

r, r N r :::. .z; <c(ITt j ,s I /Arlotl. rl.J Ar) NA~ 
"" 1 1 ) "'.. 1. PT r-- 11 , 

(3.109) 

·Note that r . ::. 0 unless [,
1 

: /..1.' • ·Neutrons 
Cl(,lj ,~ .... r" 

contribute tothe proton HF potential, and viceversa. 

The pai,r potential is 

·{jot..,.. ot-T ~· .i! <lt',;,, ~ .... T1.1Arlj3r;P.r>u /'£ .(3.110} 
I 'I ) l.. 1. ~ "1 0 f""' /J, /!>( j9 7' 

1' 

The pairing matrix· elements vanish unless ~-::: (,_ ~ I . 

The only non - vanishing ele~aents of fJ. are 

Note that only protons (neutrons) contribute to the proton 

(neutron) pair potential. This is a consequence of 

restricting the correlations to 1 fr: f::: I 

The resulting BCS equations are 

pairing. 

(3.112) 

where 

E«-r ... <o(fT/o()+ ~ <O(.T1 ~r'l;v/ci~~r'~l\f4-z..1, C3.ll3) 
. ~T' . ~ 

and /). 04 ,- :: 41 « T ;;z; 
/ 

~Of.T -= 2; < o<T1 d. T l /V{~ 11 ~ T~ ~T ~r· 
p3">t!> . 

(3.114) 

The neutron and proton degrees of freedom are. decoupled 

•.· t I 
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except for their interdependence in Eo<. -r • Note 

that. the single particle energies of the neutrons and 

protons are measured from their respective :;"·erm1.' energies. 

1\ 

EO(T ':;: Cct.T -).T (3.115) 

The solutions to (3.112) are 

I I ,..'\.. 1. 

£ «.j 
:: E .t L)«T «1" . (3.1,16) 

'2. " (A 01. r '::: y2. (I + car I£ «1') ( 3117a) 
A 

'Z. 

~7... < t- e« r I£ rx 1 J Nc<T = (3.117b) 

The sets of equations (3.107, 3.113- 3.117) are 

coupled to each other and are solved by iteration to obtain 

self - consistent potentialse 

\ 
) 

I 

~. 

. i 
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e. ITz\ = 1 Pairing in the 2s-ld Shell 

The IT I z = 1 pairing equations were solved for the 

N = Z even-even nuclei in the the 2s-ld shell. All HF 

solutions reported in table 2.15 were tried as single 

particle bases. Since N = Z there are the symmetry relations 

Eo(r :: etft(l 

u~r ~ u;l? 
A r- 1 - . Ar 1. ,v otp - /tl q, 
I tJt¥rl-= I ~"~~I 

E.ttf ::E~n 
Ap ::· A, 

The isotopic spin subscript 'Hill be deleted for the 

remainder of this section. 
5 

The moments of inertia are given by 

(3.118) 

Jx : 2 ·~ .. 
(11{ c( 

I < o< I J x I f3 > I,. ( U ex INfo I ~ U1- I Nee I ) 1. . 

£of. t£1> . (3.119) 
.~ )C 

with similar relations for Jy 
multiple moments are 

and J1:. 

< QLM >::: ~ <ot I 0Lf1 lo('> j\JC(,_ 
ol 

. 20 
Ne 

• The 

(3.120) 

The lowest prolate single particle basis has a large 

HF gap. Consequently, the BCS equations give the trivial 

solution (no pairing). 

t. I 
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Similarly the asymmetric wave function is stable 

against fTz/ = 1 pairing. The Rosenfeld force 
c 

yields no pairing. Although the Yale force results in a 

small HF gap (2.945 .Hev), the pai'ring admixtures are small 

(a dispersion to 2 . orbital 6 of v
6 

= 0.053 with 

Epi\IR = -0.860 rllev and a net gain in E.rO'l'r\L of only 

-6 Kev}. 

Several of the higher· lying HF wave functions with sma·ller 

HF gaps admit J Tz I = 1 pairing, most notably the Yale 

spherical wave function (EPAIR == -6.488 l·~v, 

ETOTt'\L = -95.518 Vrev }. But these are not thought 

to have any physical significance. 

24 
1-'.g 

The asymmetric wave function has a large HF gap, and the 

BCS result is the trivial one. 

The prolate HF state with..fl::: ~+. ~+ occupied orbitals 

is of special concern (see tables 3.1 - 3.6). (All other 

prolate HF wave functions permit no pairing admixtures.) 

The Rosenfeld 1 and NDKB for9es show very weak pairing 

with neglible changes in the properties of the wave 

function. The Rosenfeld 2 and Yale forces result in 

moderate pairing. The deformation parameters are only 

slightly altered, but the inertial parameter is 

considerably increased (0.10 to 0.19 Nev for Rosenfeld 2 

and 0.05 to 0.17 Hev for Yale). The energy for 

.. 

i 



... 

• .. .,. 

'• . 

. .. 

143 

elementary excitations (K = 2) is substantially increased 

(1.48 to 3.16 f.1ev and 0.46 to 2.93 .fv'..ev). Since 

pairing in this prolate state is force dependent, and 

since for those forces which do permit pairing the K = 2 

two quasiparticle state is too low, we conclude that 

IT I z 

_24 
= 1 pairing is not significant in prolate ~~ 

wave functions. 

All.oblate states shoH I T \ z 
: 1 pairing, most 

notably with the Yale force . (EPi'~IR = -4.364 Nev, 

E1,0TAL = -128.317 Mev for oblate 1 and EPAIR = -4.743 11ev, 

ETOTAL = -127 • .391 Nev for oblate 2). However, since 
24 

.fvq . is prolate in the intrinsic frame, these solutions 

are not physically relevant. 

The lmvest oblate state has a large HF gap, E;O that rio 

pairing occurs. 

Similarly the lowest prolate state admits no pa_iring, 

except.for the NDI<B (s- p - sd) force, where the HF 

gap is only 0.916 Mev. However, even with such a small 

gap only neq-Jigible pairing results (E_pi\rR.·:· = -0.255 !·1ev with 

a gain in ETOTAL of -14 Kev) • 

For the Rosenfeld 1 force only the oblate .. 3 state 

contains pairing (EpAIR = -1.569, ETO~\L = -146.399). The 

corresponding state "7! th the Rosenfeld 2 parameters is 
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oblate 2 (EpAIR = -2.187 1 ET~L = -121.489). 

Of the remaining solutions only the spherical states 

have f Tz ( = 1 pairing. (See table 3. 8.) These may be 

of some interest, as the spherical intrinsic state has been 

useful in describing the experimental spectrum. 4 The 

HF ordering of levels is d5;2 , d3/
2 

, s~ • ('rhe Yale 

force presents an exception, where the unoccupied d
312 

lies below the filled d 
512 

• The pairing calculation 

was not performed with this state.) The dispersion to 

2 the d3;2 orbital is v d
312 

,-v 0.1. 

The asymmetric \-lave function admits no pairing 

admihtures. Nor do any of the Rosenfeld 1 wave functions. 

For the prolate state the Rosenfeld 2 and the Yale forces 

Yield' non - trivial solutions (EPAIR = -4.425 J'vlev, 

ETOl'AL = -174.091 Mev and EPi\IR = -3.106 Mev, 

E = -223.226 Mev), whereas the tiDKB force does not. 
TOTAL 
ln the oblate state with positive o40 .only the NDKB 

force results in a small HF ~-ap ( E = -2. 882 Hev, 
PAIR 

ETOTc"\L = -173.277 Mev for s-p-sd and EPAIR = -2.444 Nev, 

E - -174.950 Pev for s-p-sd-pf). Of the remaining 
TOTi\L 

oblate states (Rosenfeld 2) oblate 2 is at the pairing 

cutoff (EPAIR = -0.021 ~lev), and oblate 3 pairs 

(El?hiR = -2.212 Hev, E ·TOTi\L = -173.,876 Nev). 

.. ; 

,. 

: > '.'.· ~ 
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The oblate wave functions do not admit pairing 

correlations. Neither do the asym.'netric states. 

For the prolnte state ( see table 3.7) the Rosenfeld 1 

force yields no pairing, while the NDKB force shows 

negJigible·pa1r'ing. Although the Rosenfeld 2 force 
. ' 2 

produces little admixtures of pairing (V6 = 0.106) 

the inertial parameter is increased by 50%. The Yale 

force creates a large dispersion <vio = 0.329) and 

increases A four-fold. Since these results are so 
X 

force dependent, they do not ,.,.drrant much confidence in 

their being physically relevant. 

The spherical state (see table 3.,10) contains pairing 

correlations only for the Rosenfeld 2 and Yale forces, 

although for these the dispersion is so great as to 

re-order the levels. 

2 
vs~ = 0.994, 2 

vds/2 
and v 2 

ds/2 = 0.956, 

For the Rosenfeld 2 

The occupation probablilities are 
2 = 0.974, Vdjj = 0.543{Rosenfeld 2) 

2 2 
v8~ = o.964, va

312 
= o.sas{Yale). 

force the s~ single particle energy 

is altered from its HF position of t:_ = -13 Hev 
s~ 

(unoccupied) to its BCS location of € 
812 

= -22· .V.ev 

(most occupied level). Clearly·using fixed single 

particle energies, i.e. {2~18) rather than (3.44), as is 

often done, would provide very different results. 
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The spherical ~~ve functions are of interest, as they 

32 4 have been used to explain the S spectrlli~. (See table 

3.9.) The Rosenfeld 1 force gives no pairing. The 

Rosenfeld 2 parameters shO'H pair correlations, although 
.2 

the dispersion is not very great (vd
312 

= 0.100), and 

the gain in ETOTr!.L is small. Although the NP:-<B force 

shows about the same pairing energy, the dispersion is 

considerably greater. ~'lith the pf shell the occupation 

probabilities are ~d 5 = 0.971, v2 = 0.509, ·. n s~ 

~312 = 0.288., t-lithout the pf shell, a re-ordering of 

levels occurs. The original HF and final BCS single 

r particle energies are considerably different. 

f = -13.340 _,. .:..15.099 f·!ev, ~5 = 0.972 
d5f2 

cs~ -12.377 
_,. 

-10.470 
2 /2 = !1ev, v = 0.351 
s~ 

e-d = -12.048 ~ -10.755 l1ev, v2 = 0.367 3/2 d3/2 

Note ·that for no shape do· l Tzl = 1 pairing correlations 

exist for more than three of the five force mixtures. 

·. 

.. 

"'" i 

.. ;_.:.-. 
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~·le may conclude that I T ' z 
= 1 pairing, 

as described by the special transformation, does hot 

play a significant role in N = Z even - even nuclei in the 

2s - ld shell. In particular, it can not rectify the 

failure of HF theory in describing these nuclei • 

.···· 

. ~... ...... . : 



Table 3.1: 

Force Shape EPAIR 

Rosenfeld 1 Prolate 1 -0.063 

Rosenfeld. 2 ·Prolate 2 -2.456 

Yale Prolate -2.463 

; NDKB 1 Prolate -0.457 

NDKB 2 Prolate -0 •. 124 

Energies are in Mev. 

_!";:-

IT I = 1 Pairing in Prolate Mg
24 

z 

ETOTAL ~0 Q4o A 
X 

-94.105 15.2 -4.0 0.16 

-75-325 16.0 -10.5 0.19 

-130.697 19.8 -4.9 0.17 

-108.668 17 •. 3 2.9 0.12 

-114.814 23.2 -1.5 0.14 

. . L 
~ has units of' :f'ni • 

A. 

-13.492 

-11.360 

-9.176 

-6.458 

-6.860 

·. 

.... 
~ 
()) 
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Table 3. 2: 
. 24 

Prolate Mg (Prolate 1, Rosenfeld 1) 

tot. -19.385 -15.054 -11.987 -10.156 -6.173 -4.052 

tV"/ 1.000 0.996 0.004 0.000 0.000 0.000 

60{ -0.155 -0.206 -0.194 -0.1.07 -0.114 -0.125 
.- ... Ec~. 5.896 1.576 1.518 3.337 7.320 9.440 

. . 

Table 3-3: Prolate Mg 
24 · (Prolate 2, Rosenfeld 2) 

ec~. -18.008 -12.273 -10.467 -6.944 -5.205 -2.588 

;V/ 0.996 0.783 0.211 0~005 0.003 0.002 
~· 
~ -0.820 -1.333 -1.262 -0.651 -0.669 -0.723 

£.ol. 6.698 1.616 1.546 4.464 6.192 8.802 

Table 3.4: ._·Prolate Mg
24 

(Yale) 

€.o( -14.911 .-9-982 -8.398 -5.331 -4.206 . -1.568 
N"CI( l. 0.997 0.769 0.228 o.oo4 0.003 0.002 
llo~ -0.650 -1.265 -1.198 -0.487 -0.514 -0.674 

£04 5. 771 1.500 1.428 3.876 5.000 7-638 

.. . 
All energies are in Mev. 



e.~ -11.638 
.t0o~.1. 1.000 
/jf;)l. -0.196 

e. ct. :·5~ 184 

eo(. -13.547 
JJo<'l. ·1.000 

LJ .. -0.096 
£.0( 6.688 
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Table 3. 5: 
24 Prolate Mg (NDKB l) 

-7-536 -5-583 -3-923 -0.531 

0.950 0.049 0.001 o.ooo 
-0. 522 -0.420 -0.138 -0.183 
1.198 0.971 2.539 5.930 

Table 3.6: Prolate Mg 
24 (NDKB 2) 

-8.063 -5.871 -:2.475 0.757 
0.987 0.013 o.ooo 0.000 

-0.277 -0.227 -0.062 -0.072 

1.235 1.014 4.385 7.617 

All energies are in Mev. 

l. 728 
0.000 

-0.245 
8.190 

3.504 
0.000 

-0.108 
10.364 

.... i 

. ' .. •· ' 
I 

• '!l : 

I 
I 
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Force EPAIR 

Rosenfeld 2 -1.535 

Yale -3.667 

NDKB ·l -0.322 

NDKB 2 -0.045 

Table 3. 7: I Tz { l Pairing in Prolate Ar36 

ETOTAL ~0 Q40 A 
X 

-235-373 5·7 -11.8 0.32 

-286.819 6.0 -19.8 o. 54 

-222.277 6.0 -11.6 0.08 

-223.192 8.1 -15.6 0.12 

Energies are in Mev. ~ has units of fmL. 

1). 

l 

A. 

-16.174 

-18.008 

-13.239 

-12.811 

. . 

1-' 
VI 
1-' 
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v 

Table 3.8: IT 1==1 z . P · · · Sph · 1 s· 28 
alrlng ln erlca 1 

Force E;rAIR ETOTAL 
.. 

' 
Rosenfeld 2 -4.462 -114.808 

., 
-12.720 . "': 

NDKB 1 -3.016 -134.272 -9.206 
NDKB 2 -2.444 -135.473 -9.046 

Table 3-9: IT l = 1 Pai~ing in Spherical s32 
z 

Force EPAIR ETOTAL 

Rosenfeld 2 -3.586 -173.875 -14.644 
NDKB 1 -3-750 -172.876 -10.881 
NDKB 2 -4.171 _;173-487 -10.834 

Table 3.10: I T I := 1 Pai~ing in Spherical Ar36 
z 

Force EPAIR ~OTAL 

Rosenfeld 2 -4.077 -235.065 -16.309 . ~ : 

Yale -4.445 -286.324 -18.371 

All energies are in Mev • 

. \ 
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IV. GENE~~Ll~~TION TO T = 0 AND T = l PAIRING 

1. Neutron - Proton Pairing 

Pairing correlations are commonly considered to 

exist between pairs of like nucleons {two protons or t\oJO 

neutrons). The failure of the conventional theory to 

account for the possibility of neutron - proton pa~ring 

has long been recognized. 

For heavy nuclei it is often argued that since 

neutrons and protons are filling different shells n-p 

pairing correlations can not arise. This may, however, be 

erroneous. There are t\vo determining factors: a} The 

IlV'...tgnitude of matrix elements connecting orbitals in different· 

shells compared to those with all orbitals within one 

shell. For reasonable forces these tvlO sets of matrix 

elements have similar magnitudes. Therefore one may not 

argue that orbitals in different shells result in small 

overlap integrals. b) Single particle energies. The 

relevant energies are not absolute energies, which may 

differ for neutrons and protons, but energies relative to 

their respective Fermi energies, which are likely to be 

similar •. Even for heavy nuclei, therefore, one may not 

be justified in neglecting the possibility of n-p pairing. 

For light nuclei such neglect is certainly 

unjustified since neutrons·and protons are filling the same 

·. 
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shell. Furthermore, for N = Z nuclei neutrons and 

protons have identical single particle orbitals and 

relative energies (neglecting the small perturbation of 

the Coulomb force). In light nuclei reasonable forces have 

the T = 0 component stronger than the T = 1 component. 

This is demonstrated by the observation that all N = Z 

odd-odd nuclei with A < 40 (except c1 34 ) have a T = 0 

ground state. Any attempt to generalize the pairing 

theory by including n-p (T = 1) correlations while 

still neglecting n - p (T = 0) correlations is therefore 

highly unsatisfactory. Rather one might expect T = 0 

pairing to be more important than T = 1 pairing for light 

N = Z nuclei. 

We may anticipate a com~non criticism of n-p pairing 

theories. Since the quasiparticle vacuum 9oes not conserve 

the number of pairs of particles, the ground state wave 

function for an even-even nucleus contains cOmponents with 

odd numbers of neutrons and protons. The objection is 

that even-even and odd-odd nuclei have intrinsically 

different wave functions, whereas the n-p pairing theory· 

appears to mix them. However, even-even and odd-odd 

.nuclei have different intrinsic structure primarily because 

their HF fields are essentially differento In particular, 

the HF field for even-even nuclei is time reversal 

invariant, whereas for odd-odd nuclei this is not so. 

But the odd-odd components· of the even-even ground state 
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wave function are based upon the ev~n-ev~n HF field and 

therefore contain all the syriunetries of even-even wave 

functions. · The o0.d-ond admixtures are actually hypo-

thetical odd-odd nuclei which dinplay the essential 
. 

symm~trie::: of even-even rather than of odd-odd nuclei. 

Some students have concluded that charge-independent 

pairing can not be described by the linear transf.orrnation 

(quasiparticle) method. Flm·1ers and Vujicic 7 cornment: 

"It will ·be recalled that Bloch and H.::~sniah have proved 

that the most general ty1)e of Bogoliubov-Valatin linear 

canonical· transforrnatiol1 is a.h.ra.ys £~<ruiva1ent to an exact 

and uniqua pairing of particles. .But when forces arc 

chl'lrge-indepcndent it is irnpossiblc-· to f;pc;cify tmic1ucly 

for each particle its pairins- partner, and this indeoendently 
. . -

prow;s that linear tr.ansforr~K"ltion methods must be abandoned." 

This objection arises from a fundamental misunderstanding 

of the Bloch-Messiah theorem (reference 5.4). For 

isospin generalized pairing there are uniquely defined paired 

orbitals. However, in general, these orbitals will be 

linear combinations of proton and neutron basis states., The 

derivation of the canonical representation is presented in IV.6. 

The BCS theory mixes components Hith different numbers 

of particles. The number non-conservation Hill not be 

serious if the energy is a linear function of the mass number. 

It is therefore required that 

2 • 

·' .. ' ! 

! 

. .. -~ 
I 

.. ' ., 
' 
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Since the e:>..'Perimental binding energies are discontinuous 

at N = z even-even nuclei, it might appear that this 

1 d id t • . 1 t ~ 26 requirement is vio ater. Cons (!r nc tr~p e · d:f -

l·q24_ .fv!g22 • 

(El>".g26 

The experimental binding energies provide 

E,. 24) - · (E1,...,24 - E~. 22) = 11.25 Hev. 
H:f ·~1 l'KJ' 

This is not, hO\vever, the relevant quantity. The .acs 

theory mixes components of different particle number, but 

all components are b:l.sed upon the sc>.me HF field. The 

(A + 2) and (A - 2) cornponent:s are obtained by filling up 

the A particle HF field, without permitting this field to 

be renormalized. Nmvo pairin'} correlat~ons are significant 

only when the single particlt:! levels in the vicinity of the 

Fermi levc~l are closely spaced. In this case j_t is rC;ason-

able to e.x:pect that addi_ng or subtracting t\vo particles from 

""this fixed .HF field would rei:mlt in similar energy incremeni:s., 

For \ Tz\ = 1 pairing the relevant quantity is 

( Erw-,.2"- - E
1
, 22) = -o. 976 Hev. 

•"";j - •Jg 

For Tz = 0 pairing the relevant quantity is 

(El\.126 - E11g24) - (EHg24 - ENa22) = -3.750 :t.cv., 

(The fixed HF field is chosen as Ng24 axially·symmetric 

prolate, Yale force .. ) These energies are considerably 

smaller than the expel:"imental value of 11.25 z.Icv. 

Although there are many who have attempted to 

generalize the pairing theory, 1 we are especially 

indebted to A. Goswami for a T = 1 {p-p,n-n,n-p) 
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2 pairing theory (1964) 1 A. Goswami and L.S.Kiss1ingcr 
. 3 

for ~ T = 0 pairing theory (1965) 1 and H.T. Chen and 

Ao. Gom·.rami for a completely generalized T = 0 and T = 1 

pairing theory (1967)4 • The latter \~s first derived with 

the Green's function formalism. The continuity of our 

argument \dll be served by pre[JCnting an al ternati VC 

derivation employing the quaaiparticle formalism. 

.. 

- .. 

. ·~: ~ 
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2. Quasiparticle Transformation 

'I'he es~ential idea is to allow the follo,ring pairs 

of particles to be correlated: I 0( r }~ p>T-:.1 ) lei n, ~ nlr':J.t J 

I ~P, ;n?1 -:.o 1 
The conventional 

pairing theory permits only the first two modes. 1"ne 

familiar quasiparticle is alinear combination of proton 

(neutron) "particle" and proton (neutron) hole. 

_ /'Jrx "j· [ a r()( ] 
u! · a;. 

(4.1) 

Our generalization consists in having the quasiparticle be 

a linear combination of proton and neutron "particles" and 

holes. The extension is naturally obtained by letting 

b; and a:· become two dimensional vectors 

(4.2) 

and by letting uoc and v
01 

become two dimensional matrices. 

Uol:! r.uet(,, UC<n.] 
L u o( 1 I Uct 1.1. 

The counterpart of (4.1) is 

(4.4) 

. _;: 
' .,;,. 
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If u~ and vO( are diagonal, the-standard ;transformation 

(4.1 )'is recovered. T'oe form of our transformation 

- assumes that neutrons and protons have an identical set 

of single particle orbitals [ 1 o<) J • Consequently 

for N ;l Z nuclei, one may not use a HF wave function for 

single particle states. Noting that 

= 

the inverse transformation is 

(4.5) 

The uni.tarity conditions are ( U ,- t{ t = I) 

u: u: -t vO( vO{+ =- I (4. 6a) 

;v -Ua v~ + vo( Uti -=-o (4.6b) 

and < u.,_u = I) 

u «1' uo{ t • 
t < l!cr v- ) -= I _(It (4.6c) 

uD{ 1" v~ -t ( V;t Ui) 1 
-=-0 . (4. 6d} 

Some care must be taken with the choice of phases. The 

usual convention 

v~ = -~ 

.. -

.. -o:; 

. ... : 

. I 
1, 

I 
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must be·rejected {for reasons which will later become 

apparent ) and replaced by 

{4 .. 7) 

~ve adopt· this phase convention for the remainder of our 

discussion. (~'le could have chosen 

u- ~ D ct . Ct 

with equivalent results .. ) 

. The unitarity conditions (4.6) become 

u t< u ,t + v"' v,/ = 1 
u·OI vC(t vc( u / ::. o 

uct u a t ~t ~ -:. 0 

u o(+ vI)( v / Ll « -:. 0 . 

I>lore explicitly 

~ <u.~.r u.~,r t t"J..z:,-r _,v"';,-r) ~ J r.,r.,_ 
~ ~ ~ 
~ ( U o{r., r Nlt(r.,_ -r - ~ z:,1 ,f:l 0( z: t. -r ) =- o . . 

. . . ~ .· 

~ ( U • t T, U"' L.T, + /lT01 z:-r, A["' z: T,) "' f -r, 7, 

~ ( a (( z: r, Af:c ; T1. - AI; r 1, Ll : r: ~~ ) -:. o 
t:. 

The quasiparticle transformation simplifies • 

-~.l \ fjtt( J 
Ur~.JLA" 

(4 .. 8a) 

{4.8b) 

(4.8c) 

{4.8d) 

{4. 9a) 

{4.9b) 

{4.9c) 

(4.9d) 

{4.10a) 
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That is 

b~\ fA «II Uctl'l.. -~, - Ah 1"2. a:, 
b ~1. -=- U«2.1 Uon ... "l. - N'Crl.l -/\foe 2. 2. ·l1tn 
b 01 I Nocll Afct,,_ Uoul u~,l... a if (4.10b) 
hal. ;V« 't,f: ~2...1. u C( t.l u~2.'l. a~n 

It will be useful to list the entire set of transformations. 

J:J fi t: = 2; ( u ~ r... 7 . a tee 1" - JVor Z: I a~7"J 
1" 

"' 'I 1 
bor r; :: ·~ ( UO(z:T 00(-r - }J(){ t 1' f1;.-r) 

I 

1:/ I ~ t ~ · a ot7 > Ot.r = ~ ( L,( «Cr a o;: T t Afq t:i 
i 

hi r - ~ ( U«t:T a~ T t NO( r. r a~ r ) 
; 

The inverse transformation is 

[ f) t~ J = 
A "CA. 

l U/ -Vet V/ ll Bt·1· UJ . B & 

The set of all co-ordinates is given below. 

t < .Jt t ~ I . 
0.. cr1" = ~ ( u 0( t 7 b 0( r t' ~0( [ r b ~ r ) 

r. 
. t 

a ot; :: t ( Ua ( 1' be( 7:. +A "C T b c; r ) 
c 

a~~=~ (U«rTb;t -~"C1' b4'C) 
t: 

~ * . 
a;( 1' ;: ~ ( LtO(cr b"D< [. - /'Jott:.i b ~c) 

r 

(4.lla) 

(4.llb) 

{4.llc) 

(4.lld) 

(4.12) 

(4.13a) 

(4.13b) 

(4.13c) 

(4.D,d) 

The uni.tarity.conditions(4 •. 8) may also be derived from the 

comxnutation rules. For example, Using (4.lla, b) we find 

.. .. ": 

.. , 

... 
•. 

.... ,.,.;., 
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Requiring the cownutator to equal f Of .1 dr. or 1 we have 
. l<t~ IL-1. 

.. which is (4.9a). The set of unitarlty conditions (4.8) are 

obtained by requiring 

[ b1
({1 [

1
) b «1. (L J + ~ Jo(1tX1. J [,[.l. 

(4.l4a) 

[ btl, (. 1 ) b d1. [l. ] .,.. 
~ 0 (4.14b) 

[ a ~.r, 1 aC!/1-r ... 1-f" :: Jc{, ~\. 1'( (4.14c) 
I 11. 

La«,1j) Q«~ r,.]-~" :: 0 (4.14d} 

: ., .. '• I 

I 
I 
I 

.. ..!_ 
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<-,.3. The Hamiltonian 

Recalling that the ground state is a quasiparticle 

vacuum the density matrix and pairing tensor are easily 

evaluated with the aid of the inverse transformations (4. 13). 

The density matrix is ( o( ,
1 

c(4 ) o ) · 

< o. :. r. a~~ Tt, > = 

.. 

. . . 

< t ( u.;. r:,r; b;, r:, + ~,c, r,b~, r,) ~ (uc(2.i.,.-r,_ hct,_r.l. +~.,.r:'l£1- b~1.c.) )~ ! 

, r~ 

2: j1.}o( t< t ,'7' ~o( '[ .-,- <( b~l [I b 1« 2. [-z_ > • . 
r-r 1 It t. '\..11. 
'-'I (...."1. . 

Since < bt5( 1 f 1 b~'"r,)-=-J J , the density matrix is 
~I dl. '[,I'[,. 

The non-vanishing elements are 

< a;n 
t < aotp 
+ < 0.. ctn 

attn ) 

1- ... a O/J') ) == ~ 11 ~ I '2. .,. 1\J'tt z. I ,;.J c(Z.1- . 

a oc p ) -=~ ~l. /"lf'our + Afo<."~='l. 1..-Af'ot-z..t 

It is apparent that 

(4.15) 

( ci,J cl'l. >o ) 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

a.n J are real (4.17) 

and 
r} ~ 

= < a ctn a O(r ) ~ (4.18) 

•:·. 

.. 
· .. 
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Therefore the density matrix is Hermitian in isospin. 

That is, if 

P-r, 1'l 
(o() :: /« r.l ()(. r't. 

and 

fCcO - l fpp (o() tf" Col) 1 -
. f np(o/) r~~n(tJ/) . 

then 

f + (fX) = f(r:A) • 

The elements of f for ol < o are given by 

+ t ~ 
< a 0< T, a ~ 1,. ) ::: < a o( 1

1 
a o( ,-'l 1 

resulting in the time reversal symmetry 

- 1fr f ( o( ) :: f ( d) I 

The pairing tensor may be similarly evaluated. 

ot,;cl"l...)b. 

<a ~.7', a ot.,_r't. > = 

(4.19) 

(4.20) 

(4. 21) 

(4.22) 

(4.23) 

Let 

< ~ (Q 1- . b ~ -/\£ -t h t ) <f ( {j I t A[ . I 1 ))-
c, o(,t,T, C( 1 t 1 O(,r:,t, '\','t:, "t r:r'l.rt.T\..bc<t.L.z. 'olt.["LT.,.b~z.rz. -

~ u: L 1 r, A-1:2- t 1. /,_ < b ~ 1 C I b ~l. l: 1 ) • 
c,rl. 

The pairing tensor is 



<. a,;.p a~P > 
< a~n a-d, > 
< a~P a O(t1 > 
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1' . ~ 

= Utt,t Nl(u + Utftl ~1..1 
,. ~ 

= U«/1.. ~, .... + U0<2.1. ¥a2..'1.. 

. ~ ~ 

-= U« 11 A..J:,, .... + Utttl Norz..?.. · 

Unitarity cond~tion (14.9d) for I,~ r, ; 7 is 

l.Ln r Af:. ~~ +- > U c( 2.. "1' Nd : -r = ~ ,.,. U « ~ ~ + ~ 'L T 

): 

so that . <. Q ~ 1' a« 1 ) = < 0 ~ T {)o<?' ) and 

For " . = I r,_ -:. 2 
. ) 

(4. 25a) 

(4.25b) 

(4.25c) 

(4.25d) 

(4.26) .. 

1t 1- f:. . . 1-

u «II ~~ 'l- +- U D( tl ~·n -:: ~'' U« rz. r. N« 1..1 L( 0( l.l-

so that 

f. 

< a 01. r a C(l'j > =· < Q « /J r; t:(r ) . (4.27) 

Therefore, the pairing tensor is Hermitian in isospin. If 

[~;: (~); [ -7 (4.28) 
' 'L 

.c( 7, ) C( 'l 

and 

t (c() - [ Crp (o(J C pn (<!) 1 -
t: np (f!,) [nn<ei) (4.29) 

then 

[f(c;{) ::: [ ( o() • (4.30) 

. " 

. ' 
·• 
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The adjoint operation refers only to isospin co-ordinates, i.e. 

Since the pairing tensor is anti-symmetric. 

' .. 
(4 .. 31) 

the time reversal sy~~etry is 

(4. 32) 

\<rhere The adjoint of the pairing 

tensor is 

. t a! >-<·a o.:, ,., (){1 '1. (4.33) 

The HF potential is 

r, . -= 
C(. r,, «1. rl. . 

. ·.. . . . f . (4.34) . 4· ·< r!, 7;,(3 13/!V/ ott T.,.l~ 1v ~ (af373 a~/r.) · 
p~o r V 
T, r.., 

The matrix element·s of v are non-zero only if 1; + h-= 73 -t'/y • 

Therefore the diagonal - isospin elements of r are 
!:lr,, .. 

. . . 

r -= 
. «,f;fil.-1' (4.36) 

.Z: < c/, T) (3 -7 t,.r f eX.,_ - r-' p 7 )13 < ·a; _7 a~ r > 
e~~ . . . . 
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The HF Hamiltonian is 

H = T tr ~ 
o<. r,) o< 1. 11. ot, -r,; «z. T1. qt, i,; q''t. T,_ ' (4. 37) '' 

Define 

(4.38) 

The n~trix elements of T and v are real. Since D ( 4) 
r -r ~ 

is real 

1o/ PP < 0{) · a.I?J ?f nn (tO are rea1.(4.39) 

Since 

and 

<D11f1 Ct'2..n /Nict317 )C'/., p>11 = < cXtrl1 c{-..flAF/ciJ.f.; c:r~n~ 

fpn (ti) -= fn; (d) 

(4.40) 

TI1erefore the matrix 

(4.41) 

is Hermitian. 

(4.42) 

~ 

Since jJ (~) = f ( ;(} , the time reversal syrn.-netry is 

' "'t 

'Jo/(0<) ::> 11 (P() # (4.43) 

. .. . 

. ' 

• ... i 
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The pair potential is 

, so that the 

diagonal isospin elements are 

(4.45) 
4 < i( I 1) ~ ~ i I ,if" { ~ ; ) ~ 1111 < a -r a~, ) . 
~~o I ~ 

Only protons (neutrons·) contribute to the proton (neutron} 

pair. 

potential. The T = 0 pair potential is z . 
. . 

11 . - ~ 
c<l1) eXt.-; (4 .. 46} 

1, < 0('1 r c:? l. - r IN I ~ r' .4. -r' > < o- I o /.}, r' > . 
fo>o J I ;r IJ ,6 .. 1 r · 

Define i' 

Since 

·~ ..,.. .,.. <« J -== L) c< -r ~ r · 
· 1 I 11, I j · l. (4.47) 

2.. 

~ < i r i 1' IT 2 ;') < ~l c(~ T l Nl o(3 c(y T '1J ~ 
T 

< o/, ol2 }~ f /%[ o<jc{'t T -=-1)11 for I-== t '1-z.. 
1 

the I Tz J = 1 pbtential is 

A .(eX) = 
L-l I i (4 .. 48) 

L; (ex' 02 -r~l f,.rd f>fi 1-=-1)11 < ai3; a~r'l, 
/3) 0 
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(4.49) 

The T = 0 potential may be reduced to T = 0 and T = 1 
z 

components. Consider the matrix element 

<"", T, ot~-'1/ Ar I c/> Y'; ct '1 - 7' >fl :: 

2; < t r i - -r 1 -r o > < ~ -r' t -r' 1 T o > < cr1 c~ 1.. r ';v r c¥;) rt" r )
11 

; 
I 

The product of the Clebsch-Gordon coefficients is 

evaluated in the table belotq .. 

T=-o T =-I 
1'':: 7 'h .. : 'lt. 
1'1::-; - I { '2. '/'2-

Then the Tz = 0 potential ma.y be written as 

~ i ~~ (t{) :: 

1/-z_ i; < rx ~ r:. tf;v fjB~ -r-: 1'/11 f < a..f-, .. 7 O;a-r > + < a~ r a13 .. ··r'> 1 
_fj '" - ( 4. 50) 

f 'h .. 2! <or'~ T=-o/tvlff 1-=-6~ { < G,s-i ()~'r)- ( O,tE.; 0;-~>J· 
fo)o Since 

1 < a;. ... ; 0.~ r I = < (/ ~ ; Cl /->- -rl ; 

L:J 1'- 7' (o( ) ;; ~ ..( 0( 0( r ~ ( I AT I A A T -=. ( >~ R c < a .a.- i a ~ 'T ) .. f5 ') b 1- I n r-

~ (4.51) 
.,. L 13;o < o( Ci. 7 ":. 0{1\Jif->~ T-=-D 119 Im < aii -; O.p,.) .. 

n1e pair potential has the remarkable feature that its 

real part describes T = 1 pairing while the imaginary 

part describes T = 0 pairins~ Let 

·. 

. . . 
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L1 ~~ ~ (d) = t < c< « T ~ I I ,vI/'; T ~ t ~ f\ e < ~ _, a 13 ,. > 
f>>e> (4.52) 

L)~~o7 (ex)-;: 4 (O{(iT::ol;v-(~~T-=-o/. Im < a~-i at!-T> 
· .. · · fo)o · · · IJ (4.53) 

then. 

r-=-' 1-:.o 
llr-1'(q)-= LJ 7 _1 toUt<.: ll-r-T to<)· 

.Furthermore, since 

R e. <. a ;. -1' Q ~, > = R e < t( ,i. -r a f- 1) 
L m <aft-; af->'T 7 ·~- Im < aft; ilf!>-i > 

we have 

so that 

Therefore the matrix . ·· 

is self-adjoint. 

The adjoint operation· refers only to the isospin 

co-ordinates, i.e. 

t L)1: - ;;t:L)* 
Llr,rl..<.c(J= 't'it;o<r, ~7,_;« 7, 

Since the pair potential is anti-sym~etric 

IJ == - L)- ·r 
. c( 1'j) .~ fl.. . 0(, T1. J()(. I 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4~58) 

(4. 59) 

. (4., 60) 
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the time reversal s~~etry is 

(4.61) 

where 11 1, Tt.. ( ; ) ~ L1 ~ -r,Jd.1'"t. • 

The explicit expressions for the pair potentials are i .... 

-= ~ < C<' ;;< 1 ::If ,..r I~ ;A 1-:_ I~ < a.. Pf {}fop) 
/3)c 

( 4. 62) 

~ ~~o( 0< T~tJ,.v-/~~ f-=-t/11 < GAn 0.13n / 
6)o r-

·.!j nn (tt) 
(4.63) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

The derivation of these expressions depends only upon the 

phase choice (4.7) 

. UOi ;: U! f' ·v;;- e-l/ 
01 C( 

and the unitarity conditions (4.9). No other information 

or assumption \VclS required. 

Let us no\ol consider what would have resulted from the 

conventional phase choice. 

. . 
The quasiparticle tran-sformation· (4.4) becomes 

. 
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I 
I 

The inverse transformation (4.5) would be 

r .11~J ':::: [ Q{ L lL~ -vii . I . . 

~][B~]· u() B"" 

The uni1=Clrity condition {4.6d} is 

or 

+ u,{·v"' 
I • I t curj( '[. r, !Vct-c 1,_ - /Vo: [. r, {j 0( c 1'1. ) = 0 

c 
instead of (4.9d). The pairing tensor would be 

< a 04 r, .a ol r.,_ > -= . ~ u 0( c. 7, ~ot.:I<'C. ft. 
'C 

so that < Q ,X p 6. 0{ n ) = < a d. tJ a cl. f ) . 
The Tz = 0 pair potential {4.50) reduces to 

LJ i- ; ( oO ;: z: < c( c:i I =-I ( ;v-l ~ fo T-=- I> 11 . < 0 i3-; {} ~ r> . 
~)o . 

Consequently, with the conventional phase choice, the 

unitarity conditions alone forbid the possibility of 

T = 0 pairing. This is true even if the pair parameters 

are cornplex~ 

T'ne Hamiltonian is now completely determined. 

The ground state energy is given by (3.38a) 

H o1 
-= /::. o - A f' C ..:. J. n ( f1 -2) 

= ~ ( T - ) p ~ - ;1. , P, f i r ) Ci r I ()( /, < (j : r, (j C(. ~t > 
ot~'o;r.r-z. 1 1 

· 4 .~~ < a + a 1 > <4.68) + ., . L..\. oc r, J d. rl. ~ T. & 7\. · 
Dt"Jo,~;, r.,_ 

or by (3.38b) 

..... 
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H/-;:: £"- -Ar l-An c~-l > 

P,~ /7)(TI 

H2 is given by (3.39) 

v1nere 

Note that 
II. 

Upp ( ot) -= u,, (c;1J - 'Af 
II. 

'HI1n(~) ':: 1o/,n ( ot) _. An 
II 

J./pn (a} :: 14,,., (()() 
1\ 

7{ np (cA} :; /inf {tf) ' 

(4.70) 

(4. 71) 

(4. 72) 

(4. 73a) 

{4.73b) 

(4.73c) • t : 

(4.73d) 
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4. fl1uation of Hotion 

The pairing parameters may be determined by the 

equation of motion method. It is assumed that 

< o{l "Jl. r J ~ lf (3 T ) 11 I << I< ol, d, T Iff I~ ,fo T >IJ I ( c{ I~ d"L.} 
(4.74a) 

so that 

(4.74b) 

Elements of .4 connecting different spatial orbitals 

are neglected. It is also.assumed that 

(4.75) 

. : . . 
Then H2 is simplified. 

H'has the form of an independent quasiparticle Hamiltonian 

if H~ may be neglected and if 

H 1.
1 

-= t E.« !- b : c b ct r · (4.77} 
lfc 

It is therefore required that 

· (4. 78a) 

or 

(4. 78b) 
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The time reversal symmetry 7-=/- CO?) =. 'JI. Jl:( ci.) and the -Hermi tici ty of /4 result in 14 (;:;() =-t/-(d.) • Also 4 ( ~) 
is self-adjoint. Therefore 

" ~ 2! { U;.rl. («) it'(!. il. - L) -r, rl. ( q') ~t:T1..1 a ttl' r, 
T,r, " (4. 80 > 

~ f 1);; 12.{c<JUt("LTt. -t flr,r~<«J#«r:rl.-1 a~ 7, · 
~~ . . . ; .. 

Compare (4.78b) and (4.80) and equate coefficients of 

t a tt1( (). n d a ~ '( • 
,.. 

~ {Ur,;t(O(JU«rr,_ -~r,'rt. C~J/tlcrt:71 J = Ettc Llari1 
Tt. 

1\ 

Z: {!J;,r/tf)L.fr~. r.r,_ tUr,y,<~JNr:x.t1l. J -=-£err. ~cr, ~ 
T'L \. 

In matrix form (4.81) is 

1\ 
,.. 

fj ff (.c() '):/ <cO . rJ pp(ri.J IJ f" {ri) U~t:.l U rtC I "P" 
J./nr<U.J 'J../,1 (tl,j l} np (ri) CJnn (ef} utXc.1. :: Ecrc U(J/n 

" " tJ Pf CeO IJpn (of) - U,trl«J -URn l tAJ - JVatl -1\Jocc I 
{Jrlf (d) /J 11 n (a) -1{ "f (d) - 'J./ ntJ (()() -1\frrc. 't - AJat;l. 

or more compactly 

(4.8la) 

(4. 8lb) 

(4. 82) 

(4.83) 

... ·. 
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where (4.84) 

(4.85) 

The result is a four dimensional eigenvalue equation. The. 

1 + t:;' t- t:: eigenva ues are ,.... c...« I J - c.. a 1. • The eigenvectors 

corresponding to the positive eigenvalues provide the 

pairing parameters. The normalization condition is 

(4.86) 
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s. Gap El:]:uations for N = Z Nuclei 

For N = Z nuclei the eigenvalue problem is 

considerably simplified. ';'/e are able to obtain a 

generalized set of gap equations. Since both T = 0 

and T = 1 pairing are included, the wave function 

violates isospin conservation. This is analogous to the 

mixing of different J orbitals in i:IF instrinsic wave . 

functions, thereby violating angular momentum conservation. 

Both violations are performed in the same spirit. If the 

binding energy may be increased by forsaking a sy~~etry of 

H, then the int:rinsic s·tate shall be permitted to forgo 

that symmetry. States of good sym~etr.y are later obtained 
I 

by appopriate projections upon the intrinsic statee Ju~;t 

as .the J deformed HF state still satisfies ( ! ) ::. 0 , so 

do we require our T deformed · state to satisfy 

<I>=-o (4.87) 

where T = Tx i _+ Ty d +- T"l: I< (4. 88) 

All components of · .! are to have vanishing ground state 

expectation values. .;.: 
·.< 

< T X ) ~ < Ty ) :! . < T c ) z 0 (4. 89) 
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This constraint will simplify our eigenvalue" equations. 

Since T = !; t , the isospin operator has the second - -
quantized form 

(4.90) 

where '(, =- t )< !:_' +- ( "j j. +- t 2 !5 (4.91) 

and '[, are represented by the Pauli spin matrj.ces. 

'l'he expect.ation values·< T,>r,r'j. ;:: (T, I r~ 1 7t. ') are 

easily evaluated, the bra and ket being represented by 

Pauli spinors. 

I p '7 -"- ( ~) tn>~(~) 

< pt ~ ( I o) <n/.- (o I ) (4.93) 

The values of ((~ ') T, r,_ are in the tables below. 

< t' x >r, r"l.. < t.y >1' 
t7~ 

< r2? 
7i 1').. 

n n n 
p 0 I p 0 -(. p I 0 

n I 0 f) L 0 n 0 -I 

(4.94) 

! . 
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The isospin projection conservation requirement is 

It is therefore required that 

+ - + . < a ((P a.t{p ) < a ~, a.Cit1) · 

Consequently 

The other co:-::ponents of the constretint are 

< r~ '> ~ · h ~ f <.a ~I' a ~I') ) t <a ~o aQ'r > J = o 
Ct 

< 1 '1 ) = -l.?L Z: {<a tr a. o: n > - <a.~, a "I' /} = o · 
C( 

Since each brac}~<:~t must vanish 

and 

<o.:'ctrar~~)-:: <at(J;I1 a.qr>=o 

I{ p l] ( o\) :: 1/ 11f ( ~) -=- 0 . 

Constraints (4.96, 4.100) are satlsfied by 

~/7.- ] • 
·~ 

- ~crJI 

(4.95) 

(4.97) 

(4.,98) 

'(4.99). 

(4~100} 

(4.101} 

(4.102 ): 

·, \ 

. ' ,. ~. 

. ·. 
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That is 

Then the matrix VD( has the property 

where I = 1 0 <o 1 >. 
Neutron - proton symmetry ensu17es that 

(4.103a) 

.(4.103b) 

(4.104) 

It has peen demonstrated ., that t::. 1 , ~rt) is real. Therefore 

L1 Pf { o(j .. ~ t . tJ4ti. c ~). 

The relative phase is as yet · ·un·det:ermined. For reasons 

which will Jat.er become apparent, we choose 

' 

fjf'f(~) -;: -- tJ/11'} (of) (4.105) 

The matrix lJ ( o< J . then has the property 

The eigenvalue equation (4.83) 

c '- [ Ur. ·]· 
-A), 
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is simplified since 

" 1\ 

I+ -=- [ 14 rr ? l 
. 0 14 ff J 

( T'oe o( 

value 

dependence is implicit.) .·To determine the eigen

Et multiply (4.83) by [ U 4 J . 
D -~~ 

1\ 

fU"L.tLl2. 
L-r 74) Ll1_ 
,., 

14 and L\ commute 
1\ 

[f-/
1
4] ~o 

. "1. 2. 

and the two dimensional matrix 'J:.I- + ll is·diagonal. 

Tne 4 x 4 matrix is therefore diagonal, so that the 

eigenvalues are 

. 1'\ 

E "L . E 1 'II 1.. 1\ '2. ( ) 1 .1\ ) I 'l 
t (c() -::: 1 (Cif}-= f>fff (cOr .t.Jpf o( f &:.JfntrA · 

(4.107). 

The positive square roots correspond to the desired eigen

vectors. The two quasiparticles b : 1 and b ~l. are 

degenerate in energy. Let 

,.. A I\ 

~ (ot) -:. Htr (Cf) =/Inn (oC) (4.108) 

The second equality assumes 

A p :: :\n ' (4.109) 

~· ! 

; . 

. _. .. 

. .. ; 
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The set of linear equations 

" (e- £) 0 lJpl tJpn llr;t .·_. 
"' 

0 (e-E) ,.tJ pi1 -Llfp Uc1. _ :: 0 

Apr? LJp~ ( {. te) 0 -Arc. I ,. 
/JptJ - tltf 6 - ( C:. tE ) -Afc'l.. 

can not be solved by the usu~l method since all cofactors 

of the energy matrix vanish. Instead the eigenvectors 

may be found by inspeqtion. 

,._ 

Uo c tE u 2./ 0 
A 

Urz- k 0 Ll.-z..z ::: I< etE ::. 

-Alii IJPf - Arz..f' tJrn (4.110) 

--N;2. fJ f11 -.Ni). -/Jrr 

K is a constant of··norrtr:tli~ation;. The two vectors are 

orthogonal. Notice that 

Uu = {) 2..7.. R·ea.l 
Ut-z.. -= U-z.J -::..o 

(4.111) 
/Jit -=- -.AFt. 2. Reo.. I 
Nrz. :::. N'"l.i · Lompl~x 

The expressions for the density matrix and the pairing 

tensor are considerably si~olified. Let 

(4.112) 

(4.113) 

.. . , 
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< {l ~f actA) -;: < a: iJ rLt p ) ~ 0 (4.114) 

< a~p aap) -:::-( Go, 11 Q«l})-= Utrtl ATct,, (4.115) 

(4.116) 

All of our phase conventions are self-consistent. That is, 

if the set (4.111) is assumed in constructing the potentials, 

then the eigenvectors of the energy matrix \-Jill reproduce 

(4.111). Therefore no artificial constraints have been 

imposed. If the trj_al. \vave function contains the symretetries 

in (4.;lli), then they will propagate through to the final 

self--cons5stEnt · ~iave function. 

Had t,,e chosen_!J.pp(d.}~ +IJn, <...D!) , ~1e v7ould find 

tha·t the isospin degenerac-.1 j_s los·t ( E1 (<X ) ;! E2 (ot) ) 

and that the density matrix is not c1ic1.gonal in isospin 

co-ordinates <fpn( o(.) F o). Since the constraint 

< T ) = 0 requires that f pn ( o<) = 0, the choice 

11 pp ( o( ) =b. { 0( ) is unacceptable. . nn 

To recapitulate, the quasiparticle transformation 

b .,.Oi' u "" 
0 -Nctt"L 

T 
-~~~ a "f 

h ~l. 0 ucilt 
. ,. 

,~\[" ot II a~, ::. - .llJdll. 
b~, Aku AJo..t"L Uotl/ 0 a;;;.r (4.117) 
b~7.. ft Lla II a.;;:n Nat"'.. - ..Af"o~ II 0 

is obtained fro:-n (4.4) Hith the aid of the unitarity 

conditions and by choosing 

<T> -= 0 . 

: .. 

" ·~ 

.. .• 



.. 

iss 

The follm.ving matrices are all self-adjoint in isospin 

co-ordinates. 

·ue{ ~ [uOlll · o \ 
o Uat( J 

The normalj_zed wave func·cion is 

II 

L( a~ I = 11-L ( I + e (Of) If_ (d) ) 

l. " )( ),_ ~~~ .-= ~'- (I- c <e>~J /£(d). LJff (c<J/t;<«J 

( R e ~n f· = ~2.. (I- g(rXJ 1£ (oU) ( L1 ~;1(o{) I CJ <oO) z. 

( Im Af«n) 
1 ~ f-z- (I- J: Let)/ E (o<J) ( tJ :;()(Of)/ LJ (o<)) 1 

"" 
No<t. -= 1/L. c t- e. cc~.J 1 c(of) > (4~119) 

with corresponding exprensions for the second eigenvector. 

The quasiparticle energy is 

(4.120) 
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For (4.119, 4.120) 1\.'t.(J) ~ ~ is regarded as a one, rather 

than two, dimensional matrix., 

(4.121} 

The final CA~ressions for .the potentials are 

EC«)= <~IT/a)+ £(<c¥f;;pl~lcr~~f~ +-
. ~7,~ . ' . (4.122) 

<o( P~ ;B nl N" /c:< p;~n~ 1 ~ ,_ 

Llrr (o! J-:: - LJ1111 (ct}:: t c.o< ~ T -:.f/N"/f;j> T= I~ U~u 0u (4.123 > 
('3) 0 

where T=-1 · · r=-o ·. 
!J n p ( Ci.) :: !J '1f <.of) -t L' {) np (o<) 

and .,. 
!Jpn (o<) :: IJ np (q)' 

'rhe nuntber conservation constraint is 

·z =A-?.:: 2 2; Nrx'l.. • 
Cl')t> 

(4.124) 

(4.125) 

(4.126} 

There are three sets of gap equations. The different 

modes of pairing have been separated, so that the physical 

interpretation of the wave function is enhanced. The 

, potentials are self-consistently determined. An initial 

guess is made for the pairing parameters. The potentials 

may then be 

-)' . ~ 

• j, 

'.·> .. t 
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calculated, and a new set of pair parameters (consistent 

with number conservation) is computed. The procedure is 

continued until convergence is achieved. The existence 

or absence of a particular pairing mode represents a self-

consistent syrnmetry. If the occupation probabilities 

corresponcUt1g to one mode J ",-1. ( G ) 1. (I ) 'Z. } 
l'., «t.t J r\ e tV;, rt J ""~ P.- .. 

are non-zero (zero), then the pair potentials corresponding 

to that mode {Llff' (ol) J [j: p' (;~) 
1 

L):;o (q) ] are non-zero 

(zero), and vice-versa •. If the trial wave function 

excludes a particular mode of pairing, then so will the 

final self-consistent wave function. 

The pairing parameters may be eliminated from the gap 

equations. From(4.110), '\'le find 

UIYII ;Je<ll -=- ,... tJpp ((;() / l £ <o<) 

.· -T =t .· . 

Uotn Re: No., 2 = -LJ,f (o.J It E (a) 
.· .. 

(4.127) 

r:.o 
Ua,, Im ~12- ~ -IJ/Ip (e~.; /2£(o() · 

Substitute these expressions into (4.123). 

LJPI' (cJ.) -:- '/2-£
0

<0< ex T-=-lfAT/f->f r~ I~ /JffC~)/E (f) 

~;f=t (O:J -:.-~2. ~f<c<~T-:;.I{!IT[f-'fo/-:.t(/1 LJ;f=-t(p)/£(~) ( .) 
fo~~ . 4.128 

{j~;o la):.- ~2 £. <« ~ T=o/f\r{fj, f-:.o~ {J~~o CfJJ /E(f3) 
f?> '}I> . . 

The pp and np (T = 1) gap equations are formally 

identical. Consequently if the trial \oJave-function is such 
r=-1 

that [j{?f(c<)/{Jil('(cl.j::. r 1 then the fina], \VelVe-function \olill 
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have the same property. Choosing flpf. and 

any ratio such that ( t/ .,_ 1) 2. -: liJ Pf') 1. t (LJ ~;') 1 

is 

T =-I 
/Jap 

constant 

leaves the quasiparticle energies, the density matrix, 

the HF single· particle er:ergies,, and the binding energy 

invariant. For N = Z nuclei, therefore, generalized 

T = 1 pairing is not really a generalization~ 

Other 't·Jorks. have approximated the pairing matrix 

elements by.a constant. 

The gap equations are then considerably simplified. 

in 

If G0 I G1 , it is energetically favorable to disperse the 

particles entirely into the pairing mode with the larger 

The pair potential for the mode with the smaller G is 

identically zero. If G
0 

= G1 , the pair potentials may be 

chosen in arbitrary ratios without affecting E,~, E , or 

Eo• 

The eA~ressions for the ground state energy (4.68, 4.69) 

may be simplified. . Since r ff (ct) :: [1 nn (a) and 

< a ~ P a IX P > = < a ~ 11 o «~ > 

. . ,, . 

... 
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~ rot'Y ,«r . <a :'t aot'r > = 2. rff ((;{) <a ;f flo:p > . 
1" 

Similarly L':!ff (o() ~ - ...(}n,., (cJ.) 

- <a. ~11 a ~, > so that 

~ L\ a: T ~ 7' < a tel T 0 ~ T ) ~ 
'T J 

f4 
Finally 11. C4'(). ~ A. ( «). 

. · . U.pn . ~np . 
T" . I< 

<ad;] a~pl and 

and 

and t t' < a C(f a 0< n) = 

i h ~,. tX -r < a : r a~ --r > = z Re f L1 "'P(d J <a ;"' a i r >} = 
r ' 

2 [ tJ~;1(otJRe <a~11 a,~p>- [j~~o(dJ Lm <a~n a ~f >J · 
Collectina terms we have· 

H "' ~ e C> ~ J. A :! z { ~ ( Tp r < o( 1 - A. + Y 2. r P P ( 0( J )/Vt( ,_ + 
. ·· cO._o ·. . (4.129) .~: 

z: f LJ ep ( u..) L{d. tl AI« 1/ f tJ~; I (or) Ua:,, ReJ.J.c, "Z. f IJ~:o (c() u til/ :r~ AFot,z. Jf 
or ct., o 

where 

(4.131) 

The energy correspondin<_! to the various modes of pairing 

is readily identifiable. .. :-

.. : t_.:. 



6. canon"ical Representation 

The .representation for which 

(4•132a) 

and 

(4.132b) 

is termed the canonical represen·tation. Cur generalized 

pairing formalism results in a diagonal density matrix, but 

the pairing tensor is a two dimensional matrix in isospin 

co-ordinates. 

~.1i,d._7.,_ Co<-,,, I c(?.. T.,_ 

cttl r/. d.n o{ 

«p fpp(d) ·o 0 0 "<p C> 0 [Pf < o< > · Lp11(o{) 

0 f1"1'lel.) 0 {) a.n 0 0 tp: (d) - [; Pf(t~.) &{n 

~p 
0 0 frpCAJ 0 d.p -[PfCa) -c;nltt) 0 0 

d.n ·o 0 o ftr£v.J ~n -cf,(«J [f'P(dJo 0 

where 
't . '1. 

-= ~II t I Nttll..l 

The canonical representation is obtained by finding a ·~sis 

in which the matrix 

[ (o(j:. ICPP.(tt} CF,(tt) 1 
Cpn;.(d!) -Cfp(o!J 

is diagon~l. The eigenvalue equation is 

t<d.)((d;~ct:ca:; c(o<) - . 
(4.133a) 

. _, 
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or 

1~e eigenvalues are given by 

so that 

Define L{ci. ":!. £1 cr: II . 1f1. 

NO< = 1 .N"« ~I f {N «.I 2.. 11. 1 

then 

1".11e. eigenvectors .are 

where 

The normalized vector is 

C « t -= ({ ( l t ATq tt I No< ) J 'h 

C « ,_ = [ L ( t -~ tt I AfQ( ) 1 h e - l. 
0 

-1 
where G::::: 'l'an (Im ".cl2 IRe v"'12 J. 

Let 

(4 .. 133b) 

(4.134) 

(4.135) 

(4.136) 

(4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

then foil) and FOi 2 ') c_orrespond respectively to the. 

eigenvalues + tc ( Ol} and -t (~) • The eigenvalue c 

,, 
,_,. ·', 
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equation for the time reversed space is 

(4.142) 

Since t<'d> * = -t (d..) , the solution is· 

(4.143) 

(4.144) 

or (4.145) 

where I Cj. I) and J Ci L.) corr~spond respectively to the 

eigenvalues -tc <~) • In this new single 

particle basis t (c~..J is real and has the form 

(4.l46) 

L. '~) ~ -[,(o<J (4.147) 

Since tij(o() = t«i, ~j (see 4.28) the components of 

the rotated matrix tc~) have the meaning 

r c (fl..) ':: { L II (o<) 

- r,_,_(oO 

Also tij ( d:.) = t d. i, 0( j (see 4.32 ff) so that 

- CiXt)«,. 

c~l,o<"L 

:• 

. ~ ' 



... 

,·!... 

. 193 

. . 

Consequently the pairing tensor has the canonical form. 

-0(( 0( 1- tlf2. « 2. 

0 Cc.<.ti.J 0 0 

df -Cd.r;<J 0 Cl 0 
(4.148) 

d.'i. 0 0 0 -Cc(ci) 

d._2 0 0 Cc(ci) 0 

Since fCc!.) is diagonal and doubly degenerate the density 

matrix remains diagonal in the rotated basis with the 
. . 

·same representation. 

(4.149) 

~".l'herefore the. ne1.o1 basis does indeed fu:>:nish the canonicr::tl 

representation •. 

a) 

b) 

c) 

d) 

ITt: I=/ 
(fl(( ::.( 

Ca.2 ::o 

Consider the various lirrd.tingcases. 

p o.-:ir ,. nJ ( Noqz_ ::::0) (4.150} 

(4.151) 

(4.152) 

(~11 ~ Re ;v;,. L ~ =- o) c 4.153 > 
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The density matrix and pairing tensor may be reproduced 

by a new set of quasiparticle operators. 

b;,~ ua. a~, -JJ«ail, 

b ~ 1 -: u ~ a ~ 1. t JJD( a « 2. 

b ~. ":: u.()( a~, .,._ »« a Cit 

b~l. ~ 4a {1~1-AIDt atil 

(4.154) 

Therefore in the canonical representation the ground state 

wave function 

t ~<))::: 11 b011.. b ~2 bot 1 bo., lo) (4.,155) 
fl/.")o 

assumes the familiar BCS form. 

(4.156) 

t :f o 'I -= rr ( L< ~ -N~ a : l. a. ~ z. J ( u~ + NO( a ~ , ()_ ~ 1 ) , o > 
()(I o 

Even if T = 0 and T = 1 pairing co-exist, so that the 

original pair parameters are complex numbers, the ground 

state wave function may be expressed in terms of a special 

quasiparticle transformation \orith real pairing parameters. 

The single particle basis, however, may contain coiT~lex 

coefficients. 

With the aid of (4.138, 4.145), I £o) may be expressed 

in terms of proton and neutron states. Noting that 

(' 1.. c,_ 
C( I - Q( 'L -= Net ll I ;..l;,t. 

z.(:t,, c'-<'- -= ~,z.;~ 
t . t ancl USing a I< ()_ I<. /0)-:: 0 1 \ve Jind 

J. 

.. 

• ..! l 
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7T { u ()( tl c u.« l{ t JJ; u a tr:r f a .,.c.r 
D()o 

1- t ~-· t /}"/- t- t- ) 
~II a Ocl'/ {)., ~n t ~11. ()_ ~f LV ; n f Alq_,z. flcr n {t clf 

t- (~~ rf!V4,1./
1

) O~p a~tl !l ~f a-i,., J 1°> · (4.157) 

( I:!.,) is nornB.lized.) Note that the wave function contains 

all pairs of particles for \'Jhich we wish to permit 

correlations. In addition there is an o< - particle ·term. 

This should not, however, be regarded as a genuine 4 
. . 

particle correlation. The coefficient of this term is not 

an independent parameter. Even if there is no neutron -

proton pairing (va( 12 = 0) the o( - particle term 

remaJ.ns. That . is,· the conventional I T \ z = 1 pairing 

theory contains the same component in its wave function. 

Finally our con'ciusion ·that our \<.Tave function may be 

expressed in the usual :acs form demonstrates that the 

" 4 particle correlations" are fictitious.g 

:rn conclusion we recall that elements of 1-1 and L\ 

connecting different spatial orbitals have been neglected 

(4.74, 4.75). This is the same approximation encountered 

in the familiar BCS theory (3.51, 3.52). The discussion 

following (3.52) applies here as well. Since He have 

expressed· the generalized wave function in the BCS form, 

section 3.6 concerning the Hartree - Bogoliubov equations 

is directly applicable. Therein the reader will find a 

. formatism for 't<lhich app.roxiFutions (4 .. 74, 4. 75) are not 
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required, as 'tvell as some reflections .concerning the 

choice of the "best" single particle basis. 

c 

:· .... · . 

j • . 

.. 

. "' 
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7. Generalized Pairing in the 2s-ld Shell 

T'ne generalized pairing equations \·Jere solved for the 

N = z even-even nuclei in the 2s-ld shell. For experimental 

data on these nuclei the reader iS referred to II.7. All 

i-IF solutions reported in Table 2.15 "'ere tried as single 

particle bases. The solutions to the pa:i.ring equations 

are listed in Table 4.1. The energy gap for elementary 

excitations, £(£1) t £ (f-;) , is calculated ,.,ith C( and 

{!> being the two levels adjace?'lt to the Ferr:ti energy. 

If there is no re-ordering of lev3ls, in the limit of 

weaJ~ pairing E. ( c<) t- E ( fo) then equals the EF g·ap. T'ne 

moments of inertia and muJ±ipole m:->men'cs are given. by 

(3.119, 3.120). 

Ne20 

For all forces the lo\-m:Jt prolate state has a large 

HF gap, thereby excluding pairing correlations. 

The asymmetric state permits pairing (T ;: 0) only 

for the Yale force. 

The other higher lying states do not have physica.l 

relev~pce, although ~orne numerical oddities may be of. 

interest. Since the single particle energies f ( c<) are 

dispersion dependent, an inversion of the HF level 

ordering rr.ay occur {obl<1te, Rosenfeld 2, see Table 4.1). 

Since the pnir potentia.l is different for each orbitu.l, 
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it may happen that the smallest quasiparticle energy 

does not correspond to either of the orbitals adjacent 

to the Fermi energy (asynu.-uetric, Yale, see Table 4.1 ). 

20 The result for Ne , therefore, is that the physically 

relevant HF wave function is stable against both T ~ 0 and 

T ~ 1 pairing admixture;.;. 

The anymmetric HF state does not admit pairing 

correlations for any force. 

The prolate HF state with JL = ~~ 3/2 occupied 

orbitals favors T = 0 po.iring for all forces. The solutions 

to the pairtng equations are in Tables 4~2- 4.6. T'ne H.!? 

wave functions displayed small HF gaps, \-lhereas the 

correspot:Lcling tHo quasiparticle energies are substantially 

larger (Rosenfeld 1, 3.06 and 5.42 1·iev~ Rosenfeld 2, 1.48 

and 5.73 1-iev~ Yale, 0.46 and 4.99Hev~ NDKBl, 1.64 and 

5.15 Mev~ NDKB 2, 2.11 and 5.08 Hev). Although the 

deformation parameters are not significantly altered, the 

inertial parameter ·is considerably larger (0.05 to 0.26 

Nev for Yale) and is force independent (0.25 to 0.29 r.lev.). 

Since the cranking formula is expected to overestirnate 

1; f"'L J we are in reasonable agreement with experiment. 
) 

'l1fle binding energy of the prolate state is nm11 comparable 

to that of the asymmetric st~te (-132.333 vs. -133.144 Hev 

for. Yale). 'l'he energy diffe~_-ence bet\·Jeen these b>10 states 

,·.;_:,. 

.'- ' 
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is· negligible compared to neglected corrections to the 

binding enerc~. T = 0 pairing correlations have 

therefore elirninuted all of the deficiencies of this 

prolate HF -v.rave function. The results of this calculation 

have been reported -6 , the one difference being that the 

pu0l:tshec1 calculation dic1 not use occupa·tion dependent 

single pnrticle energies~ 

All oblate states contain T == 0 pairing. Ho~\7ever, 

t , ' . 11 ., t . ' ' 2 4 . 1 t nese are not pnys~ca y re..t.evan SJ.nce ··--:.r ~s pro_a e 

in the intrinsic frame. f."JOst remarkable, nevertheless, are 

the tHo oblate solutions for the Yale force. The pairing 

energies a.):-6 -11.012 and -13 .. 866 Eev. The inertial parame·ters 

a.re consi<J.erably increased ( o. 01 to 0. 47 .i-:ev and 0.10 to 

0.58 Hev). So is the energy for elementary exci·tations 

(0.10 to 5.!i4 1-:ev and 0.92 to 6.05 
) \ 

I·1ev J. hlthough HF 

predicts these oblate s·tates to be 3. 3 and 4. 7 Eev above 

the prolate state, the paired oblate states are only 1.4 

and 1.5 Nev above the paired prolate state. 

The lowest-oblate state is stable against pairing 
. .. _,,~~a.i!f;J!;r"'· 

admixtures for all forces. Since the ~ntrinsic state 

is oblate, and the lowest HF oblate state fails to 

explair .. hi?. energy spectrum, v7e may reconsider the higher 

ly:':1c oblat.e states. Most of them show reasonable energ'./ 

gap:~ induced by T = 0 p.:drinCJ. 
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The low lying proV'<te state displays pairing 

(T::::: 0) only for the NDK3 1 force. 

The spherical states contain both T = 0 and T = 1 

correlations. The small deformations arise because pairs 

of nucleons can not be in a T = O, J = 0 state. The 

-T == 0 pairing force has the effect that v]m ;l vjm' 1 

;l E J' • (m 1- m • ). · T'nerefore a fully self- consistent m 

calculation in 't·lhich pairing and RF degrees of freedom 

are allm.;ed to vary simul tan;::;ously can not result in a 

T = 0 paired spherical state. It may be of interest, 

nevertheleGs 1 to present one of these crxnbined T = 0 and 

T = 1 pr1iring solutions (Table 4.7). Note that for some 

orbitals ·r =~ 0 pairing· is more dominant than T = 1 

pairing, ~1ile for other orbitals the reverse is true. 

Yet both modes contribu'ce in all or})itals. i'\lso notice 

' '1'::: 1 
and 4 PP ( tX ) = fl np ( o< ) • 

The asymmetric state does not admit pairing correlations. 

T"ne t\-?o oblate states with Q40 ( 0 (Rosenfeld) 

contain T = 0 pairing admixtures. 

The oblate state with o40 ) 0 shows strong 'r = 0 

pairing with the NDKB force. In the HF approximation, 

this state is well above the prolate state (6.0 !·~ev, 

NDKB 1 ~ 7. 2 1>1ev 1 NDI<B 2), whereas the paired wave functions 

1 ie nearer to_ one- another (2. 6 Hev 1 NDKB 1 ;o 4. 2 i·1ev 1 

.. 

! 
. l 

... 
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NDKB 2). For the Rosenfeld force, however, this oblate 

state does·not admit pairing. 

T'ne prolate state is st~abilized. by T == 0 pairing 

for all forces • 

If the EF asymmetric WdVe function .can not explain 

the s32 spectrum, then several oblate and prolate states, 

'stabilized by T = 0 pairing, may now be considered as 

candidates. 

"- 36 hr 

Neither the oblate nor the asymnetric st~te contain~ 

pairing correlations. Since these states have a small 

inertial parameter they do not correspond to the physically 

relevant intrinsic state. 

T = 0 pairing correlations alter tc1e properties of the 

prolate state. For all forces the inertial p?._rameter is 

considerably increased (0.20 to o.os 1·lev, Rosenfeld 11 

0.22 to 0.69 1,1ev, Rosenfeld 21 0.14 to 0.49 Z.1ev, Yals1 

0.06 to 0.77 Mev, NDKB l1 0.11 to 0.56 Hev, NDKB 2). Since 

{,"L/2JiS so large, the excitcttion energy of the rotational 

states might be greater than that of the vibrational statesG 

The prolate state tvith T = 0 pair correlations may 
. . 

therefore €),-plain the vibrational character of the Ar36 

spectrum. 

The binding energy of the spherical state is 

substahtially increased by T = 0 pairing, so that the 

prolate and spherical stat·es have nearly the sa:uc energy. 
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Even if T = 0 correlations are rejected for a spherical 

state, recall that = 1 correlations lovrer the 

spherical state by 5 I·:ev for the Rosenfeld 2 and Yc,le .- •. 

forces (see Table 3.10). For the l:-lDI\.3 force the 

spherical and prolate HF states are only an .i,lev or less 

apart. The conclusion remains that the spherical and 

prolate states are nearly degenerate. Perhaps they are 

admixed in the physically relevant intrinsic v~ve function. 

t-'le conclude that T = 0 pairing correlations are 

significant in the 2s ld shcllo In particular, axial 

2<'1 32 
symmetry is restored to Eg ~ - and s and an explan.?.tion 

is provided for the vibrational nature of Ar 36• 

: 
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Table 4.1: Generalized. Pairing in 2s - ld Shell (BCS) 

Nucleus Force Shape Mode EPAIR ETOTAL ~0 Q40. A Ecx + 'Et' . X 

Ne20 Rosenfeld 1 Oblate T = Q -5.032 -40.857 ·. -4.7 14.0 0.95 4.34 
.; ... Prolate 2 T = 0 -5-500 -41.297. 3-1 -47.5 0.37 . 4.91 

Roserif'eld 2 Oblate T = 0 -6.737 -30.898 -5-3 19.4 0.75 3.84 a 
Prolate 2 b 

·Yale Asymmetric T = 0 -4.963 -97-210 ~ 3-7 -45.0 0.52 4.61 . c 
( 4'. 5) ~43.4) ~0.24~ 

6~0) o. 52 N 
0 

Spherical T = 1 -6.490 -95-5.18 0 0 ..0. 3.45 d. w 

For the asymmetric wave function (~2 ), (Q42 , Q44 ) and (\, Az) are. given in parentheses under ~O' Q40, and Axo. 



Table 4.1 (continued) 

Nucleus Force Shape Mode· EPAIR ETOTAL ~0 Q40 A Eo: + Et' X 

Mg24 Rosenfeld 1 Prolate 1 T = 0 -3-985 -95· 027 15.1 -0.9 0.25 5.42 
Oblate 1 T = 0 -5-545 -93-480 -12.5 51.9 0.30 5-59 
Oblate 2 T = 0 -3-511 -92.037 -1.8 104.1:. 0.17 4.20 
Oblate 3 T = 0 -5.513 -91.696 -9.2 28.2 0.46 4. 57 

Rosenfeld 2 Oblate 1 T = 0 -5.083 -76.855 -12.9 38.4 0.38 5-39 
Prolate 2 T = 0 -6.024 -77-392 15.7 -9.4 0.29 5-73 
Oblate 2 T = 0 -7.478 -74.168 -11.6 52.9 0.30 6.07 e 

Yale • Prolate T = 0 :-6.308 -132.333 19.1 -6.4- 0.26 4.99 f 
Oblate 1 T = 0 -11.012 -130.904 -14.5 43.7 0.47 5.54 .g 

·Oblate 2 T = 0 -13.866 -130-791 -13.0 40.2 0.58 6.05 h N 
0 
-~ 

NDKB 1 Prolate T = 0 -6.226 -110.133 16.1 10.0 0.27 5.15 
Oblate T = 0 ..:6.404 .. 107.585 -11.8 30.4 0.39 4.25 

·.• ... ~ ·, ... 
... . ·~:. ··-'.. <~ 

NDKB 2 Prolate T = 0 .. 4.763 -115.883 22.9 l.l 0.26 5.08 
Oblate T = 0 --7.485 -111.540 -16.7 38.0 0.41 4.74 

... 
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Table 4. L (continued) 

Nucleus Force Shape Mode EPAIR ETOTAL ~0 Q40 A E + EB 
X a . 

Si2 Rosenfeld 1 Oblate 2 T .. = 0 -1.904 . -150.019 -0.5 -94.3 0.26 6.08 
Oblate 3 T = 0 -3.661 -147.091 0.2 105. 5· 0.17 4.05 

Rosenfeld 2 Oblate 2 T = 0 -4.870 -122.752 . 0.2 114.0 0.18 4.85 
Oblate 3 i 
Spherical T=OtT=l -5.011 -114.900 0.1 0.5 31 4.99 

NDKB 1 Prolate T = 0 . -5.431 -139.625 17.0 -58.4 0.26 3· 38. 
Oblate 2 T = 0 -li.426 -138.327 - 0.03 -87.4 0.35 6.14 j 
Spherical T=O+T=l· -2.982 -134.395 , 0.4 - l. 0 9-9 2.77 d N 

0 

.:-7· 904 -139·361 0.26 5.82· 
(JI 

NDKB 2 ·,Oblate 2 T = 0 -0.3 -123.0 
Spherical T = 0 -2.581 -135.621 0.3 -1.0 . 8. 2· 2.87 "C 



Table 4.1 (continued) 

Nucleus Force Shape Mode· EPAIR ETOTAL ~0 Q40 A Ecx + E[3 X 

s32 Rosenfeld 1 Oblate 1 T = 0 -1.009 . -212.882 -1.5 -94. 5 .. 0.26 5-78 
Oblate 3 T = 0 -6.148 -209.457 -7-5 -61.7 0.39 5-94 

Rosenfeld 2 Oblate 2 T = 0 -5.481 -178.331 -1.4 ~-108.0 0.22 6.14 
Prolate T = 0 -5.743 -175-347 9-7 .., 40.9 0.33 3-89 k 
Spherical T=O+T=l -3.818 -173.943 0.1 0.7 28 4.56 1 
Oblate 3 T = 0 -7.498 -175-353 -9·5 -64.8 0.35 4.70 m 

Yaie Prolate T = 0 -4.753 -223.764 15-5 -68.5 . 0.24 4.23 n N 
0 

"' NDKB.l Prolate T = 0 -2.717 -178.880 . 13-3 ~43.8 0.26 4.41 0 

Oblate T = 0 -7.392 -176.238 .-8. 3 . 73.2 0.29 4.38 p 
Spherical T = 0 -2.975 -173-784 0.3 -0.2 32 2.16 q 

NDKB 2 Prolate T = 0 . -2.164 -182.091 17-9 -61.6 0.28 5-38 
Oblate T = 0 -7.862 -177.852 -10.1 101.0 0.29 4. 58 
Spherical T = 0 -3-545 -174.096 0.4 -0.2 27 2.28 r 

.,. ., 
.. •. lc#• 

. ·- ---·· .·- -··--·- --~-~- ------- ---- - ---------- --· ---
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Table 4.1 (continued) 

Nucleus Force Shape Mode EPAIR ETOTAL ~0 

.. 36 
Ax. Rosenfeld l Prolate T = 0 -3.108 -277.243 4.0 

Spherical T = 0 -3-562 -277· 3i4 0.4 

Rosenfeld 2 Prolate T = 0 -3.732. -236.036 4.8. 
Spherical T = 0 .:.4.003 -235.783 ' 0.8 ., 

Yale Prolate T = 0 -3.392 -287.096 6.1 
Spherical T,= O+T=l -3.931 -286.457. -0.1 

NDKB l Prolate T = 0 -2.663 -223.562 4.1 
Spherical T = 0 -2.023 -223.343 0.1 

NDKB 2 Prolate T = 0 . -3. 556 -224. 5~-0 7.1 
Spherical 

All energies are in Mev. ~ has· units of fm1 • 

'· 

Q40 

-8.5 
-0.4 . 

. ~11.8 
-0.8 

-24.8 
- o. 02 

-12.6 
. -oa 

- 19.2 

A 

. 
~ 

X 

0.85 
23 

0.69 
7-9 

0.49 
285 

0.77 
12 

o. 56 

Ea + Ef3 

3.13 
2.97 s 

3.68 . 
3.20 s 

2.93 t 
2.09 u: 

2.26 tv 
0 1.80 u -...J. 

2.99 
v 



b. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

j. 

k. 

l. 

m. 

n. 

o. 

p. 

q. 

r. 

s. 

t. 

u. 

v. 

.208 

Levels 2 and 3 exchange position. 
2 

v4 == 1. 

E
3
< E1, E2 • In parentheses are (~2 ), (Q42 , Q44 ), (Ay' Az·). 

300+ i t_erations. 

Levels 2 and 3 exchange, 4 and 5 exchange. 

HF gap increases to 2 Mey. 

Levels 1 and 2 exchange position. 

Levels 2 and 3 exchange position. 
2 2 ' 2 

v1 = v2 = v
5 

== 1. 

All sd levels contribute equally to EP.~IR . 

EPAIR twice as large a$ .vrhen r:~=r(v2 ). 
298 iterations. 

Level order is 2,1,5,3,4,6. 

Levels 5 
2 2 

v4 > v3. 
Levels 4 

and 6 exchange. 

and 5 exchange. 

ld
3

/ 2 below 2s
112

• 

Ed + Et3 == 

Ea + Et3 = 

ld
3

/
2 

200 kev belovr 2s
112

, equally occupied. 

No pairing for r F r (v
2

). 2s1/ 2 lcn·rered by 9 Mev. 

Ea + Et3 == E4 + E5 • 
284 iterations. 

2s1/ 2 below 1a
312

• 

At· pairing cutoff. 

(All level nuffiberings are with respect to level ordering within sd shell.) 

i, ' 

.,. 

.._ ', 

_. 
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Table 4.2: · Prolate Mg24 (Prolate 1, Rosenfeld 1) 

t:.·(o!) -19.500 -15.045 -11.738 -10.184 -6.343 -4.011 
lim AJ;Il.) 1. (- )o. 993 (+)0.798 (+)0.189 (-)0.013 (-)0.002 (-:) 0.005 

. ·p-D 
-2.363 0.618 11nr laJ o. 987 -1.930 0.793 1.357 

.. IE (d.) 5.970 2.403 3.016 3-519 7-295 9.697 

.. 

Table 4. 3: 24 Prolate Mg (Prolate 2, Rosenfeld 2) 

c~J -17.940 -12.284 -10.303 -7.024 -5-318 -2.625 
( Xm;\1""' 1 t) ~ (- )o. 988 (+ )0. 665 . ( + )0. 321 ("')0.015 (-)0.005 (-)0.008 

/':D 

{j fl f ( o( J 1. 492 -2.551 -2.832 1.087 0.831 l. 538 
£(do) 6. 716 2.703 3-034 4.501 6.130 8.900 

. 4 4 24 Table • Prolate Mg (Yale) 

e (o..J -14.646 -10.103 -8.171 -5-536 -4.273 -1.611 
(l"mtJ;,ilJ' (- )0. 968 (+ )0.693 (+ )q.Jo6 (-)0.024 (-)0.009 (..:.}¢ •. 007 

(-:o . 
2.087 -2.317 -2.288 1.166 0.956 1.225 fji'J,f (rl.) 

£l d) 5.895 2.512 2.482 3.782 4.954 7.622 

24 T.:!t 
For prolate Mg : ~oHI = R.e Not.c"Z..::: LJ,?f < 0{) -= ()~f ( rl..):: 0 

,lo_ .. The sign of I ~ r- is given in parentheses before (I rn AJ:;d 11 ) 1. .• 
. J'YI AI 0( I 'L 

u.,., > 0 . 
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Table 4. 5: Prolate Mg 24 
(NDKB 1) ... ' 

t C.. d) -11.373 -7.740 -4.822 ~4.286 -0.685 1.638 
(Irn Af"Q'

1
,_)'L ·-(-)0.975 (+)0.746 (+ )0.185 (-)0.079 (-)0.011 (-)0.014 

I=<> 
tJ 11( (d.) 1.589 -2.061 -2.160 1.465 1.236 1.998 
£1,.0.) 5.051 2.366 2.784 2.720 6.021 8.455 

Table 4.6: 24 Prolate Mg (NDKB 2) 

c(d.J -13.477 -8.417 . -5.186 -2.756 0.739 3.654 
(Im.N"o:.n)"t.. 

(-)0.990 (+)0.810 (+)0.173 (- )0. 022 (-)0.004 (-)0.005 
T"!.t> 

LJ~'~r (tXJ 1.346 -l. 930 -l. 984 1.258 1.013 .l. 558 

e l c<J 6.716 2.457 2.620 4. 327 7-702 10.665 

. 24 1":.1 
For prolate Mg : Ncttl -:. R e ~tl.. = /Jfr<rA) ~ IJ nf <.aJ -= o t. 

The sign of' Irn ~n... is given in parentheses before (Irn.Arot 1,_). 

Uc:~.,, ) o 

r . _. 
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Table 4.7: Spherical Si 
28 

(Rosenfeld 2) 

JYY\ 5/2 -,3/2 5/2 1/2 5/2 5/2 ,3/2 1/2 3/2 -3/2 1/2 1/2 

e<c<.) - 14.914 - 14.928 - 14.926 - 10.911 -10.835 - 9.630 
't 

~~~ 0.251 0.402 0.167 ' . : o. 025 0. 018 ' 0.007 

( Re Narl'l.) 
l. 0.251 0.402 0.167 •, o. 025 0.018 0.007 

,( ImA!dn.J,_ (-) 0.410 (+) 0.133 (+) o. 557 (-) 0.035 ' (+)0.093 (+)0.035 

;1/d..t. 0.912 0.936 0.890 0.085 0.129 o.ol.t8 

LJ9~,( ol.) - 0.715 - o. 728 - 0.689 - 0.736 -0.707 - 0.575 

- 0.715 - 0.728 ' - 0.689 - 0.736 -0.707 - 0.575 .lJnp (el.j 
0.420' 

f\) 
/"b 0.915 - - 1.259 0.870 -1.617' --1.335 1-' (J np Cd) ,_;, 

E Cod 2.402 2.280 ·. 2.547 2.438 2.834 3.658 

1. 

The sign of I,.,., """"'''l. is given in parentheses before ( I;n lif"li•"l..) • ;r.rct 11 J R~_AF61141 Ltatt) 0 
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V. T"dE GENERi\L QU\SIPl\RTICLE TR.r"\NSFORJ·}'\TION 

1. Introduction 

A satisfactory theory of self-consiste~t fields 
. .. ~ 

should allcM the Hartrce-Fock (HF) and pairing degrees of 

freedom to interact with one another. There are tHo methods 

by which this may be accomplished. 

The pairing· theory has been describ.ed by the special 

quasiparticle transformation. Unless special care is taken 

in the choice of the single particle orbitals f o() , the 

formulation is equiyalent to neglecting eleme.nts of the HF 

and pair potentials which connect different spatial 

orbitals. It is asm.11'ned that . · 

I< o<~ T /AT I ol'f> T)li _I ~ < 

I < C( ~I T I tv I~ f T) 11 I '- ~ 

I <o!~ T IAY/df-' T~] 

I< ol d. Tltrl f!>ft T ~ I 

where d ~a' • For reasonable forces there is no a priori 

reason to expect that these assumptions are justified. 

However if the single particle basis is judiciously 

selected, these approximations need not be made. The 

appropriate formalism consists of coupled Hartree

BogoliuboV' (HB) and BCS equations. It may be derived,by 

eliminating the terms in the Hamiltonian which create or 

annihilate bN'O quasiparticles •. ·A further rotation -in 

quasiparticle space is requ5.!'"ed to diagonalize the terms 
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containing one qu~siparticle creation operator and one 

quasiparticl'e annihilation operator. The HB equations 

have the disadvantage that the HB Hamiltonian is a 

functional of the orbital /~) • Hence they can not 

be solved in the usual 'Hay •. 

T'ne general quasiparticle transformation provides an 
. . . . . I J 1. 

alternative, but equivalent description. Instead of 

restricting the transformation to a linear combination 

+ of a cl and a_ 
ol 

'· 

(special) 

vTe permit each quasiparticle to be a linear combination 

of all particle creation and annihilation operatorc. 

~· •' 

b :. = ~ cu ... J: at-/+ Vq ai) 
... 

. (general) 

J 

Although the simplicity of the special transformation 

appears to be discarded,· thereby rendering the interpretation 

of the wave function more difficult, "'e shall see that the 

general transformation may be described in terms of the 

special, so that in fact, no ease of interpretation is 

lost. The resultina Hartree-Fock-Boaoliubov (HFB) 
J -· 

equations are a natural genera.lization of the HF equations. 

The HPB equations are easier to solve than the HB 

equations. Also no additional rotation in quasiparticle 

space is required. The general transformation provides 

the more elegant of the two formulations of the pairing 

theory. 

.. 
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2. Quz;_siparticle Transformation 

'I'he general Bogoliubov quasiparticle is given by the 

most general linear transformation 

( 5.la) 

(S.lb) 

or (5.2) 

where ~· and .b are N dimensional vectors and U and V are 

N x N dimensional matrj_ces. Since the transformation is 

required to be unitary, the inverse transformation is 

or a ~. ~ i ( u :j b ~ ~ t v(.. J' b r ) 
. (.' 

a 1 :: ~ ( U L' i b .. · 1- vL.j b ft. ) . 
, .. 

The unitarity conditions are( xx+ = I ) 

- """' UV+VU ~ o 

and (X+ X =I ) 

u + u + ( vt v),. ":;: r 
.. 
' 

(5.3) 

(5.4a) 

(5.4b) 

(5. Sa) 

(S.Sb) 

(S.Sc) 

(S.Sd) 
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That is 
. ~ ~ 

£ ( u c f ul< j + v'" · / v,.. / ) ~ I'-'~:
j 

~ ( u c { vI< i t ~ 'i u I<J ) ::. 0 
J 

t;_ ( ui:. Up, +V;·L Vi~) -=- .S '-l 
J 

~ ( LJ ft.' VJ'I~ + VJ't: UJ~< ) ::. 0 
J 

( 5. 6a) 

(5.6b) 

(5.6c) 

( S.6d) 

These relations ~ay also be obtained by requiring the 

particle and quo.siparticle oper<:1.tors to oatisfy the 
. . ~ . . 

Fermion coTI'linutation rulese Substituting (5.1) into 

[ b t._. ) b ~ ] + = t L'K 
( s. 7a) 

[ btL.) b r( lr ::: L b t.') b K 1 t ~·· 0 (5. 7b) 

results in (5.6a,b). Substituting (5e4) into 

[ rL t'-.J a L< 1 + ~.·· i l' k (5.aa) 

(5.8b) 

results in (5.6c,d). 

The r:efe_rence ;, state f1o) is defined as a quasiparticle 

vacuum;. Therefore 

(5.9) 

Since [ bj_ J bi 1 + vanishes,, b1 bi = o. Therefore a 

solution to (5.9) is 

I ~o) ~ c 7T b (.. I o'> ,. (5.10) 

\-.;here C is a constant of normalization. 

. ' 
I 
i 

·-
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3. The Hawiltonian 

.'I'he Hamiltonian is 

H'=H-AN 
( 5.11) 

when~ 

= ~ ~l.· (T-;\. IJ·>a~.aJ· .,.{ Z! <c.·J·IN/I<.R'> a:.a+J·a.~a" 
( J. ('J!<..R JJ 

(5.12a.) 

N= Z: a\ac: 
.... 

A: ).rPr t An Pn 
(5.12b) 

(5.12c) 

::\ and A are I.agra!1ge r>tul tiplicrs to be chosen so that 
P n 

the average numbers of proto!ls and neutrons in th.: "mve 

( 5.13a) 

'\vhere (5.13b) 

and (5.13c) 

We have used ~Uck's theorem (I.3) to express H
1 

as 

H'-: Ho'+Ht.'+Hr' (5.14) 

where 
1 <' I t<' - f-H" :: £r < T - *A t i r' ), ·J ·f . . .,_ i Lf ..(j , · · [ · . 

q· JL '-'J• J JL 
(5.15) 

H'L' = ~.(J.I-;t,),·iN[att.a/]+{ ~ /l,·
1
·N [a~·ati] 

( J "/ (5.16) 

+ :i. ~- LJ~./-N [ a,·cz 1 J 
c. J (5 .. 17) 

H·/ ~ * t ~c.· i Lv I k p) rJ [at,. a tJ a 1 a J< .J 
Lj/<.Q fl 
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f is the density matrix. 

fJL < 
t . 

-::. {1({1J) (5.18) 

..... 
ft ~r (5.19) 

~ ' 
~ 

:t is the pairing tensor. 

[ ~ < CltQJ> 
(5.20) 

. J t.. 
.· it ::.·<atatc.) (5.21) t J L J 

' ,• ' ......... 

[ -:: - [ 
( 5. 22) 

r is the H~, potential. 

r Lj ::: 2; < ( k I AI I J .RI II, fe k 
(5.23) 

1<- I . 

r t 
.· -=- r (5.24) 

14 is the HF Hami1toniaf1·,·.,. 

. 1.f (. J - Tt1 t/_,lJ (5.25) -

r~+ ~t-t (5.26) . i 
1 

~ is the pair potential. 
.. 

Ll Lj 
J. Z:· < t j I JtJ lkR ~ L k~ (5.27) = 2.. 

1<. p 

* 1 ~ < I<.R I ,.v- /(j ) 11 
' tJ. <j = 2 [/<,(> (5.28) 

I<~ 
-"'\.-

IJ - - {J (5.29) 
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The expectation values. andnormal orderings are with respect 

to a reference state, \olhich is chosen to be the quasiparticle 

vacuum .. It follm.;rs that 

(5.30) 

( 5. 31) 

v7here tho last equality uses (5. 7a). 

. The density rn.atrix may be evaluated in terms':of U 

and v. Use the inverse transformation (5.4) 

and (5.30 - 5.31). 

or 

fJ' ~ f V~<, 
f· :: vtv . 

Similarly the pairing tensor is 

so that 

or c ~ v+ u . 

( s. 32a) 

( s. 32b) 

( s. 33a) 

(5.33b) 

. '. ~ . 
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4. Hartree - Foe~< - Bogoli.ubov l!qua tions 

The Hamil tonitln tvill acqui~e the desired form of an 

independent quasiparticle Hamiltonian if H4' (the quasi

particle interactions ) may be neglected and if 

H ~ -:: ~ £ K b +k b I< • (5.34) 
l< 

The problem therefore is to choose Uand v so that (5,.34} 

is satisfied. The corrL"nutator [ H2 
1

1 
, b + k ) _ may 

be evaluated· '\vith (5. 34) 

I H "1.
1 J bfK j_ '::: £k b ~ ( s. 35) 

or [ /-/1.', b1~ J--:! E ~ ·~ ( U l<.l a?c.. +-Vt<.~ tl.c:). ( s. 36) 
L. 

Alternatively, (5.16) may be used. 

[ H1.', b ~<]- ~. $.{ (74·-).)lJ u,<J +- jj lJ. V/<:.1 J ··a~-
(. . 

J + . . ' ~ (5.37) 
+ 2; { tJ l. 1 u /<. 1 t- < ;\ --u ) l. 1 v '< 1 } a c.· 

LJ 
R!uate the coefficients of a•i anq a 1 in (5.36) and (5.37). 

2: l ('),J- J.)'"1 u/<.J +- ~J l.J vk1 J , £1< u}<( 
J. 

(5~ 38a} 

~ { L1 + t 1 U ,, J +- < 'A -1/ J c. 1 V k.J } ~ Et., Vi~ c. 
J 

(5.38b) 

Let 

u -:: · ul<, v ~I _I<. -I<. = 
Ut<.1 lljo . . -:: 

(5. 39) 

.:'-

Ut<~./ ~N 
'>·.' 

.... 

. . 

.. 1 
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then (5.38) is. 

(5. 40a) 

(5.40b) 

Eq:uations (5.40) form an ·eigenvalue equation. 

6 1 [ '=!I< ] ~ £,< [ u~ .. Kk 1· 
C\-~>1 k'K ' 

( s. 41) 

Let 

·11 1 
C\-U) 

(5. 42) 

and 

(5.43) 

then (5 ~41) is. ,more c.orrcpactly represented by 

· 1< XI<':!. £1< X J<. • · 
(5.44) 

?<. is. self adjoint. 'l"~"nerefore itG eigenvalues are real. 

(5.45) 

Equations (5.44) are called the HFB equations. The 

eigenvectors provide the quasiparticle coeffici.ents U and 

. V for· which ( 5. 34) .is sa.tisfied. The eigenvalues E are 
k 

the corresponding quasiparticle energies. 

The HFB equations are a natural generalization of the 

HF equat.ions (2.17) •. The eigenvalue problem is of the same 

nature, except that the generalized potential 7{ has 

t\<Tice the diraension of the Ii:F potential, The HF and 

i 
i . 
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pair potentials are treated simultaneously and on an 

equal basis. HF and pair degrees of freedom interact 

with one another during each iteration of the calculation. 

The potentials 1-4- J 1J are determined by the wave 

function f 1 t and vice-versa. Therefore the potentials 

are self-consi,stent. .t\n initial guess is made for f
1 

t 
'l"hen 1..f.J {l are calculated (5.23, 5.25, 5.27 ). The HFB 

equations (5.44) are solved, providing the coefficients 

U, V from \vhich a new () t may he calculated (5.32, 

5.33). ApJAI'I are adjusted so that the number conservation 

constraints ( 5.13) ·are satisfied. --The proce<:'lure is 

repeated until f C 
I -

are the same on succesSive iterations. 

In the limit of zero pairing ( 6. = 0 ), the HFB 

equations are equivalent to the Hl!~ equa.tions. 

Consider- the 2N' x 2N dimensional matrix l'l... 

A-=- l~ 1 D 

l 
,.., 

The product A!~~ is ( )... ·:.. ')4 ) 

6 

Since t{ is Hermitian and fj 

Complex conjugate (5.44 ). 

'1/tr x: ~ El< X • F\ _lc. 

Substitute {5.47) .. 

t •. 

llt l ('/4-;\) 

is antisyrrtmetric 

(5.46) 

(5.47) 

• 
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Since 

(5.48) 

multiplying through by A gives· 

(5.49) 

Therefore if ,&!{ is an eigenvector of '}( associated tvith 

the.eigenVa.lue ~' it follows that A~ is an eigem..:. 

vector of ·1{ . corresponding to the eigenvalue -~· Since 

H2 • is Hermitian, the adjoint.of (5.35) is· 

(5.50) 

Therefore it is clear \'lhy the eigenvectors and eigenvalues 

• i X:._ R._ " 'v * ., If b+ ' ' come ~n ··pa · rs: !..~' _R ancl ~~~"K 1 -.c.K.• K ~s g~ ven 

by ~ ~. r V.t<.1'. t.hen bK is given bif . A~ ~ f j(ldK:]. 
1 ·~t< ' .·· l ... 

(see(S.l )). In constructing f and t (5.32,5.33'), the 

summations are over eigenvectors -t-,ith positive energy. 

It is desirable to know .\o~hether the H~B equations 
.. 

may be derived from a varia tiona! principle. One might 

hope to succeed with the principle 

ij 
;JUrs 

where ( s. 51) 
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and 

Ho':: i (T -J..){j 
(' ii'YI . 

{ 2; N t..JI<.t 
'Jk.Pmn 

( s. 52) 

~ t N(JkR 
(ji<...Pmn . 

Unfortunately the resulting energy matrix is 

't>lhich is not 7-<. • The lack of symmetry in this energy 

matrix arises because H
0 

is not symr:1etrical in U and v. 

Furthermore U and V are not independent parameters, but · 

are coupled to each other through the unitarity conditions. 

T'ne correct variational principle is 

~ 0 . (5.53) 

Hm-rever. ;; U r$ /..., '/ 
· · C/Yr-5 

is not readily obtainable. 

1'1 more elegant approach is to proceed with the aid 

of the generalized density matrix. In the discussion 

which follmvs we use the notation, 

Let 

, ~ (I j I 1<, i) f ~ N 

I ~ m, n, r, s J ( · ~ 2. N 

L ~ L+N 1 eTc· 

(5.54) 

~ ... ·-; 

.. .• . 

- i 
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Then the generalized purticle density matrix is 

It may be verified that 

R ~ f e_ 
. · tr/ t 1· 1-l 

For example R r J '= < /} ~ A l. ) -:::: 

(5.55) 

(5.56) 

< S c.. J - a ~· Q i > = c 1 ~f) (.. i • Alternatively one 

may define 

8t -[ f] (5.57) 

The genqralized quasiparticle density !!.1fltrix i.s 

{5.58) 

Noting ( s. 30 -:5• 31) . 

G :: (5.59) 

I€t (5.60) 

Then the. quasiparticle transformation (5.2) is 

. B.,. -=- X A t (5.61) 
-

and the inverse transformation is 

( s. 62) 
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Then R is easily evaluated. 

rs 
Substitute G. , 

(5.63) 

R is sym;netrical in U and V. 

(5.64) 

This form -of R is equivalent to, (5.56)~ For example, 

u + u = 1 - ( v +v) * = 1 - f * = l ~ p 
" 

• 'i.'he 

program is to express H0 ' interms of Rand then vary H
0

' 

,;,ith respect to X. ·· H
0 

• (5.15) mc"1.y be Hrittcn as 

(5.65) 

Define (5.66) 

Since H
0 

• is real; 'TJ1-I
1 
f are Hermitian; 4 

1 
[ are 

antisyrmuetric~ it may be shmvn that 

H ~' ~ { T r [ ( T -~ + ?of. ) R -t- 2 ( T - ~ ) +- r ] 

1< may be expressed in terms of R \-lith the aid of a 
~ 

generalized potential r 
" r mn = ~ ;.mr. n:. R sr 

rs (5.67) 

" v1here v rem::.dns to be defined. Choose 

,.·. 

'-; 

. '· i.' 
;: 

.. ,· ~ 
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,.. I 
jl.}-- ... _ -: i Af""~<_ n LJ 

(. J 1<..-t ~ 

A I 

Nt.. J k...o = - l. N,<J 1.1 . (5.68) 
" I . . A I 

,11.{"'-JEZ.t -:. -t..;..r,I<Jl /lftjl<.i "' - 'i /VjJ,:K 
A. . 3 

all other components of v being zero. Then 

,.. . 

r~[<r-iv> 
. tJ t 

tJ ,_ 
-.( r -

(5. 69} 

,.,here (5.70) 

Let 
1\ v ~ 

[ v ~ 1· 
0 - v 

(5.71) 

and "' " ' v~ T ~/\ t i (5. 72) 

then (5.73) 

Substitute into H
0
'. 

1\1\ .,.. . 

H (J1 
':: ~ T r [ ( i ;r + r - i 17) R -r 2 ( i-A) f- r ] 

Fortunately Tr [ -%. v R + r ] = Tr [ !s. V] I 

so that all dependence on f, r_ is eliminated. 

II. 1\. 

H ()I '= i' T r [ ( ;J + i: r ) R T ~ v + ( T -A ) l (5.74a) 

t f Z: /Vi<. -9 I<; + i ~· ( T- ~ ) ~k 
/<.. .f . 1<. 

(S.74b) 

This ex-pression·is similar in form to that obtained in 

HF theory. 
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The variational principle is 

¥There 

or 

\<There 

~ 1<tn Xpn = Ei Xpy 

'}( ~ P ~ Er Xp 

Ep ~ 2 E; . 

By the argument following (5.46) vle find 

where 

7< ~ P = Ep K P 

Ep = -Ep-

(5.75) 

(5.76) 

(5.78a) 

(5.78b) 

(5. 79) 

·, 

(5.80) 

(5. 81) 

The HFB theory has been derived by a variational principle 

applied directly to the quasiparticle co-ordinates. 

The generalized density matrix R has other interesting 

properties. (5.63) may. be written as 

!.:•: 

~~·-

I 
.j 

' ' 
' 

. : 
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so that 

I· 

Since R is obtained from G by a unitary transformation, it 

has the same e.igenvalues as G,. that is, N eigenvalues equal 

to 0 and N equal to 1. It follows that 

(5.83) 

and Tr R:: N · ( 5. 84) 

Inspection of (5.56) shows that (5.84) is automatically 

satisfied. (5.83) implies 

f -f2- ~ 

·f[· ~ rf · 
For zero pairing (5.85) reduces to the HF relation 

(5.85) 

(5.86) 

If f and are given, one may ask \-lhether it is· 

possible' to determine the co-ordinates of the quasiparticle 

transformation. The adjoint of (5.9) is 

<~olb~~o (.S .. 87) 

Consequently 

< b T,._ a i '> = < k t~ a +i > ~ o . 

Substituting (5.la) 

~ <u K<.. <a +l. a +J. > -r v~<- ,: < ll<: a j >) -=: o 
•(.. 

··.·• 
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we find 

-~ (fit' u,<.(.. -r c fL. vi<.'".> =- o 

2; ( z: j·( ul< c: t c '~ 7 Jic.· VkcJ -:. o 
(." 

The matrix equation is 

(5.88) 

~ is an eigenvector of the generalized dennity matrix R 

corresponding to eigenvalue 0 as well as being an eigen-

vector of the generalized energy rna trix 7< corresponding .. 

to the eisrenvalue ~· To determine the eigenvectors of 

R corresponding to eigenvalues of 1, consider the relation 

(see 5.48, 5.82) 

It·r~y be verified that 

IJG!J =l-G · 

Consequently 

Since x+x = 1 

. f . 
IJR(J:: X (l-c;)X, 

·complex conjugate (5.88) .• 

R-ft x• =-o -I<. 

Substitute (5.89). 

(5. 89) 
,. 

' . \ 

. 
·(I 

- ·.' j 
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Since A2 = 1 

R. fr X* _J<. 
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(5.90) 

A~* are the eigenvectors of R corresponding to eigen

values of 1. Reca1t that A~k* are also the eiqenvectors 

of 'X associated with the eigenval\les ":"'11c• 

It might appear that the quasiparticle co-ordinates 

are determined by the eigenvectors of R. However because 

of the high degeneracy (of order N), the eigenvectors of R 

are not uniquely determined. If the quasiparticle 

~o-o:Ldinates are ~ then any set of linenr combinations of 
. . . 

~-are also eigenvectors of R with eigenvalue o. ~1e 

conclude that defining the reference sta·te (that is, giving 

R) defines the quasiparticle co-ordinates up to an arbitrary 

unitary .. transformation; T'riis result fo11m·1S c:lir~ctly from 

the definition of the reference stateD 

If 

h k I ~ol ~ 0 

b,~ ~ ~ u kJ b; 
.I 

t-There U is an arbitrary unitary transformatj.on, then 

This is reminiscent of our conclusion in III.6 that 

a rotation in particle space follO\v~d by a special quasi

particle transformation are sufficient to define the BCS 

"Jave func.tion (that is, determine f and r. · ) , whereas 

a further unitary -transformation--of quasiparticle co--ordinates 

_·;:_,_ \ 
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is required to make·H~ diagonal in quasiparticle co-ordinates. 

The analogous situation in HF theory is given by the 

relation 

f1.=t 
so that f has eigenvalues of 0 or 1. 

equation is 

The eigenvalue 

e.,., z:. A I 
... L/ or · 

The eigenvalues of 1 correspond to hole states, and the· 

eigenvalues of 0 correspond to."particle" states. 

The reference state is defined by 

Any unitary transformation of hole states (occupied 

orbitals) leaves the \·;ave function { (> invariant. 

The derivation of the HFB equations by the equation 

of motion method is more transparent "Hi th the generalized 

co-ordinates. (5.16) may be l'lritten as 

H"L' ~ f f: I< ~, N [ A 'm fl ~ ] · (5.91) 
lhl'l 

Substitute the inverse transformation (5.62}. 

H 1.' ~ i 2: I{,_,"' X /rn X $n N [ B ~ B ~ 1 
or mnrs 

H1.' ~ i 2: [ (X") 1< tx•) t] rs N [ B ~ B.s] (5.92) 
rs 

. I 
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~· 
ex*) 

acquires the desired form if X is chosen so that 
. . .. + 

'J< (:C) is diagonai. It is therefore required that 

(5.93) 

tvhere. E is diagonal~ The components of this equation are 

Hhich is the HF3 equation. Then 

Since I1c = -Ex: 
. + 

and -·N [ ~b k ] = = 

-vm arrive at 

i 
' -1 
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5. ~Jmmetries of the HFB Solutions 

If s is a symmetry of the Hamiltonian H, then 

[ H ;S ]_ :; D , (5.94) 

We have partitioned H as 

It may not be true that 

( 5. 95a) 

or equivalently 

(5.95b) 

If s commutes with H (5. 94} and leaves the reference state 

invariant 

or. 

5 I f., ) ~. I ~ll > 
[R,S]_~o 

then s corrt.rnutes vlith 1< (5.95), and S is termed a 

( s. 96a} 

(5.96b) 

"self-consistent syllUTletry. u If a self-consistent sym1netry 

is introduced into R, then 7{ ·· . will reflect that syiThttetry, 

and therefore so will R of the following iteration. 

Consequently if the trial generc:illzed density matrix contains 

a self-consistent symmetry, it will propagate through to 

the final self-consistent R. 

Harmonic oscillator (HO) \'lave functions are chosen 

as the basis states. 
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(5.,97) 

Parity is a self-consistent syrn:rnetry •. ·Restrict the 

quasiparticle transformation so that all,components have 

the same parity. Since 
! 

P .{ a .. : .·J·P .. ' aK. 
it follows that 

The ground. state wave functj_on is 

Since 

·"'e·· have 

I 5:.()):::! 1T J,Jto/ · 
.. J 

f' /6) ~ I D) 

-:: 7( p bj p-• /0) = 
J 

so that .{ ~o) is parity irvariant. 

(5.98a) 

(5.98b) 

(5.,98c) . 

T'nerefore parity is a self-consistent symmetry. The 

density matrix and pairing tensor will connect only states 

of the same pa.ri ty. 

f ~ Ir+'+ 0 l 
0 f- J 

[ =[ [+t 0 l 
0 £ __ j 

(S.lOOa) 

Since the two nucleon interaction conserves the parity of 

/ 

· .. , '--·· - .· 

•.· ', 

., 1 

·;,I 

' l 

· .. 1.7: 
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the tHo particle state, J../.· and · have the sane 

structure. 

1-1 = I /ft-+ o ] 
o H--

The energy matrix has the fo:cm 

tfn- -A 0 Ll +t-

?< ::. 0 . i-f-- -A 0 

L)T 
..... 

0 .:\ -7-1 ~+ ++ 
0 /J ~- 0 

0 _l 
LJ -- J 

0 

~l--
6 

,.., 

. A -11--

(S.lOOb) 

(S.lOOc) 

The eigenvalue equations for positive and negative parity 

states are therefore de-coupled. Consequently the ne..,., set 

of eigenvectors is also par:i.ty invariant, thereby confirming 

the self-consistent·. nature of the parity sym."netry. 

t'le sha11 consider in so~ne detail the time-reversal 

symmetry. ;r operating on a HO state gives 

. . - . - . . ' 

.J {NJJfn T)::: I_N_')...,....J.Yh-T) := (-t)J-11'1 +.R I NJJ-fYJ 'f) (5.101) 

(t·le choose < [ tl mR > -=. Y; "'?, • For the choice 

< rJ.J'mR 'I::: ( 1 r,m,~, ;( /Jml ::;(-I)J-m 1 J-m) · ) 

Divide the basis states into tw'O sets: the first containing 

states '\vith m - 3s. = even in'ceger, the second containing 

states \•7ith m - ~ = odd integer. Denote the sets respectively 

by {I k)} and • Y.Ore specifically { 1 K) J is 

composed of states with 

1/~) (5.102a) 

··'·': 

·'···· ·- _. 

• t ~ 

- i 
' 
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and { I i<.) J is composed of the states 

{ 1/~)}::. J {II<> I (5.l02b) 

so that 

fJ1 = ... - 5/z. -'h.. 3/z... 7;2.. . '. 
. I . J ) I 

I k. > . (S.l02c) 

In the follo\>ring discussion we use the notation 

l -~ ( .. :, L 1<,:1 ~ N/2.. 

t! h'J
1
n,r1 s '!N 

l-;_ -: k + N/1.. 1 e f c · (S.l02d) 

- ;y· 
and I I< ) ~ J II<.') · 

To restrict the pairing to pairs of states, one of 

'\·7hich is qo:TQ_)osed of { II<.)} the other having com_ponents 

in f ( K I} _, the appropriate choice for the trial quasi-

particle transformation is 

U:r 

where 

u Jl< ~ UJK 

fA Jk ~ u J {<. 

Then X has the form 

u 0 0 "V - -0 u v 0 

0 r~ u~ 0 __ .,. 
0 -~:: r 0 .U 

'VJ,< ~ VJJ< 

fJI< ~ V1 ~< 

(5.103) 

(5 •. 105) 
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therefore separating_ into tHo subspaces: 

b t ~ ~(U1~e a~ t r;J< a 1< } 
J 

1<. 

( 5.106a) 

b- t ( U.;: a;<.+ - * t ) '::: Y;~< a K J 
k 

(5.106b) 

and \ 

b tj .::. ··.t: ( u J/<, a~ -t rjk a ·i<. ) ( 5.106c) 
I< 

.. ~ +-b j ~ ~ ( u J I< a t< + r;"' a k. ) • c s .. 1 o6d > 
I< 

rl"he density matrix (5.32) and the pairing tensor (5.33) 

are also partitioned. 

f ~ lJ;jl: (Y;f 
r ~ l f ~} ~ L~~u 

where 
fl.J = fLJ 
-f c.J :! frl 

T~. 1 .... [lJ 

Tc.J =-Lr.J 

(5.107) 

(5.108) 

(5.109) 

Since the tHo nucleon interaction conserves angular momentum 

projection ( m.: + fJ1 J :: m 1<. f 111.1 for Nc.JI<I) I the HF 

Hamiltonian and the pair po·tentia_l follmv the partitioning 

of f and L. • 

1-1 ::: [~ R1 
Lj -.~ 

1~ ~l (5.110)' 

. ··: .. 
-· , . . ' 

.·.I 

! 

~ ~ 

-t ~ 
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where (5.111) 

-
~lJ ~ ~ L'J • 

T'ne elements of the HF Hamiltonian (5.23,5.25) are 

Ht J t. . T '- J t ~ { < (J< IN- I J .R ) (J t < ( K 1 Ar( J ,i ~}! ~ J" 
/ . I< R , II J .1~ ( 5 .112 ) - - . . 

}{ lj ~ T (. J -r ~.· f< ck I ;t.T/J.Q) /J2 J<. + < L k I .AT/ J} ~ ??
1
< 1 

. I~R J1 J ~ .· J .R 

where \ve have used T-;:j -::.fll and <(frArli<i)A-= <<JIN"li<.R)
11

• The 

expression for the pair potential (5.27) simplifies. 

[), l'tl ~ ~ i: ~1 < 1n n 1 N I I< i ~ L k i + :i ~ < m YJ I~ It( j ~ t:;< .R 
kl . kl 

Since t is anti-symmetric and'. (I'V!nt..-.rli<.R~:;- <mi'1/NIIi<>
11

, 

the secorid sum. equals the first sun1. 

tJ ,y, Yl ~ ~ <hi f) /;V/1<. i >
11 

15 ~<i 
. l<..e 

(5.113) 

The non-vanishing .components of ~ are and _c1..:· • 
. LJ 

cllq ~ ~ < t I 'tv r l<.i > t k.l 
I<R . . 1J . (5.114) - -

JjLJ ':: 4 < ( J l ,if I k 1 )A t i<.R 
I<. .I 

The 1< matrix (5.42) has the form 

}{-). 0 0 ~ - (5.115) 0 ){-). ~ 0 -.,. ;v 

0 fj )..:.){ 0 

(~/ 0 0 A-H 

so that the HFB equations (5.41) decouple into t'·'o sets • 

. \ 
.. :, 

: · .. ···-·· ,· 
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[ M-). ~1(Yk1= £/<, [~: 1 Jjt J. -H r I< _ 

l ~-A - 1l ~~ 1 = [ - ] (5.116) 
/j Er;.. 111<. 

-t 
~ A-H . y,< ill< . 

Consequently the ne~·7 set of quasiparticle co-ordinates 

has the form of (5.103). Therefore, choosing the quasi-

particle transform~tion to be a linear combination of the 

set { 0.. ~ r and the set ·-· { a i< ~ . is a self-consistent 

representation 't<lhich 't-Jill propagate through at each iteration. 

Note that the argument so far does not re-1:uire time-

reversal symmetry, nor does it require the mass nu1:1ber A. 

to be even. He have derived simplified expressions for 

H0 ' and H2 ' ·t-thich are valid 'tvhenever Lt.) = t [ j := 4~. J :: {\· c: J ~ o 
(see equations 3.35 - 3.40). 

t·Je now restrict our attention to systems with time-

reversal degeneracy. This is achieved by relating tA to t( 

and o/ to 1( • The usual· .. convention is 

Instead 't·Je determine the phases by 

(5.117a) 

Since 
(5.117b) 

,_•', ·· .. ,.··. '•' 

. I 

! 
! 

·-

. ~:..' 
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and since ;[ is ant.i-linear, we find 

- b .f- 'T -I 4' ( t f '1/ ·.l-
d J tl -= ~ uJI< a f<. - v1,<. al<.) 

l< 

COffit'Jare to (S.l06c) •. The phases are 

1 It then follo\.vS t:hat 

Therefore 

I ' • • 

The g·r.()und state wave function is 

Since ;[{o) ~ {D) 

we have 

Jt~o)-:: rr.J'bJb"jJ'-'to) ':: lT hjbylo) 
J)~ j)o 

is invariant under time-reversal. 

(5.117c) 

(S.ll7d) 

(5.117e) 

(5.117g) 

(5.117h) 

(5.1171} 

?ncrefore time-reversal is a self-consistent syrfu~etry. 

TI1e quasiparticle transformations(S.l06) beco~e 
I 
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b+ -. ~ < uJI< a~ + r'.J I< ({ i< ) J k 

bj = t ( UJI<- a.:... Y; I< ()_ fJ<. ) .I< 
1<. 

and 

b] ~ ( ~ t ~ 
= ujk . a i< - Y;K Qk. ) 

1<. 

.bJ .. :: 4 ( ~ a,< ·!/t. t ) . uJk f- . YJI< a-K 
/<, 

The unitarity conditions ( s. 5) are 

u ut + v yt ·~ r·· 
u y+- o/ u.t ;: 0 

utu 4- y+ y. -::: I 
u.,.r "V.,.U :::. 0 

The density natrix (5.107) iB 

or 

with the time-reversal syrn.>netry 

Clearly / :. is self-adjoint. 

ft ~J 
The pairing tensor (5.108) i.s 

(5.118a) 

· (5.118b) 

(5.118c) 

(5.118d) 

(5.119a) 

(S.l19b) 

(5.,119c) 

(S.l19d) 

(5.120) 

(5.121) 

(5.122) 

or Z1(. =- z:: u:,_ ~J 
k (5.123) 

with the time-·reversal symmetry 

T.::::_Z~. 
( 5.,124) 

Also,·since t is antisymmetric (see 5.109) 

- AJ r - ... T. . (5.125) 

' 
- i 

. ': 

I 
- i 

.,· ,, 
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Combining the last tvTO re·lations, we find that the reduced 

pairing tensor t is Hermitian. 

(5.126} 

The unitarity condition (5.119d) also provides (5.126) • 

The constraints ·(5.85, 5.86) reduce to 

(5.127) 

(5.128} 

The BF Hamiltonian (5 • .112) is 

}{ L J ~ T C..J t- .& [ ( (. k I t.r lJ 1) . () t- (. L i<. I IV" I J .l ) 0 - ] ( 5. 12 9 ) 
k .t. .. II rj PI< /1 J .R /<. 

with the time-reversal symmetry 
- . #< 

}{ -:> ){ . '. (5.130} 

Since 'Jcl is Hermi tiah 

){ t o;r::){ • ( 5 • 131 ) 

The pair potential is given in (5.114). T'ne time-reversal 

symmetry is 
- .·. it 

~-=-~·. (5.132) 

Since A is anti-symmetric (see 5.111) 

(5.133} 

The last t\vo relations combine to show that the reduced 

pair potential is self-adjoint. 

(5.134) 

· .. ;•, 
. r 
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The HFB equations (5sll6) become 

[ }{.-A ·~ 1f1it<1= £1< [Y.t<1· 
~ ).-){ .l 'k't< 1:~t:. 

(5.135) 

The equations are reduced in dimension by a factor of 

two. Note that the form of this energy matrix is some-

what different- than that of the complete 'X matrix (5.42). 

The second set of equations in (5.116) are 

£-_k. [~] 

and complex conjugating 

and comparing to {5.135) we find 

u:: u ;#! 
.-- * y =- 'V 

so that our phase choice is self-consistent. l~lso 

so that the quasiparticles posse·ss time-reversal degeneracy. 

Since the rotation operator Ry (1T) is 

(S.l36a} 

i . ; 
- i 

. ! 

i 
i 
' 

. : 
" I 

• I 
! 
I 
! 

i 
', i 

! 

- i 
:I 

J 
- l_f 

, ,:_ ~I 
-jl,! 
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where K = complex conjugation 
. . ~ 

it follows that 

. Consider the rotation operator. Rz(Q >. 

The particle operators transform as 

. R c(G) r ~ t~ 1 R; I (6) = 
. Jm 

Rc(t3) f ~;: } R~' C6l 

-<.me e 

(S.l36b) 

(5.136c) 

(S.l37a) 

(5.137b) 

Since the states { {/<.)} have (m-!~) = even integer and the 

states [li<>} have (m~~) = odd integer, they transform u:"1der 

Rz!lT) as 

(5.137c) 

{ 

t J _, . . { f Rr.(1f) ·a~<-. R~ crrJ =+( a;. 
a/(. O.it. 

The quasiparticle operators (5.118) therefore transform as 

~- ( f f; l 
(5.137d) 

[ 

t J _, Ro(1rJ ±: R< (1T)"-+<" 

r f/ J· 

;:. 
k 

·.;• ,, 
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Consequently 

F\~l1T)bJ hJ Ri'(rr):: 

{ Re:<..-rr) b J Ri'(Tr J}f RT- err> b:i R. i' ( 1T J J 
The refcre.ience stnte wa'Je f~tion is ( 5.117g ). 

Since 

'He have 

::: b I -
J bJ 

( 5~137e) 

(5.137f) 

R?: ( 1f) I ~0) ~ T( FZ t;(1T) b J b J R i' (1T) l 0) ::: 1T b j b J I 0 ) 
j)o j)o 

so that [ :fo) · is invariant under R?::: ( 1T) • 

(5.138) 

Therefore rotation. by 1r about the z axis is a self-

consistent sy~~etry. 

l~xial symmetry is introduced by restricting the 

quasiparticle transform-"J.tion (5.118) to states I k) with the 

same value of m. The quasiparticle operators then 

transform· as • 

(S.l39a) 

Therefore 

f<.r_(e) b 
1 

bj Rr:-' (B) = (5 .. 139b) 

( R.e (6') b J Ri' <e J} ( RlceJ b I R~'(eJ] -;: b b- . 
J J 

' 
I 

' 
. i 

! 
. ! 

. ' 

.. : 
' 

'! 

.... ·.·, '.1 
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The ground sta.te transforms as 

R -e (6) t 1 "j =: IT F<. c (B) b J b J R i.' (e) I o > = V b J b j I 6 > 
' . J)tJ j)o 

so that J :fo'? is invariant under Rz(G) • 

(for a.ll e ) (5.139c) 

Therefore axial syrn:netry is a self-consistent syrrunetry. The 

components of R and J< have the structure 

(/ - r. l J -= }{ t J = oa ~.. .j = o J (. J - (5.140) 

. unless m c: . ':::. m J • 

The i< matrix therefore separates into blocks liJ.ce ( 5.135) 

for each m. 

Spherical syrmnetry is .introduced by restricting the 

quasiparticle transformation (5.118) to states II'\.') with 

the same value of ljm, with degeneracy in m for each lj 

(that is, U Nljmr and V Nljm-r are independent of m) •. 

Then f and r will not connect states \•lith differing 

lj. Only radial and isospin mixingarepermitted. 

The isospin symmetries are of special importance to 

us. The isospin quantum ntmber will now be explicitly 

denoted, with the notation 

where Mr,i'l.. 5.s a sub-matrix of M. 

co-ordinates are 

(5.141) 

The quasiparticle 

.· p_ 
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-Th~ unitarity conditions (5.119) are 

~ ( U c,; ~ il.,. t Vc t 7 V i'L 1' J =- ! c, "Ll. 
i 

2; .< Ur.,T Yct~T - rc.,T uc:i) :. 0 . 
7 

4 ( u;,, t{ c T,_ t 'lie.~. Vr; 71. ) ~ f 'T, /,_ 
t:. 

-~ ( u fT, Yz:rl. - rc; u CTz_ J -= 0 . 
t. 

1 . 

The reduced density matrix and pairing tensor are 

c;fY1 1· T,(J . 

Since J. and L are self-adjoint 

r 
T~f 'Lrr f Pf. -=frp ::: 

.,. 
-= fnr L ~n Lnr fpn : 

t 
fni'J -= fnn 'L ~~'~ -:: ti'JI') 

The density matrix is evaluated with (5.120) . 

The various components are 

/Pr = ( Y~p Yrr f f )*' 'V 11p 1/np 

fpn 
t . . 

rn~ 11: )*. -::::. ( 1/ Pf 1lfn t i'ln 

fnp -:: ( Y~n 'V?r .,.. r:'l rnr J l: " 

fnn ( r;ll r,n r r,,) ~ -:: t rnn 

(5.142) 

(5.143a) 

(S.l43b) 

(S.l43c) 

c s.143d) 

(5.144) 

'> i 

i 

(5.145) 

(5.146) 

(5.147) 

.·,_· •. 0-: ... 
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Similarly the pairing tensor is given by (5.123) 

(5.148) 

so that 
......-

c. r;, -u rf vlr U11r> * Lpr -:::. ~ t 
.. 

Lpn 
i- t ~ ··- - ( rPP Ufn f rn, u,n) (5.149) 

[nr c r.t Urr + 
. ,. 

. u,,J* -- rnl) pn 

rYJn ( r;, Upn 
t- Unn )-ft.. -- t 'Vnn 

The redt.Iced HF Hamiltonian and pair potential are · 

}{ ~ r }{ f'P . }{ f" l ~ -:l . I ~l'f .,() r· l . 
l ){ np ){ 11n ~~/' JJtJn J 

(5.150) 

Since ){ and ~ are self-adjoint 

){ t . :::: }(Pf ~~f = IJpf fP 
t 

~ ){ nr ~t t!Jnr )(pn ::!. pn (5.151) 

){ tnl1 = }( ntJ o6 t,ll. :::&. r/:;nn , 

The HF Hamiltonian {5.129) has matrix elements 

!1atrix elements of v are non-zero only if 7;+ 1i .::: r~t (, .. 
Therefore the diagonal-isospin elements of )-( are 

···.·,•,<, 
.'. :, ..... ·. 
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and the off-<;Uagonal -isospin elements are 

( }( 1'- 'T ) t: f -:. ~ { < ~..· T 1 1< - T { ;v-l J - T 1 i T l A ( f 7 _ -r ) .t J< 
· KR · . · (5.154). 

+ < C T1 tZ -T.I All J- TJ j 'T)A ( f-r-T) ;K } · 
The pair potential (5.114) has elements 

( cl::l T ) L.J·-= ~ < t.." ;,; J r"'- t;.rl kT3 ,J f.t>.'IJ ( t 7 ~ >t<t" C5.1ss> , r\. Kt · · } ., 
1)it 

'J!ne 1·r2 1 = 1 pair. potentin1 is ,6
17 

• enly protons 

(neutrons) may contribute to the proton (neutron) pair 

potential. 

Since 
< t" i I J T ( Ar 1 I< T, J i >li :: 

t < f r i r 1 r 21 ) 1. < {._. i 1 1 N 11~ 1 r >
11 

= 
T 

< t' i T -:. I I J'J (I< .R I :.t ) II 

the IT~{= 1 potential is 
~ . 

The. Tz = 0 pair potential is ~7 -~ • 

<ljT-7)if = 2; <t'-r, J -r fAFlk T', .i -7'-~ <t-r'~rJk.P <5
•
158 > 

. l<..t T I 

..... -:-

. I 
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It may be separated into T = 0 and T = 1 components. Consider 

the matrix element 

< cT} J~r tAT It<.. 7', J -1 ')A = 

t <{1" t-i/To)<-4_ 7'{-i'JTo)((;JrtAFIK.PT) · 
I : . , ·. . . . ... II 

?ne product of the Clebsch-Gbrdon coefficients is evaluated 

in the table beloH. 

T=-o T ::.r 
'T' =-I '/L. 'I "L 

1''-=- -T - 'I.,_ .. ,' 'h .. 

Therefore the T7. = 0 potential is 
.u 

(~-r--r)t:,·. ~ { ~ <.i ]r=-l/N"Il<]T:l_/1r (t-r--r+ L_77 )t<J 
i ~R . 

+ I ~<iJT=of.N""Ikl T=-~>11 < L;-y- [_,,) KR • 
l<R ·. · (5.159} 

Since r - ( t 
L- 77 - 1"-T 

(~i-i)<.'{ = i ~<<.'[T-=-l/_,v{J<iT=-((!i(L--r-;t-t;_i)k.R 
kQ (5.160} 

+ i ~<t' J-r~oiATlt<..i f=-o/11 ([1 _..,.- z:;_-rJt<.e · 
#(.() 

The T = 1 and T = 0 components of the Tz ~ 0 pair potential 

are 

( rfl~~;) ,_'i = - { ,_· i! < ( J T::.o It-Til< 1 f:. 6) It ( l 1-i- t ;,.) KR ( 5.162) 
I<. .I 

so that 
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I 
(5.163) 

are Hermitian 

and 

the T = 1 and T = 0 potentials a~c Hermitian. 

From 

( o6 ~~~) t 

. ( o6 ~~;)~ 

(5.159) we 

rJj -r-:.r 
-:: 

"(-1" 

:: 

1\ '· ':./ - . ""' r-'r 

note that 

f __ , . 

1:>-r -r 
.1-=>-0 

c/J 'l'-T 

I-:!. {I 
~- tfj -T'r 

which verifies that 

{ rl:lT'r:; · is anti-Hermitian. 

(5.164) 

(5.165) 

(5.166) 

(5.167) 

(5.168) 

If the quasiparticle 

transformation is restricted to real parameters, it follows 

that 

T'=- o) (A 1"- I KK -: 0 . (5.169) 

The unitarity conditions would cause the diagonal elements 

of the T = 0 pnir potential to vanish. Tnis is certainly 

• I 

.. 
; 

., 

~.···.· J.,. >.. _Ql:l 
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unsatisfactory, since the diagonal elements are usually 

considered to be the most important ones. In the BCS 

theory only the diagonal elements of ~ are included, 

in which case there will be no T = 0 pairing. (The phases 

may be altered so that T = 1 pairing vanishes instead of 

T = 0 pairing.·) We conclude that for generalized pairing 

to exist; t'h<:'! unitarity conditions alone require that tho 

quasiparticle i;ransfo~mation be complex. 

The same reasoning accounts for choosing 
- 1t -v=- 'V. 

rather than 

·r =--r. 
Had "'e selected the latter phase, unitarity condition (5.5d) 

would reduce to 

•fhe reduced pairing tensor (5.100) becomes 

so that is symmetric • 

Therefore 
,.., 

r f" ::: t 1'1 r . 
The Tz = 0 potentials would be (see 5.159) 

.:~, ·.' 
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,.... 
Since ( r T-1'" - L-r-T) K.R is antisym.'Uetric 

so that 

,. ::.0) 
( ~ r-r 1<1<. == 0 

even if the quasiparticle co-ordinates are complex. For 

the rea.sons givenabove, this phase choice i.s therefore 

unacceptuble for generalized pairing. 

The v](;We function is rotationally invariant if 

'l11en I f.,) will be an· eigenstate of J with J = o. 

Similarly th(-:! wave function is rotationally inva.x:iant in 

i~ospin spuce if 

Then I f.,) \-.rill be an eigenstate of !. \o.1ith T = o. If 

.T = 1 pairing is present the several T = 1 vectors (one 

from each pair) can couple to different resultants, so 

that f£-.,)·Hill probably be a.linear combination of states 

'"i th various T values. States of good T may be obtained by 

isospin projection. In general, therefore, I ~e.> is 

not rotationally invariant in isospin space.. For T = 0 

pairing, hm-.rever, the resultant isospin vector is ensured 
L·T, e 

to be T ::: o, so that I ~b':> is invariant under e - -

.:.·~ ,l' 

j 
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Generalized Pairing in N = Z EvLn - Even Nuclei 
I 

, I 

For N = z even - even nuclei the time-reversal and 

isospin symmetries may be used to .. simplify the form of the 

HFB equations. Guided by our experience v7ith the generalized 

gap equations (Chapter IV.) '\'ie choose the follo~Ting 

syrr..!netries and shall demonstrate that they may be self-

consistent. 

! ~ [fpp o J 
0 JPr (5.170a) 

p r . 
J rp J PP a.re · Rc(L;{. (5.170b) 

Let (5.171) 

The unitarity conditions (5.127, 5.128) require that 

fpp, r PP, zf~ , tr~ (5.172 > 

a) are sy~~etric 

·.:b) commute with one another 

and that 

(5.173) 

'I'he HF Hamiltonian (5.152 - 5.154) and the pair potential· 

(5.155 - 5.168) have the representation 

(5.174) 

. ,:: •.'. 
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where 

(5.175) 

and 

arc (5.176) 

a) real 

b) sy!r'-rnetric. 

~ pn is also sym:netric. The components of }{ and ~ are 

(){pp)<f= Tcjt I<~T{<L[> I< tl~rljf1J1- )11 -t (5.177.) 

<t:pJ k i(N"f Jp.J J ()II 1 <fpp) L<P 

(JJpp )lJ. ,;: £ < ( J To;,. I I ..vii<.} r_= ,.>, ( Zpr>~<R cs .. 17s) 

( o6;~· )"j ~ £-< '- Jr~,J ;v It<. .R r~ ~'>11 ( L ~ )kR 

The reduced HFB equations (5.,135) have the. form 

}( f'P -:\ 0 

0 ).( Pf'--). 
~PP.. ci:J f11 

o6p~ -~Pf . 
\-.'here 

ti:Jrc oO f" 
/jf~ -~PP 

A-).(PP 0 

0 A-){ PP. 

( u -r. 1'" ) 1<1 

. ( t{ 7. T"L ) I< 2 

('y_Tp)l< 
( 1{ tn ) I< :: E'rk 

( YrplK 
CY-rnJK 

(5.179) 

(5.180) 

<'~;p)l< 
(1{;,1)1< 
e(!';p)/<. 
(1[-rn)t< 

(5.181) 

(5.182) 

... 

._ 

. -

., . ~ • :'1-j, ) 
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(5.183) 

are a set of e'igenvectors with eigenvalues E1 , then 

1Anp 

Unn 

rnp 
Vnn 

(5.184u) 

are a set of eigenvectors with eigenvalues 

E-t..==E,.· (5.184b) 

T; ~J- n may be Been by Hri ting out thu components of th.c..: 

eigenvalue equation 1( X = XE , tvhcre 1( is giw.:m in 

(5.181), 1A and Y are given by (5.142), and E is 

E, 0 0 0 

0 E"L. 0 0 

0 0 -£, 0 

0 0 0 - £"L. 

T~e unitarity conditions (5.143c) may then be applied to 

show that the new f and '[ have the form (5.170)., 

. 'J.'~"ne symmetries (5.170) have been introduced to ensure 

that 

<I'>=O· (5.185a) 
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T"'nis constraint is satisfied if 

Tr JPn -::: Trfnp == 0 
(S.l85b) 

Tr .fpp -= Tr _!Jnn 
Tne i~plications of (5.185a) and the derivation of (5.185b) 

are given in IV.So 
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7. Canonical Represcntat5.on 

For a system with time-reversal syrmnetry the uni tari ty 

conditions are (5.122, 5.126-5.128). 

.tt ~I [flt J_ 

tt-:. t T_"Z-::: _f<.I-Jl) 
Since .F and ! are Hermitian and com!nute they may be 

diagonalized by the same unitary transformation • 

·f~ Uf'U 
1:.~ utzu 

the density matrix and pairing 

have the form 

fO{~ 0 
0 

0 
old p ~ f ~{/> 0 0 

0 

0 tdd. 0 
-eel.~ D 

t ~ 

0 0 [.IJfo 
'-'C~"fo 0 

(5.186) 

are 

(5.187) 

tensor in the rotated basis 

(5.188) . . 

(5.189) 

. . 
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The time-reversal sy~~etries are 

(S.l90a) 

[=."' = _r ... -
"" "' l.-<0'\ ol 

(5.190b) 

From the last unitarity condition we have 

(5.191) 

f is real and diagonal. [ is real and has non-vanishing 

elements only between time-reversed states. Thls 

representat1.on of f and [ is termed the canonical 

representation, and the single particle states, I ci) , I (3'> ·. · 

are termed the canonical single particle basis. 

Tl::ie canonical i"epresentu.tion \·lu.S first determined 

by Bloch and 'I'hey did not: assume time-reversal 

symmetry, in 't>lhich case [a~ may be co~olcx. Since they 

¥;ork with [ (which is antisynu'1letric and does not 

transform in the usual "'t7ay) rather than L hrhich is 

Hermitian and transforms in the usual way) their proof 

is considerably more co~~licated than ours. 

That f and T. transform in the same manner also 

~ollows from their definitions. 

+ 

o == < a+(. aJ > J J(. 

If ~ 1 transforms as 

:: 

k 

'·.,.· ik .... ·. 



, . . 

' . 
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then a. 
l. 

transforms as 

act ~ .~ 
~ ~ a I< Dk 

+ I< 
and a ia j transforms as 

(5.192a) 

so that £~ transforms as 

a~· = i D ~ a k 
K 

' anc1 aiaj transforms as 

· <' « a Dp~ ~ a~ a13 = '1 o~~ a,.< .P 
k.9 

(5.192b) 

Similarly from the definitions of H and c/j (5.112, 

5.114), it follm¥s that the liF Hamil toni an and the pair 

potential transform in the same manner as J and 1. • 

(5.192c) 

(5.192d) 

The generalized density matrix R (5 • .56) separates 

into blocks. 

fete~. 0 0 [O(o; 

0 f -C.(){r;. 0 

0 - :: ,_ f"" 0 

lex~ 0 o 1- («o< 

(5.193) 

The quasiparticle co-ordinates are eigenvectors of R with 

eigenvalues of 0 (5.88). 



"tolhere 
UOI = Uatc( 
Nu. :- ~oc 
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lA ~ ::. Ue<.cx 
;tro. = -YO( 0( 

The co-ordinate::; may be chosen real \vith the phase 

u~ -: uri = F<~o..l 

/v~ -=--~-=·Re.a...l 

'.r'ne quas:ipo,rticle transformations are 

(5.194) 

(5.195) 

(5.196) 

(5.197) 

~1is is simply the special quasiparticle transformation. 

'i'le may co:1clude that the g·round state \·Jave function { f, [ ) 
may ahvays be given by the special transformation in the 

canonical basis. 1 !o) may always be given in the form 

1 ~ o) -= rr < uOI + Net a tC)L a tG: ) 'o > . (5.198) 

Ol.)o 

The density matrix and pairing tensor are 

~'le have shmm that the wave function is invariant 

under an arbitrary unitary transformation of quasi-

particle co-ordinates. (See discu3sion following 3.95 

and 5.90.) Therefore the most general set of quasi-

particle co-ordinates is given by the product of three 

trc:msfom7!.tions: 

.. ·J.· ... Ji 
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B 'en = U -z. B 5 f U I 

·U1 : ·.Rotation in particle space 
I . 

(5.200) 

(5.201) 

Bsp: Special Bogoliubov quasiparticle transformation 

I 1 - I I at - A r a -b .CI. ~ L-{ 0C . C( . fV (X 0' (5.202) 

_u2 : .· Rotation. in quasiparticle space 

htv ~ 2; R~ b: 
0( • ' (5.203) 

If u
2 

is neglected the H.F!-3 equations Hith time-

reversal sym;netry reduce to the HB-BCS equations. We 

restrict ourselves to real co-ordinates. ·. 'r'nen 

and 

-
· D ~ = 0 8 

. It- . K 

f3 
UPJ<. = u.(E; D k 

'rhe components of· (5.135) arc 

. ~ ~ 

~· ( ><:.,<.~ l-1/d. -IJ k,f<,_ ;rF,s ) D 1<~ ::. £ t5 U 1- D k, 

{ ( }{ ~,~<, !Vfo f o6~.~<. 4/!>) D :. = - E'" llfj; D :, 

'Y7here ){ 1 
:: }( _ A , 

Hultiply (5.206a) by 1\}oe o:, and sum on K1 • 

}(~!5 U.f)>JJ"~ - o6et~ Nrx~ = £~ UfoArot J'(fo 

:Nul tiply ( 5. 2 06b) by U ct D~ and surn on K • 
"' 1 

)( ~~ uO( Af"Jb + c/J«~ u.,_ u~ -=-£ts q(?. ~ J'C(fo 

Add the last t~-10 equations. 

l 
\ :; . · · :· •. L;>i 

(5.204) 

(5.205) 

(5.206b) 

(5.207) 
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We have shown that these equations correspond to the 
·I 

elimination of R0~ + H20 • The diagonal elements (~ = ~ ) 
give the BCS equations, while the off-diagonal elements 

( ~ f ~ ) may be rearranged to give the HB equations. 

(See equation 3.82 ff~) The HB equations may be obtained 

rnore directly 'Py multiplying (5.205b) by ~ p:
1 

. suin:ning . on Kl• 

and 

Exchange the indices c.< and f , recalling that )( and c.6 
are sym.rnetric. 

By subtracting, , "tole arrive at. the HB equations. 

(5.209) 

The relationship bctHeen the HB,B and HB:-BCS formalisms 

is noH transparent. Both provide the ground state wave-
. . . 

function which has the simple BCS form. Both minimize the 

• • energy of the ground state and eliminate H02 + a20 • 

However, H'2~BCS does not-provide the third transformation, 

• u2 , which diagonalizes Hll • 

If and only if .~ is diagonal in the canonical 

. basis then u2 will be unity and the HB equations reduce to 

the pair-modified HF equations. For a non-trivial force 

there is no reason to eh.-p~ct that /}j will be diagonal. 

)·7e ·.have .' found · .. no.· cases of physical interest for . 

Hhich these simplifications are justified. 

. .. ·.·. . '.: . 

...... 

~ . 
'· .. 

' . 

I 

. I 
·,I 

i 
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Our generalized·- isospin-pairing wave function 

has the form (5.170 ). The basis which diagonalizesvP is 

doubly degenerate in isospin. 

Hhere 

Since P is real and nymrnetric 
V PP 

is rea 1 and orthogona 1 . 

The density matr.ix is 

(S.210a) 

{5.210b) 

(5.210c) 

Any rotation in isospin co-:-ordinates leaves f(D() invariant. 

Therefore the basis '{ ld)} must reduce .?:, to tvlo-

dimensional matrices in isospin space. (:1e assurne fir (cta)f-JppCf) 
for oC "1- j3 . ) 

(S.2llb) 

j? and r have therefore been reduced to the form 

encountered in the isospin general:i.zation of the special 

transformations (4.118). The canonical representation is 

obtained by diagonalizing T (ol) • (See rv. 6.) I and is· 

therefore a linear: combination of I~ f) and 1 otfl) • 
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~ 

I q c) = C ~ l·o< p) + C n f c( n ) (5.212) 

tv here J ct ) = ~ V ~ II< ) 
k 

?nis diagonalization has not been performed, since the 

interpretation of. the t·Ja ve function is enhanced t...ri th the 

form (5.210-5.211). Nevertholess, knowing that the 

canonical representation {5.212) ·does exist, the argument 

for our choice .of phases may be strengthened. Since T ":\·- Z </( 

/IXc) = C~ ~!Cip'/t 

~~) = ~ 1)~ l k / . 
/( 

-
(5.213) 

Because {lex'<:) J form a complete orthonormal set, fj may 

be expressed as 

(o6r,-r'L ) t< .e -= tJ < I< l, ,} T1. I J\.T I o< '- «c. ~ t d< 2'-
«c.'>o 

{5.214) 

HhGre t - is real.· Substitute .{5.,212, 5.213) and couple 
tic. o( c. 

the isospin co-ordi~ates to T. The pn pair potential 

becomes 

If the quasiparticle tranformation is restricted to real 

co-ordinates, Cot and C ct are real, so that all elements 
P n 

of the T = 0 p21.ir potential vanish. Similarly, if the 

· co-ordina.tes are complex, but the phase choice U = U y:- V 
) 

is retcd.ne9, then T ~ -1: · (see 5,103), and 

. : 
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Consequently 

( ot:Jpn )J<R = c/~ 6< K "£ T :;.If Arl « et T ~ 1)11 C~ ( ~ [ "'c ~c. 
and all elements of the 'I' = 0 potential vanish. Irnplicit 

in these proofr~ is the fact that 1)~ is independent of 

isospin. 

Iff and t are given by {5.211) then the 

eigenvectors of Rare given by (4.117) 

b.,.C'il UcnJ D - ltfO(/{ - ATO( I "2. atp 
b+cn. Uau * e: D - Aio</7- ~II af«l1 
be-t I ;\Jc( II M:l,_ U of/1 0 a~p 

b~l. ;..;; r'" -N;c" 0 u o(l/ a;. n 

plus the time-reversed set., 

(5.216) 

L<oot; Nc(l/ ~, Rea..l (5.217) 

The density ma.trix and pairing tensor are (see 4.112 ... 

4.116, 5.147) 

frr < ~ J :: AFot.,_ = /\.[; ~~ -+1 ~ ~·1..11. 

rp r ( r~.) == u 0( " N"' II 

L f" ( rA) :: UC( 11 N~ ,", 

't't.(o(} is diagonal. 

r"t.c«)-= (Lttx/Voc) 1 1 

where u~ = Uoctt • 

.I 
I 

(5.218) 

(5.219) 

(5.220) 

(5.221) 

(5.222) 
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U rt. is given by 

(5.223a) 

or by 

I u"' I =- / I - fp f' (d. ) I 
(5.223b) 

He choose U C( ) D • 

Then Nvll and ~tl.. are determined by (5.219, 5.220). 

The third transformation, ul.. 1 iS determined as 

follo~Js o First express the general tranformation in 

terms of the canonical bas.is. 

b.,.v :: ~ ( 11}/C( at f 'VJ/c{ a;:) 
D( 

(5.225) 

Inverting (5.201) and substituting in~o (5.118) we .find 

Comparing the last two equations \ve obtain 

(5.226) 

Combining (5.202, 5.203), \ve have a third expression for 

b +V in terms of the canonical basis. 

t <I .,. J) hJI =c., ( R ~ u"' a« -RO(~a.~ J 
c( 

Comparing t.~i th ( s. 225), the matrix R may be evaluated. 

(5.227) 

:,~} i 
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For generalized inospin pairing R hns a simple 

structure.· By comparing (5;.216) and (5.
1

183, 5.184) it may 

be seen that the quasiparticles are divided into bvo 

qrouns 
-· A: 

according to 

btv, z: ' J/ l ]:;/()!, ::: RoC I 
tit 

(5.228) 

b;L ~ R )./l t 
~ 00:1. b C)( 1 

cq_ 

(5.229) 

f'urthcrra-Jre the two sets transform by the sa.me rotation, 

so that R has the f.orm 

R~ t~ 0 1 1< (5.230) 

Hhere 
R~ JZVI VL. (5.231) - -;:. R cx-z. ... 0(1 

Comparing (5.183) and (5.216) '1?, may be evaluated. 

( 5. 232) 

Since R is unitary and Upf and Urx are real 

is real and orthogonal . (5.233) 

To recapitulate, for generalized isospin pairing the. 

general transformation may be expressed as the product of 

three tr.:msforma tions. 

" 1 
I 
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1. Rotation in particle space 

1" v t g. otp 0 0 0 ~ lt.p 
t 0 1) 0 0 + g ttn a l<n :: 

(5.234) g d. p 0 0 p 0 fd. k f 
~d.n 0 0 0 1J ~ K" 

't·lhGrc v is real and orthogonal 

2. A "generalized'' special quasiparticle transformation 

1 

~t~, u"- 0 - -yj, ... y,'l. t g ~p 
~~~ ::: 0 u, .. v;: 11,1 Qt«rl 

h-, 11,, -Y,L. u,, 0 q ~r -~ 
-l? ft> 1. v-;: .. v,, 0 Uu ~ (t n 

.where 1.A ,, J 11, 11 11t are diagonal 

( Uu)pct. ~ ·u"''' Ja~ 
( v;, Jp3a = NofiJ J ri~ 

( Y,1- }p~ ::: /Vex 11. J "fo 

at'iJ U Oll' J _.!If~,, ~ Rea I 
3. A rotation in quasiparticle space 

-t 
R b~, b Jll 0 0 0 

~t 

0 1<. 0 0 ~ t/3'2. b J) '2. ::. 

~YI 0 0 'R 0 k ~I 
{?pl. 0 0 0 1<. b~2 

where 1< is real and orthogonal. 

The general transformation is therefor.~ determined by 

(5.235) 

(5.236) 

(5.237) 

"'" 

i' 
·, '· 
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8. HFB in the 2s - ld Shell 

The HFB equations '...rith generalized isospin pairing 

have been solved for the N = Z even-even nuclei in the 

2s - ld shell. The nucleon - nucleon interactions used 

are the Rosenfeld force ( sd.), the Yale-Shakin t rna tri;.::: 

{ s-p-sd )J and the Nestor-Davies-Krieger-3aranger (NDK3) 

force ( s-p-sd and s-p-sd-pf ). These interactions are 

-described in II.6. T'ne \-JaVe - functions ( f ) t ) 
obtained from the generalized gap eque~tions (4.123) have 

been used as H.Fa trial \'lave-functions • The non-trivial 

solutions to the HFB equations are listed in Table 5.1. 

The energy for elernentaJ::y excitations, E1 + E2 , is the 

sum of .the t1vo smalle9t dist:inct quasiparticle energies • 

. In the limit of small pairing, this energy equals the 

HF gap. The multipole moments QLM and the deformation 

parameter {3 are given by (2.74) and (2~76). The 

solutions to the HF equations (Table 2.15) are also 

trivial solt1ti6ns to tho HFB equations. 

A consistent feature of the generalized pairing 

solutions is the mutual exclusion of T = 0 and T = 1 

pairing. All HFB wave-functions encountered here display 

only T = 0 pairing correlations~ 

Most remarkable is the uniformity of the quasi-

particle gap. Although the HF bases employed as trial 

wave-ft.mctions have HF gaps ranging from 0.1 to 5. 3 Nev, 
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the corresponding two quasiparticle excitation energies 

range from 4. 7 to 6. 0 J.1ev. There are very few exceptions. 

All HF solutions with small excitation energies have been 

stabilized by T = 0 pairing. 

:t:J::rually remarkable is the magnitude of the pairing 

energy. Physically relevant solutions display pairing 

energies of 5 to 17 I·~v. With such large contributions 

to the binding energy,,the HF relative ordering of 

intrinsic states is often drastically altered. }bst 

notable are JV';g24 and s32 • The results for the Yale force 

are depicted below. 5 (Energies are in f.!ev.) 

----- e>b(l).f-e 

----...,-- o b la.fe 

1.1 ------ oblo..Te 
________ o-s Y"" rn e r r,.c 

11·6 rro/a..Te 
o o..~y,., m e1r,·c. 

HF HFB 

'f.o ----- cb la.T~ 

$.2, ____ _ 
profo....Te 

o ----- o..sym,.,eTr,'(;. 

-2.·0 ----- o/,la..Te 

HfB 

. -~ '' 
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Very often BCS wave - functions based on different 

HF intrinsic- states converge to the same HFB limit. 

The HFB equations therefore alleviate a major difficulty 

of the HF theory: having too many intrinsic states from 

which to choose ~h~·physically.relevant one. Also 

discrepancies bet\·.reen the different forces in HF theory 

concerning the relative ordering of prolate and oblate 

states are eliminated in HFB. 

The NDI<B calculations were performed \'lith and without 

the pf shell to test the effects of core polarization. 

Inclusion of the,pf shell generally increases the 

deforffiQ. tion f5 by 40 - 50 %9,an~1 results in a substantial 
'1 . ' 

_increase in pairing energy (Table 5.22) and in the quasi-

particle gap (~4ble 5.24). 

Although the inertial parameter h 1./ 1. J appears to 

be much increased by T:::: 0 pairing (see rv.7), the 

rnultipole moments are not significantly altered. 

Most encouraging is our finding that physically 

relevant results are· reprodttced by all forces used. 

Having obt.ained the exact solutions to the HFB 

equations He may now evaluate the justifiability of 

various approximations • 

. The BCS approximation is to neglect off-diagonal 

elements of }( and ~ • Equivalently, it is asslli~ed 

that the HF b;.1sis is very similar to the HFB canonical 

basis and that the third transforrnation, U2, is near 
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unity. If these ass~~tions are valid then HF-BCS and 

HFB result in the same ground state wave function and 

quasiparticle excitations. Our calculations show that 

these approximations are not justified in the 2s - ld shell. 

~·le have found no case of physical interest for ov;hich 

u2 is near unity. The canonical basis is sometimes' 

similar to the HF basis, but often they bear no 

resemblance. Even in the canonical basis the pair potential 

usually hu.s large off-diagonal elements. 

The HFB formalism consistently results in stronger 

pairing correlations_than does HF -BCS. T'nis is reflected 

in the incre<lse of the pairing energy {often by a factor 

of 2 or 3), and in the dispersion of the occupation 

probabilities f\[ ~ • {See Table 5.21.) '!'hat this 

should occur appears reasonable. The HF basis is chosen 

only to maximize ~F' with no regard for EpAIR• The 

HFB canonical basis is chosen to maximize the sum 

EHF + EPAIR • The excitation energy E1 + E2 usually 

changes very little bettveen HF -BCS and HFB: although 

in a few significnat cases \vhere BCS gives a small gap, 

HFB considerably increases the gap. (See Table 5.23.} 

The HB - BCS formalism will give the same ground 

state t-mve function as HFB. However, si~ce u2 is not 

near unity, the quasiparticle \-laVe functions and energies 

would be gravely in error (unless, of course; the quasi-

particle energy matrix resulting from HB-.3CS is 

diagonalized). 

,!. 
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An approximation t.-Jhich has enjoyed some popular! ty 

is to neglec-t the pair potential in the HB equations. 

'l"his is justified if off -.diagonal elements of -~ in 
I 

the canonical basis arc negligible. The HB equations 

then reduce to the HF equa.tio::1s, \o7here the HF potential 

accounts for the dispersion of the occupation proL~bility. 

One then iterates beti.veen the HF and the BCS equations 

until self-consistency is achieved in both HF and pair 

degrees of freedom. lt has been thoughtt~at this proc0dure 

\·TOuld be an improvement upon the BCS calculation \Jith the 

original HF basis. vle have made a thorough study of this 

approximation, using all HF solutions reported in Ta.ble 

2.15 as st;·_'trting points. T"ne conclusion is that approxi-

mate HB-B·~S is most remarkable for its consistency 

it is always a worse appro::-,imation to HFB than the simpler 

method (HF-BCS) upon which it is intended to improve. 

1-Dre precisely-- it ha$ never been advantageous to iterate 

between the HF and the BCS equations. TI1e specific 

failures of the method are as foll0\·7S: 

1. lt uoually_results in a smTll decrease in pairing 

correlations, (compared to BCS), whereas HFB almost ah.;ays 

considerably increases pairing correlations. 

2. It sometimes decreases the total binding energy from 

EBcs 1 whereas HFB always increases binding energy. This 

should not be surprising, since the approximate HB 

equa'c.ions c;::.n not be derived from a variat:ional principle • 

. l.· 
. \ i. 



276 

3. The· single particle basis obtained is alv.>ays very 

similar to the original HF basis. HFB often produces 

large changes in the single particle (canonical) basis. 

Furthermore, the changes induced by iterating beh.;een 

HF and BCS are usually in.the wrong direction -- aHay from 

rathE:~:c than toHard ·the HFB canonical basis. 

Some possible rebuttals are: 

1. In some cases ~ ~~y be diagonal in the canonical 

basis, so thv.t approximate HB-BCS "t-rill be reliable., 

This is true. In fact, for this case HF-BCS, approximate 

HB-BCS, and HF.a will al1 give very similar results. 

Nevertheless, approxima1:e H3-BCS will still differ from 

Ht"B more than.does HF-BCS •. 

2. Because this approximation gives \VO.Ve functions 

drastically different from HFB does not render its results 

meaningless. 'l'he wave· functions might simply correspond 

to different "wells," i.e. different HFB solutions. 

This position is not defensible since the pair potential 

in the HF or approximate - HB basis is generally not 

diagonal. If the wave function approximated a HFB solution, 

cfJ would be diagonal. The example of prolate i'\r
36 is 

presented in Table 5.20. The BCS pair potential in the 

HF basis is presen~ed. (The approximate - HB result is 

nearly identical.) Note that in the JL,rr 

• 

::. 'h. + 
J 

' ' ,, 
\ 

' ~·. j ' 
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We hope these comments ~·Till be heeded, so that, 

future- students 'tvill not be misled into imagining that 

something is to be gained by iterating beb1een the HF and 

the BCS equa.tions. 1'-~st likely only disadvantage -vrill 

result - and- most telling perhaps- one can never knoH 

whether the approximation is justifiable unless one cal-

culates off-diagonal elements of the pair potential - but 

then one might as \•Tell do HP3 and obtain the exact result. 

~ve may no;., proceed to discuss the Hi".J solutions 

for the various nuclei. For e...'~perimental details 

and angular.momentum projection calculations concerning 

these nuclei the reader is referred to I.7. 

. . . •-· ~ 
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The state H'i th rriaximurn binding j_s axially 

symrnetric and prolate. The solution is a trivial one 

(no pairing) and corresponds to the·HF solution given 

in Table 2.4. ~1e properties of this state do not 

depend upon the choice of force. tingular momentum 

projection on this intrinsic state adequately explains 

the lov.1-lying Ne20 energy spectru.'tl • 

.~:"\lthough the prolate H~~ state obtained "~lith the 

Yale force has a gap large enough. to prevent pairing, 

the :spherical HF state does admit T = 0 pairing. 'rhe 

T = 0 pair-force then deforms the underlying HF field, 

so tha·t the final density distribution is prolateo The 

binding energy of this paired prolate state is slightly 

greater than that of the trivial prolate state. T'tleir 

canonical single particle ba.ses are very similar. 

~ere are several other higher-lying trivial (Table 

2.15) and non-trivial (Table 5.1) solutions of assorted 

shapes, but these are not thought to have any physical 

significance. 

HF theory predicts only one stable solution: the 

asy~~etric one. This state fails to agree with experiment. 

a) The predicted spacing bet\veen the K =: 0 and K = 2. bands 

is 1.18 l':ev, \•Thereas the experimental value is 2.86 l·lev. 

-. 
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b) t'\ngular momentUJ-n projection fails to reproduce the 

approximate I (I + 1) spectra for the I< = 0 and K = 2 

bands. 

c) Experimental data on stripping spectroscopic factors 

and the ~ .:.branching ratio of 1·!g2 5 can not be 

explained in terms of the asymmetric state. 

It is clear that the HF prediction must be rejected. 

The other HE' intrinsic states have the follm-ling 

defects. 

a) 'l'he binding energy is several l·iev above the asym.metric. 

state. 

b) The inertial parameter 'is too small. 

c) The gap for elementary excitations is very small 

(0.5 f.!ev for Yale prolate) so that these higher lyins_f 
. - . . 

states are not stable. against particle-hole admixtures. 

Introducing pairing correlations should eliminate these 

def:f.ciencies. 

The HFB equations have three almost deg·enerate 

solutions with the Yale-Shakin t matrix elements. 

a) The trivial (h = 0) asymmetric state with 

(H) = --133.144 r'lev. 

b) lin axially syllllletric prolate T = 0 paired state with 

( H') = -132.527 Hev, E.PAIR = -7.802 Mev. 

c) An axially symm.etric oblate T = 0 paired state 'Hith 

(H)= -132.049 Hev ~ El-'lUR :: -17.205 I·1ev. 

' . . . . . · ... 
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The corresponding HF st~tes are separated in energy 

by 8. 3 N(~v. Also, introducing pairing into each of 

the t'l.vO distinct· oblate HF states leads to the same 

HFB solution. ~ne energy for elementary excitations 

is increased from O. 46 Hev to 4. 81 l·~v (prolate) and 

0.10, 0.92 !-rev to 6.05 r~ev (oblate). 

Since the measured quadrupole moment of the first 

2+ state is negative, the intrinsic state must be prolate. 

~1thermore, the stripping spectroscopic data favors a 

prolate intrinsic stateo 

The axially symmetric prolate T = 0 paired state is 

therefore chosen as the physically relevant intrinsic 

state. 
. + 

The predicted energy of the lm-.Test K = 2 two 

quasiparticle state, 4. 81 r1(~v, is in reasonable agreement 

\•lith the experimental value of 4.23 Hev, since residual 

quasiparticle interactions may be e:x"Pected to lm·1er the 

energy of this state. 

T'ne NDKB force yields prolate and oblate paired_ states 

which are almost identical to the Yale solutions. Addition 

of the pf shell increases the pairing energy and quasi-

particle gap somewhat, but the structure of the prolate 

state is essentially unchanged. The HF energy is' increased 

by ,._ 5 }"Jev; and the deformation f3 is increased by 

,..., 50~~, as is exp_ected from HF calculations. Again the 

oblate and. prolate states are nearly degenerate.· 

T'ne Rosenfeld force also Xields nearly degenerate 

asy~metric, paired prolate, and paired oblate states. 
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All three distinct oblate HF states lead to the same 

HFB limit. The structure of the prolate state is very 

similar to that obtained with the other forces. 

Since the T = 0 paired axially symmetric prolate 

state has been stabilized and lmvered in energy, and has 
I 

a structure Hhich is invaricmt under chr:-~nge of force$, 

\ve suggest. that '.(1 = 0 pairing correlations restore axial 

sym::netcy 'to Ng24 •. 

The t·;'i:lve function and pair :!_Jotential for the prolate. 

'state are presented in rl'able 5.2 - 5.6, 5.11 - 5.15. 

Neither ·~ nor o6 may be appro:d.mated by diagonal 

matrices. nevertheless, the canonical basis is very 

similar to the HF basis ('Tables 2.5- 2.9). 

HF theory predicts orthogonal prola-t;.e and oblate 

states \oli th s1milar binding energy. .~:'\ngular mo:rnentum 

projection from thes.e bvo states fails to reproduce the 

energy spectrum. Experimentally there is only one low-

lying K = 0 band. Since the matrix element of the 

Hamil ton ian connecting these tvTO states ( or rather, the 

J projected states) has been sho~m to be small, the t¥lo 

HF bands could not be separated by mixing~ 

The rotational spectruro corresponding to the ground, 

K == 0 band deviates .considerably from the :C (:C + 1) 

spectrum characteristic of a.xially sylnrile~:ric shapes. 
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Hmvever, the I /. 0 members of the band do satisfy the 

I(I+l) rule. Only the ground state I = o+ seems to 

be depressed from its predicted position. 'lnis depression 

may be understood as a result of mixing vrith a coexisting 

spherical state at 4. 98 l:Iev. 

?De coexistence picture assumes the existence of a 

spherical and one deformed lmv-lying intrinsic state • 

HF predicts b'lo lm·T-lying deforr.1ed states and a spherical 

state some 15 Hev higher. 

rl'he energy of the spherical state is not lm..;ered 

very much by = l pairing (Table 3.8). ~lso 

the Rosenfeld and Yale forces fail to give any lm-1-lying 

non-trivial solutions to the HFB equations. This is 

because the first oblate and prolate I·I?' states posscst: 

large single particle gaps. 

With the NDKB force 1 however 1 a find q T = 0 paired 

axially symmetric prolate state almost degenerate t'lith 

the prolate and oblate HF states. Horeo,ver this paired 

state is not orthogonal to either of the HF states. For 

all forces the oblate state has../)_ 1T = 5/2 +1 l/2+ 1 3/2+ 

occupied orbitals; and the trivial prolate state has 

..Jl.Tr = '1/2 +I :3/2+, 1/2 +occupied orbitals, tvith 

5/2+ being the first unoccupied orbital. In the paired 

prolate state the 5/2+ orbital, becomes partially occupied.· 

Consequently, the overlap of this state with the oblate 

state becomes ;slgnificnn't-•. 

..... 

I 
.r 



283 

t·J'ith realist,ic forc~s the prolate HF state has a 

small energy gap, so thnt the only physically relevant 

states ar~ the trivial oblate and the paired prolate 

states. Hov1ever 1 experiments indicate that the intrinsic 

state is oblate, so that the prolate paired state may also 

be disregarded·. lle have already noted that angular 

momementum projection on the oblate state fails to 

predict the c:·rperimenta.1 energy spectrurn .. 

vle must conclude that a satisfactory self-consistent 

field description of Si 28 haB not yet been achie-..red. 

The experimental sp.ectrum is not characteristic of 

a rotator• Hm·Tever, if the ground o+ state· is lm·;ered 

to its observed position by interacting tvi th the first. 

excited o+ state at 3o 78 .Hev, then the unperturbed ground 

state band exhibits an I(I + 1) dependence. 

HF theory predicts an asymmetric shape for s 32 ., It 

has recently been demonstrated that 2p-2hadmixtures 

to this state result in a spherical ground state. 6 

The asymmetric HF state is therefore not reliable.. There 

is a considerable overlap between 2p-2h and pairing.admix-

tures. 

HF also predicts low-lying oblate and prolate states 

\-lith srr.all energy gaps and large moments of inertia;. The 

relative ordering of tbcse t'tvo states is force dependent, 
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and they are separated by 4 to 7 Hev. Since these HF 

states are unstable against particle-hole admixtures , 

and lie several Hev above the asymmetric state, they are 

not suitable intrinsic ground states. 

The HF3 equations have three close-lying solutions: 

trivial asymmetric and T = 0 paired axially sy:n.,uetric 

prolate and oblate. For all forces the oblate state 

lies lo'ltTer than the prolate state. For the Rosenfeld 

and NDKB forces the tv;o states are nearly degenerate. 

For the Yale force the oblate state is tremendously 

lmvered in energy by T = 0 pairinsr. .cl.l though the 

trivial oblate state lies 9 f·1ev above the 

asym,lletric state, the paired oblate stat.e 1s 2 Hev belcH 

thG asyr:un~'!tric state. '.Phe aFs binding enorgien for the 

Yale force are : 

a) •r = 0 paired axially symmetric oblate, <H) :::: -229., 658 1·1ev, 

~1\.IR = -13.2 33 1~'..ev. 

b) trivial asymmetric, <HI =-227. 737 1-bv. 

c) T = 0 paired axially symmetric prolate,(H) =-224o531 .f.lev, 

EPhiR = -9. 2 08 11ev. 

nlthough the asy~netric solution can be disregarded, no 

choice can be made at present between the prolate and oblate 

T = 0 paired states. A determination of the quadrupole 

+ 32 moment of the 2.23 J:rev 2 state of s can lea<l to a 

choice betvmen these b·7o solutions. 

. 
c 
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The wave functions and pair potentials for the 

paired states are presented in Tables 5.7-8, 5.15-17. 

For the pc.ired oblate state all forces result in -1<. 

and /:l \ITi th lr.1rge off-diag·ona.J. elementS: . • The 

c;:anonical h1.sis is veri cUf:Eerent from the HF h1.sis 

(Table 2.11) for the Yale and NDKB forces, but for the 

Rosenfeld force the tHo bases are very similar. .i\ddi tion 

of the pf shell does not alter or "R • 

Yale and ND~~.i3 forces provide similar \<.'ave functions, 

but these differ from t~1e Rosenfeld Have functions. 

For the paired prolate s·ta te as ~dell, all forces 

yield large off-diagonal elements in R and ~ • Also 

the canonical basis is very different fro:n thcB.? basiB. 

Including the pf shell does not chang~ the ground state 

\vave func·tion I ~ o) 1 but the quasiparticle transformation 

1Z is altered. ':Phe variou:;;; forces qive states 'tvith 

similar properties, but the wave function. is sorneT,,hat 

force dependent. 

The spherical intrinsic state usually contains 

J Tzl = 1 pairing correlations (Table 3. 9) and is 3~2 to 

8~ Nev above the ground state, depending upon the choice 

of force. 

Since the T = 0 paired axially symmetric states are 

stabilized and lo\i1ered in energy, and have properties 

Hhich are relatively independent of the choice of force, 

\Je suggest that •r = 0 pairing correlations restore a':ial 

sy;n.11etry to s32 • 
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Ti1e lo~1-lying· spectrum is characteristic of a .. 
vibratoro :iim1ever, H.F gives a Hell dcforraed oblat.e 

ground st<.:te '.'lith a m:tall inertial par<:trJeter. 

Of COU:r.~:;e I prcdic-i:S a l0\·7-lyin<;J rota tion<J.l Sp8CtrU:ll 

The HF equations also have a prol;:tte solut:i .. o:1 sorne 

It has a sEall energy g·ap 

and is the~cefore unstable. Also the mor~:ent of inertia 

is large. 

In·troduct:ion of 7 ::-: 0 pairins- correla.t5.ons lm1ers 

the! ener<:;y of the proL-~.te s·::.r:~te so that it is nearly 

degene:ca1.:E! 1.Tith the trivial oblate st<::~t.e. 'i"'he exci tat.ion 

energy is considerably increased, therC'by stabilizing 

the 'l.·mve function. Pairing is }~no,·m to incre<tse the 
"&.. 

inortinl parameter ·-r, I L.J • ~-;j_ th the isos;::)in 

gener~.lized ga.p equa·cions (Chapter IV) He found that 

t.. I J 36 h 2 for prolate i\r 't-·lC'.s increased from the 

HF value of 0.06 o. 22 i•1ev to the T = 0 paired value 

of o .• 49 -0. 85 !·:lev. Since the HFB quasiparticle 

even larger th::m the BCS gap (see 'l"'able 5.23), it is 

reasonu.ble to· e):pect a!"l unusually large inertial parameter 

from the HFB prolate paired state. This suggests that 

the rotatione1J .. states s'I1ould appear at energies co;"l_')c:l.ru.ble 
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may then tend to look vibrational. 

For the Yale force the- paired stc.te lj_es beloH the 

trivial oblate state. .Futhfcrrr~ore, the p<:l irinr; 

correlations are so strong as to dr~stically alter th? 

unde:clying single particle (canonical) b.::tsis, so thc>.t t.h2 

result5.n:::r self-consistent shape is o:)late. I':!:i.~:; serves 

a·s a. dr<Fi'<ltic confirr:1Flt.ion of the nece~;.::;i'..:y of c:o.llO'-Iin:::; 

the HP and pai~ degrees of freedom to interact with one 

anothE"r· 

For all forces the canonical basis bears no 

resemblance to the co.:cresponding prolate i:I? ~sisa· 

is exceedin~ly non-diagonal. 

elements. T11e H·::tve function is very foJ.:cc derehden"L:, 

al·though it is not altered vc:ry much by includin'J ti1e 

pf shell. Some examples of Have functions and pair 

potentials are presented in Tables 5.9-10, S.lB-19. 

The ~pherical intrinsic state is subc-Jtantially 

lmvcred by I Tz\ = 1 pairing correlations (see III.7). 

If the barrier beb,;een the paired spherical st.a te and the 

paired deformed state i::-> sm"lll, they may be ach1ixed in 

the physically relevant intrinsic vmve function. 
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i'Je conclude that T = 0 pairing correlations are 

significant in the 2s-ld shell. They rectify mor-..:t of the 

failures of the HF theory in ex".t'lai.ning the properties 

of N = Z even-even nuclei in this shell. ~xial sym~etry 
.. 

2..1. 32 
:i.s restored to J.rg · p.nd S , and an explanation is 

provided for the vibrational nature of ;:.r
36

• 7, 8 

I 

·. i 

> ~I ' ' 

t! .· . . '\· '. 

' \ . 
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Tables for Ch:_tpter V 

Table 5.1. .Non-trivial solution~> to the HFB equations. 

The shape of the trial wave fundion is given in parentheses. 

0 == Oblate, P == Prolate, S = Spherical. The prc.)perties of the 

trial vrave ftmction are given in Tables 2.15, ·1~.1. All en:::rgies 

are in un.i ts of Nev. QI.Jil h3.S units of fmL. 

TalJl~s 5.2 - 5.10. 1Wl3 wave functions. 

The general quasiparticle transformation is expressed as the product 

of three transfori!la-tions. See eq·uations 5.234-5.237. For each 

subspace the follow·ing quanti ties are given (read tables from left 

to right): 

, the colurrm vector of quasiparticle energies (l,iev ). 

' 
a square matrix. 

4. 2 
(Im ~12 ) , a column vector. In parentheses is given 

the sign of Im v al
2 

• Since there is no T = 1 pairing, 

vall = Re va12 = 0. ~ll is real and positive; it is 

[ 1- (Im· v~l2)2 1 l/2 given by ~ll = '""' 
5. V ~ , a square matrix. 

The Fermi energy, ")-.., is also given. (Hev). 

Tables 5.11 

basis I~) 

HFB T = 0 pair potentials, ,6 T = 0 , 
pn 

11. T=l 
~ = 0. Energies are in Eev. pn 

in canonical 
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Table 5.20. Be T 0 . t t· 1 A T=l S = pa1r po en 1a ,~ , pn 
in HF basis. 

Energies are in Mev. 

Table 5.21. Relative magnitudes of pairing energy resulting 

from BCS and HFB. 

Table 5.22. Effect of pf shell on pairing energy. lli'DKB 2 (s-p-sd-pf), 

NDKB 1 (s-p-sd). 

Table 5.23. Relative magnitudes of quasiparticle gap, E
1 

+ E
2

, 

resulting from BCS and HFB. 

Table 5.24. Effect of pf shell on quasiparticle gap, E
1 

+ E
2

• 

NDKB 2 (s-p-sd-pf), NDKB 1 (s-p-sd). 

' i· 
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Table 5.1: Generalized Pairing in 2s-ld Shell (HFB) 

Nucleus Force Shape Mode EPAIR ETOTAL- ~0 Q4Q f3 E + E 
1 2 

Ne20 Rosenfeld l Oblate (0) T = 0 -7.625 -41.697 -5.9 25.9 5.02 
Prolate (P2) T = 0 -6.587 -41.444 2.7 - 53.5 4.86 

Rosenfeld 2 Oblate ·(0) a 

Yale Prolate (s) T = 0 -2.324 -101.505 15.4 80.0 0.255 5-74 . b 

N 
I_() 

r' 

(continued) 

... 



Table 5.1 (continued) 

Nucleus Force Shape Mode EPAIR E ~0 Q4o f3 E~ + E2 TOTAL 

Mg24 Rosenfeld 1 Prolate (Pl) T = 0 -4.576 -95.170 15.6 -0. 5· 5.51 
Oblate (01,02,03) T = 0 -6.857 ..:93~865 -12.4 58.1 5.99 

Rosenfeld 2 Prolate (P2) T = 0 -6.438 -77.526 15.6 -14.9 5.74 
Oblate ( 01, 02) T = 0 -6.551 -77~238 -_13. 0 40.8 5.80 

Yale Prolate (P) T = 0 -7.802 -132.527 . 19.0 -12.1 0.244 4.81 
Oblate ( 01, 02) T = 0 -17.205 -132.049 -12.1 31.4 -0.155 6.05 

NDKB 1 Prolate (P) T = 0 -8.121 -110.388 15.9 13.4 0.218 5.01 l'V 

Oblate (o) T = 0 - 11.802 -109.301 -12. 5. 47.5 -0.171 4.72 <.0 
l'V 

J..lJ)KJ3 2 Prolate (P) T = 0 -9.637 -116.651 22.5 6.0 0.314 5.90 
Oblate (o) T = 0 -15.887 -114.131 -16.6 52.8 -·o. 232 5.83. 

( cont'inued) 

I ' '. !.• ·., 
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Table 5.1 (continued) 

Nucleus Force Shape Mode EPAIR ETOTAL ~0 Q4o f3 ·. El + E2 

Si28 Rosenfeld 1 Oblate (02) T = 0 .-2.207 -150.041 -0.5 -96~ 5' 6.13 
Prolate (03) T = 0 -6.050 -147.808 0.14 110.5 4.91 

Rosenfeld 2 -Prolate (02) T = 0 -7.234 -123.420 0.13 116.0 5.43 
Spherical ( 'S) c -·· 

NDKB 1 Prolate (P,S) T = 0 -9.933 -140.610 15.1 - 20.9 0.169 4.09 
Prolate (02) T = 0 -14.375 -138.733 3.1 -84.0 0.035 4.74 

I\l])KB 2 Prolate (02,S) T = 0 -8.359 -146.853 24.9 -72 .o 0.282 4.71 N 
•..o 
w 

(continued) 



Table 5.1 (continued) 

Nucleus Force Shape Mode EPAIR .. ETOTAL 

832 Rosenfeld l Oblate (01, 03) T= 0 -1.385 -212.901 

Rosenfeld 2 Oblate ( 02,03) T = 0 -5.835 . -178.385 
Prolate (P) T = 0 -7.276' -178.179 
Prolate (s) T = 0 - ;:,12. 724 -176.173 

Yale Oblate (NDKBl-.0) T=O -13.233 -229.658 
Prolate (P) T = 0 -9.208 -224.531 

NDKB l Oblate ( o) T = 0 -6.988 -179.696 
Prolate (P:,S) T = 0 -6.031 -179-266 

NDKB 2 Oblate (o) T = 0 -9.977 -183.910 
Prolate (P,s) T = 0 -10.953 -183.153 

(continued) 

.. 

< 

~0 Q4o 

-l. 5 -95.8 

-1.3 -110,0 
6.5 -94.5 
3.4 37.9 

- -17.0 2.5 
13.6 - 66.3 

-15.5 5.9 
12.8 -38.2 

-20.4 0.9 
16.$ -52.6 

~_,, 

f3 

-0.151 
0.121 

-0.147 
0.121 

-0.194 
0.160 

' .. 

El + E2 

5.89 

6.16 
6.23 b 
4.97 

6.17 
4.68 

3.68 I'V 
\1)_ 

4.69 ~ 

4.54 
6.47 
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Table 5.1 (continued) 

Nucleus Force Shape Mode EPAIR ETOTAL ~6 Q4o f3 El+ E2 

'Ar36 Rosenfeld 1 Prolate ()?,S) T = 0 -5.079 -277~826 3-9 -21.5 3.75 

Rosenfeld 2 Prolate (P;S) T = 0 -7.722 -237.234 4.9 -26.3 4.69 

Yale Oblate (P,S) T = 0 -9.523 . -291•765 -11.3 -37.0 -0.086 5.24 

NDKB 1 Prolate (P, S) T = 0 -5.904 • -224.664 6.0 -17.7 0.049 2.82 

NDKB 2 Prolate (P) T = 0 -11.260 -226.519 7-5 -19.9 0.061 4.05 
"' ~ 
Vl 

.. 
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a. ~AIR peaks at -9.30 Mev, then wave function falls to 

spherical HF solutiono 

b. 100+ iterations. 

c. EPAIR peaks at -13.9 Mev, then wave function falls to 

prolate HF solution. 

' . ~·: • ';: "· ·<) 
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Table 5.2 24 Prolate Mg (Prolate 1, Rosenfeld l) 

ld5/2 
-

5/2, + l. 3.566 LOOO (+).017 1.000 

ld5/2 ld3/2 
-

-3/2, + l. 2.598 .035 .999 (+ ). 006 .231 -.973 
2. ... 9.740 ·999·· -.035 (~).779 ·973 .231 

--
ld5/2 . 2sl/2 ld3/2 !\.) 

\0 

•-' -...: 

t:::': 
l/2, + l. 2.911 .163 ·977. .138 (+ ). 003 .304 . 784 -.542 

2. 6.433 -.047 -.132 ·990 (- ).203 .501 .352 • 791 
3. 7.354 ·986 -.167 .024 (+ ).991 .810 -.512 -.286 

--

A.= -13.535 



Table 5.3 24 
Prolate Mg · (Prolate 2, Rosenfeld 2) 

~' 

ld5/2 
- -

5/2, + 1. 4.612 l.OOO (+ ).017 1.000 

ld5/2 ~d3/2 
·-

. ~; -3/2, + 1 •. 2.841 .039 ·999 ( + ). 008 .278 -.961 
2. 9.005 ·999 -.039 (-) .658 ~961 .278 !\) 

\0 
(l) 

ld5/2 2sl/2 ld3/2 

1/2, + 1. 2.903 • 212 ·973 .092 (+ ).007 .405 ·;·681 -.610 
2. 6.333 .969 -.197 -.147 (- )-325 .625 .280 . 729 
3~ 6. 788 ' .125 -.120 .985 (+). 985 .667 -.676 -. 312 

ft. = -11.425 

. . -~ 
.. "'" 
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Table 5· 4 
24 Prolate Mg (Yale) 

ld5/2 
--

5/2, + 1. 3-777 1.000 (+ ).034 1.000 
-- --

ld5/2 ld3/2 

-3/2, + 1. 2.651 .167 .986 ~+).008 .. 347 . -. 938 
2. 7-982 .986 -.167 ~ ).684 -938 .347 

lsl/2 ld5/2 2sl/2 1d3/2 
1'0 

~ 1/2,:. + 2.158 .247 -.296 (+). 014 .143 -.409 . -. 747 .504 \.0 
1. .923 .015 ~ 

2. 5.058 . 926 -.134 .351 -.036 (- ). 317 ·.024 -.617 -.175 -. 767 
3. 6.503 .285 -.361 -.888 . 021 (+).953 .067 .672 -.622 ' -. 396 
4. 49.655 .024 -.011 .036 -999 (+ )1. 000 .987 .029 .155 -.027 

1p3/2 
- -

.:.3/_2 -·· ~· . - .. , ... 1. 19.334 1.000 (- ). 997 +.000 
--

lp3/2 1Pl/2 

1/2, ~ 1. 16.958 ·990 ~ 139 (-).996 • 570 ·.821 
2. 26.094 -.139 -990 (+). 998 .821 -.570 

--

"'= -9.150 



Table 5. 5 
. 24 

Prolate Mg (NDKB 1) 

ld5/2 
-

5/2, + 1. 2.807 1.000 (+).109 1.000 
-

ld5/2 ld3/2 
--

-.3/2, + l. 2.494 .151 .989 ~+ ). 018 .285 --959 
2. 8.710 .989 ·-.151 -).717 -959 .285 

------------ ~ ~· --

1s1/2 1d5/2 2sl/2 1d3/2 
w 
0 

. 1/2, + l. 2.516 .242 .892 -.381 .016 ( +). Oi8 .092 . -. 316 -.842 .428 0 

2. 5-354 • 564 .190 .803 -.034 (- ).187 .005 -.501 -. 235 -.833 
3. 6.570 .789 -.409 -.458 -.004 (+).962 .004 .. 805 -.479 -.349 
I 

4. 54.353 .018 -.009 . 032 ·999 (+ )1. 000 -996 .028 .• 081 -.034 
- -

1P3/2 

-3/2, ·to 1. 22.403 1.000 (.:). 997 1.000 

1P3/2 1pl/2 

1/2, - l. 19.370 -990 .141 (- ). 994 . ' . 526 .851 
2. 28.126 -.141 -990 ( + ). 998 .851 -.526 

A.= -6.582 

I' .. 
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Table 5.6 24 
Prolate :tl.g (l\1DKB 2) 

ld5/2 
- --

5/2, + l. 4.363 1.000 (+).053 1.000 
-- --

ld5/2 ld3/2 

-3/2, + l. 3.016 .lo4 ·995 (+ ). 011 -308 -.951 
2. 10.839 ·995 -:lo4 (-).743 .951 .308 

lsl/2 ld5/2 2sl/2 ld3/2 

1/2, + 2.885 .941 -.280 (+ ). 013 .118 -.811 .452 
IJ<) 

1. .191 .017 --352 0 

2. 7.020 .479 .160 .861 -.053 (-).205 .003 -.526 -.228 -.820 . !-' 

3· 8.011 .856 -.299 -.421 .0.03 (+ ). 974 • 013 • 774 -.528 -.349 
4. 55.786 .020 -.007 .052 ·99.3 (+ )1. 000 . ·993 .033 .104 -.047 

lf7/2 
--

-7/2, - l. 22.513 1.000 (-).001 1.000 
--

lf7/2 lf5/2 

5/2. - l. 19.081 .210 -978 (-). 001 -399 .917 
. ' 2. 29.594 ·978 -.210 (+ ).002 .917 -.399 

(cont.) 



Table 5.6 (continued) 

lp3/2 lf7/2 2 p3/2 1f5/2 

;.3/2, - l. 16.163 -.161 -.419 .890 .077 (-).000 .091 -.243 -·951 -.166 
2. 21.816 .921 -.284 .010 .267 (+ ). 002 . 003 . 598 .· -.013 -.801 

. .., 
.)· :.22. 053 -.276 -.005 -.134 . 952 (-). 003 ·071+ . -. 760 .301 -. 572 
4. . 26.124 .224 .862 .435 .131 (-). 995 ·993 .077 ~064 .o6o 

1/2, - 1 ... 14.365 -.166 . -.165 • 570 . 785 .070 .016 
. 2 •.. 18.528 .070 .267 .063 :...061 ·953 .085 
3. 19.722 .223 .861 .361 -.008 -.277 -.050 
J-t. 22.811 .632 .068 -.542 • )~·2 . 011~ -.093 
5. 24.733 • 720 -.386 .484 -.283 -.oo6 .138 w 

0 
6. 30.659 -.033 .084 -.115 . 083 ·-. 095 .. 981 tv 

-
1P3/2 1P1/2 1f7/2 . 2p3/2 1f5/2 2P1/2 

- / 

(- ).ooo .050 .058 -.169 -.r;23 -. 255 -. 71G 

f'l•OOl • Ol1.2 -.028 -.349 -. G.S2 .272 • 580 
- .003 • OlJ.7 .076 -.G34 .225 -.703 .214 
+ ).004 .077 -.063 ~.661 .303 • 595 -. 323 

. (-). 992 . 521 . 81+5 . 061 .030 .091 . 032 
(+ ). 998 .846 -. 521 .085 . 012 -.oGa .. 011 . ·/ 

A. = -6.871 .. 

I o . . 1. . 
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Table 5·7 32 (NDKB 2) : Prolate· S 

ld5/2 
-- - -

·5/2, + 1 3.501 1.000. (-).822 1.000 ..... 
-- --

ld5/2 ld3/2 -. 
-

..;3/2, + 1. 3.854 ·974 .228 (-).125 .293 -. 956 .. 
2. 8.193 -.228 :974 (+ ). 976 .956 .293 

-
-

lsl/2 ld?/2 2sl/2 ld3/2 
- --

.1/2, + l. 2.969 .443 .818 .367 .003 (-).153 .o63 -.345 -.817 .459 w 
2. 3.901 .892 -.362 -.271 -.014 (+ ). 923 .019 -.609 -.176 -·773 0 

3. . 9·957 .089 -.447 .890 -.022 (-).985 ,.042 .':"'• 711 • 549 .437 w 
4. 62.893 .014 -.017 .015 1.000 (- )1. 000 ·997 .064 ·032 -.032 

-
lf7/2 

- --
-7/2, - 1. 18.768 1.000 (+ ).002 1.000 

--
lf7/2 lf5/2 

5/2, - 1 •. 15.120 • 313 .950 ( + ). 001 .451 .892 
2. 25.962 ·950 -.313 ( -·). 004 .892 -.451 



Table 5. 7 (continued.) 

lp3/2 lf7/2 2p3/2 lf5/2 
--

-3/2, - 1. 13.404 -.227 • 528 .818 -.003 (+ ). 001 .048 -.080 -.995 -.029 
2. 20.531 .966 .224 .123 -.040 ( ~ ). 002 ' .• 001 -.591 , . 024 .806 
3· 23.078 .113 -.813 .556 ... 129 ( + ). 005 . .081 -.Boo .085 -.589 
4. 30.544 .053 -.095 .080 ·991 ( + ). 998 ·-996 , .069 .• 041 .049 

--
1/2, - 1. 12.749 -.172 .179 .631 . 735 -.010 -. oo8 

2. 18.927 -357 -.895 ··252 .084 -.008 -.007 
3· 21.624 .631 .158 -.518 . 554 .027 -.039 w 4. 23.253 .658 -371. • 505 --373 -.187' .023 0 

5· 27.525 .109 .059 .l;L4 -.072 ·970 .159 ,p,. 
,. 

6. 35.056 -.007 -.017 -.043 .049 -.151 .986 > 

lp3/2 1Pl/2 lf7/2 2P3/2 1f5/2 2P1/2 

(+ ).001 .025 .027 :...071 . -. 662 . -. 025 -.745 
(-).001 .009 -.001 . 096 • 739 -.045 -.665 
(+). 003 • 046 .056 -.662 .o68 "'~ 742 .031 
( ~). 004 .047 -.021 -. 737 .100 .666 -.040 
(+ ). 997 • 522 .849 .055 .015 .• 050 • 027 
(-).999 .850 -. 524 • Ol~4 -.007 -.026 .012 

. A. = -9.878 

l 
I .• , . •· ~. 
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Table 5.8 : Oblate s32 (NDKB 2) 

ld5/2 
-- --

~-5/2, + 1. 9.778 1.000 (-).990 1.000 

----- --
ld5/2 ld3/2 

-3/2, + l. 2.074 ·938 .347 ~ -J;). 542 .670 -743 
2. 7.136 .347 -.938 '). 974 .743 -.670 

·--
lsl/2 ld5/2 2sl/2 ld3/2 

- w 
i/2, + l. 2.471 .209 -954 -.211 . 037 (-).024 .083 .428 -.567 -.699 

0 
()1 

2. 6.554 .124 .191 .963 -.146 (+ ).479 • 025 .608 -.390 .691 
3. 7-254 ·970 -.230 -.081 -.010 (-). 988 .137 -.668 -.709 .182 
4. 63.609 . 020 -.010 .150 .989 (-). 999 .987 .041 .155 .016 

-
lf7/2 
-

-7/2, - l. 11.492 1.000 (+ ). 002 1.000 
- -

lf7/2 lf5/2 

5/2, - l. 14.297 • 768 .640 ~+ ). 001 ·593 .806 
2. 21.680 -.640 . 768 - ). 002 .806 --593 



Table 5.8 : (continued.) 
~ .. , 

lp3/2 lf7/2 2p3/2 lf5/2 
- --

-3/2, - 1. 15.396 .901 .061 .430 • 002 (+).001 . 038 • 548 -.811 .202 
2. 19.149 -.384 -572 • 724 • 021 ( +). 002 . 062 . 543 . ..;.531 .648 
3· 24.912 .199 .814 --533 -.116 (,.. ). 002 .008 .633 -.246 -.734 
4. 34.668 .029 .083. :...o78 -993 (+ ). 998 -997 -'.060 .• 004 -.042 

~- --1/2, - l. 16.057 • 799 .268 ~- 521 _/.127 .056 .014 
2. 20.-942 -.457 .476 -.274 .686 .133 . 012 
3· 23.021 .367 .231 .• 762 .427 -.187 -.122 w 

0 
4. 24.756 .107 -.158 .207 .078 .946 .137 m 
5. 26.839 -.078 .787 .· .166 -.559 .131 .132 
6. 32.846 .035 -.065 .055 .108 -.177 ·974 

lp3/2 1P1/2 1f7/2 2p3/2 1f5/2 2P1/2 
-

,_,_,_., ~+~.001 .029 .022 .479 . 554 .258 .629 
- -. 001 .o8T -.065 .623 -.347 -.684 .111 

(- ). 001 -,~ .• 010 -.005 -.324 -.599 .128 ·721 
( + ) • 002 >i{;t; • 040 .044 • 520 . -. 461'' .665 -.267 
(-).996 • 746 -.657 -.068 .040 r .070 - -.024 
(+ ).997 .658 • 749 -.053 .012 -.043 -.010 

.. 

A. = -9.865 

I' ·•. ... 
--------------····------- --·-···------- -------
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Table 5.9 36 . Prolate Ar (Rosenfeld 2) 

1d5/2 
-

5/2, + 1. 4.676 1.000 (- ).876 1.000 
-

ld5/2 1d3/2 

-3/2, + 1. 2.506 ·994 .111 (-).391 .221 ---.975 
2. 6.594 -.111 ·994 (+). 986 ·975 .221 

1d5/2 2sl/2 ld3/2 w 
0 

1/2, + .835 .528 .154 ~ -). 773 .486 -. 769 .416 
--...~ 

1. 2.177 
2. 5-784 • 542 -.743 --392 . + ).982 • 786 • 592 .176 
3· 7.386 .092 -.411 .907 (-).991 .382 .... 241 -.892 

f.. = -15.847 

'\ 



Table 5.10 36 Prolate Ar (NDKB 2) 

ld5/2 
--

5/2, + l. 7.006 l.OOO (-).950 1.000 
--

ld5/2 ld3/2 

-3/2, + l. 1.973 .• 982 .190 (-). 450 .238 -. 971 . 
2. 9.123 -.190 .982 (+).981 -971 .238 

----- ls1/2 1d5/2 2sl/2 ld3/2 

l/2, + 
w 

l. 2.077 .622 .697 -356 .004 (-). 675 .052 -.308 -.825 .471 0 
iJ) 

2. 3.623 .768 -.452 -.454 - •. 016 (t ). 944 . 034 -. 628 -.193 -.753 
3· 9-989 .155 .:..555 .817 c -. 032 (-). 979 . 021 -.713 . 530 .459 
4. 66.395 .015 -.028 .017 -999 ( ~ )1. 000 . -998 .053 .039 -.008 

lf7/2 
--

-7/2, -. l. 15.685 l.OOO (+ ).004 1.000 

1f7/2 lf5/2 
--

5/2, - l. 14.058 -372 .928 ( + ). 001 .425 .905 
. 2. 24.488 .928 --372 (-).005 .905 -.425 

(cont.) 

I' I' ... 
----------- ----------- -·-- --- --------~----------·· ·---- --···-·----- ---·-- ·--- --·--- ··-··-----------·-·· -----
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Table 5.10 (continued) 

lp3/2 lf7/2 2p3/2 lf5/2 

-3/2, - l. 13.260 -.167 .561 .811 -.004 (+ ).001 .018 .026 --999 .004 
2. 19.662 .985 .101 .133 -.030 (-). 002 .• 002 -.584 -.on .812 
3· . 23.247 • 004 -.817 .• 565 -.;u;;; ( + ). 005 .038 -.811 . -. 023 -.583 
4. 33-925 .030 -.087 .072 -993 ( + ). 998 -999 .031 .019 .020 

l/2, - l. 12.950 -.117 .127. .657 • 734 -.003 -.005 
2. 19.013 -550 -.817 .123 .119 -.011 ,..005 
3· 22.711 • 546 -359 --551 • 517 .026 -.040 
4. 23.372 .617 .430 .492 -.417 :...140 .017 
5· 29.891 .079 .042 .075 -.056 .946 .297 w 

0 
6. 35.804 -'.Oll -.009 -.051 .051 -.291 ·954 1.0 

lp3/2 lpl/2 lf7/2 2p3/2 lf5/2 2Pl/2 

. ~+). 000 .009 .004 .005 . -.650 .040 -.759 

. ·.. ~ ).001 .004 -.005 -.002 . 760 .033 -.649 
,(+ ). 003 . 021 .021 -.670 -.003 . -. 741 -.040 
(-).004 .024 -.007 -. 742 -.003 .• 669 .03~ 
(+).998 .494 .869 .023 .007 • 018 • (j) . 
(-).999 .869 -.495 .024 -.001 -.011 .008 

f.. = -11.988 



•,,· 

--:. 

Table 5.11 ·AT= 0 T = 0 Pair Potential rr:f.J . ) in Canonical Basis ~ pn . 
I 24 

Prolate Mg (Prolate 1, Rosenfeld 1) 

5/2, + .922 

-3/2, + 

1/2, + 

". 

1.483 .210 
.210 -2.162 

.806 

.285 
-.057 

~. ~· 

.285 
-2.494 
-.406 

-.057 
-.406 
1.188 

,::., 

w 
j-J 

0 
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Table 5.12: T = 0 Pair Potential (~ T :;: 0 ) in Canonical Basis 
pn 

24 
Prolate Mg (Prolate 2, Rosenfeld 2) 

5/2, + 1.198 

-3/2, + 1.616 .183 
.183 -2.704 

-

1/2, + 1.001 .357 -.011 
.357 -2.896 -.269 

-.on -.269 1.635 

w ,_. 
I-' 



... ------. -· --

5/2, + 1.372 

-3/2, + 

1/2, + 

-3/2, -

1.428 
.678 

1.189 
.378 

-.116 
1.058 

-2.178 

l/2, - -2.264 
- .022 

I j } • 

Table 5.13 : T = 0 Pair Potential (i:J T = 
0 ) in Canonical Basis 

pn 

.678 
-2.604 

.378 
-2.589 

.845 
-.458 

-.022 
2.537 

24 PrOlate Mg (Yale) 

-.116 
.845 

:::2.547 
.367 

1.058 
,...458 
.367 

1.656 

--------- --- --------· --- -· ------. ··--- ------· ----~. -----· ------·-··--- --------

!-, 

w ._. 
N 



t-t ) I 

5/2, + 1.750 

-3/2, + 

1/2, + 

3/2, -

. 1/2, -

2.276 
• 713 

1.601 
.311 

-.149 
.879 

-2.598 

-3.052 
- .041 

Table 5.14 

• 713 
-2.375 

.311 
-2.576 

.943 
-.431 

-.041 
2.497 

·.-· 

T = 0 Pair Potential ( /J ~n = 0 ) in Canonical Basis 
24 ~ 

Prolate Mg (NDKB 1) 

-.149 
.943 

1.997 
.339 

.879 
-.431 

·339 
2.154 

w 
!-' 
w 



5/2, + 1.954 

-B/2, + 2.281 
.649 

1/2, + 1.746 
.348 

-.087 
.940 

-7/2, - -1.013 

5/2, -1.376 
- .. 040 

'' '. 

Tehle 5.15 

.649 
-2.710 

.348 
-2. 781+ 

.965 
-.359 

-.040 
1.652 

· .1\T=O T = 0 Pair Potential (JJ ) in Canonical Basis 
pn 

24 Prolate Mg (NDKB 2) 

w ,_. 
~ 

-.087 -940 
.965 -.359 

2.228 .466 
.466 2.431 

(cont.) 

... 
--~------ -- __,____ -------

--------·-- ---------------------
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Table 5.15 (Continued) 

-3/2, - .· -. 751 .010 -.091 -.134 
.010 •. 1.906 -.063 -.662 

-.091 -.063 r2.052 .173 
-.134 -.662 .173 -2.965 

1/2, - -.863 -.011 -.088 .. 031 -.022 . -. 035 
-.011 1.064 .018 .127 .313 -.605 
~.o88 .018 -2.14o -.035 .202 .· -. 797 
.031 .127 -.035 2.191 .274 .482 

-.022 .313 .202 .274 -3.282 -.050 w 
.·· 1-' 

~. 035 .605 --797 .482 ... · ... 050 ··. 2.647 l!l .. 



5/2, + 

-3/2, + 

1/2, + 

-7/2, -

5/2, -

I' .. 

Table 5.16 

-2.681 

-2.695 
-.836 

-2.721 
-.460 
-.327 
-. 730 

1.648 

1.857 
.083 

T = 0 Pair Potential 
Prolate s32 . (:NDKJ3 2) 

-.836 
2.460 

-.460 
2.403 
.426 
.244 

• 083 
-2 .• 039 

(cont. ) 

-.327 
.426 

-2.091 
-.106 

T = 0 
( /::, pn ) . in Canonical Basis 

' ' w -·730 1-:" .244 (j\ 

-.106 
-2.537 

... .. 
----~-....._-~----------- -~ ------- ----- ···-· 
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Table 5.16 (continued)-

-3/2, ,. .904 -.015 .138 .484 
-.015 -1.981 -.083 -.663 
.138 -.083 2. 251+ .631 
.484 -.663 .631 . 2.898 

1/2, - -937 -.019 ··.107 -.025 .433 . -.025 - -- ---

-.019 -1.315 -.001 .119 . 252 .158 
.107 ·r.OOl 2.163 • 022 .G46 -396 w 

-.025 .119 .022 -2.175 -.328 -. 621+ ..... 
.433 .252 .61.t6 -.328 2.976 .021 

....,J 

-. 025 .158 -396 -.624 .021 -2. !+2 5 



Table 5.17 

5/2, + 

-3/2, + 

1/2, + 

-7/2, ;.. 

5/2, -

; ' '' 

A T- 0 T = 0 Pair Potential ( ~ - ) in Canonical Basis 
pn 

Oblate s32 (NDKB 2 ) 

-1.937 

2.675 
.907. 

-2.177 
- .560 
-.297 

-1.095 

.919 

1.220 
.035 

.907 
-2.066 

-.560 
2.876 
-.481 
.490 

.035 
-1.673 

-.297 -1.095 
-.481 .490 

-1.676 -1.184 
-1.184 -3.735 

(cont.) 

~-- -~-- -~---· -- --------·-. -·---------·--

... f 

" 

w 
1-' 
en 
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-3/2, -

1/2, -

Table 5.17 

• 768 
.050 
.046 
.311 

.830 

.oo4 
-.019 
.010 
.1o6 
.256 

.050 
1.947 

.008 
• 736 

.oo4 
-1.263 
-.092 
-.040 
-.012 
-.304 

(continued) 

.046 

.008 
-1.827 
-.850 

-.019 
-.092 

-l. 278 
.oo6 

-.605 
• 716 

.311 
• 736 

-.850 
3-376 

.010 
-.040 
.oo6 

1.896 
• 575 
. 737 

.lo6 
-.012 
-.605 
.575 

...;3. 218 
-.015 

"~t 
,, 

' 

.256 
-.304 
• 716 
-737 

-.015 w 
. 3· 520 1-' 

1.0 



Table 5.18 

5/2, + 

-3/2, + 

. ~ ·, ;. . 

1/2,. + 

I :t .. 
~-~ .. 

T- 0 . 
T = 0 Pair Potential ( ~ - . ) in ·Canonical Basis 

.· pn 

Prolate A:r
36 (Rosenfeid 2) 

-3.079 

-2.495 
-. 316 

-2.748 
-.585 
.184 

-.316 
l. 523 

-.585 
1.340 

.035 

~------~--··-- ~---- -- ____ ,. __ .... 

.184 
0.035 

-l. 317 

... ,, 

w 
N 
0 

--~---------~-- --~-~--- ------
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5/2, + 

-3/2, + 

l/2, + 

-7/2, -

5/2, -

.) 

Table 5.19 A T- 0 : T = 0 Pair Potential (~ - ) in Canonical Basis pn 

·prolate A:r36 (NDKB 2) 

-3.o65 

-2.220 
..:.859 

-2.991 
-.448 
-.327 
-.530 

2.068 

~.859 
2,408 

-.448 
2.240 

.]08 

.360 

l. 520 .132 
.1]2 -2.151 

-·327 
.. ]08 

-2.196 
-.149 

(cont. ) 

-.530 
.]60 

-.149" 
-2.441 

w 
LV .... 



-.3/2, -

1/2, -

::··· 

........ 

',, I> 

.923 
-.012 
.085 
.416 

.163:'. 
-.034 
.056 

-.018 
• 540 

-.044. 

/~· 
/ 

Table 5.19 

-.012 
-1.809 
-.116 
.,..881 

-.034 
-1.393 
-.006 
.069 
.247 
.024 

. 085 
-.116 
2.324 

.809· 

.056 
-.006 
2.127 

.039 

.688 

.436 

. ----·------ ---- ~---- ~------ ----· -- ----·----

(continued) 

.416 
-.881 
.809 

2.976 

-.018 
.069 
.039 

-2.274 
-.505 
-.557 

.540 

.247 

.688 
-.505 
2.529 

.011 

;...o44 
.• 024 
;.436 

-.557 
.• 011 w 

tiJ 
- 2.482 tiJ 

'; 



f·or t f' 

Table 5.20 

5/2, + -2.105 

BCS · T = 0 Pair Potential 

36 Prolate Ar (Rosenfeld 2) 

;,J 

A T- 0 ( ~ - · ) in HF Basis 
pn 



Table 5. 21 

EPAIR (HF.B) - EPAIR {BCS) 

E . ( PAIR BCS) 

Prolate Mg 
24 

Prolate s32 Oblate s32 
Prolate Ar36 

Rosenfeld l 0.15 - 0.38 0.63 

Rosenfeld 2 0.07 0.~7 0.06 1.07 

Yale 0.24 0.94 - 1.81 * 
w ·NDKB 1 0.30 1.22 -0.05 1.18 I\)' 

~·· 

NDKB 2 1.02 4.06 0.27 2.16 

-' - ~-. 

* HFB solution is Oblate 

.l_·l· J }; 

"' --~-. 



325 

Table 5 •. 22 

EPAIR (NDKB 2) - EPAIR (NDKB 1) 

EPAIR (NDKB 1) 

' 24 
Prolate Mg 0.19 

Oblate Mg
24 

0.35 

Prolate 8i28 -0.16 

Prolate 832 o. 52 

Oblate 832 
0.43 

Prolate Ar36 
0.90 

: ,·; ~ 

.l· •'· ·' 



·, 

...... 

Table 5.23 

(E1 + E2) HFB (E1 + E2) BCS 

Rosenfeld 1 

Rosenfeld 2 

Yale 

NDKB 1 

NDKB 2 

... I> 

(E, + E2) BCS ... 

24 
Prolate Mg 

0.02 

o.oo 

-0.04 

-0.03 

0.16 

Prolate s32 

0.60 

0.11 

o.o6 

0.20 

* HFB solution i~ Oblate 

Oblate 832 

0.02 

o.oo 

-0.16 

-0.01 

... 

Prolate Ar36 

o.2.9. 

0.27 

o. 79 i!· 

0.25 

0.36 

w 
N 
()') 

.. 
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Table 5.24 

(El + E2 ) 
NlJKB 2 (El + E2) NDKB l 

'" 
(El + E2 ) NDKB l 

. 24 
Prolate Mg 0.18 

Oblate Mg
24 

0.24 

Prolate 8.28 . l. 0.15 

Prolate 832 0.38 

Oblate s32 0.23 

. 36 
Prolate Ar 0.44 
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SUMM\.RY 

'!'he Schroedinger equation 'dth nucleon:-nuclcon 

interactions provides a starting point for a many - body 

description of nuclear properties. Il.pplica.tion of the 

partition method results in an effective interaction 

operating in a model space. If the model space is 

suitably chosen, the same effective interaction may be 

used in bot11 the pair pot:ential and the ZIE' potential. 

The self-consistent field formalis~ns are then to be inter-

pretet1 as approxirr.ations t~o exact diagonaliz2.tion of the 

effective I-1:"1mil ton ian in the model spa.ce. ( Ch. I) 

HF thE.ory is the first order approzir:tat.ion to 

ex<'.ct dia<:ron3.lization. It iG an independent particle 

description and provides a one body self-consistent:. 

potential .. 
. . 20 

\'lith the exception of Ne , HF theory fails 

to explain the ground state properties of the N == z even 

even nuclei in the 2s-ld shell. (Ch.II) 

Components of the effective interaction unaccounted 

for by the HF potential give rise to correlations bet't·lecm 

pa.irs of nucleons in time-reversed degenerate orbitals. 

With these pairing correlations is associated a self-

consistent pair potential. T'ne approximately independent 

modes of excitation are no longer particles, but quasi-' 

particles. '!':'1ey may be described by the special Bogbliubov 

quasiparticle transformation. Unless special care is 

II·· . '·: 
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taken in choosing the.single .part.;!:cle basis state$, use 

of the special transformation asslliues that the pair 

potential only connects time-reversed orbitals. For 

a non-trivial force, this ass~~tion is not justifiablG. 

It is der:1onst1~r.:tted that p-p and n-n pairing correlations 

are not significant in N = z even-even nuclei in the 

2s-lc1 shell. (Ch III) 

'i'he pairing theory is generalized to include p-p, 

n-n, n-p (T = 1), and n-p (T = O),pairing. All modes are 

trea·ced' on an equal basis. The quasiparticle co-ordinates 

rnust be complex. A generalized set of gap equations are 

derived for N ::: Z nuclei. S::>lution of the gap equations 

indicates tha·t ·r = 0 pairing· correlations play a very 

impo:cta.nt role, al-tering the properties of several of the 

nuclei considered., Hmvever the generalized gap equationu 

still assume that· the pair potential is diagonal in spatial 

co-ordinates. Their utility, therefore, is tv;ofold. 

a) The isospin generalized special transformation demonstrates 

hm·T to introduce ap-propriate symmetries into the HF and 

pair potentials so as to pernit both T = 0 and T = 1 

pairing. b) 'rhe solutions to the generalized gap 

equations are natural starting points for HFB calculations. 

(Ch. IV) 

The general quasiparticle transfor1:10.tion permits the 

HF and pair degrees of freedom to interact with one 

another. 'l.'he pair potential is not assu.'i1ed to be diagonal.· 



331 

Requiring the quasiparticle's to be approximately non-

interacting results in the3 HFB equv.tions, which provide 

the quasiparticle co-ordinates and energies. T'.ne HFB 

equations are also derived by a variational principle: 

minimization of the bindihg energy with respect to arbj_trary 

variations in quasiparticle co-ordinates. This proof 

requ.ires the assistance of the generalized density rna trix. 

'I":'1e self-consisteri'c. sy::n:J;!etries of the HF3 nolutions are 

discussed in some detail. It is demonstrated that 

complex quasiparticle co-ordinates are required for 

generalized i~ospin pairing. (Ch.V.l-7.) 

Uni tari ty conditions and the assuznptj.on of time--

reversal symmetry quite triv5.ally provide the ca.nonical 

forn1 of thO} density rnatrix and the pairing tensor. 'I'he 

general qua sipari:.icle transformation is then described 

as the produc·t of three transformc.tions: (1) an isospin

conserving rotation in part,icle space, (2) an isospin- · 

generalized special quasiparticle transforrr.ation, 

(3) a rota·tion in quasiparticl·e space. This representation 

facilitates an ev-o.luation of the various approximations 

to H.F'B. lle find tha.t the BCS approximation of neglecting 

off-diagonal elements of the pair potential is not jus'cified .. 

Furthermore, attempting to permit the HF and pair degrees 

of freedom to interact \-Ti th one another by i tera tfng 

betHeen the HF and BCS equations is an even Horse 

appro::dmation. '"l1he HF3 canonical single particle basis 

... •' 
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often bears no resemblance to the "ao.!'responcld.ng!'. BF 

single particle basis. The .third transforrr..a.1:ion may 

not be approximated by the unit transforrration, nor 

the pair potential diagonal in the canonical basis. 

(C"h. III.6, IV.6, V.7-8) 

.; t:• 
...... :> 

T'ne HFB squations Hitn generalized isospin pairing 

have been solved for the N == Z even-even nuclei in the 

2s-ld shell. A variety of model spaces and inte.ra.ct.iono, 

both realistic and phenomenological, all reproduce 

the follouins_r conclusions: T = 0 pairing correlations 

do!\"!.inate over T == 1 pairing corn:dations. T:"1oy pl2ty a 

very·significant role, drastically altering the pro;;>erties 

of many intrlnsic states. Host of the failures of the 

HF theory in explaining- t'h.s proper'cies of these nuclei 

are rec·tified. T :::: 0 pairing restores axial symmetry to 

2i1 . 32 the equilib:r.·ium shapes of r-1g • and S and provides an 

explanation for the vibrational nature of .Ar36• (Ch.V.8) 
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