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The Theoretical Analysis of Nuclear Reactions Involving 

Strongly Deformed Nuclei Using Phenomenological Models 

Raymond Stuart Mackintosh 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

ABSTRACT 

Stripping reactions, A(d,p) A+1, are studied for the 

case .where A is a strongly deformed nucleus. In the standard 

treatment, using DWBA, the possibility that the projectiles 

d and p can set the nucleus in rotational motion is ignored. 

We have studied in detail the importance of these inelastic 

processes using the coupled channel source-term technique of 

Ascuittd and Glendenning. We have shown this to be equivalent 

to th~ noUpled channel Born Approximation written down by 

Penny and Satchler. We have also generalized a forma-l deriv-

ation of DWBA given by Greider and Dodd. We have discovered 

that for A,..,25 and :for 10 and 12 MeV deuterons, inelastic 
) 

processes are of vital importance -- that relative strengths 

of levels may be greatly changed by their inclusion and that 

angular distributions may be significantly improved, although 

the fietailed shape is still not reproduced for these light 

nuclei. This latter failing, therefore, seems to be charac~er

istic of any generalization for zero range DWBA to include 
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rotational excitations .. For 12 MeV deuterons in the deformed 

rare earth region, the inclusion of inelastic processes 

will, in general, lead to substantial differences in values, 

extracted by comparison with experiment, of the amplitudes 

with which particular angular momenta occur in the various 

Nilsson states. Angular distributions of weaker levels in a 

band are often changed substantially and the change in strip-

ping strengths of various levels is quite comparable to that 

which is a result of coriolis mixing (not included in our 

calculations). Our calculations involve purely macroscopic 

rotational excitations and we further ignore transitions 

between members of different bands of the odd A residual 

nucleus. 

• 

i 
- i 
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I. INTRODUCTION 

The usefu~ness of the deuteron stripping reaction 

d -+ A ----+ p + (A ~·1) 

treated as a direct reaction is well established as a source 

of spectroscopic information. In particular, it has proven 
1 very useful in elucidating the complex energy level structure 

of odd strongly deformed nuclei, an application which. is the 

subject of the present work. 

The level structure of the odd-A residual nuclei can 

often be resolved into a sometimes quite striking array nf 

rotational bands, each based on a particular ·deformed intrinsic 

state. Each intrinsic single particle state is characterized 

by a set of amplitudes cjl corresponding to angular momentum j. 

In the customary treatment of stripping reactions, the 

stripping takes place without pre-excitation of the target 

nucleus by the deuteron, and without coupling between states 

of the residual nucleus induced by the interaction with 

the outgoing proton. In this case, for ~ven target nuclei 
::> 

(spin zero), as was firs·t pointed out by Satchler,- the 

excitation of a state of spin I of a given band can proceed 

only .through the component of the intrinsic state of angular 

momentum I (amplitude ell)' because the neutron must carry 

al~ the angular momentum transferred in the reaction. The 

cross section thus factors: 
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The cross sections for transitions to the various 

members of the hand measure the amplitudes of the angular 

momenta that occur in the single particule state on whic~ the 

hand is built. Purthermore, as o;ce) is independent of 

nuclear structure, eq(2) can be used to study and compare 

different bands in different nuclei -- perhaps to estimate 

quasiparticle occupation factors (u:) for the deformed sinele 

particle states. If the cjl values for a given band are 

considered known, the band based on this intrinsic state can 

be identified by the characteristic pattern of stripping cross 

sections of its various members and traced from nucleus to 

nucleus throughout the deformed region. These reactions are 

reviewed somewhat more fully in Chapter VIII, section B. 

It is important that bands can be unambiguously identified 

by the. ~attern of the intensities of the band members, and 

that c 2 can be reliably extTacted from experiments. However, 

the collectivity of strongly deformed nuclei may invalidate 

eq(2). 

The rotational states are coupled strongly by the inter

action of a projectile with ~he deformation of the nuclear field, ~ 

sufficiently strongly, in fact, for the higher order processes 

to he important in inelastic scattering. This is the motivation 

for the present work in which we study the extent to which 
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inelastic processes, i.e. pre-excitation and post excitation 

of rotational levels of the target and residual nuclei, 

invalidate or modify band identifications and c 2 measurements 

based on the no-scattering factorization. eq(2) . 

.Although we use coupled channel techniques entirely, ~ur 

calculation will be the equivalent of calculating an approximatkn 

to the true transition matrix T of the reaction, in the 

following form: 

T o( <oui~o··t\'3 "Ja~t I \1,·"1 \ ·"'coMi"1 w~v'l.) .. · 
~""~' \ 

(3) 

.As far· as the stripping interact:i,on, V;~i' :$.s concerned, this 

expression has the form of the first order term of a perturbation 

(Born) series. In the past, this form has been employed with 

the incoming and outgoing waves calculated according to a 

hierarchy of approximations: plane wave Born approximations 

(PWB.A), coulomb wave approximations, distorted wave Born 

approximation (DWB.A). For the case of rearrangement collisions, 

the next approximation, still with ~~t taken to first order, 

is that employed herein: the coupled channel Born approximation, 

CCB.A. In this, the entrance channel wavefunction contains not 

only the elastic channel components ( as in DWB.A; fo.r an illustra

ted example, see the appendix to this chapter) but also 

components corresponding to target states excited by the aeuteron 

before the stripping interaction takes place. Likewise, the 

outgoing wave is calculated with the states of the residual 

nucleus coupled together by the interaction between the proton 
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and the A+1 particles. In each case, the wavefunctions are 

calculated by means of the (infinite 6rder) coupled channel 

method using purely macroscopic e.occitation. ~hese will be 

modified not only by the inclusion of inelastic channels, but 

the elastic channel components will be modified by virtue of 

the ·cha.nge required for the optical potential and by the 

scatt,ering back into this channel. In our calculations we 

ignore coupling between different bands of the residual nucleus 

on the grounds that the corresponding single particle transition 

is'~niuch weaker than the intraband collective transitions. 

Any reaction on a complex nucleus is a many body problem 

which is, in a real sense, nonsolvable. Qf course, we do perfonm 

calculations and obtain numbers that can be compare·d. with 

experiments, and our scheme must be justified to the extent 

that ~works; the difference between working and seeming to 

work is not always obvious, and the importance of the many 

approximations that remain is not entirely clear. Our 

replacement of the many body nuclear field by a one body local 

pptical potential is only partially mitigat~d by the explicit 

inclusion of the strongly coupled nuclear states (excited by 

tl' 

(~ 
means. of a deformation of this field) as far as our calculation of . 

the projectile wavefun,.ctions in the interaction region is 

concerned. The effect of the non-rigorous treatment of rearrange

ment processes, and the closely related problem of the neglect 

of other partitions is still largely unknown, although estimates 
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have been made -of specific aspects of this: inclusion of 

the stripping interaction to higher order and the polarization 

of the deuteron. The customary zero range approximation 

which facilitates the calculation of certain integrals and 

which we use
1
is on a different footing and the extent of its 

validity is fairly well known. To sum up: this work is directed 

to th~ study of a single physical process that can affect the 

stripping reaction - the excita~ion of particularly strongly 

excited states of the target and residual nucleus; otherwise 

we make standard approximations. 

The initial aim of this work was simply to discover how im

portant these processes are and thus establish the validity 

of the many analyses of experimental data that have been made 

without regard to them. However, we demonstrate how, in some 

cases studied, spectroscopic information may be obtained. For 

a further discussion of the general procedure and of tre irrrpartance 

of this work, see the last part of Chapter II. 

We have discussed the various aspects of this work in turn 
c 

and tie the threads to~ether at the end according to the 

following scheme~~~ 

Mindful, in the first place, that we are studying a stripping 

reaction, we present in Chapter II the customary definitions 

and results of stripping theory that we shall draw upon later. 

We shall discuss the effects of the approximations that we 

have made that relate specifically to the stripping aspects of 



\ 
\ 

-'6-. 

the ~roblem. We discuss in more detail the overall approach 

that is required to fully delineate the influence of inelastic 

processes on stripping reactibns, arid we shall give an 

abcount of the effects we expect to see. 

In Chapter III we give a formal derivation of the CCBA. 

The calculation of the nuclear wavefunction is discussed 

in Chapter IV together with an analysis of the various nuclides 

treated and tabulations of the wavefunctions employed. We 

shall show that a correct calculation of the bound neutron 
is 

wavefunction/\of more importance than is sometimes assumed. 

In this work we ignore coriolis mixin~. 

In Chapter V the formal results of Chapter III are 

expressed in coupled channel form adaptable to a numerical 

procedure which is briefly indicated. We discuss here the 

inelastic scattering of the deuterons and protons in model 

independent terms. 

In Chapter VI the various interaction matrices which 

enter the scattering and stripping problems are evaluated in 

terms of the particular models used. In section D, we show how 

selection rules that apply to direct processes may be broken 
I 

in the presence of inelastic transitions. 

The procedure required tq., obtain the ''correct" optical 
'· 

potential is discussed in Chapter VII togethe.r with a tabulation 

of the various optical potentials used. 

The stripping calculations are p~esented·and discussed in 
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Chapte~ VIII. Section B of this chapter also contains a 

brief review of stripping spectroscopy in the rare earth 

region. 

Finally we discuss our conclusions in Chapter IX and 

discuss what we feel to be important experiments that 

should be carried out. 

Previous discussions of various aspects of the method 

used herein have been presented by a number of authors. 3 ' 4 

The work of Ascuitto and Glendenning4 introduced the source 

term approach to stripping. 
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Appendix 

Deuteron Stripping on Magnesium: an Example 

As an example of the physical processes which are 

included in our stripping calculations, we consider ' 
24Mg(d,p) 25Mg as illustrated in fig. I.1. The spectrum of 
25 Mg is given in Chapter IV. As we ignore inter-band coupling 

in the product nucleus, we need show only one band, for 

example, the [21 i] 1/2+- band. The j=7/2t component of the 

[211] 1/2+ state is zero as Nilsson calculates it ( for a 

full discussion, see Chapter IV), but there will be small 

amplitudes present. The direct stripping amplitude to the 

7/2+ level is very small in any case. The vertical arrows, 

up and down, signify the coupled-channel-calculated inelastic 

scattering. The more or less horizontal arrows, in one direction 

only, represent the stripping interaction which acts to first 

order. We note that there are amplitudes that lead to state 

Z which involve only one scattering. One of these A ~w ~ Z 

will be smaller than the others ~s the transition w~z is not 

excited by a Y2 deformation. Thus the stripping amplitude of 

state Z can be considered to be the sum, to first order in 

inelastic processes, of three amplitudes, and we shall find 

that they are comparable in magnitude. It is clear why the 

cross section for a state such as W,X,Y, or Z is no longer 

linear in cL 2 etc., for each state depends on c for every 

state to an extent that varies with the importance of the 
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inelastic processes. 

/ 
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Figure Captions for Chapter I 

Fig. I.1 Stripping on24Mg. Illustrating the multiplicity of 
amplitudes which add coherently to give the total amplitude 
for state W,X,Y, or Z when inelastic scattering (vertical 
lines) is permitted among the states of the target and 
final nuclei. The double lines denote the DWBA paths. The 
DWBA amplitude for state Z is small enough to describe Z as 
"forbidden in DWBA." 

f. 
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II. STRIPPING REACTIONS 

In the followitig, we give a brief account of the general 

prop~rti~s of stripping reaction~and certain standard 

results and definitions will be given drawing in part dn the 
5,6 . i 

review articles • Many of .the approximations which we 

make are shared with usual DWBA approach and are of quite 

well known ranges of validity. This is relevant if we wish to 

consider our study as more than a series of model calculations. 

We then discuss the use of mrnA for light nuclei and find 

that it cannot be counted on to give good angular distributions 

for magnesium. 

A consistent procedure is then set forth for studying the 

role of inelastic processes, and finally the earlier discussion 

is called upon in an expansion of the brief account given 

in the Introduction of the possible importance of inelastic 

processes. 

A. Stripping Theory Definition~-

The react ion under considerat ian is d -t A ---:'> p -t (A ... ,) . 

We treat it as a direct reaction, in other words, one that 

takes place in the short time characterizing the transit of 

a nucleon.. This raises the possibility of a perturbation 

treatment. In the customary DWBA treatment (see Introduction) 

the neutron is dropped into the gDound state of A to form some 

component of a particular state of (A+1 ). The spectroscopically 

significant feature of this treatment is what might be called 

i 
. : 

I 
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the "incoherent separability" of the proton angular distributions. 

The .differential . .cross section leading to some state . ~1~(A-tl) 
of the residual nucleus (A+1) may in general be written 

(neglecting spin-orbit interactions) as follows: 5 

Here BJ ~ (see equation ( 4) below) is a function of the 
J . 

scattering angle, distinctively characteristic of the orbital 

angular momentum, 1., of the stripped neutron. It is the 

amplitude for the direct transfer of a neutron into a bound 

orbital of angular momentum, j, for a particular momentum 

transfer defined by the projectile energies and the scattering 

angle. The f'jR. expresses the _·,parentage of the state ~. CA+t) 
J.f 

of the residual nucleus on the coupled state [ ~-rJA) ({1.1 ,.- , 
J( J .> J~ 

where ~ (A) is the ground state of the target' nucleus and. 
~ . 

· ({?j is the neutron associated with B;7 . It turns out that 

even with spin-orbit coupling, the incoherency in J remains~ 7 

The factors 

elements of 

8 
~H are commonly 

a.+ as follows: J . 

expressed as reduced matrix 

("J,_ I! aJ-t II "It) ~ - (J2)kz pj ,_ 
using Racah's :notation9 which is not that used by Bohr and 
. 8 

Mottelson. There are mapy variants of this definition in 

the literature, and the spectroscopic factor ..J is often used 

(3) 
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The significance of the factorization property df the angular 

distribution is that if one or a small number of angular 

momentum transfers are present then these l' s can be identifi.ed 

and thetr relative strengths determined. This would be 

difficult if 1here were interference b~tween the various l's. 

In the case of an even-even target nucleus (spin zero), the 

quantum numbers of the transferred neutron are those of the 

residual nucleus. It is often possible, in this model, to 

treat a limited range of nuclei ( say, the rare earths) as 

follows. Standard angular distributions for possible l values 

are calculated together with tables of Q-dependence and A-

dependence. The spectroscopic factors, s1 , are now simply 

obtained as multiplicative constants for matching any particular 

angular distribution. The particular form Sjl takes in the case 

of deformed nuclei has been alluded to in the Introduction and 

will be derived in Chapter VI. 

The incoh~rent separability of the angular distribution (1) 

no longer holds when inelastic processes are present: the 

stripping·amplitude is a coherent sum of amplitudes corresponding 

to the stripping interaction taking place through different 

"routes." The quantum numbers of the transferred neutron are 

no ~anger those of the final state for a spin zero target. The 

amplitudes which may contribute to the cross section of a 

pa~ticuL~r state have been shown for a particular case in the 

appendix to Chapter I. ' 
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B. Customary Stripping Approximations 

Within the framework of the usual treatment of stripping 

reactions (i.e. DWBA and its present generalization CCBA) a 

number of approximations are widely employed. The errors which 

they engender are fairly well understood for the case of DWBA 

calculations, and we might suppose that these carry over, 

qualitatively at least, into CCBA calculations. 

1. Zero Range Approximation 

The factor B.l""which appears in eq (1 ) contains the following 

integral: . 
,.,.rt 1 J.,,~-l-?,) fA-~ \Jt(-t) 1~... .~ ~ 

B..e L1{~J'kf')K. lf'p (i, r,. tpR (rfi)Vnp(r) 'Iii· (-1\J)Z)~J((")c{r"dr, {5J 

This is a six-dimensional integral over the proton and neutron 

coordinates (for notation, see ref. 5 ) and as such is veri 

difficult to evaluate numerically·{for a full discussion, see 
10 Austern.et al ). In order to make stripping cross sections 

realistically calculable, it has.been customary to make the zero 

range approximation in which the product v"f(t"f) ~,tCf:t') -::;]) (f'tlf) 

is replaced by Do S, C l,.f) , where .Do can be given 

various plausible values depending on the mode of deri~ation6 

(e.g. from effective range theory). This approximation corres-
• 

ponds to overemphasizing the high momentum components of the 

linear momentum transferred between the deuteron and the proton. 

The effect can be calculated exactly in the plane wave 

approximation·where it results in a multiplicative factor 

depending on th~ momentum transfer such that the back angle 
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cross section (corresponding to high momentum transfer) is 

attenuated. This attenuation Will be less, ~owever, when 

distorting potentials are introduced, for, in this case, back 

angle protons will be generated l~rgely in a stripping interaction 

of relatively low momentum transfer. 

The zero range approximation tends to overestimate the 

contribution of the interior regions to the source of protons. 

The difficult exact finite range calculations have been 
. 1 1 

performed for some cases. Dickens et al ·. compare the results 

with those of "Local Energy Approximation" (LEA), which was 
12 . 

introduced byPerey and Saxon. Here the zero range "form 

factor~ is multiplied by radial factor that depends on the. 

energies of the particles involved at a given radius (Local 

Energy). It turns out that finite range effects are not, 

negligable, that they are smallest for the most "physical" of 

the possible deuteron optical potentials (disc~ssed in Chapter 

VII); and that the LEA is a remarkably good approximation to 

th t 1 1 t . D. k t 1 11 . t bl . 1 e exac ca cu a 1on. 1c ens e a g1ve a no a y s1mp e 

procedure for the incorporation of the LEA into stripping. 

Us~ is sometimes made 9f sharp radial cutoff as a rough means 

of simulating this effect although it is not as good as LEA. 

The calculations of Dickens et al suggest that with well chosen 

optical potentials, the overall normalization is the quantity 

.most influenced by this approximation. 

It has been suggested, 13 however, that LEA is less adequate 

f 
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as a representation of finite range effects for light nuclei: 

a higher order approximation than LEA is appropriate for 
25Mg g.s., a case·we consider in Chapter VIII. The effect 

is not large. 

We must note that in an approximation similar to LEA, 

a finite range stripping interaction has been shown14 to 

have a very small effect on the angular distribution of protons 

in 24Mg(d,p) for 1 transfer of zero or two. 

2. Effects Due to Non-locality of One Body Potentials 

The most physical one body potential for either bound or 

scattering states is non-local. The antisymmetrization of 

the total wavefunction and the consequent exchange integrals, 

together with the need to account for the effect of virtual 

excitations in a one body model are responsible. It turns 

out (Perey effect) (see Austern 15 ) that the wavefunction of 

an attractive non-local potential is always less within the 

nucleus than the wavefunction determined by the equivalent 

(energy dependent) local potential. This means that local op-

tical potentials found by matching elastic scattering ~re 

bound to overemphasize the contribution from the nuclear 

interior. This is interest~ng from our point of view in that 

part of the non-locality in an eli!:lstic scattering optical 

potential is due to the excitation and deexcitation of the 

strongly coupled states. To some extent then, for reasons 

explained in Chapter VII, we expect that explicit inclusion 

..... 
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of s~ch states would, other effects aside, reduc~ the back 

angle cross section by virtue of the changed elastic channel 

wavefunctions. This change is in the same direction as LEA. 

We might suppose that the effect of non-locality of the one 
I . 

body potential could, like the finite jrange effect, be simulated 

by a suitably chosen radial cutoff. 

Our program has provision for an arbitrary radial cutoff, 

but this feature was seldom invoked. The extensive test of 

DWBA for 4?ca(d,p) carried out by Lee, Schiffer et a1 16 

suggests that although some angular distribution shapes were 

improved by the use of a radial cutoff (possibly due to enforced 

neglect of unsatisfactory wavefunctions in the nuclear interior), 

the spectroscopic factors could not be consistently extracted. 

The proton angular distributions were fitted quite well for 

. calcium. 

3. Deuteron D-state 

j-dependence occurs which is quite large for cases where the 

l transfer is as large as three. The effect on l=O.transitions 

is quite small. This calculation accounts for the tensor 

components in the stripping interaction, v'fl, ' (the potential 

that binds the deuteron) simply by incor~orating the correct 

d-state admixture; a property of the DVVBA method (Johnson) • 

'i' 

.. 
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4. Exchange Effects 

The effect of neglecting the exchange integrals increases 

with decreasing A, 19 but is probably small even for light 
20 nuclei except perhaps for levels forbidden by some selection· 

rule. 

C. DWBA in Light Nuclei 

Among the approximations made in the customary DV'IBA 

approach we might have listed the neglect of the polarizability 

of the deuteron. Some discussion of this phenomenon will be 

given in Chapter VII, but it seems that to give a ful~ consistent 

description of the role played by this and associated ph~nomena 

in stripping reactions it is probably necessary to go outside 

the framework of the DWBA altogether. For nuclei as light as 
21 

carbon (see, for example, Schiffer et al ) or oxygen (see, for 
22 example, Alty et al ), the customary DWBA does not give good 

angula~ distributions in the backward hemisphere, nor even fit 

the sh·ape of the stripping peak very well, and LEA does not 

seem to give a c6nsistent improvement. We take this to imply 

that we should not expect perfect angular distributions for . 

stripping on magnesium. The basic assumption that str.ipping 

maybe adequately described by considering only the centre of 

mass motion of the deuteron tends to fail when the nucleus is 

of compara~le dimensions to the large, loose deuteron. A quite 

different stripping theory 23 has been introduced in which the 

proton and neutron propagate independently in the field of the 
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nucleus; it has had considerable success in carbon, for example. 

-A somewhat different departure· from the customary DWBA 

is embodied in the.calculatiomof Rawitscher24 who employs 

coupled channel techniques to include the stripping interaction 

to higher ~rder. Significant changes are found in strongly 
41 

excited levels of Ca. Referring to the ~pecific case of 

magnesium, we note that the d5/2 stripping amplitude, for 

example, is split among three 5/2+ levels: it is not altogether 

clear that one can argue from 1h:e relative weakness of the 

cross section of one of these states (compared with the very 

strong levels of calcium) to the smallness of the effect under 

discussion in stripping on magnesium. In fact, as we shall see 

in Chapter VII, the whole process of deuterons interacting with 
24Mg i.s poorly understood. One aspect of the general problem 

of applying DWBA to light nuclei is the difficulty of determining 

suitable optical potentials. Because of resonance phenomena 

that may occur, optical potentials averaged over a range of 

nuclei are often found necessary (for example, see ref. 21 ). 

With these the angular distributions are, as mentioned above, 

often quite poor. In particular they are too low in the backward 

h . h d. 1 b f t . . . 1 25' 26' 68 em1.sp ere. Accor 1.ng y, a num er o s r1.pp1.ng ana yses 

have been made in which the optical potential is adjusted to 

fit the stripping reaction itself, and it is found that the 

absorption required is usually considerably less. In fact, we 

have. found that the deuteron optical potentials used in refsf5~ 

'i 
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gave a v~ry bad representation of elastic scattering - the 

absorptive part was about half of what might have been expected. 

This is possibly related to the deuteron polarization phenomenon: 
I 

the optical potential expresses the absorption of ground state 

deute~ons from the beam. Some are absorbed into compound 

nucleus states, but some into excited deuteron states (which 

represent the fact that the deuteron becomes smaller in the 

nuclear interior) which may still undergo stripping. 

D. Consistent Study of Inelastic Processes 

It is perhaps remarkable that in spite of all the strictures 

that have been raised againt it, zero range DWBA sometimes 

works remarkably well. Certainly, there are many parameters 

involved, and it is true that often optical potential parameters 

are required which are not suitable for deuteron or proton 

scattering. As an example of a particularly successful zero 

range distorted wave (i.e. DWBA) calculation, we note the 

work of Bjorkholm, Haeberli and Mayer27 who find rather good 

agreement between experiment and the customary DY'IBA theory 

for the angular distribution, analysing power and _polarization 

73 of the (d,p) stripping reaction on the moderately collective 

52cr leading to the ground state of the residual nucleus. The 

point is that the deuterons and protons are treated consistently 

match~ng the (d,d) and (p,p) cross ~ection and polariza~ion data 

at the appropriate energies and thus fixing the optical 

potentials for the stripping calculation. This is a model of 
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what we would like to do when we ha~e included ·the inel~stic 

prbcesses in the calculation; new optical potentials would be 

found which would reproduce all of the deuteron and proton 

elastic and inelastic data with . .££ calculations. 

There remains the possibility that ~he agreement found 
i 

in such calculations as the above, for one* state, at one 

energy is fortuitous. A stronger test of either DWBA or CCBA, 

then, wou~d be that a similar agreement should be obtained 

over a range of energies with continuously varying optical 

parameters. The coupled channel stripping calculations 

should also be carried out for a series of energies. As the 

inelastic processes are expected to be energy ·dependent (we 

shall see that they might be expected to absorb some of the 

energy dependence of the optical potential), this is expected 

to provide a more rigorous test of the stripping mechanism 

common_to both approaches. 

The experimental data required for a program such as this 

is corisiderable; it is never available in all its detail for 

·nuclei we may wish to study. What is available varies from 

case to case, but in general our calculations are model 

calOulations. We sh~ll discuss the optical potentials in 

*Anticipating one of our findings: entrance channel inelastic 
effects in magnesium can alter the relative strength of two 
levels rath~r markedly with only a moderate change in angular 
distribution • 

.. 
. '• 
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Chapter VII, but we mention that spin-orbit interactions are 

often chosen for physical reasonableness rather than from 

any fit to polarization data. Where we treat energy dependence, 

we must follow a model calculation by assuming an energy 

dependence for the optical potential. Cases of this are 

described in Chapter VII, and their use in particular stripping 

reactions is discussed in Chapter VIII. 

E. Inelastic Processes in Stripping Reactions-:Summary of Problems 

Raised 

The foregoing discussion of stripping re~ctions allows us 

to enumerate in more detail wha.t we hope to learn from this 

· study. 

1. We must be able to demonstrate the validity or otherwise 

of the customary measurements of the Nilsson factors cj based 

on the factorization eq(2) of Chapter I which depends on the 

neglect of inelastic processes. That is, we should be able to 

determine the extent to whi~h a calculated cross section is 
2 . 

proportional to c and the extent to which the proportionality 

constant can be reliably calculated from nucleus to nucleus. 

2. We should determine the degree to which the poor angular 

distributions calculated for light nuclei using DWBA may be 

repaired by the inclusion of inelastic processes of the kind 

described he.re. To the extent that we fail, then DWBA anca· its 

predictions are in some doubt. We hope to settle the question 
:~ 

of th~ need for radically different stripping and scattering 
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optical potentials. 
, '/ . 

3. Related to ( 1) and ( 2) is the q_uestion of the effect on the 

angular distributions of inelastic processes and the reliability 
2 

of the common practise of determining c in the rare earth 

region from measurements at, perhaps, ,four angles. Connected 

wi.th but distinct from ( 1) above is the q_uestlon of "j-dependence" 

whfuh is not accounted for in Mg by the use of spin-orbit 

interactions. 

4. We should hope to demonstrate the basis of the findings 

of Sietnssen and Erskine,28 that the most satisfactory optical 

potentials for stripping onto tungsten were "average potentials" 

over the rare earths rather. than potentials which optimally 

fit.elastic scattering on tungsten. 

5. It turns out that when coupled channel calculations of 

inelastic scattering are carried out, it is often possibre to 

tell whether a process was populated directly from the ground 

state or .whether a mul,tistep process was involved in the 

excitation. A direct excitation has, as in the case of stripping, 

an angular distribution characteristic of the angular momentum 

transferred~ If a state of known spin corresponds to an 

angular distribution which is markedly less forward peaked or 

markedly augmented at bade angles .'than would be expected for a 

direct excitation, then we may suppose multistep processes 

to be important. This device has been used 29 to make deductions 

about certain gamma band states in Erbium, for example. Now, 
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the claim has been made 30 that some property of this kind holds 

for stripping also; the claim is that one may suppose inelastic 

processes to be significant where the angula~ distribution is 

distinctly augmented at back angles, in comparison with the 

DWBA result. It is important that _we test this plausit;>le 

hypothesis. 
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III. FORMAL THEORY OF NUCLEAR REACTIONS
I 

APPLICATION TO STRIPPING 

In order to justify the formal results that we employ in 

calculating stripping cross sections, we first give a brief 

account of some relevant aspects of reaction theory. In view 

of the special problem~ associated with rearrangement collisions

the ad hoc quality of the customary_ assumptions, for example-

we have felt it necessary to p6int out some of the fundament~l 

weaknesses of our approach which, as we shall show, is a 

generalization of the usual DWBA stripping theory. While not 

intended to be a full critical analysis of rearrangement 

collision theory, we hope the following makes clear the 

limitations of our calculation. 

A. Generai Formulation 

As a con~equence of the finite range character of nuclear 

forces (and, in effect~ of shielded e.m. forces) it is .possible 

to divide a particular:many body system into partitions such 

that an asymptotic region may be defined for each partition; the 

various components which define the partition are non-interacting. 

A partition is defined by the nucl.eons in each component~ not 

by the states of th~ components. 

In a time dependent picture, a nuclear reaction takes place 

when the components of a two-component partition come within 

range of the nuclear interaction. The nuclear interaction, in 

._, 
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general, couples the "incoming state" to all the states of the 

total hamiltonian. We may have a special interest in 

A+a ~ B+b 

for example, but a whole series of reactions 

etc. 

cannot be ignored in the complete solution.* Energy 

( 1 a) 

( 1 b) 

conservation will, of course, dictate that all the wavefunctions 

for many partitions will decay exponentially in the asymptotic 

region. However, all of these states are part of the complete 

solution 'f of the total hamiltonian, H 

(H-E)lf =o (1.} 

We see that in stripping reactions where states of only 

two partitions are of interest, w~ are actually involved 

in a many body problem of overwhelming complexity. It turns 

out, however, that it is just certain aspects of this complexity 

that make_ it possible to give a phenomenological representation 

of many body effects through the use of such constructs as 

the optical potential (whose absorptive powers are well known!) 

In view of the various partitions which potentially may 

*The quantum mechanical 3-body problem was solved only when the 
import~nce was appreciated of in~orporating all the communicat
ing channels into the problem in a symmetri~ manner. 
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enter our discussion (see ( 1 a), ( 1 b))~· we introduce the 

following notation. We shall speak of partition L, where 

1=1,2,3 •. Normally, 1 and 2 will correspond to the 

incoming and outgoing partitions of interest, respectively. 

As we can almost alw~ys speak (in;two~component partitions) 

of a "particle" (in general, composite) and a "nucleus," we 

may label the components of partition 1 as p1 and n
1

. 

It is convenient to define an asymptotic hamiltonian,I\ 

for p~rtition L in the following way: 

H=H +T +V
1
· 

L L 
( 3) 

where v
1 

is the interaction which vanishes asymptotically in 

L, and T
1 

is the c.m. relative kinetic energy of the components 

of L~ The separation. of the centres of mass of these components 
. . ' -) 

we label r
1

. 

We also define the hamiltonians which correspond to the 

internal energy of the components of :P?rtition L, as follows: 

( 4a) 

. p N 
where H

1 
and H

1 
are the projectile and nucleus internal 

hamiltonians having eigenfunctions in the mnemonic notation: 

=o 

" 

I .. I 
::I 



-29-

h f l ,,L 1· th . th · f t. f th " l " w ere, or examp e, 'i s e 1 e1gen unc 1on o e nuc eus 

in the L partition. 

The complete sets n( and ~·contain states belonging to the 

continuum. We shall indicate below hbw the influence of the 

continuum states can be accounted for by means of an optical 

potential. 

The eigenfunctions of H
1 

are given by 

(5) 

where the channel label, o<., subsumes i and j. We define 

plane waves 

E 

~oi.L(/,..) of momentum. 
,. / '2. 

"" 1(0( 
'l _.Mt.. 

, where 

where ~t.. is the L partition reduced mass. They are solutions 

of the non-interaction equation: 

(b) 

where 

Although the internal structure wavefunctions are properly 

orthonormal, , it is important to 

observe that ie: never, in general; zero - a 

difficulty that pr6pagates throughout reaction theory. 

We can now write down the well known formal solution of 

eq(2) for 1 , the total wavefunction: 
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-"' H V L \f f::- L &1(1... 

(~) 

(1) 
Here, "\(c;~.~,;. is the solution with plan1e waves in channel 

of partition L, and outgoing (resp~ctively, ingoing) waves in 
' ' ' ~ 

all other partitions, and E :::. E ::t: if The "post" and ''prior" 

forms of the exact transition amplitude for channel ~ in parti

tion 2 with incoming waves in channel« are, nespectively 

(see, for example, Goldberger and Watson, 31 p.197) 

{qq) 

and 

( 1b) 

Note that T+=T- only on the energy shell where 

+ 
furthermore eq(9a) involving 't derives its usefulness from the 

fact that if_.;1can never be known exactly - if it were' there 

would be no need for (9a), This equation, however, is .the basis ~ 

of the usual perturbation approximations, which leads us into 

our difficulties: the kernel for the perturbation series (in 

plane wave Born, or DWBA) is singiilihar (see, for example, Greider 

and Dodd 32 ). Moreover, the rearrangement form of the Lippmann

Schwinger equation, with the m-partition outgoing Green function 
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( 1 o) 

is homogeneous and does not have unique solutions. (For a 

discussion of these points, see Brezin33 and Greider and Dodd). 

The same problem occurs in the simplest rearrangement process -

the three body problem. What does this imply about stripping 

reactions? Clearly, the fact that they are vastly more complex 

im other respects may mask specific three body effects; yet, 

certain results bf an exact three body treatment* should giv~ 

us pause. 

Numerical solutions are difficult but have been carried 

out with simple separable potentials. These calculations 

suggest (Brezin) the importance of the symmetric treatment 

involving all the physical partitions and that the simple 

approximation schemes involving only transitionscbetween 

particular channels of interest are inadequate for n-d scatter

ing and breakup: it would.appear to be"more important to 

treat the three body mechanisms exactly than to have a very 

detailed two body foite·e' and to treat the three body dynamics 

approximately."(Brezin) 

We shall follow the usual road in ignoring these fundamental 

difficulties. 

*For a lucid account of the motivation, solution and properties 
of the Fadeev-Lovelace equations, see Brezin. 
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B. Approximate Transfer Amplitude 

At this point we have quoted the formal expressions 

(eq(9a), (9b)) for the transition matrix, T~ ~hich could in 

principle be calculat~d. 
' I 

Clearly, in the face of the absolute unattainability of 

1', some approximation procedure will have to be involved· if 

we are ever to calculate numbers to compare with a measured 

flux of protons at angle 8 . Our program is to provide such 

a comparison through the use of a coupled-channel generalization 

of DWBA in which the"distorted waves" become solutions of an 

inelastic scattering problem containing excited states of the 

nuclei. We shall not discuss the coupled-channel theory of 

inelastic scattering here, and we shall use standard results 

from Feshbach's unified theory of nuclear reactions (Feshbach34 ). 
35 The technique has been presented in detail by Glendenning. 

This ~r~icle contains all the results we shall need and we shall 

:quote results from it without proof. 

In order to obtain solutions of equation(2), we may expand 

the total wavefunction in the states of the various partitions 

as follows (see(4b),(4c)): 

- ~' (fl (uo} 
l 

= Z,' ffc, v~, +z,(a1) ' (II b) 

' 
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and similarly in~her partitions; let us consider only parti-
-

tions 1 and 2.explicitly. The expansion coefficients 

are the relative (centre of mass) radial wavefunctions for 

partition L with centre of mass separation RL. Nqtice that 

we have alternative expansions of the wavefunction, so that 
' 

the natural generalization of the derivation of the coupled-

channel equations for inelastic scattering (using expansions 

(11a) and (11b) together with an ad .h.Q.£ stripping interaction) 

will be incorrect to the extent that (~c. /lfj ) i="O for i 

and j within whatever projected spaces might be appropriate.* 

In fact, it will be seen that this non-orthonor:mality problem 

reappears in our formal result. 

The projection operators required are defined as follows 

for partition L: 

(11) 

p~ p~ojects onto the ground state of the projectile in L; 
'-

for L=1 this is the ground state of the deuteron. For L=2 

(proton) it is 1. These operators will be useful to us when 

we come to discuss the general problem of the composite pa~ticle 

optical p0tential. The nucleus projection operators are: 

*We h~ve an over-complete set. A rigorous coupied-channel 
derivation would involve a Schmidt orthogonalization procedure -
and be prohibitive. 
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PL 'Y ::: ~ I \.}~. '.>(VjL I 
J 

( ts) 

'PL.\> projects onto some subset, which we . shall also refer to 
v 1 

. symbolically as P~. , of the states of the nucleus in 1. Vsing. 
1 

these, we define total projection operators 

with 

(1 4 q) 

It follows from Feshbach's theory (see Glendenning35 ) that 

thos~ parts of the exact total wavefunction , that lie 

wi th:in the subspace P1 , i.e· Pt.}' , can be calculated from the 

following effective interaction: 

This is a formal result and -v: , a complex, non-local function 

involving all the nuclear coordinates, cannot be calculated 

exactly from it. However, the diagonal m~trix elements (and 

non-diagonal~ in a macroscopic collective model) are often 

represented by the optical potential. In the usual treatment 35 

the second half is assumed negligable. Let us assume we have 

some ·~ We shall discuss our model for it· in Chapter VI. 

We can define the following Green functions in terms of Y.-'V'; 
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ft) 

'3, -::: E_.- H,-V, (I b) 

I 
(-} 

E-- ~--v/ ~,.. -:: ( lt) 

(-) 
Note that the incoming wave Green function, ~, , involves the 

complex interaction lh -t 
From these, the projected wavefunctions with plane wavea in 

channel o<. or [3- . may be calculated using the Feshbach theory 

results (see Glendenning35) 

(-t) - -v {-t1 
1>, l :- j\..0( I 

""(-) 
These equations ~re exact. The tilde on X~ draws attention to 

the fact that it has been calcula~ed from the complex conjugate 

of the effective interaction. When we wish to indicate that 

we are calculating X, from a phenomenological representation 

of ~ (e. g. the optical potential~ V, ) we shall write them 

, for example. :We shall now show how a coupled-

channel Born approximation can be derived by a generalization 

of the proof of the DWBA given by· Greider and Dodd. 32 

The Green function for the entire system is given by 
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(?,.o) 

and the wave operators Jl.,+ , f2,.- are defined in terms 

of the exact t many body potentials, v, and v2. ' as follows: 

)2 4:> 
I 

They have the action 

. . I 
t + v, -::: I + uc-

which is equivalent to eq(B). 

( '21 b) 

(~2) 

Frc;>m equations· (8) and (9) we may write down the transition 

matrix element for a transition from channel ot in partition 1 

to channel·.~ in parti tion.2 as follows: 

T 
(+) t) 

d.fl :: < 4'~~ I v~ + v?. c/v, 14:>o(, > 

Tc-J 
v..p. 

(21b) 
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These ape the ''post" and "prior" expressions for T, respective
r-J 

ly. Consider the operator U~, defined in eq(23b) 
(-) (-+) . (-J+ 

Uz' = V, -1" v?. G v, ~ )2'1 vI 

= Jt.)+(v,--vJtJ~-t) 4 Jli'Ct- (v,-1!;) 0:,~+)) v, b-4J 

This last form is an identity derived from the preceding, 

using the definition (eq(18)) of 
(-tJ 

~. and rearranging terms -

we shall show that the second half vanishes between plane 

waves. Using the identity 

A-' -tr'::; A-'(s-A) rs-' ('l..S) 

we find that 

(26) 

Using becomes 

- "' r- '""\ r- t+> -r r- ( ·) (+J_, r 
- V t -+ VI ~ 1 V I --+ v"'J.-v, ~I V 1 

- ' r (+J ) (_ c-+J ) - v, W, -t (H 1 -H'2. LV, _, 

WI
(+) 

where we hav~ used the defini~ion of Now, using this 

. a(,+> again, together with the explicit form for J we obtain: 

S. t . = ( f -i-. L f - H1.) ( W ["'" >--- 1 ) 

Inserting the plane wave eigen:Ve.otors ~~of H'2. , we find that 

between plane wave states the following holds: 

~ t -= L t ( W f +J - I ) 
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In all cases that will concern us, this expr~ssion vanishes 

in the limit f~ 0. We have defined 1f; to allow scattering 

PI
, 

only within , in our particular case, the deuteron ground 
,.., ' 

state. For this reason, it does not generate an outgoing flux 

in the "2" channels;_ that is to say, I w,t1-J I~.) has out-
~ '(-tJ 

going flux in a finite number of channels for which <-:r2 1W, I q,) 

is finite. Hence 

(If V, did not have this property, 
(~) . 

~, could be rearranged 

to have a part with an outgoing G:ft·een function for "2" channels 

which would cancel ( E + ~ f - H7.. 'I). 

Finally, we have 

(-) ( -) -t h·) 
Uz, ::: Jlz (v, .. -v,)w, 

The well known relationship of Gell-Mann and Goldberger relating 

Green functions for partial potentials becomes, in this case, 

( using e q ( 1 7 ) : 

Jl;) ....: [1 ... Gt(-) ( v'J.- --v; -t) ] w;-J 

Inserting this in eq(27), we get 

Where lJ: and -v;_ are complex; note that the conjugate of 
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appears in Greider and Dodd's version of eq(28) and of eq(30) 

below~ This corresponds to the following transition matrix 

(?.'1) 

Following the same procedure, we can derive the post-interaction 

'T (-t)-< ""\.(-;) \ f-t> (-t) r~..f!> - ~~z (v~-v;)t (v2.-1l;)G [v,-V,) 1 X o(' I (3o) 

Equations (28) and (30) can be used for ~eal. calculations 

only after a number of further approximations have been made. 
A+J 

In the first place, the term irivolving ~ is dropped, being 

computationally intractable. This amounts to recognizing that 

v1 and v2 have two actions: they cause inelastic e_xcitations 

in the appropriate partition, and they cause rearrangement, 

i.e .. transitions, between partitions. Roughly speaking, dropping 

the Qt)term in (30) involves keeping v
2 

in its inelastic excita

tion capacity to all orders, and to first order as a stripping 

interaction. Rawitsch~r24 has carried out calculations in Which 

the stripping interac;tion is included to higher orders and the 

effect is appreciable. We should note also that Rawitscher's 

calculation involved stripping reactions in which the first 

order term ( and so, cross section) was signifcantly larger than 

in the cases we consider. However, in Chapter II we argued in 

general terms that this does not nec~ssarily imply that for Mg, 

at least, the higher order terms are negligable. Greider and 
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Dodd show that equation (27) can be r~arranged into the form 

(:, \) 

(where ), for which the kernel.is diver-

gent. (It is a reemergence of the divergence whiChnecessitated 

Fadeev's treatment.) Thus our statement that we have treated 

stripping to first order must be qualified: we are not taking 

the fihrst o:r:der term of a·convergent expansion. Just what this 

means is unclear though Dodd and Greider36 claim* to have reform-

ulated the series in a convergent form. 

We shall choose eq(30) as the basis for our calculations, 

our criteria being calculational tractability and physically 
/ 

reasonable results in the analogous D\VBA calculations •. We 

further approximate by replacing XL by XL calculated ,using, 

phenomenological potential ~ 

~ (-) - I - (+) ....... 
Tee~ ::0 < "X.p.,. I ( v'l- -v,:J xd I / 

(3 2.) 

We shall refer to this as the coupled-channel Born approximation, 

CCBA, expression for T. 

C. Stripping Reactions 

The particular reaction to which we shall apply this general 

*This writer has not studied their solution. As seems inevitable, 
their solution is a special case of the Fadeev-Lovelace equat:iuns. 
A calculable form of this work is due to Rihan.37 

·t 

. I 
. 'I 
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i 

result is deuteron stripping: 

d + .A p+(A+1) (~3) 

Replacing our 1 and 2 suffixes by d and p, respectively, we 

1 have 
p. 

VJ. ':' ~[V(~;-~)~ Vci .. -rl)J 
(.::: l 

(3 'fDI) 

;; 
vp 

.... V" 

vr = VC?,-ln) ... yr 

- \jt\f -'f . 
vr -

The stripping interac,ttcm Yrt.,. == ,\/,_- \1: , becomes 

Vst'(' = V,, -t" v'- -v;: 
It is customary to retain only the Vfl'f' term. The neglect 

term has been a matter of pragmatics as it 

is rather difficult to calculate and it has seemed that 

reasonable results are obtained without it. Recent calculations 

by Smith89 suggest that this term, ~n particular the imaginary 

part (see below), may be importarit for nuclei as light as 

silicon. It is possible, howeve~, to argue that in general 

its effect is small. ConsiderY~ While it is an optical 

potential, it is, after all, an approximation to an effective 
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interaction, ~nd, as such, must be constrained to have the 

same property, viz. -1J:"' ~'l. ~ P,.. Hence, to the extent 

<--vC;' 1..,-r:: I -v~-tJ ~ __ =-o ( that P1P2 ~ 0, "-r V'l 1\.IA / remember, P1 includes 

a projection onto the ground state of the deuteron). Note also 
·-

that ~ is an A+1 particle operator, lor a one particle approxi-

mation to it (in the diagonal matrix elements' or in a 

) 
. \/P 

macroscopic model . On the other hartd, v. is an A particle 

(real) operator and does not contain a projection operator 

which projects onto the proton plus the low lying states of 

the A+1 particle system. In spite of this, consideration of 

vr suggests that its action will be small for much the same 

.. reason that that of it is small: there is still need for an 

overlap between a neutron bound in a deuteron and a neutron 

bound in a nucleus, as the. neutron coordinate does not Bnter . 

this term of V')"rr In a particular nuclear model, then, it 
f -

can usually be argued that V andX will have very similar 

actions, and that the difference can be ignored, although it 

is quite conceivable that the difference could have the same 

order of magnitude as either term. The cancellation will never 

be perfect;*:.the whole question is clouded by our dubious 

*Within the collective model, consider the following decompo~ 
sition (see Chapter IV) of a st~te in a bahd of· the (A•1) 
particle nucleus. 

< ( 1 )~ c Jl T, CJ l J, 1\ "J . 
/1, I"',K",) ~jln2, "T 0 K,K, f'i" M, j)~o J o) (>/k.) ~j;,./ f,.) 

.on '1 
Clearly, this contains several states .DI'fo lo) belonging to P

1
; 
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procedure of regarding the scattering interaction and stripping 

interactions separately, and including the one to all orders 

and the other to first order, and subtracting them. As we have 

suggested, a rigorous solution to this problem can only be 

obtained when a complete orthogonalized basis is employed. 
~ - ) We can state, however, that the effect of (V - -v; depends on 

the nuclear model and on P1 and F2 , and it is possible that 

it is more important for CCBA than for DWBA. 89 
life calculate 

the stripping transiti6n matrix: 

(s7J 

having simplified our notation. It looks much like DWBA and, 

in fact, was written down by analogy to DWBA. 3 

D. Coupled Channel Procedure for Stripping Amplitude 

The calculation of the transition matrix T fnom eq(37) is 

still a difficult technical problem. A purely coupled channel 

method of calculating stripping amplitudes has been devised 

by .Ascuitto and G1endenning. 4 We shall show formally that it 

so may l1'.z.M?.K:~.) based on a different intrinsic state, Ka .
Now, it can be easily shown that exciting only th~ core of 
this, i.e. ' .1>-:r lo/ ~ <" 'D -s' ,.., .z a·( ~o I o'>; 
thf'ltwe can excite states of the K1 band, and, in principle,mcM'j 
b~nds. This, ~hen, is a clear difference between yP which , 
operates only on the core by definition and 17; which acts 
only within a band bycre1'inition. , , , 
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gives precisely the stripping amplitude of eq(37). 

In outline, t~e deuteron coupled channel wavefunctions 

x:are calculated and then incorp~rated in the "source" term 

of an inhomogeneous coupled channel equation for protons. 

This latter calculation requires litt~e more effort than the 

calculation of x; ' yet the transition mat~ix can be extracted 

directly without the complication of evaluating T by integrating 

eq(37). 

Consider the set of coupled inhomogeneous equations implied 

by the following ansatz: 

The super~cript I emphasises that we have the solution to an 

inhdmogeneous equation . 
~) 

The deuteron wavefunction?, Xa , are 

. solutions .of the coupl~d homogeneous equations: 
l 

( T tA ""'" ~ ... f) X:t -::- e> 

. The boundary condition is that ::tt' contains a plane wave of 

deuterons in the target ground state channels, and outgoing 

waves only in other channels. The effective interaction 

will be taken to operate only within some subset of the nuclear 

states. These will nqrmally be the states which couple most 

strongly to the ground state of the target nucleus. The 

relative motion wavefunction of a deuteron in its ground state 

ahd the strongly coupled target states given schematically 

.. 
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(for d~tails of angular momentum coupling, see Chapter VI) 

by: Ho) . I 

)CA = 2 tfot.£A) ().(11. (RG!) 
o£ 

Similarly, Vr is defined within some specified set P of 
p 

1 target states which are strongly coupled together (not 

(40) 

necessarily to the ground state). A formal solution of equation 

(38) may be written down as the following homogeneous 

integral equation 

X ::r.<.,.J 
f 

There is no plane wave component ,in X/ . This can be 

rearranged, using identity, eq(25), into the form 

y.T(i") :::- I [ 
Ar - ?=-~ I;-

We notice that is the bare Green function with the, 

outgoing wave boundary condition (compare usual derivation of 

eq(9a) starting from eq(10)) which leads by a stardard 

procedure to the following expression for T: 

where we define (x:)J as the conjugate of 

;.,c-J -
1\...p -

(4J) 

(4 4) 
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This is precisely the wavefunction defined in eq(19) and 

appearing in ~q(32) and eq(37) involving the con~ugated effective 

interaction. Thus we see that the T-matrix extracted from the 
! 

solution of eq(38) with outgoing proton boundary conditions is 

just that of eq(37) which we called the CCBA approxi~ation to 

T. 
i 

/ 

It has been shown by Ascuitto and Glendenning4 that in the 

DWBA limit, the simple coordinate space representation of the 

Green function 

E..,_ H,- Vr 

where "fp corre spends to a space of one nuclear state, can 

be used to prove our formal result explicitly. This proof 

would apply also to the case of coupled incoming channels leading 
. 3 

to t.he hybrid cc-dw calculations of Iano, Penny and Drisko. 

E. Summary 

We have derived a plausible generalization of the DWBA 

stripping amplitude in which no assumptions beyond those which 

are customary are made. However, it does include the effects 

of inelastic transitiohs which have been previously neglected. 

It is·w~ll known that the con~entional treatment of stripping 

r~actions has defects which are quite independent of any con

sideration of inelastic effects •. This will be partit~larly 

true when we make additional srumplifications such as the zero~ 

approximation. Thus in fitting e*periments there is a limit 

to what we can expect, particularly at backwards angle's~ Our 

theory includes nothing of antisymmetrization effects. 
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APPENDIX 

Use of Source Term for Inelastic Scattering 

Comment should be made that source term methods might well · 

be useful for a large class of non-rearrangement inelastic 

scattering reactions. The time necessary for a coupled channel 

inelastic scattering calculation increases almost exponentially 

with the number of channels included. There is, furthermore, 

a natural limitation to the number of channels that can be 

included. Under certain circumstances the source term procedure 

is a·suitable technique for alleviating this problem. It may 

occur that the states of a nucleus fall into two subsets: one 

group being strongly excited and the other relatively weakly. 

While transitions between states within a set are important, the 

influence of the weak group upon the strong group may be negli-

gable. Such a circumstance occurs, fmr instance, when the 

inelastic excitation of the· ground band and gamma band of a 

deformed nucleus are calculated together. In this case, we 

calculate the ground band wavefunctions 

and then the weakly ~xcited level~ 
f+J 

(H-e" J '!wEAk "'- \} :P,lRo~C.. 
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If a s~arch for certain parameters describing the weak levels 

is to be made, ~ could be stored and reused with considerable r~TA~~ 

computational savings. 

,, ' 



-49-

IV. NUCLEAR WAVEFUNCTIONS 

A. Introduction 

This study is concerned with deformed nucl~i which can 

be s~t into rotation in some scattering process. It is now 

believed that nuclear non-sphericity occurs in a wider* range 

of nuclei than those nuclei the spectra of which are clearly 

rotational (with A.-25, A.;::150-190, and many acti.nid e nuclei). 

However, we shall confine ourselves to strongly deformed nuclei 

because these nuclei ·will not only exhibit most strongly the 

phenomena which we are studying, but the model commonly 

employed for their description is most likely to be valid for. 

large deformations. 

In the first place, the large deformation is reflected in 

a large quadrupol~ moment of the intrinsic structure, which 

within the framework of the rotational model results in large 

values of B(E2) for ;intraband gamma transitions. This in 

turn means that the low lying levels of the ground band may be 

very strongly excited by inelastic scattering and it is this 

which may prove to be importantfor stripping reactions. 

*The phase transition from spherical to deformed at N=90 
is by ~o means as sharp as the spectra might suggest; Hartree
Fock calculations pred~ct considerable deformation throughout 
the p and s-d shells; Be reveals a rotational spectrum in 
~-~scattgring and even the ground state of the closed shell 
nucleus 1 0 has definite rotational properties in the 
coexistence model. The ''ideal" shell model nucleus 18o has 
rotational properties underlying its spectrum. 
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A large deformation is necessary in order for the model 

we use to be valid. 
i 

We define an intrinsic state X, (calculated 

perhaps using some deformed potential well) so that our total 

wavefunction factors into a produc't D)(, where D is a rotational 

wavefunction. Underlying this separation is the ~diabatic 
I . . 
picture: a nucleus with a large deformation i.e., a large 

moment of inertia, will rotate sufficiently slowly, compared 

to the velocities of the single particle motion, that the effect 

of the coriolis interaction can be treated in perturbation 
-

theory. It can be shown that the product wavefunction D 

is a good approximation if the intrinsic wavefunction is nearly 

orthogonal to the same intrinsic wavefunction at a small 

~ngular displacement. The extent to which this holds will 

depend on the deformation. We should note that a given 

deformation for a nucl~us of A-25 will not mean the same as 

it does for A-160. Ripka38 has recently called intri question 

the adiabatic model for the s-d shell, 8lthough 24Mg, fo~ 

example, has a very large deformation indeed. The extent to. 

which the collective t,ransi tions are enhanced is also smaller 

in this region. 

The nuclei we consider should have a wQll-defined 

equilibrium shape, thus excludin~\ such possibly deformed 

nuclei as 150sm (which is so soft that the zero-point motion 
I 

is comparable to the mean deformdtion) and 1 ~2 sm for which 

an added neutron may change the deformation. 
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Ideally, w.e should have available defo!'matiori parameters 

which can account, in terms of some self consistent theory, 

for both inelastic scattering as well as the level ordering o~ 

odd nuclei and the equilibrium shape of even nuclei. In 

practice, we shall have to use deformations obtained from 

scattering experiments when we wish t~ describe the scattering 

process, and deformations that account for level ordering 

and neutron separati6n energies when we wish to calculate 

the neutron wavefunction. A typical even-even rotational 

spectrum is that of 166Er. The 2+ level at .787 MeV ,is the 

bandhead of a rotational gamma band (see fig. IV.2). Figures 

IV.1, IV.3 and IV.4 show odd ~ucleus rotationa~ spectra. 

B. Rotati6nal Wavefunctions 

The use of adiabatic wavefunctions for rotational nuclei 

is standard and we menely set out our conventions and definitions 

here. They are similar to those used in the review articles 

of Nilsson. 39 

The symmetrized rotational wavefu~ction of a state of 

spin J, based on an axially symmetric intrinsic state for which 

J 3 (the projection of angular momentum on the 3 (intrinsic) 

axis) has eigenvalue K, is 

The intrinsic wavefunction, )(~will be discussed in detail 

below. 

(I) 
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We define (following Nilsson: this is not universal) 

t-n:rl 
= e XK {2) 

where Ri represents a rotation of ~ about the intrinsic 

2-axis which, with a suitable phase convention, is equivalent 
- - i 

to time 
I 

-1 reversal; Re acts on the rotation operator: 

n _, D '7 = 'J -t K -:r 
~~ M~ (~ DM~ C3) 

The symmetrized wavefunction thus becomes: 

-t (-) A. ])· . "'J.tK '\,.. J 3 
-1{ M-k 

(4) 

For the case of K=O, the normalized rotational wavefunction is 

(S) 

These wavefunctions would have to be modified in the case 

of a nucleus that was not axially symmetric·; XJ.<. would be 

replaced by a sum over x.Jl such that J1 ~ J of the state in 

question. 
\ 

In the present calculations, we use a single particle or 

single quasiparticle model for the odd nucleus of the stripping 

reaction; the target nucleus states considered will have the 

form (5) which we now write 

and the product nucleus will have the odd-neutron wavefunction, 
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where I o;/ and I O/ represent the intrinsic state of the core 

nucleons in the target nuclei, and .~ creates a (quasi-) 

neutron with <J
3
) =K. Other quantum numbers are implicit. 

If the intrinsic state· J o 7 is sufficiently "soft", (as for 

·· example, 152sm is soft in the l:to degree of freedom) the 

(It 'J 

addition of another nucleon can change the equilibrium deform

ation, or, through "blocking" effects, etc. alter lo~ sufficiently 

for <olo) ,to be markedly less than unity. Although (olo') is 

an input parameter for our calculations, and may be interesting 

in the samarium transition region, we usually assume that it 

is 1.0. In fact this will turn outito be a good assumption 

even for magnesium where the probable, deformation may be changed 

th by as much as from p%. =.4 to (32. =· 3 by the 25 particle. In 

thi.s case<olo7stil1 tu.nns out to be greater than 0.9. 

One exception to wavefunction (4•) will be considered, 

namely an odd nucleus gamma band. The general odd-nucleus 

gamma band has an intrinsic state, J
3

= J2.. , coupled to a gamma 

phonon excitation of the core for total K= 12. +2, I Jl-'2.1 

For the case K= J'J.. -2, for examp;l.e 
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As an example of this, we shall carry out a model 

calculation in which we treat the K=3/2+ band at 532 KeV 

in 167Er as being 'purely a gamma band; it is possibly 
' ' 40 

largely of this character. In this case, we shall consider 

(6) 

the excitation of this band by way of the excitation of the K=2 

.gamma bandhead at 787 KeV in 166Er. 

Our calculations ignore the presence of coriolis admixed 

impurities in these wavefunctions. In order to study the 

importance of inelastic effects, we avoid the complication 

and the ambiguities of band mixing~ Most cases we treat 

· dre those in which this mixing should be small: we try to 

·avoid cases where there are nearby bands with K differing by 

unity, for example. There is no real problem in extending 

this work to include band mixing. We remark that the drastic 

effects ,:that the coriolis interaction can have on the level 

orderin_~ of bands with K=1/2 should not affect the purity 

of the states within these bands. 

c. The Single Particle Intrinsid Wavefunctions 

The single particle intrinsic wavefunctions, being the 

' ' , I 

. I 

! 
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eigenfunctions of a hamiltonian that does not have spherical 

symmetry, have components of various angular momenta. 

For many purposes Nilsson•s41 wavefunctions for a 

deformed harmonic oscillator are adequate: 

(7o.) 

- <; X ~ q.Rtl ( 12) :,(.1\JL {7 b) 
}A 

where, using standard notation, 

(<6) 

We have omitted here any label on it fl. based on asymptotic 

quantum numbers. The c( J1) and a( J2) are expansion coefficients . 

of spherical oscillator wave functions with a given oscillator . 

constant and within some subspace of fixed total quantum 

number N=2(n-1 )+1. We. shall use the result (cf. equation 

~ 
)t 12. 

/(. ":f<·X = (-) CJn(J2)/t.n_" 
- J2 (. j2. Ji J(. ),)I J J(.. 

calculation of the form faetor ( X._Jl. is sometimes in the 

defined differently). 

These wavefunctions are clearly unsatisfactory for 

stripping reactions for two reasons. The characteristic 

(2)). 

asymptotic radial form of the osc~~tor wavefunctions makes 
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them inadequate for a reaction such as stripping which is 

very sensitive to the wavefunction at the nuclear surface. 

We prefer not to use the method of matching to a Hankel 

function tail dete~mined by the intrinsic neutrori separation 
I 

energy because of ambiguities that arise .in separating out 
' 1 
I 

' 
the rotational energy. As Nilsson points out, for example, 

for ~n s1/2 particle added to a rotor, a=1 artd.all the 

rotational energy is in the core. 

The other reason for seeking more realistic intrinsic 

wave functions is that 11 N=2 admixtures (discussed in section 

E below), while ignored in Nilsson's calculations, can not 

necessarily be neglected in certain cases where selection 

rules are involved. For example, 1=4 admixtures in the low 

lying bands of 25Mg would provide alternative modes of 

excitation of the two "forbidden" 7/2+ levels, the excitation 

of ~hich by means of inelastic scattering processes will be 

of particular interest to us. 

D. Enersy of the Intrinsic Single Particle States 

In order to calculate appropriate intrinsic single particle 

wavefunctions, we must know the separation energy of the neutron 

from the deformed welL We can calculate this from the Q value 

of the (d,p) reaction, for example, together with the following 

relationship between the experimental energies, EJ' within 

a band, K; and the intrinsic energies, t~ : 
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The moment of inertia, J , and the decoupling constant, a, 

for ~ ~iven band, may be determined by using this result to 

fit the energies within the band. 

Unfortunately, the resulting energies are QUasiparticle 

energies and will not be those of the single _particle 

wavefunctions that determine the radial shape. If pairing 

is important, the low lying energies are "compressed" around 

the fermi energy. 

E. Calculation. of the Single Particle Wavefunctions 

Two programs have been made available to us which 

calculate the eigenfunctions of a single particle moving 

in a deformed Woods-Saxon potential. In order to"use these 

to determine the correct wavefunctions, we must determine 

the deformation and potential parameters. We should not 

regard deformation parameters measured by inelastic scattering 

experiments, for example, as necessarily appropriate for 

this problem. Ideally we should determine all of these 
' parameters by demanding that all the energies £~ , (corrected 

for the energy displacement of lo~ lying levels arising from 

pairing effects) an~ for the case of K=1/2 bands, the decoupling 

parameters can be fitted sim£H taneously. It may be necessary 

to ..use a range of deformat:i..d~s for various bands in order to 

do this. When we discuss .:the details, we shall see that our 
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form factor calculations fall short of this ideal. 

Both programs finally give wavefunctions of the following 

form: 

{II) 

~her~ R~are the radial sdlutions of a 3-dimensional 

harmonic ~scillator defi~ed in an appendix. This form is very 

conv~nient for computational purposes, and we have tabulated 

c ·~ for all the cases we have treated . 
. nJ~ 

Because the particular characteristics of the deformed 

Woods-Saxon programs have materially affected the course of 

this work, we shall discuss them briefly. 

1; Faessler and Sheline42 £i~~t expand the wavefunctions of 

a spherical Woods-Saxon potential in terms of spherical 

harmonic oscillator (h.o.) wavefunctions. The eigenfunctions 

are then identified by the radial quantum number n of the 

spherical h.o. component with the largest amplitude. Wave

functions of fixed N=2n+l are then used·as a basis for a 

calculation of the intrinsic wavefunctions of given deformation. 

This follows the procedure of Nilsson's original calculations 

where the truncated space was also confined to a fiXed total 

oscillator quantum number N=2n+l. As 1 must change by two, 

four, • ~ . by virtue of parity conservation, then oscillator. 

components, N', which could be admixed with the levels under 

consideratio~must have N-N' =2, 4, ... etc. Nilsson argued 

that the corresponding 2~wenergy denominators would make.the 

mixing small, and he had the freedom to redefine the deformation 
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paramet~rs such th~t within this n~w representation .this 

mixing adtually vanishes. No such freedom exists for the 

W6ods-Saxon potential. Moreover, our primary concern is not the 

energy which is insensitive to such admixtures; but the 

wavefunction itself and l\.N=2 components are potentially 

important for our c~l·culations. The energy denominator 

argument is not convincing for large deformations where 

particular levels coming down from a higher major shell can 

exchange their identity with a level rising from a shell 

~N=2 lower. The Faessler program, as it stands, does not 

include provision for a Yl.t deformation,·although the existence· 

of deformations with this multipolarity is well established 

in the rare earths43 and even 20Ne. 44 The modification 

needed to include this would be y_uite straightforward. 

The program calculates the wavefunctions, energies and 

the K=1/2 ba~d ~ecoupling constants for all the levels of a. 

given major shell for a series of values of {3 , the Y:t 0 deformation: 

~ = .1,.2,.3,.4. For a precise definition of p and of their 

surface parameterization see ref. 42 and Appendix II of this 

chapter. We employ only their uB'' parameterization as it 

seems more closely related to the optical potential. The 

program has been updated since the published account of it: 

the more expanded radial basis is actually essent~al for 

meaningful angular distribution calculations~ The added center 

of mass correction changes the energies but not the wavefunctions 
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(significantly) in the A--25 region. 

The program has one great advantage:_ it is rapid enough 

to carry out a search over many sets of well parameters. 

Unfortunately, the components missing from their basis are of 

potential importance precisely for our calculation. Moreover, 

levels which are weakly bound for a'spherical well ( for example, 

the d3/2 level for A-25) carry excessive large n components 

into strongly deformed wavefunctions. This shortcoming seems 

to be fatal in some cases: important components of the 7/2+[633] 

state in 167Er are unbound and this intrinsic state cannot be 

calculated by the program as it stands. 

2. A much more inclusive set of basis states and a far more 

flexibly defined nuclear deformation are the features of the 

program SAXOND written' by N.K. Glendenning. It has ·provided 

wavefunctions where Faessler's program failed. Because the. 

more sophisticated calculation takes much longer, it is not 

possible to search for parameters which accurately reproduce. 

the empirically deter~ined intrinsic energies, fk . Our 

procedure has been to choose an ''"optical-model-plausible" 

set of parameters that works reasonably well in the particular 

cases discussed below. The spin-orbit strength was found to 

be optimally a little less than that employed by Blomquist and 

· Wahlborn. 45 

Throughout this work, we shall continue to refer to levels 

by their Nilsson asymptotic quantum numbers. There are few 
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cases of mistaken identity that might arise. SAXOND 

calculates a~fA from which we calculate cnlj. We shall 

give these together with cjl calculated from 

<::! ').. )'h. ( ) CJ.!I =- (;: CnJ.e X si'3"' o.f \M~est C"J~ (I 'A) 

This is the amplitude for the component of the wav~function 

with quantum numbers jl. 

It is often useful to compare these with the tabulation 

.of cjl prepared by Vergnes and Sheline 46 using equation (8) 

above together with Nilsson's 41 tabulation of a1 A. 

In the following section we should bear in mind the result 

(demonstrated in chapter VI) that the strength of the direct 

transition to the state j of some band of the odd neutron 

residual nucleus is proportional to the square of the amplitude, 

cj 2 for the appropriate intrinsic state. 

F. Wavefunctions for the Various Nuclides Studied 

1. 25 _:..Mg 

The low lying spectrum of 25M~ can be well described in 

terms of three rotational bands based on the [202]5/2+, 

[211) 1/2+ and [200] 1 /2+ Nilsson states; this is illustrated 

in fig. IV.1. The absence of a.low lying K=3/2+ band suggests. 

that first order coriolis induced admixtures are small. This 

spectrum readily yields the data ( we make use, in part, of the 

analysis of Mottelson and Nilsson) which is presented in Table 

IV.1. It is known47 that T=O pairing plays a role in 24Mg; 
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the possible role that pairing may play in deflecting the 

single particle levels of 25 
. Mg is more obscure. We shall 

ignore this factor and attempt to fit the separation energies 

given in this table. In Table IV.2 and Table IV.3 we present 

the wavefunctions for the single neutron deformed states 
I . 

(211] 1/2+ and (202]5/2+ respectively. The parameteris are 

listed in Table IV.13, but we comment that these wavefunctions 

were calculated at a single deformation that fitted best the 

energies Df the three iitrinsic states considered. However, 

the varied moments of inertia, the strong dependance of ~h~ 

[202]5/2+ level on deformation, 85 and, as we shall see, the 

stripping results themselves all suggest that these bands .in 

fact have different deformations. I:t must be regarded probable 

that the (21D 1/2+ wavefunction, at least, which was used for 

stripping calculations corresponds to an excessively small 

deformation and that c I is too large. 3 2+ .. 

Other wavefunctions have been used for 25Mg stripping 

calculations. They were calculated using SAXOND and are given 

in Tables IV.4 and IV.5. It is clear that the 1=4 components. 

have small amplitudes and we shall find reason to ask if they 

may not in fact be larger. Recently de Swiniarski et a1 44 

have interpreted inelastic scattering experiments in terms 

of a small (small, that is, for the s-d shell), riegative 

deformation in 24Mg: ~~ =-.05. We found that by increasing 

f-> 1 and introducing reasonable ~If deformations that the 1=4 
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amplitudes could be at most doubled. For the effect of 

increasing ~z, compare Table IV.4 with Table IV.6 discussed 

below. This is relevant because it will turn out that the 

I 
. . 25 

j=7 2+ states of Mg are considerably underpopulated by our 

stripping theory. We found that the introduction of axial 

asymmetry tends to depress 1=4 amplitudes and comment that 

the very interesting question of such asymmetry could well 

be e:xplored using SAXOND wavefunctions and a "sufficient" 

stripping theory. 

Finally, the [211] 1 /2+ wavefunct ion has been calculated 

with (3 1 =. 4, probably appropriate for this band, and 8 

stronger spin orbit interaction. After subtracting the c.m. 

energy correction estimated by F.S. with and without it, this 

wavefunc~ion corresponds to the correct ~eparation ~nergy, 6.8 

MeV and is given in Table IV.6a. Other wavefunctions were used 

for isolated calculations. We give only one, shown in Table 

IV.6. The parameters for these last two wavefunctions differ 

only by a difference in the real well depth of 1.2 MeV~ yet 

there is a considerable difference in the admixture of components 

with large n. We shall later find that this can lead to an ap

preciable effect on the cross section. This should alert us 

to the possible errors that might be present ( se~ Appendix f. 

to this chapter) should we have chosen various potential and 

deformation parameters unwisely. We note, for instance, that 

Ihrtree-Fock solutions can be found that have a matter distribxt1on 
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·that is certainly not describable as purely quadrupole

deformed; in fact, the matter d~formation in the centre may 

b bl "t h'l th l h l . l t 48 e o a e w 1 e e nuc eus as a w o e 1s pro a e. 

2. 167Er 

The low lying spectrum of 167Er is shown in .i:''ig. IV.3. 

The interpretation of the levels shown is due ~o Harlan and 

Sheline. 40 

The (633)7/2+ Band 

The ground band based on the Nilsson level (633]7/2+ 

is particularly interesting to us. The absence of nearby bands 

of K=S/2+ or K=9/2+ should, in the first place, etisure 

relatively small amplitudes for coriolis admixed impurities. 

More importantly, however, the ground state is expected to be 

weakly populated by the direct stripping reaction because of 

the small amplitude of the j=7/2 component in the [633]7/2+ 

state. Thus the relatively large cross section of this.level 

must be a consequence of inelastic processes together perhaps 

with a relativ~ly long tail on the radial wavefunction.* 

The Faessler-Sheline code was unable to provide a solution 

for this band. The wavefunction used appears in Table IV.? 

and was calculated by SAXOND using parameter set D. The 

calculated intrinsic energy was -,'5. 95 compared with that 

obtained from (eq. 10) (using Q=4.209) of -6.397. The 

*We shall see that both factors are indeed important. 
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difference is roughly comparable to the pairing energy 

di~placement~ Most of the strength is in the 9/2+ and 13/2+ 

levels. The 7/2+ component has a recurrent property of weak 

components and one that may not appear in Faessler-Sheline 

calculations: the relatively large amplitude of at least one 

radial component of "large" n. The n=3 c7/ 2+ component, 

although it raises the total c712+ relatively slightly, could 

have a quite disproportionate effect in a stripping reaction. 

The proportionality of the cross-section to cj 1
2 for a given 1 

does not hold if the radial wavefunctions are very different, 

and this is the basis of our comment above. Thus, although 

the cjl calculated from eq (11) should be comparable to that 

of Vergnes and Sheline (because many properties are ind~pendent 

of the radial details of the wavefunction) we expect that 

very weak components, by virtue of relatively large amplitudes 

at the .nuclear surface, may give cross sections in DWBA much 
2 

larger than expected from cj . This is independent of inelastic 

effects. We remark that these components are probably quite 

sensitive to the separation energy . 
. ~ 

The [5.1215/2- Band 

The wavefunction, as calculated by SAXOND with the same 

parameters as above, is given in Table IV.B. The intrinsic 

energy ~Si,=-5.57 compared with the empirical -6.074. 

The 3/2- Gamma Band at 532 KeV 

The 3/2- band a 532 KeY is treated as a gamma hand consisting 
I 
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of a K=2 phonon coupled to the [633]7/2+ Nils.son state. 

The relevant wavefunction is discussed above. 

155 3. Sm 

The level structure of the odd-A isotope~ of samarium has 

~een studied by Kenefick and Sheline; 49 their interpret-ation 
1 • I 

of the low lying levels of 155sm in terms of Nilsson orbitals 

is given in fig. IV.4. The A~154 core can probably be 

regarded as Gutside the very narrow transition region and the 

overlap (C>[o) is probably large in this nucleus. This overlap 
152 . 

is conceivably lower for Sm(d,~), though the effect on 

stripping may be obscured by changing quasiparticle population 
2 

factors (u ). The [521]3/2- and [523]5/2- bands must be 

mixed by the coriolis interaction. We shall, however, study the 

[52~ 3/2- band, treating it as pure, commenting firstly that 

most of the levels are more strongly populated in stripping than 

those of the [52~5/2- band and secondly that in view of the 

stripping strength of the 5/2- level of the [523] band' the weak

ness of the 5/2- level of the [521] band suggests that the 

mixing between these bands may not be great. A search was 

conducted using Faessler's code tb fit the neutron separation 

energies for the single neutron Nilsson states [521]3/2-, 

~23]5/2-, and [521] 1/2- which are respectively -5.786, :..5.4245 

and -4.·984. The decoupling paramster for the last level is. 

a=.35. The parameter set D gives respectively -5.72, -5.416, 

~4.63 together with a=.485 for the [521] 1/2- level. The 

' . j 

a I 
i 
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parameters R0 and a
0
were not varied in the search. The 

I 
correspondirig wavefunction is listed in Table IV.g. The 

value of V (=10.) used by Faessler and Sheline is too great. ' so 

The value ·of c512_ is very sensitive to this parameter; Vs0~10 . 
' would imply a value of c512_ so g:reat as to imply serious dis-

dgreement with the Kenefick and Sheline stripping .results. 

Vs
0

=8 is compatible with the value used by Blomquist and 

Wahlborn45 but various optical model analyses
50 

suggest that 

it is somewhat large, as does the c
512

_ listed in the 

tabulation which is large enough to account_ for the cross 

section of this level without inelastic effects contributing: 

In Tabies IV.10, IV.11 we give the wavefunction calculated by 

SAXOND firstly with the same parameters and then with V so 

·changed to 7.0~ Notice that the n=1 component for 1=3 j=5/~ 

is halved as Vso is reduced from B. to 1. We shall use both 
' 

these sets of wavefunctions for our stripping calculations. 

The deformation p,.=.3 does not include the well established 

Y4 deformation; these SAXOND wavefunctions were calculated in 

the first place for comparison with the Faessler wavefunctions 

where no Y4 deformation can be included. The 140 deformation 

was included for the case of the very similar nuclide 157 G.d. 

4. 157Gd 

The low energy spectrum of 157Gd shown in fig. IV.5 h.as 

been. elucidated by Tj~m and Elbek.51 It is rather similar to 

155Sm; ' 
that of in this region adding a pair or' protons has a 

~~-. 
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smaller effect on the nuclear structure than adding a pair of 

neutrons. 

The wavefunction for the [521] 3/2- level in 157 Gd is 

given in Tabl~- IV.12. Th~ parameters used in SAXOND to 

obtain this were set,F of Table IV.12~ These are the same 
i 

as those used for 155 sm but for the addition of a Y4 deformation. 

Apart from the slight change in radius R0 '/R
0

=(157/155) 1/ 3 , 

the difference apparent in this wavefunbtion as compared with 

that of Table IV.11, c512_ has been halved, must be due to 

the Y40 deformation. 

G. , Conclusion 

In map.ycases our calculated wavefunctions contain components 

fo~ which cjl is small but for which th~ amplitude in ~he surface 

r~gion may be comparable to the surface amplitude of components 

of large c jl. These components correspond to levels that are .·. 

weakly bound for a spherical potential. We shall show in the 

appendix which follows that the truncation of the radial 

wavefunctio~ when represented as a sum of components with 

different numbers of radial oscillator quanta, has fl strong 

effect on the stripping cross section. Thus we must expect that 

j components with large surface amplitudes ( that is, relatively 

large amplitudes of the high n components) will have direct 

transition cross sections considerably gr~ater than suggested . 

by the overall c.
1 

An actual case is discussed in Chapter VIII 
J • 

where the large n=3 j=7 /2+ .component of the [633] 7 /2+ wavefunction1 
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(s&e Table IV.7) of 167Er is fOund to result in a cross 

section three times that predicted by proportionality to 
2 

cj • 
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Appendix I 

Truncation of the Radial Wavefunction 

In most of the examples of radial wavefunctions that 

we have been presented above, there i~ for.each (jl) one 

predominating radial quantum number, the.' others having much 

smaller amplitudes in general. Nevertheless the amplitudes of 

these components do not usually appear to converge very well 

before about the eighth component. The number of radial 

components to be included in the calculation is an important 

planning consideration for the programming as each radial 

component requires the provision of considerable memory space. 

We considered it important to test the effect of varied 

truncations using the DWBA program TRANS.* The angular 

distribution of protons corresponding to the ground state of 

25 Mg resulting from the stripping of 10.1 MeV deuterons was 

calculated using a Faessler wavefunction. The amplitudes of 

the radial components of the appropriate 1=2 wavefunction are 

taken to be (for n=O; 1; ... 5) 
I 

-.9915 .0933 .0538 -.0156 .0154 

The calculation was carried out with respectively the first 

four, the first five, and finally all of the components· included.·. 

The angular distributiom for these three cases are shown 

* ~ am grateful to N.K. Glendenning for the use of this 
program. 
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in fig. IV.6 with arbitrary but constant normalization. 

The increase in for\yard angle cross section as the small 

amplitude large~n components are added to the calculation 

is rather striking, as is the apparent lack of convergence. 

This forward angle enhancement corresponds to a reaction 

involving deuterons with large impact parameters undergoing 

stripping at the nuclear surface. In most of our calculations 

we have used seven ( a check on our program with inelastic 

processes "switched off" by comparing with TRANS is possible 

for a maximum of seven components) or eight ( the maximum 

for our program) components. We have found an appreciable 

25 difference, especially for the 1=0 state in Mg at small 

as the number of radial components is increased from seven to 

eight. 

The sensitivity of the cross section to the radial 

wavefunction is revealed in a comparison of the 12 •. 3 MeV 

DWBA stripping cross sections for the two low lying 5/2+ 

level~ in Mg. With the form factors given in Tables IV.4 

and IV.5, the ratio of the cross sections normalized to the 

same c jl2 is about 2: 1 in favour of the [202J 5/2+ level. 

This result is due to the much longer tail of the more weakly 

bound 5/2+ ground stat·e j=5/2 component ( cf. eq ( 11) and Table 

IV.1). Although, as can be seen from these tables, the 

dmplitude of the principal component for the ground state is 

about twice that for the excited 5/2+ state, the amplitudes 
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of the components of higher n are three to four.times greater. 

(This difference ~m the wavefunctions may no longer be true 

if the [21U 1/2+,level were calculated with a more realistic 

(J, =. 4. ) 

As long as our primary object is an ~nderstanding of 

the importance of inelastic processes in stripping, eight 

radial components yield a meaningful model calculation. We 

bear in0mind, of course, that in any case the form factor is 

not exa6tly the wavefunction of a Woods~saxon well. We remark 

that as long as uncertainties in the .~n,_uclear model make the 

neutron separation energy uncerta,in, then the cross section is 

uncertain to a greater degree than one might gather from the 

literature. 

' ~ i 

··, 
·.··I 
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Appendix II 

Parameterization for the Potentials 

We have employed wavefunctions calculated using a 

Woods~saxon potential and we have quoted the corresponding 

values qf the parameters which define this potential. For. 

reference we show how these parameters are defined. ~aessler 

and Sheline define the following real potential 

V (y-) :: - Vo ~(r) -+ Co (1·4 )~ + {r ~(r-) 2 _g_-~ 

Equations(~) dnd (~)of Faessler and Sheline42 do not agree; 

(7) appears to correspond to the program.* We have used V so:: c0• 

*c~) -= [ 1 -t exr [< <"- RoA !I>) /ao]] 
_t 

The deformation of the nuclear surface is parameterized according 

to F. and S. method B as 

R 

This includes volume conservation, but their expansion of the. 

surface is carried out only to second order. The parameteriz;ation 

used by SAXOND is similar apart from slightly different values 

of, for example, the spin orbit constant. We take advantage 

of tme provision for the expansion of the surface to be carried 

to much higher order. 

*We are grateful to Professor Sheline for forwarding this 
program to us. 
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Appendix III 

Harmonic Oscillator Wavefunctions 

We use the sign convention of Talmi quoted in de~Shalit 

and .Talmi; 52 the wave functions have the same sign at the 

origin. This is contrary to the Nilscion convention in which 

the solutions have the same sign at infinity. Our radial 

quantum numbers start at z.ero so that the energy 

'f,..,t -= [1tH·J -t ~j;tJ ~tv = [N 1" 'l/l.] 1\t.J 

where n=number of nodes excluding those at the or1g1n and at 

infinity .. We shall always use iiw =41A- 1/ 3 MeV. With,.these 

conventions, together with the radial normalization 

f I RA.t (r) r r,. dr :::. I 

and the definition V :::: M (c;)/1'\ (twice that defined by Talmi) 

we have 

where lJ;...t is. the polynomial 

" \.[( l = <::: . k k ( r'1) . (lJl + ,) ! ! X K.. 
. nl ~ (-) 1 ~ (?.}+2-f<-t !).'! 

Our Rnl thus differs by a factor of r from that of Talmi. 

.>. 
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Table IV .1. Neutron separation energies E5 for the th~ee -
lowest intrinsic states of 25Mg. · The first four columns are 
taken from Mottelson and Nilsson,85 and the fifth is calculated . 
using eq (10). The sixth is calculated on the b~sis of a 
ground state to ground state neutron separation energy of 
7. 33;1 MeV. 

Orbital a 

[202]5/2+ 0.0 .23 0 .862 -6.469 

[211]1/2+ 0.58 • i 65 ~. 2 .· . 5057 -6.8:253 

[200] 1/2+ 2.56 •. 15 -. 42 2.4445 -4.8865 

.·I! 
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Table IV .2. Sin__gle neutron wavefunctions expressed in terms 
of Cnjl for the [211]1/2+ band of 25Mg. Calculated using the 
F.-s. program using parameter set .A of Table IV.13. These 
parameters were. found after many trials, and the deformation 
was found by graphical extrapolation. This wavefunction 
was used for a series of model calculations but is criticized 
in the te~t. Note the slow convergence (i.e. c0 ·1 does not ·. 
rapidly become small for large n, as ·far as str1.~ping is concerrnd) 
~~aracteristic of 1=0 wavefunctions, .~nd the fact that the 
3/2+ component, which is nearly unbound for {34 =0, is more 
slowly convergent than the 5/2+ component. 

n~ 1/2+ 3/2+ 5/2+ 

0 -.033973 -.70383 -.45113 

1 -. 508747. . 08642 .04245 

2 . 108067 -;07797 -.03103 

3 -. 070755 .05019 .02448 

4 .053742 -.02306 -.007098 

5 -.02528 . 01969 .007007 

6 . 01982 -.01181 -.003958 

7 -.013091 .00852 . 002184 

--------------- __._- ---------
e .00858 -.00456 -.001865 

cj -.530 .716 .455 
2 .2809 .5126 • 2070 . cj 

I 
I 
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Table.iV.3. Wavefunction for the single neutron level 
[202]5/2+ for 2 5Mg~ Calculated using parameter set A of 
Table IV.13 and F.-s. program. (See capt~On: to Table IV.2.) 

:s;: .. 5/2+ 

0 -~9915 

1 . 0933 

2 .-.0682 

3 .0538 

4 -.0156 

5 .0154 

6 -.0087 

c5/2 -1. 

2 
c5/2 1 • 
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~~ble IV. 4. Neutron wave function for [2li]1/2+ level in 
Mg. Calculated by SAXOND using parameter set B. The 1=4 

components, though giving rise to small direct stripping 
amplitudes can have a significant effect when the direct 
amplitudes are added coherently to indirect amplitudes. 
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Table IV. 5. Neutron state [202] 5/2+ calculated by SAXOND 
using parameter set B. (See caption to Table IV.4.) 

:0 ~ 5/2+ 7/2+ 9/2+ 

0 -.98321. . 03645 -. 08713. 

1 . 10896 .00308 -.00742 

2 -.08834 .00272 -.00608 

3 .05943 -.01496 .00384 

4 -.02268 -. OOO'i 2 .00047 

5 -.01952 -.00063 .00153 

6 -.01034 .00001 -.00002 

7 .00573 -.00005 . 00007 

.9955 .0367 .0877 

.99095 .00135 • 00770 

.•. 

\ 
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25 Table IV. 6. Wavefunction for [211] 1/2+ level in Mg. 
Calculated by SAXOND using parameter set C .. 

~ 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 

0 -.05296 -.67461 -.44307 -.09696 -.08797 

1 -.51501 .15404 .01888 .00656 -.00788 

2 .14136 -.06976 -.03005 -.00017 -.00077 

3 -.07549 ~04623 .02398 .00512 .00466 

4 -.05423 -.02294 -.00576 -.00112 .00110 

5 -.02718 . 01 412 .00668 .00096 .00165 

6• .01784 -.00777 -.00307 -.00072 -. 000002 . 
7 -.01002 . 00347 • 00077 o . o. 
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. I 

1 25 . 
Table IV .6ta. Wavefunction for [21 U 1/2+ level in Mg. 
Calculated by SAXOND using.parameter set Cx. 

" ~ 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 

0 • 04945 . 68838· .• 44232 .09972 .08891 

.50643 -.14501 -.01236 -.00513 .00907 

2 -.12809 .06510 .02814 . 00433 .00468 

3 .06765 --·04333 -.02232 -.00501 -.00449 

4 -.04877 .02057 .00455 .00091 -.00125 

5 .02330 -.01271 -.00606 -.00093 -.00165 

6 -.01539 .00690 .OQ262 .00068 -.00005 

7 .00852 -.00306 -.00057 0. 0. 

2 
C· .2831 rJ I 

.5016 . 1971 .010 .008 

. " 
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Table IV~·7. Neutron [633] 7/2+ state for A=167. Calculated 
by SAXOND with parameter.set D. 

~. 7/2-r 

0 :....01057 

. 02 I 8'1 5 
/i 

2 -.004832 

3 -.018951 

4 -.001935 

5 • 0011135 ;. 

6 .000635 

9/2+ 

-.21947 

-.29894 

-.012672 
I 

.023293 

.031126 

.0028593 

-.00317 

-.3731 

. 1392 

11/2+ 13/2+ 

-.081689 
I 

.921002 

.0084057 .033239 
I 

.003687 
I . 

-.034945 

.002841 -.052152 

-.001737 -.001732 

.00071303-.005644 

.0003314 

-.0823 

.00677 

-.008598 

.923 

.8519 

~l 



-83-

Table IV .8. Neutron state L_512] 5/2-- for A= 167. Calculated _ 
by SAXOND using paramete~ set D~ . The cujl shown were calculated 
a.nd normalizd by the stripping program rrom Anll\ • The c's 
shown were normalized without thec·l=7-component·s, and the 
1=3 and 1=5 compon~tits shown are about 1% larger than used 
in the calculation with the complete wavefunction. ~e quote 46 for reference the cj values tabulated by Vergnes and Sheline. 

·~· 5/2- 7/2- 9/2- 11/2- 13/2- 15/2-

0 -.016067 -.01695 .37247 - •. 25568 .08464 -.10656 

. 1 • 08101 -.8700 .08396 -.13232 .01886 -.02961 

2 -.01277 .01360 . 01089 -.01048 -.000958 .001528 

3 .00061 -.00722 -.01973 .02028 -.007102 .01106 

4 -.006299 .07329 -.00968 .01688 -.00334 .00585 

5 .00252 -.00486 -.00332 -.00332 -.00109 .00187 

6 -.000022 .00484 . 00136 -.001598 - .002014 -. 002'19 

c. 
J 

.083 -.873 .383 -.289 . 087 -. 111 

2 
.0069 .762 • '147 .0835 .0076 .0123 cj 

c(V&S) • 1 -.8867 .376 -.25 



-84-

Table IV.9. Neutron wavefunction [521] 3/2- calculated by 
F-S using parameters D. Note the large value of c~£2 - compared 
with the Vergnes and Sheline value also shown. A=1 . 

~ 3/2-·. 5/2- 7/2- 9/2- 11/2- . 

0 .0214 .0011 -·. 0509 • 5689 -.3263 

1 .. 0221 . 1638 -.6512 .0894 -.0228 

2 . 3119 -.0015 .0085 . 0184 .0134 

3 -.0362 -.0106 .0033 -.0287 .0183 

4 .0186 .01725 .0588 -.0099 .0029 

5 -.0423 -.0019 -.0034 -.0058 -.0016 

6 .0121 .0041 . 0022 -.0029 . -.0031 

7 -.0085 -.0037 -.0113 .0018 -.0012 

cj ; . 3194 .1652 .6560 . 577 -.3279 

2 
.1018 .0273 .430'3 .3529 . 1076 cj 

cj(v&s).3234 -~001 .7271 .5045 -.3349 
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Table IV .10. Neutron state [521] 3/2-. Calculated for A==155 by 
SAXOND using parameters D. They are truncated with N==2n+l ~ 13 
according to the capacity of the stripping program at the time 
of calculation . 

. 

:sz· 3/2- 5/2- 7/2- . 9/2- 11/2-

0 .01872 -. 06601 -.02644 .55926 -.2728 

1 . 1105 3 -. 1658 -.66526 .03143 -.10994 

2 .3i720 -.02244 .06989 .00260 .001522 

3 -.02697 .00403 .00658 -.02317 .02214 

4 -.00749 .01599 • 04966 -.00366 . 01389 

5 -.03311 .00445 -. 01129 o. 0. 

6 ~00403 o. o. o. 0. 

iii 
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Table IV.11. Neutron st·ste [521] 3/2-. See Table IV.10 for 
comment. Parameters E. 

• I 

«: 3/2- 5/2- 7/2- 9/2- 11/2-
' • ' 
' 

0 .02177 -.05323 -.02479 .48819 -.3094 

1 . 12254 -.07953 -.69447 .03796 -.11743 

2 .3600 -.02829 .07759 .000929 .00230 

3 -.03215. .00367 .00598 ..: . 02 .i 56 . 02440 

4 ...;..00817 .00959 . 05 111 -.00415 .01452 

5 -.0374 .00507 -.0124 0. 0. 

6 . 00484 0. 0 . 0. 0. 



/'> 

Table IV.12. Neutron wavefunction [52D3/2- for .A7157. SAXOND was used 
with par~meters F. 

•. 



Table IV.13. Parameters used in various calculations of the neutron bound 
state wavefunctions. 

Identifier v Ro ao v R 8 so St. f3tr so so 

A ...,48.7 1. 25 .65 -4.5 1.25 .65 .24 0. 

B -48.7 1 • 25 .65 -4.5 '1. 25 .65 . 3 0 .. 

c -47.0 1. 25 .65 -7.0 1. 25 .65 .4 0. 

Cx -48.2 1 . 25 .65 -7.0 1. 25 .65 . 4 o. 

D -45.5 1.25 .65 -8.0 1.25 .65 .3 o. 

E -4'5·. 5··-· I . 2'5 .65 .,..7.0 1. 25 .65 .3 0. 

F -45.5 ., . 25 • 65 -7.0 1. 25 .65 .3 . 05 

j ~ 

I 
CD 
CD 
I 

., 
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Figure Olptions_for Ohapter IV 

Fig. IV. 1 Low lying levels of 25Mg. 
. 166 Fig .. IV.2 Low lying spectrum of Er showing the ground 

band and the gamma band. The grotJ,nd band follows the I(I+1) 
energy ·spacing about as well as that of most nuclei. The 
gamma band, however, follows this spacing extraordinarily 
closely (see Mackintosh29). 

Fig. IV.3 Partial level diagram for 167Er. The 3/2- band 
at 532 KeV has been interpreted as a K-2 ¥-band coupled 
to the [6 33] 7 /2+ single particle state and mixed with [651J W+ 
and [402] 3/2+. 

Fig. IV.4 The low lying spectrum of 155sm. The assignment 
of Nilsson asymptotic quantum numbers, shown beneath each 
bandhead, is that of Kenefick and Sheline.49 There is a 
1/2- band at .824 MeV and many unassigned levels, some 
strongly fed in (d,p) reactions, beginning at .364 MeV. . 
The relative stripping intensity at 650 is shown in parentooses. 

Fig. IV.5 Part of the low energy spectrum of 157Gd. The 
separation between the [52il 3/2- and the (52315/2- bands·· 
is somewhat greater than is the case for ,,~m and suggests 
somewhat less coriolis mixing ( see Tjom and Elbek51). The 
large cross section51to the .435 MeV level is, however, 
somewhat anomalous when compared with the results of Kenefick 
and Sheline. This level is not (ref.46) unusually sensitive 
to deformation. 

Fig. IV.6 A study of the effect of varying the number of 
rad~al harmonic oscillator components in the formfactor of 
the 1=2 neutron on the stripping of 10.1 MeV deuterons 
leading to the ground state of 25Mg. 

•I 
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V. COUPLED CHANNEL CALCULATIONS OF 

STRIPPING CROSS SECTION 

In chapter III it was shown hbw inelastic transitions 

could be incorporated into the d~scription of stripping 

reactions by solving the problem defined by the equations 

( t) 

. v ~ (+) 

fl(-' cl . (2.) 

'"'y (t) 
subject to the boundary condition that /1--..1 contains incoming 

waves in the target channel' whereas x)+) contains only out

going waves. In this 6hapter we show how these can be ~olved~ 

The discussion in this chapter is ind~pendent of the details 

of the nuclear models. Although lJi. and 1/; are model interactions 

we omit the tilde introduced in Chapter III to distinguish 

model quantities. The reaction A(d,p)A+1 is understood. through-

out. 

A. Deuteron Channels 

The channel enumeration could l9e given for spin s particles, 

but certain features of the deuteron case warrant special 

attention. In our calculations we consider only the ground 
.. 

state of the deuteron, and the motion of its center of mass. 

The model hamiltonian of the target nucleus we denote by HA 

and its eigenstates by ~ (A) ~ The label c( sufficiently 
G( Jo<, 
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labels the state, but we may append the spin of the state, J~ . 

Thus we write 

(~ -f )lh =-0 A ot. '!,c. (3) 

The parity of ~oe. we denote by '1lot. • In general,· the 

wavefunction tc A) involves the coordinates of the A nucle6ns; 

in the case where H.A is som~ collective hamiltonian, 6hly the 

appropriate collective coordinates appear. The total model 

hamiltonian of the system may be written, appropriately to 

the "asymptotic deuterons" partition, as 

where Td is the deuteron-nucleus c .m. kinetic. energy, and 

Vd is the asymptotically vanishing model interaction representing 

the effective interaction. In our case, it is a deformed 

optical potential involving the cdordinates of the deuteron c.m., 

rd' and the nuclear collective coordinates. The total 

wavefunction of this system is thus the solution of 

(H - E J \f (fJ) A) -=- 0 
1 

i.e. equation (1) above. 

The interaction Vd contains within its definition a specifi

cation of a truncated basis Pd. Given the nuclear states 

belonging to P, we must now enumeJ:,~ate all of the channels 

corresponding to the same values d>f the conserved quantum 

numbers I and n , where I is the total angular momentum of the 

system and n , the parity. The number of these states we 
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shall refer to as Nd and will depend on (I,] ). In order to 

facilitate the use of a spin-orbit interaction for the 

projectile, we couple the angular momenta as follows. First 

the spin and the orbital angular momentum, 1 , of the deuteron 
' . c 

in channel "c" are coupled to total orbital angular momentum 

j : 
c 

The 1 subscript refers to the deuteron spin; we denote by 

(5") 

the spin-one deuteron wavefunction. The bracket denotes 

angular momentum coupling in the usual way. These spin-orbit 

functions, f , are coupled to the nuclear state to form 

wavefunctions of total angular momentum I and parity~ 

Thus we have coupled according to 
g( 

The parity, Tf =- (-) "Tf".;( , and I define those channels which 

must be cotisidered together as a solution of the coupled equations. 

The label ~ which labels .l.f in eq ( 6) is used to summarize the 

set of quantum numbers appearing on the r.h.s. We use c to 

denote any set which contains the ground state of the target. 

The total wave function for given (I, 7r ) is now 

(7) 
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In this equation, the wavefunction is labelled by c 
corresponding to the fact that the coupled system of equations 

that the u's satisfy is solved according to the boundary 

condition that only g.s. channels c have incoming waves. In 

the case of deuteron~ (I,~) do ~ot determine the channel 

parameters for the incoming waves, as they would for protons 

incident on a spin zero target. For nuclear state o<c , with 

spin Jc, we have 

Jc= II-~,1 · · · · · T-tj(. 

Of these three values of lc' the value lc=jc has parity 

opposite to that of the other two so that lc may have either 

one or tw~ values ~or specified (I,n) consistent with 
j 

Tf =- r-) ( 7itX. In this work we shall alWf\Y,S have deuterons 

incident on even targets so that the entrance channels always 

+ have nuclear spin and parity 0 • In this case lc defines the 

.parity of the channel and I=j the total angular momentum of 
. c , 

the deuter~n. For a given I, the channels divide into two 

groups of opposite parity, viz., those with "I 
TI' =- (:-) , for 

which lc = jc =I in the entrance chaimel, and those with 1l =-(-J:z:-t 1 

for which we hav~ entrance channels of lc=I~1 an~ I+1, so tha~ 

the entrance channel is no longer specified, in general, by 

(I,~). This results in consider~ble complication not only fbr 

the (d,d') calculation, but for the entire stripping problem. 

!I-' 
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Just how we handle this is discussed lat~r in this chapter. 

B. Proton Channels 

Given I and 7C of the system, we must specify the coupling 

of the proton channels, NP in number. The coupling scheme is 

the same: 

(S) 

J~ :::. 11-TJ .. . . • .. I 't j, 

1 J.., = l,-Jz j,~~. ?o ) 

n :: 'TI e>l (-J 
I c. 

For stripping calculated according to our method, we need not 

consider incoming waves of protons. Although a (p,p') calculation 

involving even nuclei is more straightforward than (d,d'), 

we Would be involved with (p,p') on odd nuclei, if the most 

consistent procedure was being followed. Di this case, the 

calculation would entail an obvidus extension of the procedure 

employed for (d,d') that is desctibed below. 

• 
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C. Coupled Channel Solution of Stripping. 

The following is a .general formulation of the coupled 

channel method of calculating stripping reaction cross sections . 

Programming details are not given here though the block 

diagram of the arrangement of the programs, (fig.V.1) and its 

captiort might clarify ~hat follows. 

In order to calculate the proton wavefunctions from the 

stripping equation (c.f., eq.(2)) 

) 
(-t) 

( t- H 1f (+) 

= V~p tyt! 

\/.1(-t) we must first calculate the deuteron wavefunctions ra 

(10) 

(These are calculated by the program SCATERD, together with the 

(d,d') S-matrix elements which may, if desired, be used to 

calculate the appropriate (d,d 1 ) cross section in program 

CROSSD.) 

The program SCATERD solves the following coupled differential 

equations, defined for given values of the conserved quantities, 

I, the total angular momentum of the system, and 7l , the p~u:rity. 

~ -1\l dl lcCic-t 1) ) .. :r :11 

j 
:t 71 c. 

- 1,AJ (llrl ~ -·-- -+ Vc, ' - Ec Uc (rJ) ("' 'Z. 
cl 

-~ 
l'n 'lilt V , (rd) u, (rc:tJ (r 1) 
'{ 

I 

C-::f:( 
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'Nhere Ec=E-E"'-: 

The notation is similar to that found in ref. 35 Equation(11) 

is a partial wave decomposition of eq(1). 

We shall need 

and the channel momentum 

L_ 1. = ?..)( E 
"~\.,. ~ c: 

It is important, in our case, to retain the c label on 

u;nc , as the tncoming channel, c, is not specified by I, 7l 

as explained above. 

In the a;sy,mptotic region, the solution of eqt.!ation(6) in 

channel c becomes 

where 

where F and G are the regular and irregular (real) coulomb 

wavefunctions, and o' is the 

coulomb phase shift. This bounda~y condition may be applied· 

to eq(11) according to the method described in ref. 4 For the 

case of n = b) 1 +' , SCATERD stores the matrix of trial 

'#,' 

.. ' 

(Q) 

·~ ' 
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solutions and applies the boundary condition eq(13) for the 

two channels c successively. The matrix inversion that provides 

us with the (d,d') ·matrix U,,, also specifies the appropriate 

boundary condition at the origin which permits equation (11) to 
Tnt 

be reintegrated so that the wavefunctions U., Cr,d with , 

asymptotic form eq( 13) may be obtained for r d from near zero t;otre 
_j-t} 

external region. The proton wavefunctions, -~ , corresponding 

to our particular model are solutions of the inhomogeneous 

Schroedinger equation, eq(2) above, where Vr is the model 
-
effective interaction(in our case, a deformed complex optical 

potential) similar to 1/J . . We can make a partial wave 

decomposition 

wavefunc-t;ions 

inhomogeneous 

+ 

of equation ( 2) and obtain for the radial 

of x~""J (see eq(9)) the following set 

coupled differential equations: 

'" ~· (. ;: I .... IVd. 

channel 

of 

The sum on the r.h.s. is over the Nd deuteron channels. The 

~ superscript on the proton wavefunction is defined by the 
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incoming deuteron channel corresponding to the deuteron 

wavefunctions which appear in the "source term",S. '.Ve shall 
-:J:TI 

refer to $ , ,, as the "source term factors." 
'' 

As for a given I and 1[ 
' there are alternately one or 

incoming channels c; for half the (I,·~) duals, eq(15) must 

be .solved twice,. though the time consuming homogeneous 

integration need only be carried out once. By imposing the 

boundary condition 

two 

• T1f £ . 

a c' ____,. - (16)' 

on the' solutions of eq ( 15) we are able to extrac't all of the 
:nr · 

·scattering matrix elements, U , ±-equired to calculate the 

cross section. The momentum in.the deuteron channels is given: 

by _, 1.::. 
k,• 

We notice that radial coordinate r . ' appears in eq ( 15). p 

This is defined by 

= 
~ 
(' -,. 

In the ~ero range approximation where 

we find from eq(13) that 

.r,.·~ f", (t~") = ~"c:~,) 
The source term factors appearing in eq(11) are given by 

( 11) 

• 
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--

The matrix is independent of c. The particular form 

of S for our model will be discussed in Chapter VI. 

D. General Expression for Reaction Cross Section 

I J 1_."11, The S-matrix elements ~ are·sufficient to calculate ,, 
the reaction angUlar distribution, polarization or any of the 

depolarization functions associated with possible deuteron 

polarization. We shall derive the.angular distribution and 

polarization for any reaction, including inelasti-c scattering. 
\ 

The central physical property involved in the basic super-

position principle of quantum mechanics: given a solution of 

the Schroedinger equation with, for example, incoming waves 

in some particular channel, then ·any superposition of such 

solutions is also a soltition. 

The asymptotic wavefunction eq(7) may be written in the 

form 
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where the c' channels will include the proton channels. We 

must now deter~ine the superposition coefficients, A, in the 

expansion of the total wavefunction 

'\} ~ ~· A C111.M 

(7i1 

in such a way that there is a. plane, or coulomb distorted 

plane wave in the target (nuclear ground state) channels 

Let the incoming~particles, having~spin s, be represented by 

the spinor ~~~ .. Consider the coulomb distorted wave 

': ~I CJsj 
o.-1"" 

~j1 

(see eq(5) and (6)) where rXo is the target 

gound state. Substituting eq(21} and (22) and comparing with 

(24) ~e determine the superposition amplitudes, A: 

With the help ··of equations (25),(:8) and (9) (though we consider 

outgoing particles here of spin S2 ) we find th~t the scattered 

wav~ part of (21) becomes 



"• 

'fM~M ~ + ~ 
~·s1.-r' 
M1

M
1 
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(2.b) 

where the scattering amplitude, f, is given by 

-;tl'-
. "'' 

J.-1.' ( v )J.. 
£. .exp[itfft-+0£•)] . v' .. ~ X 

c 

I --

·where we define 

ell 
. 0 

5 j 

. J M. M' I <ln"' )..<= -tM- -r~~~ 

{1-1) 

For the case of elastic scattering, we must add the analytically 

known coulomb amplitude. The sum over lcjc extends to all 

channels of given I, 7T correspond.ing to the ground state "'~Jo< • 

These equations apply to (d,d') and(d,p) using the appropriate 

u. l1l 
part of as calculated by SCATERD or STRIPDP •. The cross 

section may be calculated in the usual way 



\ 

...;.1Q8.,.. 

The method we have followed in calculating the cross 

section is a little different, as it enables us to calculate 

the polarization of the outgoing (protons) with no real cost 

in computing time. 

Ust!ig the spherical harmonic addition theorem, we can 

v. 0 replace JL in eq(17) by 
' ( 4-11) 'h. 'y y * ( . ) ~ 7 11 ~ C"h.) e) ,.f"F-1 ""h.)o . 

The spin quantization axis is here taken to be perpendicular 

to the scattering plane. We may rewrite the scattering amplitude 

in the following form: 

f .... l"lft ?, 
-k_, I 

,Qj 
.t' j I . 

:111 ;;; 

where we now define the product 
,~4-) 
l. by 

) 
M - M' I ,M= +M- -fV! 

(:,o) 

('JI) 

('3 '2.) 
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The calculation of the, cross section is the same; the -

polarization, P(~~~~) of protons corresponding to final state 

~ 1 is for outgoing protons, simply 

• (3?>) 
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Figure Caption for Chapter V 

Fig. V.1 Three programs communicating by tape or· disk file 
are used to calculate a stripping cross section according to 
the following scheme. File T46, output from SCATERD contains 
first the parameters of the (d,d') calculation, then 
successively 

t
(a) I,17 and the quantum numbers of incoming wave, c 
(b) The enumerated deuteron channels 
(c) The deuteron wavefunction in each of these 

(

(a) New set of I, 1T , c 
(b) Deuteron channels corresponding to (I, ~ ,~) 
(c) Wavefunctions corresponding to (I, 11 ,c) 

(a) 
(b) 
(c) 

and so on 

3 sets 
for 

each I 

As STRIPDP reads (a), it enumerates the proton ·channels, as it 
reads (b),it calculates the relevant source term factors. As fut 
reads (c), it calculates the (d,p) S-matrix elements Ur~' 
These, together with the enumeration of the channels, are employed 
by CROSSDP to calculate the cross section. 
· The (d,d') cross section may be calculated by program CROSSD 
if desired~ 
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VI. FORMULATION OF SPECIFIC MODELS 

The coupled-channel equations presented in the previous 

chaper were independent Df any particular nuclear model. In 

this chaper we shall calculate the source term explicitly 

using the zero range approximation anq the rotational model 

of Chapter IV. From the explicit form of the source term, 

we can show how selection rules arise and how they can be 

broken by inelastic scattering processes. In order to 

calculate the matrix elements in eq(12) of Chapter V, 

we discuss first the general problem of scattering from a 

collective field and then the particular problem of scattering 

from ~h odd nucleus. 

A. Zero Range Source Term 

We wish to calculate 

using the zero range approximation 

( 1) 

(l.) 

where is the s-state component of the internal deuteron 

· wave function. 
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Let us make a general parentage expansion of the ·(A+1) 

particle nucleus in the form (see Chapter II): 

so that 

rt 
(ft'111 

= [ ~.'' ) 
J. SJ 

Similarly, the deuteron wavefunctions can be written 

M 

lfc''11t {;r.~) = 

(4) 

where s, and ~" are the spinors for the proton and neutron 

resp~cti~ely, and we have writtert the deuteron wavefunction 

II 

(b) 
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where ~ is the •~vefunction appearing in eq(2). We now 

observe that the proton-channel wavefunction (4) may be 

rearranged as follows: 

where ~}~) is the neutron radial wavefunction 

= Z,B(txl_p'ji) ~~ (~, j lt-Jj(d It "J;• r· jc' ~ f J X 
~J~ I T ..- J::, . 

X [[[foR. cr,) Y1c.)] fs, s.] ]J. q5 J 
111

{, ( rJ [1J 
. (' ( I.e'' ) I t" J -ol. 'J I J..l 

Substituting (5) and (7)into the integral (1), u~ing eq(V.18) 

·• 



-115-

in (2) and various orthogonality relationships, we find 

that the source term factor coupling deuteron channel c" 
. - I 

to proton channel c is 

and we observe that the complete source term is, in terms of 

' the final state proton coordinate, ~ given by 

S
:I'If"C 

, c r,/) 
(. 

= <:\' s I 71 ( ll+t (>) I I c: C.~ ( ') 
L:; c 'c'' A ' vtt'' A f 

{9) 

c'' 

Care must be taken to ensure that the deuteron program and 

the stripping program which reads the deuteron wavefunctions 

employ radial meshes which bear the correct ~ 

relationship to each other. 

B. Rotational Model Spectroscopic Factor 

scaling 

The original derivations of the spectroscopic factor~ for 

single nucleon stripping on defor~ed nuclei Were due to 

Satchler2 and Sawicki. 58 We shal1 derive the explicit re su1 ts 

we need including ~he terms involving stripping into an 

excited state (ground band or gamma band) of the target nucleus. 
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We want to calculate the reduced matrix elements 

( -r.1<3-ll a. J.e II J, k.) where J 2 is the spin of some state in a band of 

intrinsic M ~ == k2 of the residual nucleus, and J 1 is the 

spin of a state of the target nucleus. Usually we have ~=o ~ 

except in the case in which we excite 'the gamma band of the 

target nucleus, in which case 

Consider then the case of k', = o . We employ equations ( 4') 

and (9) of Chapter IV. 

("J'). )(,_ M2 l a~ )A 1 J, k, f1,) 
" 

We denote* by /' the 
. '\. t 

1 as~,) : o. i~ kt I o/t 
frame ) and ai.t.~ J-1. 

argument of the rotation matrices and 

( at acts in the body-fixed 
) 

(lab. frame) =! :r>;l ajit: 

We have us.ed the fact that );. + j is integral. 

The right hand side of eq(10) becomes 

*The digamma, /' , had fallen ftom use as a Greek letter by 

(to) 

the classical period. It can often be seen on seventh century BC 
Corinthian vases. 



!' ·. 

.. 

-1-17-

- (i i)~ _!_ c /""[ "> ((• J'l. j J, ) ( h j J,) E_:J M,-':._ (- -:r~ f'jH'71 +lr( J-z. j T,) 
- 2 fl1J'"'. :J.t:'\0 0/ ( -J''h ./"' /"1, -f.( ~C) ) , -M-.. ,1-f fl1, )( 

. . . X ( ~'L -~ 8 ) j (II) 

Hence, after some manipulation, w~ arrive at the following 

form for the reduced matrix element 

. , A ~ . 

<- II t II' '-.. ' ( :r, )'2- CT, .) T"l .h. a j_t I }, / = - s:2 -:zr Cj-< <o I 0) 0 k k 
J'l. 

(Jl.) 

Using the definition and conventions of Chapter II, section A, 

we obtain, using eq(3) above 
A • 

· 1 ) ( "J, ) k. ( / ) ( Jr J J 2 B ( ,( )o(J . .£ = [2 -=r: c.i.t o o o k ~-< 

By a similar procedure, one may ,obtain the expression for 

the case .of a neutron being stripped into ·the states of a 

(gamma) barl 'to form a band k'l. 

where 

w find e 

Finally, we write the radial "for'm factor" in ( 8) (for the 

case of 1{1 :: o ) in the form 

(14) 
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(f5) 

The amplitudes are explained and tabulated in 

Chapter IV and Rn~ , the oscillator radial wavefunctions are 

defined in Appendix 3 of Chapter IV. This gives us the 

£6llowing form for the source term factors 

The square bracket denotes the usual LS-JJ coupling coefficient. 

R A('R(g+(t"'"...,. ... r"~'"·•)) In practice, we expand nA as a polynomial 

to form a 3-dimensional array for each I~ 

s :r T1 

c-' r'' 

(11) 

C. Selection Rules for Stripping and Inelastic Processes 

We can see from ea(13) above that in the absence of inelastic 

processes selection rules might arise. The spectroscopic factor 

.•. 

... 

for stripping from the ground state of an even-evert nuclues to ~ 

members of a rotational band, of intrinsic spin projection,· :k, 

is for neutron spin j, 
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This simply expresses the obvious fact, stated in Chapter II, 

that where there are no inelastic processes and the target is 

spin zero, the angular momentum of the transferred neutron 

is that of the state of the residual nucleus under consideration. 

Selection rules may arise if particular values of (.Jl are very 

small. For example, in the usual Nilsson model, the intrinsic 

states of the three lowest lying bands are composed entirely 

of 1=0 or 1=2 components. Thus the 7/2+ and 9/2+ levels cannot 

be excited directly unless there are small 1=4 components 

not included in the Nilsson calculation. We see that such 

selection rules may be broken by inelastic processes. If 
24 

the 2+ state of Mg is excited by the deuteron before stripping 

takes place, then'the non-vanishing of the amplitude 

for j=5/2 and J 2=7/2, 9/2 assures that the 7/2+ and 9/2+ levels 

in 25Mg can be populated. Additional amplitudes for these 

states will occur as a result of the scattering of the proton 

as it leaves the residual nucleus • 

A similar select ion rule is exeJnplified by the 7 /2+ ground 

state of 167Er (see Chapter IV for numerical details). It 

turns out that c7/ 2+ for the ground band is extremely weak

to the extent that it would lead to an almost unmeasurable 

population of the ground state of 167Er in the absence of 
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inelastic effects. In fact, we shall find in this case, that 

this statement needs to be qualified owing to the relative 

strength of the j=7/2+ radial wavefunction in the nuclear 

surface. 

It should be observed that inelastfc processes have the 

potentiality to change angular distributions of states 

corresponding to smaller (s;. as amplitudes corresponding to 

the transfer of different angular momenta become important. 

D. Macroscopic Approach to Inelastic Scattering 

The most direct approach to inelastic scattering between 

states of a rotational band, i.e. states which have essentially 

the same intrinsic structure, is to deform the optical potential. 

The interaction between this non~spherical optical potential 

and the projectile will induce rotational excitations in 

the nucleus. The underlying concept is the self consistency 

between the nuclear shape and the nuclear field. ~he method 

can also be extended to collective vibrations where the self 

con•tstent field approach has been successful (see Baranger 

and Kumar. 53 ). 

As the method is based on the bptical potential using 

empirically determined parameters, many effects which are not 

explicitly taken account of, such as exchange effects, are to 

some extent allowed for implicitlr. ~e this as it may, we belie~e 

that macroscopically derived coupled-channel wavefunctions which 
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fit the inelastic scattering data must be "better" than 

those where no inelastic effects are included. How ~uch 

''better" remains to be seen. The details of the parameter-

ization of the surface expansion of the deformed optical 

potential have been reviewed by Glendenning35 and the 

extension to vibrational wavefunctions of deformed nuclei 

by Glendenning and Mackintosh. 54 Some account of it will 

be given when we discuss the optical potential in a later 

chapter. 

If the nuclear field is deformed, then one can write 

VCf-)= \J(<)'" ~ V0 Jr) '(k (e:t.R') 
L 'll 

in the intrinsic frame. The transformation to the lab frame gives 

I'\¥L 1-(-K-L 
..J/Mic T (~ ])M-Ir ( 11) 

I+ ~)(o 

where V(r) is spherically s;ymmetric. There will, in general, 

be an L=O spherically symmetric component in the second term 

of ea(1g) associated with the change in geometric parameters· 

required for an optical potential when the elastic scattering 

is calculated with a deformed potential. This form embodies 

the usua.l collective model convention for the ro:tation matrices 

and differs somewhat from that in ref. 35 by the conjugated 
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rotation matrix. It als6 differs in the (-)k factor which 

arises from VL-k -=- (-:-) kVL k which we can show always holds. 

The possibility of odd k (e.g. for vibrations with 1=3, k=3) 

cannot definitely be excluded. 55 The spherical coordinates of the ~ 

projectile are ( f7,{f) in space fixt:;d axes, and the orient~tion. 

of the. nucleus is represented by ~ the argument of the 

rotation matrices. We observe that (11) may be rewritten: 

__.. ~ '(..., {B;tf) VL~r) (_;_)~(..;M 
L,_, 
k~o 

(~O) 

Note: L will be integral. In nearly any case of interest k 
. ~ 

will be even, as will M, but the (-) allows us to write eq{20) 

as follows for the case of even ki 

V ( -<") B}fl .. /') = V C-r) + 

~ '( ]) L L ) 
('l.t) + VL.I( c "") • ( .. lor t ~ -k 

L. . (-+ ~>(O 
kqD 

This scalar product form (we remind the reader that i-t differs 

by a multiplicative factor from the usually defined zero order 

tensor) ·will be very useful to us; it reflects the fact that V 

depends only on r and the anguler displacement between the · 

pr6jectile and the nucleus. 
:tTl 

We wish to evaluate V ( r) 
c2 c, 

' I 

where c 2 and c
1 

denote 
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channels of particles of general spin ~c 

where 
J)L L 

I (lR ~ j <:! V (r) Y ·( -~~ -t ~-k) I (eM ) (:Z.~) = c ,_ 111 4 Llo{ L I -t ~ (, 7( 1 
~ KD 
k~O 

Now by recoupling equations (6) and (9) of Chapter V, we get 

cef'1 = (-)QltS(-jC rr <;,Jt]·, 3c J M 

C1J1 JC J ' "I 

. ·. 1 

(26) 

Notes: 1. The scalar product, being invariant, is a constant in 
I 

~·· .. , ,AI.. ' 
and implies that )._.=-)... 

2 ( s). 
:7 cs.:-~ the 

= 
hence, sum over ~ J I ,4.1 '""' 
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2, If J , J correspond to the same intrinsic state, c1 c 2 
then 

,However, if this is not the case (for instance 

may be a state of a gamma band) then V L.k.. contains 
! 

not merely shape paramaters; the cXLI< and ~t.k 

~ust be interpreted in terms of creation operators 

.. and < o(r'lo I v,_, 1 a.,,) is the intrinsic state transition 

matrix. 

We rewrite eq(26) as 

I • c-)~.-l,,• J.-J,, ~ ~ (~,3Jr. {~.;;· ~· 1 g, ~· ~·] X 
k~O· 

hence, using standard results 
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where 

(so~J 

Oob) 

VL~ 
The calculation of will be given in Chapter VII. 

Now using equation (6.2.12) bf Edmon~s9 (p.97), and 

rearranging, we get 

< "' V-z L (R~ L .tc,) 't) 1...~< ·V ~...~ 
X ~(L) (-) o 0 0 Dc1 c, c,c, 

L.k~o 

For s=O, ~his agrees with eq(6.19) of Glendenning. 35 This 

result has been used to calculate the (d,d') scattering in 

the entrance channels and (p,p') scattering in the exit channels .. 

We note in passing that a striking simplification takes 

place for s=1 /2. The 1 dependence appears ·in the factor 

((n n ) = ( e" n )J.i ( l. i., J ) f ~· ~-z J ) :r .X•J;c,_ 1 .X-, 0 0 D J2 .), J; ) · 

It turns out fo~ .). _ n .. 1 
,-~·~"Z 

(which, of course, is true in our case) that 

f (.U, R z ) .: - ( ~ I ,jl 1. OJ ) 
~ -4. 
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The prodf is not trivial but h~rdly wortb reproducing here.* 

This means that provided 1 1 and 12 are allowsd and have 

correct parity [ C!' ;!"~) fo J , then eq(31) is 

independent of them despite appearances. No such simplification 

occurs in the ~euteron case. For even nuclei in which 

J,-> K,J }z~ K'). are integral, the expressions for the reduced 

matrix elements B 1-k given by Glendenning35 are appropriate 

(.for k ?o , even): 

BLif < 1/1/ D.~'"'< -t ~':.&(/} J ,_, >. 
'' . = :r, "' r -r S..o( o '). "l , 

,·{ l<,:: k~ =- o 

- "J-z. ( J, L "J '2. ) .J.· 
-t ( :) -k1 J"! - K'l 

These are emplbyed in the deuteron scattering in the entrance 

channels: in fact, except where we consider the gamma band. in 

Erbium, we need only the first of these relations. We must 

examine the case of half integral-spin nuclei more closely. 

Let us consider only axially symmetric optical potentials for 

which k=O. As stated previously, we permit only intraband 

*The author "discovered" this "well-known" fact by accident 
when debugging the program! 

• 

'• 

. .;:... 
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transitions for which k 1=k2 • The matrix element 

<-:r. k, M, I vt..o ])~0 I 1,.. ~I r11 > will be stud ~ed' 
. '0 1..11 L'r and its collective model factorizat1on ~~, V, 

'• % c:", .., 

elucidated. 

In general, VL..o may be an o,perator expression, but in 

any case will be expressed in terms of collective coordinates. 

Consider 

The last two terms are zero. 

Use. d J,tJt,.iLko 'J1-Jf J,-'n vre .have () .. J .. . - = (-) -:::. (-) to get the second term . 

We observe that confining ourselves to macroscopic excitation 
~ ... ' 

is tantamount to making the following identification from the · 

microscopic picture: 

<. X~<, ) <£ VJ () r;) to ( J4) X k,) -= Vt..o (f) 
i 
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which is just <(XK, ~ V,_0 X If,> as we have defined it 

wher~ V~o is a c-number function. However, it is not true 

that the microscopic model quantity 

I 
Thus, ~ component in the interaction vanishes in general. 

can flip the intrinsic state of a k=1 /2 band, and Y4- component 

for a k=3/2 band, etc. These terms can only be calculated 

in a micr6scopic ~odel: outside the province of the present 

work. Furthermore, they are of the .order of one particle 

·strength, whereas the collective term is of the order of A 

particle strengths. trhis rough statement is less useful in 

the A=25 region where _Crawley and Garvey56 report empirical 

interband transitions which are not so muc~ weaker than (i.e. 

transition amplitudes about .one q~arter of) those witpin a 

band - this suggests that the A particle versus one particle 

strength argument is less than fully valid in this region. We 

. rd th ( ) shall simply state that the 3 · and 4 terms of eq 34 

disappear' that < Xlf,) vt.o ?tk,) = <X -If,) VL.o X -k,'> ::::. v L-0 

where v~o is obtained from a surface expansion of the optical 

potential and finally that particUlar care should be exercised 

in interpreting our findings in particularly unfavorable cases 

such as k=1/2 bands in 25Mg. Hence 
L ("J. :f.J~{ r1,-k,(J"' L 1-z )('J'i L Jz) < J", k, M, I D,... Vt.o I 1-z k, Ma.) = vt..o ~ (-) -M, ""M'l. -1(, 0 K, 

!' 

'· 
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To deriv& this, we use 

(a formula which is true in the quite different conventions 

of Edmondsg and Preston, 57 for example). We have shown that 

the factorization st issue is good if we remain within the 

macroscopic picture. Using Racah's definition and factoring 

the 12 L.o we get for o as defined previously : 

<-r, K1 M,J ~oJ J;k, M'l) 
(-j J,-~, { jj L 'T-a ) 

-Mt M ""'-a 

: 0 { L c.JJ) 

{L IZVUI) 

(37) 

Equation (37) is not an obvious generalization of eq(32). 
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VII. OPTICAL 'MODEL 

A. Introduction 

The use of the optical model for elastic scattering (see, 

for example, P.E. Hodgson 59) from nucl~i and for nuclear 
I 

reactions is well known. However, this phenomenological 1 

model merits discussion here because the determination of 

the parameters is intimately connected with our overall 

procedure, and our calculations can be expected to depend 

quite ~.trongly on how they are chosen. Although the optical 

potential ~ust ultimately be regarded as empirically determined 
60 (see, however, Greenlees, Pyle, and Tang for a recent essay 

towards making this statement less true), the formal derivation 

from the Feshhach theory which we have employed in Chapt~r III~ 

makes it possible to exhibit certain general properties that 

a "physical" optical potential should have. The non-trivial 

problem of the optical potential for composite particle~ is 

then discussed, and in Appendix II we show how a special case 

of the Greenlees model can be applied to composite particles 

and deformed nuclei in a simple way. 

All the optical potentials used in the stripping calculations 

are discussed in detail at the end of this chapter together 

with some inelastic scattering results. 

In the first appendix to this chapter we have set otit the 

definition of the optical po~ential parameterization for the 

'j 
I 
! 

.. 
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spherical .case and then defined the parameters by which the 

deformation is described. Finally, •e have given a general-

ization of the standard Taylor expansion of the surface leading 

to an explicit expression for a deformed optical potential. 

These results will be used throughout the chapter, and they 

may be referred to for a definition of surface thickness, etc. 

B. Form~l Considerations 

1. The Effective Interaction and the Optical Potential 

The following discussion employs the notation of Chapter III 

together with aspects of Feshbach's reaction theory introduced 

there. Consider an arbitrary partition 1 and a subspace 

defined within it corresponding to projection operator P
1 

with P
1

+Q
1

=1 (as before, we shall speak of subspace P
1

, 

corresponding to prOjection operator-P
1

). Then that part of 

the exact solution 1 , belonging to this subspace ~~ is 

a solution of the Schroedinger equation 

(1J 

where lJZ is the effective interaction, complex and non-local, 

defined by 

v. ~ ft. (vL. + ,_ (2) 
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The optical potential,'¥, is a complex, phenomenological, 

parametrized approximation to -v: , determined by the condition 

that Y , defined within PL and calculated from 
-y by 

means ~f the equati6n • 

( r; - ~(. - ir) 1i/ ~ C> 

is a close approximation to· 'PLY in the asymptotic 

region, where B. i can be regarded as known provided there 

exists sufficiently accurate experimental. data. That is, l/ 
reproduces certain scattering data. In this discussion, we 

assume that the energy is above that with large excitation 

fluctuations. We shall refer to 1f and --(( referring to 

. PL projecting onto the elastic channel only as ~ and ·lfo 
The effective interaction,, 1( , will depend on the states 

included· in PL • The contribution to 1J': due to the majority of 

the large number of states in QL will normally vary slowly with 

·A; however, particular strongly collective states are found to 

have an influence upon 1': which is not submerged in the vast 

number of more weakly excited-states. The nature of the collec-

t~ve spectrum may vary widely in a small range of A, but provided 

the very strong collective states are included within PL' 

a smoothly varying optical potential can be found. This has 

been strikingly demonstrated for alpha particle scattering in 

the samarium transition region by Glendenning, Hendrie and 

J 
. 61 arvJ.s. 

The optical potential appropriate to a rotation band 

'i 

.. 
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calculated using (3) (i.e., in a coupled-channel "cc" calculation) 

differs from that {}: 
) 0 ) found when the ground state alon.e is 

included (i.e. , a distorted wave rtdw" calculation, elastic 
" 

or inelastic) primarily in two respects: geometrically- the 

surface thickness is teduced; and in the absorption - this 

being reduced from that in the elastic case where it must 

account for the flux lost to the collective inelastic channels. 

Empirically, we have also found, in every case examined herein, 

that the product V lo.,_is greater for cc than for dw calculations. 

The elastic channel wavefunction will clearly depend on the 

definition of P
1

. The following consideration suggests how. 

As we have said, the true effective interaction, -v;, given by 
,., 

(2.) is non-local. However, almost invariably Y is taken to 

be local and thus must be energy dependent. In fact, non-local 

optical potentials can be found which are very nearly energy 

independent. To the extent that certain (collective) states 

individually play a significant role in determining the elastic 

scattering, the inclusion of them in P
1 

will constitute an 

explicit representation of some part of the non-locality -(equivalently, energy dependence) required of V To this 

same extent, the wavefunction ~ will, in the elastic bhannel, 

depart from "f, calculated from a local elastic scatfering 

optical potential in a somewhat similar fashion that a wave

function determined by a non-local potential departs from the 

wavefunction determined by an equivalent {i.e., with wavefunctions 

I , 



I. 

the same in the external region) local potential. The theorem 

discussed by Austern 15 states that for attractive potentials 

the former wavefunction will always be less than the latter 

within the interaction region. Hence, we expect that the 

deexcitation of collective states1back into the elastic 4hannel 

will corresportd to amplitudes that add destructively with 

the elastic channel wavefunction)somewhat, within the nucleus, 

reducing the probability density of deuterons in the nuclear 

interior. 

2. Optical Potential for Composite Particles 

In the event that the ''projectile" in partition l is 

composite, QL will contain the excited states of the projectile 

which may all be unbound. In order to sketch the formal 

implications of this in the specific case of the deuteron, let 

us write equation (11) of Chapter III in the following form, 

where we label the nuclear and particle states separately 

\1) = < V~ (A) 17,~ ( {f-..fl\) ~- ( R) 
- ~ ~ 'P 

i_,).( 

where R is the deuteron centre of mass. Such an expansion can 

always be made: what is not immediately clear is how many terms 

~ are needed. If an adequate representation of \f can be 

obtained by-· including only the d~uteron ground state (jJ =0) by 

means of absorbing the effect of the other states into an 

optical potenti~l, t~en we have effectively uncoupled the 

deuteron centre of mass motion. The somewhat surprising 

~' 

• 
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success of the deuteron optical potential (see Hodgson62 ) 

shows that the~ymptotic wavefunctions can be described in 

these terms. It is still not obvious how good a simple product 

wavefunction is in the region of the nucleus. We shall 

indicate one formal approach to this.problem. Consider the 

simplest case of the elastic scattering of deuterons for which 
7l ~ 

~ =. ~ Po Then Mukherjee63 shows that the single 

particle optical potential for the deuteron can be written, 

where · E0 is the nucleus ground state energy, as: 

whe~e, in the notation of eq.'s 3,4,5 of Chapter III ( in which 

equations we have identified L ~~), we have defined: 

Eind 

(E,J 

Mukherjee then shows that 
(ll) 

~i((") -t _.VoptU,) + h,tjh-e-r o--rJ.e1 ier!'f~ 
(-7) 
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i.e., the sum of the proton and neutron optical potentials at 

the appropriate energy, together with highe~ order, terms. 

Thus, th~ optical potential for a deuteron may be written 

V("') ... <1To)Vo1tlf~~)~ \lo,t(f",) \iTo) + higher order ~erm(g) 

This last form, eq( 8) .might have been written down immed :Lately. 

However, various estimates can be made of the higher order 

terms in various approximations, and the important point is 

that such studies by Mukherjee and by Testoni·and Gomes
64 

and others suggest that the first term of (8) is by far the 

most important: this allows us to choose between widely 

differing alternative sets of deuteron optical parameters. 

It is noteworthy that Lee, Schiffer et al 16 found that the 

most ''physical" (that nearest to th~ first term of (8)) optical 

potential was the only one of several ~lternative deutero~ 

optical potentials that was satisfactory for stripping confirm

ing earlier speculation. 65 We remark t.hat .Testoni and Gomes 

give in the·ir work an interesting physical picture, albeit 

based on.the,somewhat dubious adiabatic approximation, of the 

polarization phenomena a deuteron undergoes as it approaches a 

nucleus. Their importmt results, following from the smallness 

of the higher order terms, ~re (a) that the skin thickness for · 

the deuteron optical potential is greater than for a nucleon 

owing to the finite size of the deuteron; (b) the ~adius 

parameters should be somewhat smaller; (c) with surface absorp

tion in the nucleon potentials, the imaginary depth is not 
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much increased - absorptive region is thick~ned. With 

volume absorption, the imaginary part is about equal to 

the sum of the imaginary parts of the nucleon potentials. 

(d) The spin-orbit term has the same geometrical parameters 

as the central term and about the same ~trength as the nucleon 

spin-orbit potential. These conclu~ions are to be regarded 

in the first place as a guide amongst the ambiguous potentials 

which will fit elastic scatte~ing. 

3.Spin-orbit Potential for Deformed Nuclei 

The rigorous extension of the Th6mas form (for the parti

cularly simple spherical form, see eq(2) of the first appendix 

to this chapter) to the case of a deformed field is quite 

complex. There is no a priori reason to expect a Thomas 

form (especially in view of the fact that in the spherical 

case,, the radius parameter .is optimally not that of the central 

field), although Sherif and· Blair, 66 and also Sherif and 

deSwiniarski67 have found that impDoved polarization calculations 

are possible with it, as opposed to the simpler forms. These 

latter are (a) simply a spherical spin-orbit potential as 

given in eq(2) of Appendix I, or (b) the following hermitian 

form 

(~J 
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-where NLJ< is essentially the derivative of NLK in 
' .· 

equation (11) of the appendix which, for the case of expansion 

of <., only, bee orne s 

oa ,. lt~) 
1 

...,."t' c::; c--r.,) ( 0 

NI..IA(f) = i; m ?)Lk 7 ()r ... +l ( v So -f (" f",., .J ~" -+ 

n~l 

-t L ~0 +{fj fso}~!>o)) 
Note that in this equation we have, for convenience, used 

•o as an ope rat or taking values ff<O and rso In the 

calculations we have almost· entirely confined ourselves to 

a spherical spin-orbit potential. We have performed some 

calculations using the form given by (9) and (10), but 

the effect of deforming the spin-orbit potentials has proven 

slight in the c~ses we have considered (q.v. Chapter VIII). 

..... : .. ~ -' ' 

·.· . 

. ~ ·<x·~~: 
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c. The Proton Optical Potentials-- Specific Cases 

We will find that the determination of a suitable 

optical potential for any particular case involves its own 

characteristic problems which must be discussed separately. 

It will become apparent that the-particular approaches we 

have used in certain cases constitute further reasons beyond 

those ar::i:sing ftlom the pd.ctures we employ for the stripping 

process and for the nuclear structure, that our calculation 

must be regarded as having a distinct model calculation 

character. We always liiave in mind deuterons incident on an 

even nucleus. 
1 

In the first place, where inelastic scattering data on 

an odd nucleus is available, by necessity, it is only the 

scattering within the ground band that is useful to us~ There 

may be scattering to other bands by means of single particle 

transitions, but this is not within the scope of our model to 

study. It is by no means clear that the deformation will 

be the same within each band; for 25Mg it almos~ certainly 

varies considerably between bands. Furthermore, the number 

of states we may wish to include in the calculation will vary 

from band to band. The appropptateness of our macroscopic 

picture of intraband scattering Will vary with the K of the 

band considered; ideally any inaccuracy in our picture might 

be abso~bed within an appropriat~ optical potential together 

with appropriate deformation parameters, identifying, as usual, 
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the best wavefunction in the asymptotic region. Thus, a 

k=1/2 band may require 'quite a different optical potential 

than a k=1/2 band in the same nucleus for reasons discussed 

in the pr~vious chapter, wher~ we mention that the validity 

of the macroscopic model will be expected to depend on t;he k 
. ! 

of the band being treated. 

The problem is compounded by the fact that for light 

nuclei, there appears to be a large difference between the 

optimu~ elastic scattering optical potential and the opti6um 

stripping optical potential (see Smith and Ivash, 25 also Cujec 6~ 
for a discussion of this). This could in principle be the 

result of attempting to simulate stripping amplitudes which 

contain just the inelastic 'components that are under study by 

manipulating the parameters of the potentials. It would seem 

that this can be no more than part of what is involved. A real 

failure of a stripping theory in which the stripping amplitude 

arises from V,..p acting in Born approximation seems to be the 

case; in any event, greatly reduced imaginary parts are often 

useful in fitting the stripping into the backward hemisphere. 

The required enhancement of the contribution of the nuclear 

interior is quite the reverse of the expected effect of renormal

izing the elastic channel wavefunttion in the nuclear interior 

by including inelastic effects -- the effect of the other 

channels is not so obvious. We recall from Chapter II that 

the usual proce.dures whereby the finite range of v(\ f is 
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accounted for reduce the effect of the interior. 

Two other problems are corr~ctable in principle. The 

proton scattering wavefunctions :X- are calculated by the 

stripping program; no program was written specifically for 

(p,p')on odd nuclei, although scattering on an even-eve? 
I 

nucleus in the absence of a spin-orbit interaction may be 

calculated using the available spin-zero program. In some 

cases (rare earths) where parameter~ are expected to be stable, 

it was thought reasonable to study a similar:• nearby, even

even nucleus omitting \jso • This latter could be added with 

a reasonable strength for ~oth the DW and CC optical potentials 

for comparison, if desired. We note in connection with ~o 

the e~treme paucity of polarization data available at suitable 

energies. Finally, we might justify this procedure in terms 

28 of the findings of Siemssen and Erskine that average optical 

potentials give better:stripping results in the rare earth 

region than those optimised for individual nuclei. 

1. Magnesium 

We desire an optical potential for the system p+25Mg • 

.At 10.1 MeV deuteron energy, we have adopted as the DW optical 
. 25 potential that found by Smith and Ivash .. to be sui table in 

this nucleus for 1=0 transitions. .As we must use one potential 

for all stat~s of a band in CC c~lculations, we have done the 

same for the corresponding DW calculations. This potential is 

labelled .A in Table VII.1. The small value of W is noteworthy. 
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The CC optical potential was obtained from this by reducing 

the ab·sorption and surface thickness according to rules 

. . i ( 6 g 1 Gl h 7 O wh1ch apply 1n s milar cases Tamura; a so ass auser, 
. 24 . 

for cases of 17.5 MeV protons on Mg). The potential obtained 

is "B" of Table VII.1. The results of stripping calculations ~ 
i 

i 
where these parameters were varied ( e.g. larger W) to determine 

the effect on the proton angular distributions will be discussed 

in Chapter VIII. 

For .the case of protons corresponding to 12.3 MeV deuterons 

(16-17 MeV), we use an optical potential derived from that of 

Crawley and Garvey ("C" of Table VII.1) as follows. The 

spin-orbit potential i.s set equal to zero, and WD' a 0 and a 0 
' are reduced as shown to give po~ential D. This was th~n 

employed in a coupled channel calculation involving the 0+ 

and 2+ states of Mg24 and 16 MeV with (3
4 

=.4. The angular 

distribution leading to the ground state was then used as 

"experimental" input for the optical model search code Mercy. 718 

The resulting potentd:al is "E." Finally, we arbitrarily .add 

a spin~orbit component ~$o =7.5 to the DW and CC optical 

potentials to give "F" and "G" respectively which are suitable 

for model calculations of inelastic effects in Magnesium. 

If suitable data had been available, we would probably have 

wished to fit it using the coupl~d channel code - a very 

laborious process, as no coupled·channel search program was 

available to us. 

• 

·''l( 



.• 

-· 

.. 

-143-

2. Deformed Rare Earths 

Our stripping calculations on the deformed rare earths were 

mostly carried out for the case of 12.1 MeV deuterons. Thus 

the (p,p') scattering on the samarium isotopes of 15 MeV 

performed by Stoler et a1 72 should provide a suitable optical 

potential over a reasonable range of A. The nucleus 154sm 

is sufficiently past the transition region to be as collective 

166 as those, such as Er, in the middle of the deformed region; 

see Stelson and Grodzins. 73 Optical potentials for both DW 

and CO calculations were determined by Ascu~tto and Brown. 74 

Their calculations were such as to give the same ground state 

angular distributions of 154sm for coupled channel and DW 

and which fitted the 2+ and 4+ reasonably in the coupled channel 

case. The resulting potentials are "H" and "I" of Table VII.1. 

Note the characteristic thickening of the surface and deepening 

of the absorptive part of the DW as opposed to the CO potential. 

In order to obtain from these potentials others suitable for 

use with 16 and 20 MeV deuterons, we transform .the real and 

imaginary depths of the CO potential, I, to obtain a new CO 

potential as follows: 

- V ~ - V b -t • ?> ( c; - E:o) 

-'vJ =- -Wo -'1) (G-fo) 

We then fit the ground state cross section with a Mercy 

search to bbtain DW optical potentials. These potentials are 

J,K~L and M of Table VII.1. The correspondence between the 



-144-

CC and DW optical potentials is not so clear cut at these 

energies. The optical model dode Mercy, howev~r, found a 

set that give a very good fit. The geometrical parameters 

for the "J" do not appear physical, and the possibility that 

Mercy discovered a minimum within another family of poten~ial~ 
I 

remains. Concerning I, K, M, the CC calculations were 

performed including 0+, 2+, and 4+ states -- the 4+ state had 

little effect on the ground state but an appreciable effect 

on the 2+ •. The deformation parameters were found to fit 

15 MeV (p,p') data and are a little different from those 

employ~d when the potentials were used to calculate the odd 

nucleus exit channel scattering ( 
\ 

=.25 ·. ($,.,. =.05). 
) 

Finally, we ~ention that we per£ormed these calculations at 

·an energy Eprot = Edeut +4 MeV corresponding to a stripping 

Q value compromise for Sm and Er. We believe that this will 
. I 

be sufficient for· our purposes and note that an optical 

potential which fitted the Q of each state of the bands of 

the residual nucleus is, in any Cllse, not possible with our 

programs. To give an indication of the extent to which the 

"experimental" elastic cross sect:ton was fitted by Mercy, we 

can take the example of 20 MeV pr()tons. Arbitrarily giving 

the 35 "experimental" points 5% aecuracy' we find x1. =. 6 38. 

· Other cases give a comparable or lower 

D. The Deuteron Optical Potential$ -- Specific Cases 

Many of the general comments concerning the proton optical 

•' 

•. 
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potential apply to the case of deuterons. As has been 

discussed above, the separation of the deuteron centre of 

mass motion and the use of a one-body optical model must be 

justified by its utility in describing deuteron scattering. 

Equivalently, the perturbation series for the optical potential 

· must converge rapidly. Ih .fact, though elastic scattering 

from a given nucleus can usually be described by ~ optical 

potential, the ambiguities are more serious (for example, one 

can find a series of equally good optical potentials for the 

real potential depth in multiples of the smallest ) than for 

the case of protons. It is also harder to find smoothly 

varyirig optical potentials for a large range of A and E thad 
62 is the case for protons. The review article of Hodgson 

contains a useful summary of the problems involved. Until 

quite recently polarization data for deuteron elastic 

scattering was rare. There are still few good deuteron 

polarization data for inelastic states. In every case discussed 

below where a spin.,..orbit interaction is used, we choose a 

"likely" value. The formal considerations above and the work 

of Lee~ Schiffer et a1 16 suggest that we seek a deuteron 

optical potential of V ~ 80-90 and a somewhat thicker surface 
I 

than for nucleon optica:l potentials. This immediately 

disqualifies a large number of published optical potentials • 

. The energy dependence of the deuteron optical potentials is 

not double that of the nucleon optical potentials owing, no 



doubt, to the energy dependence of the perturbation effects. 

According to Dickens and Perey75 the most "physical" V~ 90 
) . ) 

optical potential appropriate to nickel and deuterons well 

above the coulomb barrier varies as v2 = v1 -.22 (E 2 -E 1 ). 

1. Magnesium 

For the calculations at 10.1 MeV, we.used for a DW 

optical potential that employed by Buck.and Hodgson. 76 It 

is listed as A in Table VII.2. Unfortunately, this optical 

potential which gives a reasonable fit to the elastic 24Mg 

(d,d) scattering has a considerably thinner surface than would 

be expected for the most physical optical potential. This 

is especially true as they are representing a deformed nucleus 

by a spherical potential. The elastic and inelastic ,scattering 

of deuterons has been studied for a range of energies about 

10 MeV by Mayer-Boricke and coworkers, 77 ' 78 Anomalies 

appear in the elastic 6hannel, the Blair phase rule breaks 

down and the excitation function. is not at all smooth; the 

inelastic scattering of deuterons from magnesium below about 

15 MeV seems, therefore, not to b19 well described by the 

simplest models. Our procedure for the 10.1 MeV case was to 

use the elastic DW angular distribution calculated using 

potential A as the ground state d~ta for a search with a 

coupled channel program. We attempted to fit the 9.97 MeV 

data of Mayer-Boricke et al for the 2+ state. We did not, 

as a rule, include the 4+ state in the calculations -- it is 

.~·.. '', . •' , 

: i 

~ -~ ' ' 
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rather close to the bandhead of the quasi~gamma band and has 

not been resolved in (d,d') reactions in this energy range. 

In the process of fitting this data (without the use of a 

search routine for coupled channel calculations), we had 

occas;LQnto make a series of CC test runs in which each of 

the A (i.e., Buck and Hodgaori) parameters was varied on~ by 

one. The result of varying the geometrical parameters is shown 

in fig. VII.1 and of varying the potential depth para~eters 

in fig. VII.2. From these figures the problem of fitting the 

2+ state at back angles is already apparent. This state 

cannot be fitted by this modelo The struc'ture which can be 

s~en78 varies rather smoothly with energy and may be due to 

scattering into the 2+ channels from, perhaps, stripping 

channels or other collective levels. In an attempt to fit this 

level we also tried a '( expansion of the surface thickness, 

but with no conclusive improvements. We finally settled on 

p~rameter set X listed in Table VII.2, with a deformation of 

(3'). =. 4 •. The angular distribution using "X" is shown in 

fig. VII.3. The elastic fit is not perfect -- in view of 

the fact that this reaction is imperfectly understood, it is 
> 

not obvious that, if ahy parameters were found giving an 

exact fit, ·they would be the most physical. On this figure, 

we also show the effect of including a spin-orbit potential 

(a deformed spin-orbit potential gives almost indistinguish

able results); of including the 4+ state (at large angles, the 

.. -~ 
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result is somewhat like that of deepening the absorption 

slightly, i.e., reducing the oscillations) and increasing 

the deformation to .5. We have chosen P~ =.4 as it seemed 

more' important to fit the scattering at the peak than at the 

back angles. It could be argued that the deuteron flux 
! 

corresponding to the back angle scattering can also contribute 

·.to the stripping source,· and this must be borne in mind. 

We did perform a stripping calculation (See Chapter VIII.) 

with ~~=.5. Although compound nucleus effects are certainly 
24 significant in weaker states than can be produced from d + Mg , 

the 2+ state of Mg
24 

is too strong for this to be likely 

here. It is quite possible that second order processes 

involving the stripping interaction are responsible, although 

their effect on the ground state cross section may be small. 

It is interesting that the CC potential X does not have ~ -

shallower absorptive part nor could a better fit be obtained 

with a smaller_ w. The thinner surface was expected and the 

deeper real part for coupled channel calculations seems to 

confirm a trend apparent in the proton results for samarium. 

·The relatively large W seems to underline the important part 
24 played by the other low-lying collective states of Mg; the 

2+ state of the ground band no longer being the only state 

with a marked individual contribution to the elastic channel. 

Finally, we note that the fit to the 0+ obtained using the X 

parameters is at least as good ~s that obtained by Iano, Penny, 

.. 
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and Drisko3 using their (h =. 3 parameters, which, moreover~ 

appear to have an unphysically large W. Thus we can now 

state that their model calculations for which the greatest 

def6rmation was p, =.3 must underestimate the role of 

inelastic processes in the entrance 'channels. Because we 
I 

were concerned by the seemingly unphysical thinness of the 

optical potential surface, we carried out a Mercy search to 

fit the elastic data (that is, the result of a DW calculation 

using the parameters of Buck and Hodgson) using as a starting. 

point the deuteron optical potential of Smith and Ivash25 

(used also by Cujec 68 ). The hope was that the search would 

find a member of a new family with a larger surface thickness. 

The program returned a potential very nearly that of Buck and · 

Hodgson. It is possible, of course, that if we had had the 

original data* used by B. and H. that this search would have 

discovered quite different parameters. We remark that the 

absorptive part of the Smith and Ivash optical potential was 

about half that required to fit elastic scattering and that 

this optical potential gives a very poor ground state angular 

distribution indeed. In order to get the DW and cb optical 

*Mayer~:Boricke and Siemssen78 fit their 10 MeV (d,d) data 
with an optical potential with a much more diffu~e surface: 
V=-'80, W=-17.3, \ 11 =1.05, "fo = 1 .. 35, a=.804, a=.73. We now 
feel that this would have provid~d a more realistic starting 
point for our calculations. 
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potentials for 12.3 MeV, we apply the Dickens and Perey 

algorithm quoted above to determine a new CC optical 

potential. The 0+ cross section obtained was then matched 

by a Mercy search to obt~in DW parameters. A spin-orbit 
i 

potential was added to each of these to obtain the resul t:s 
I 

shown in Table VII.2 as cases B and c. 

2. Deformed Rare Earths 

With one exception, our calculations in this region are 

carried out with 12.1 MeV deuterons. Inelastic scattering 

measurements with deuterons of this energy have been carried 

out for various rare earth nuclei including Er by Tj~m and 

Elbek79 and Sm by Veje, Elbek et a1. 80 In these experiments,. 

the multipolarity of the transitions leading.to low-lying 

states is determined from the partial differential cross 

section at, typically, two or three angles. Unfortunately, 

this implies ambiguities in the optical potential obtained 

by fitting their data. The optical potential given by Tj~m 

and Elbek51 but with surface rather than volume absorption 

was found not quite to fit the ground state of 154sm and 166Er 

satisfactorily in DW. However, it is of the correct depth to 

give physical stripping results and it was merely necessary 

to increase the real surface thickness to .91 (from .87) to 

obtain potential D of Table VII.2, fitting the elastic 
. . 154 166 

scattering of 12.1 MeV deuterons from Sm and · Er. In order 

to get a reasonable fit when used in a coupled channel code, 

-~· 

·• 
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it was merely necessary to reduce A to· .87. Because inelastic 

cross sections are .not large (12.1 MeV deuterons are not far 

above the coulomb barrier) and hav~ a small effect back on 

the elastic scattering, this small change in the optical 

potential is sufficient·to account for the data that we have. 

In the case.of 154sm(see fig. VII.4) it was necessary to 

increase the various deformation parameters beyond those found 

in ( c>(. , ()(
1

) scattering, in spite of the greater spatial 

extension of the deuteron. This was particularly true of 

the'(deformation. The fit shown in fig. VII.4 still badly 
0 undershoots the 4+ 90 datum. A possible interpretation is 

that, as the deuteron is near the coulomb barrier, it sees a 

deformation characteristic of the far surface of the nucleus~ 

A long series of attempts to fit this level more closely by 

including, for example, a deformation in the surface thickness 

or a Ylt deformation of the coulomb field resulted in no 

satisfactory conclusion. We emphasize that although the Elbek 

group may have been able to identify level spins with data 

at two or. three angles, it is not sufficient to study the nature 

of these states in detail. In fig. VII.4 we give the CC 

angular distribution of the 0+, 2+, 4+ of 154sm using 

parameters "E." In fig. VII.5 we have the DW and CC angular 

distributions for the 0+ and 2+ states of the ground band of 
166Er using parameters "D" and "F" respectively (but the DW 

calculation used the "F" deformation parameters). Although 



-152-

the CC (A = .• 87) and DW (with A =.91) theoretical curves both 

fit the small number of elastic data points reasonably well, 

the curves are rather different. It might well be argued 

that we should have obtained better DW parameters by fitting 

the CC elastic data with a Mercy search. This was done (~ee 
I 

below) at 16 MeV. At 12 MeV, the small effect of the 2+ 

state on the elastic scattering makes it, perhaps, plausible 

that the requisite change in optical potential will have a 

small effect on stripping. We shall see, too, that for the 

geometric parameters of the imaginary part, the DW and CC 

deuteron optical potentials differ considerably more at 

20 MeV than at 16 MeV. Strictly speaking, it would have been 

more consistent to have chosen optical potentials with the 

same elastic scattering rather than with equally good fits to 

the (meager) elastic scattering data. It is noteworthy 

that the Tj,f5m/Elbek optical potential, slightly modified·, 

works reasonably well over this range of atomic mass. That 

we ha~e not had the data to obtain a detailed fit to the elastic 

data may be more detrimental in the present case where we 

include the states with the greatest effect on the g.s. in 

our calculation. Siemssen and Erskine 28 find that an average 

optical potential may be much better than particular potentials 

that fit the elastic cross sections exactly for each nuclide 

for which stripping is to be calculated by using DWBA~ 

Presumably, this is largely due to precisely the variability 

' . ··. ! 
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from nucleus to nucleus of the inelastic processes which we 

are explicitly including. Thus our inability to determine 

unambiguously all the parameters needed to describe inelastic 

processes implie~ that we are not fulfilling the possible 

full potential of our procedure •. We expect that the effect 

back onto the g.s. of states other than the 2+ and 4+ of 

the ground band to be quite small (Glendenning and Mackintosh54 ). 

For the gadolinium optical potential, we argue that, as the 

samarium DW and CC optical potentials work satisfactorily 

for erbium, we believe ~fortiori, they must be suitable for 

gadolinium ( 156 Gd has nearly the same~, as 154sm.) 

Suitable CC and DW optical ~otentials were determined for 

16 and 20 MeV deuterdns by extrapolating the CC optical 

potential by means of the above mentioned energy dependence 

and then obtaining the DW parameters by means of a Mercy 

search on the elastic scattering. The calculations we~e 

performed using 156 Gd mass parameters. We find that the 
1 

product V f'0 for 16 and 20 MeV is about 8% greater for CC than 

for DW, confirming a trend that we found for 10.1 and 12.3 

MeV deuterons (in the 10.1 MeV case where r 0 was fixed, V had 

to be deepened for CC). 

There remains the question o:f the gamma band in erbium. 

We commented (Mackintosh29) that the custom of speaking of 

an 1=2 excitation as if it meant the same for a k=O or k=2 
:4 

state was to be called in questiort, at least for the case of 



-154-

* 50 MeV alpha particles. We were informed that· in some 

cases, at least, Y,0 andY~ excitation lead to very similar 

results. We have attempted to fit the gamma bandhead of 

166Er using a ("correct") Y1ldeformation (a22=.035; it was 

important to have the same coulomb a 22 ) and, alternatively, 

an ad hoc a 2u;:.043 together With the DW optical parameters 

"D." ,The curves resulting were rather different and the 

fit corresponding to the Y~deformation was inferior. These 

are shown in fig. VII.6 where we also show how the inclusion 

of a (somewhat too weak) ground band 2+ state spoils the 

fit to the gamma 2+. We conclude that for the purposes of 

calculating stripping to the gamma band in 167Er, a CC 

calculation, including the g. s. and the · 't 2+ state and 

using the DW optical potential together with an appropriate 

Yn deformation, should provide a deuteron wavefunction 

suitable for a model calculation. 

*D.L. Hendrie, private communication. 
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Appendix I 

Definition of Optical Potential and Specification 

of Deformation 

1. Spherical Optical Potential 

The deformed optical potential is defined in terms of the 

following form for the central potential 

and for the spin-orbit potential: 

For the coulomb potential: 
2 z' ~1/r 

z z' e"l ,"'1 ) 
-- (.?,-(f .. 
~~( ' ' 

{I·2) 

This is the convention we have used: unfortunately wi~it 

V, Wand W!J are negative, Vso is positive. 

The formfactor ftr;i'-o.J~) is of Saxon-Woods form with radius 

parameter ~ and surface thickn~ss a: 
. _, 

f (t, fo ,~) = f I + v.-p[ ( ~- Cr~A r... r,_))/<l]] (I.'+) 

where r,,." is a constant,associa~~d with the projectile size, 

introduced so that ~ should be constant over a range of A. 
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In fact, we have taken ~n=O unless otherwise stated. We 

note that our program has pr6vision for a complex spin-orbit 

potential. 

2. Def~rmed Optical Potential 

In general, both the radius and the thickness of the ~urface 

may vary ~round the nucleus. We may parameterize this as 

follows - expand r 0 and a in spherical harmonics: 

v;, = r., ( 1 + -z· p i\l"f y;\~ { e~ r.R) ) . 
'N44 

a' ::: G\ (I + i' <X il-"' yl-A I e~ te'J ) ("J·I:,) 
~.,.., 

where e' and ~· are the !intrinsic frame angular coordinates. 

Then, for the real part of (1), we can make the following 

expansion in terms of derivatives of f : 

(T·1) 

where 

~~fA) $ Ae· J blvl 
"' lAA) 

Ll /- ':." . t...' K I ~ L1Jr,l (1· 8) 
/\~ /\k Lk 

( ~ f.> J. J4 y ).A J J\ =- ~ ~ft) Y. (I ·1~) t.k Lk. 
l-

{ ~ oe. ">.M YAP)" 
t ,..,(fl) (I . 'f ;,) -= 

' ~t. k '(l-( 
W< 

. ' ~ . . . ; ',, 

~ 



.. 

. 

-157-

and 

[ 
L ~ J\] '/"' ( L L' I\) ( L. L>"\ .) 

4- 7l tJ o o /IC k -M 
{I ·to) 

,In)
Equation (9a) and (9b) are to be regarded as defining ~ _ 

These definitions are a generalization of those given by 
I 

Glend~nning35 to include the surfade thickness expansion. 

The imaginary part is entirely analogous. The formulation 

of the coulomb deformed potential is exactly as given by 

Glendenning. Including the complex parts, we can write (7) 

as 

V(/) = 'Jt-+ < Nf\_({') Y- {e~te'J 
4 k 1\~ 

(I·II) 

1\'k 

Transforming to the space fixed frame, using ihe same 

convention of rotation matrix elements that is customarily 

used in the collective model, we get 

(-:I: . I :2.) 

where ( is coeffic.ient 
1\~ 

for deformed coulomb potential. This is the form we use in 

Chapter VI . 
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.Appendix II 

Composite Particles and Deformed Nuclei 

There is no comprehensive, self consistent theory which 

links the various different measurements of nuclear deformation 

in a perfect way. Different projectiles often give different 

deformations, and so they should, for they never measure quite 

the same thing. For example, one should not expect the deuteron 

to be sensitive toY" components on the surface, because of 

the large physical extension of the deuteron. The problem 

is partly one of "folding .in" the size of the projectile into 

a single particle field. We expect greater accuracy for the 

real part when we do this than for the imaginary part, as the 

highe~ brder terms ar~ proportionally greater for the latter. 

Let us start with the result employed by Greenlees, Pyle and 
60 

Tang to calculate the first order real part of nucleon 

optical potential. The basic input is the nuclear density 

distribution f(r). We shall generalize the Greenlees model to 

include a deformed density parameterized as follows (axially 

i\""")1 

p (f) ::: ~ ~ /1 ('I") 'fib 
1\:.o 

(JL. I} 

symmetric): 

The ~1 may be obtained from a Taylor expansion, exactly as 

are the coefficients for a defor~ed 6ptical potential. Then 

Greenl~es et al evaluate 

V(r,) ::: J f(,-) V(f-v,) c{3,- (JI·l) . 

.. . ': 
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where V (v-.r,) is the interaction 'between a nucleon at r, , 

and one at r Their results for the spin-orbit term are 

more complex and"we shall not attempt to generalize them 

here. Considerable simplification fnsues if we choose a 
' 

gaussian for V (the full extent of this will become apparent 

when we generalize a deuteron) 

. I c_.r,-.,r)L.) 
V (tv, ~v-1) -= V ex,o l- k~ (II<~) 

=V~f(-~)JexP(=GJ~f~~) ~~8_,((?) x 

x exp{1 f', rrosw jb ... ) d 3 
f" fu·4-) 

where W is the angle between vectors Y:., and 1 

Now 

( e)~) being the angular coordinates of :and 

Using this expansion with a real argument, we get 

where 

.... 
of v, • 

6I·6) 
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and where 
oO 

J f '(-<1.) [.R.JY"' r J [2 .,- '] 1 o\ ~ (t·,):: exr -v: ,.. tC() J+J. . ~ 1 r 
0 

(K·1) 

The functions I are "modified Bessel functions of first kind" 

defined by I I ) • -\)- ) 

'V ('z =.. ( J~ U Z , and are real. Thus w1 
can get from expansion (II.1) to expan~ion (II.5) with a 

simple transformation. Note that expansion (II.1) can be 

made by ·applying a surface expansion; to, for example, a. Saxon. 

Woods formfactor, as is usually done for the optical potential. 

(See Appendix L) 

To calculate the first order term a deformed optical 

potential for a deuteron from the nuclear density distribution 

(II.1), we must insert VC~) given by (II.5) into 

This expression, we note, has 

· been calculated for the much easier case of spherical nuclei 

by S. Watarabe81 and J.R. Rook. 82 In the simple treatment 

below we treat Vr. and Vf' as the same and real. There is no 

problem involved in generalizing this. We must evaluate 

The difficulty arises in the non~central terms. Let us write 

V (PJ in the simple form 

• .J 
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Consider a s-wave deuteron, then 

-v {(i.) = :4 s d~ I X,( f))~ vr\ (R -t ~) 

-= z s rJ. 3 f I X 0 ((')I~ v V\ ( { ~ ~ 
" 

Now we note (see Watanabe) that , hence 

Now, take a gaussian wavefunction for the deuteron. We 

assume that as we are essentially studying an effect due to 

the e.xtension of the ,deuteron, that a reasonable representation 

of this effect can be achieved with a gaussian that reproduces 

the deuteron size. Hence we take 

which we may now insert in (10). 

Following through the procedure exactly as before, we get 

(JI ·II) 

'.\/here 

(Jr· t2) 
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(Ir·ts) 

. Thus, for the case of a gaussian deuter6n, exactly the ~arne 

mathematical process is involved in folding the deuteron size 
I 

into a defbrmed single ~~rticle p6tential as is involved in 

folding a gaussian nucleon-nucleon potential into ~n arbitrary 

nuclear density distribution. Similar procedures could be 

used to obtain first order optical potentials for other 

composite particles. It would be a necessary first step 
' 

in a comprehensive theory connecting nuclear shape to 

composite p,rticle optical potentials. We note that composite 

particles such as alphas are comrr!:only used for shape determina-

tion because, being strongly absdrbed, their interaction with 

the nucleus takes place largely in the surface. The usefulness 

of a projectile is a combined function of the shortness o£ 

its wavelength, the strength of its absorption, and the 

smallness of its spatial extension, and the extent to which 

it will maintain its structural integrity in a nuclear field. 

The s~cond and the last requirements are not necessarily 

contradictory if it is unlikely that a particle, once absorbed, 

will be reemitted leaving tbe nucletis in a state belonging to 

. 
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Table VII.1 (part one). The proton optical potentials discussed in Chapter VII and 
used in the stripping calculations of Chapter VIII. In the cases listed here, the 
geometrical parameters for the spin-orbit potential were the same as for the real 
part of the central potential. The parameters are defined in-the Appendix to Chapter 
VII. 

* Bz=.23 .6~t- =. 055 f->6 =-. 015 P7. (cov.l) =. 315 

:- ~.;. 

Label Nucleus Deformation E deut v w WD vso 
··:; 

..... -;, ... 

A Mg ----- 10. 1 -50. -4. 0 0 

:i3 Mg fh=. 3 1 0. 1 -50. -3. 0 0 

c Mg ------ 12.3 -46.1 0 -9.3 7.5 I 
~ 

D Mg_ ~1.=· 4 l2.3 -46. 1 0 -8.5 0 0\ 
\JJ 
I 

E Mg ----- 12.3 -46.161 0 -8.843 0 

F Mg ----- 12.3 -46.161 0 -8.843 7.5 

G Mg r>~=. 4 12.3 -46. 1 0 -8.5 7.5 

H Sm ----- 12. 1 -49.201 0 -14.91 0 

I Sm * 12. 1 -51.438 0 -13.4 0 

J Sm ----- 16.0 -46.3 0 -14.6 0 
- ',, 

K Sm see I ·. 16.0 -49.983 0 -1.4. 15 0 

L Sm ----- 20.0 -47.98 0 -14.862 0 

M Sm see I 20.0 -48.738 0 -14.75 0 



Table VII.1 (part two) • 

. , 

Label Nucleus Deformation DW/CC ro Fo ao ao r c 

A \ Mg -----· DW 1. 25 1. 25 • 5 .5 1. 25 

B Mg =.3 cc 1.25 1. 25 .47 .47 1. 25 

c Mg ----- DW 1. 25 1. 25 .65 .47 1 • 25 

D Mg =.4 cc 1. 25 1. 25 • 6 .45 1. 25 

E Mg ----- DW 1. 228 1.176 • 632 .586 
I 1 25 _. 

• 0'\ 
..p.. 

F Mg ----- DW 1. 228 1.176 .632 .586 1 • 25 I 

G Mg =.4 cc 1. 25 1.25 .6 .45 1. 25 

H Sm ----- DW 1. 25 1. 278 .821 • 73 1.2 

I Sm * cc 1. 25 1. 293 .765 .61 .1. 2 

J Sm ----- DW 1. 297 1. 241 .723 .732 1.2 

K Sm see I cc 1. 25 1.293 .765 . 6 1 1.2 

L Sm ----- DW 1. 262 1.243 .756 .715 1.2 

M Sm see I cc 1.25 1. 293 . .765 • 61 1.2 

* ~ =~23 f3~t =. 055 (3, =-.015 (3.J(oiA I.) =.315 

~ 

·~' ·. 
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Table ~I.2 (part one). The deuteron optical potentials discussed in Chapter 
VII and used in the stripping calculations of Chapter VIII. See Table VII.1 
for further description. 

Label Nucleus Energy v w /WD v 
so 

A Mg ----- 1 o. 1 -83 -27.8 0 0 

X Mg .4 1 o. 1 -95 -27.8 0 0 

XVLS Mg .4 1 o. 1 -95 -27.8 0 5 

B Mg .4 12.3 -94.0 -28.0 iO 5* 

c Mg ---:--- 12.3 -92. 247 -27.975 0 5* 

D Sm,Er -----· 12. 1 -86 0 -12 0 

E Sm .23** 1 2. 1 -86 0 -12 0 

F Er .26*** 12.1 -86 0 -12 0 

G Gd .23** 16.0 -84 0 -12.8 0 

H Gd """'!"'---- 16.0 -86.068 0 -12.669 0 

I Gd .23** 20.0 -82.0 0 -13.6 0 

J Gd ----- 20.0 -87.987 0 -14.136 0 

*r =1.4 so a =.6 .. so 
** 8(1, =. 055 P~ =-. 015 ·. fo'l(CotJI) =.315 

*** fol.(c.oul.) =. 307 fo If- =0. 

I __,. 
0'\ 
Vl 
I 



'Table VII.2 (part two). 

i 

.• 

Label Nucleus DW/CC - ao ro ro a· r 0 c 

, .... 

A . Mg ----- DW 1.5 1.5 .55 .55 1.5 
~ - :. 

X Mg .4 cc 1.5 1.5 .52 .52 1.5 
:':: XVLs· Mg .4 cc 1.5 1.5 .52 .52 1.5 -~ -. . 
... B Mg .4 cc 1. 5' 1.5 .52 .52 1.5 

c Mg ----- DW 1.327 1.424 .614 .760 1 • 5 I _. 
0"\ 

D Sm,Er ----- DW 1. 15 1. 37 .91 .7 1. 20 0"\ 
I 

E Sm .23** cc 1. 15 1. 37 .87 .7 1. 20 
_.,,, .. 

F · Er · .26*** cc 1. 15 1. 37 .87 .7 1.20 

G Gd .23** cc 1.15 1. 37 .87 .7 1 • 2 
: 

H Gd ----- DW 1. 098 1. 279 • 905. .866 1 • 2 

I Gd .23** cc 1. 15 l. 37 .87 .7 1.2 

J Gd ----- DW 1. 065 1. 302 .953 .853 1.2 

*r =1. 4 ·· so . a =.6 so 
** (3ft. =.055 (Jr.. =-.015 · p,_ (£owl.) =.315 

*** ~,. (cowl.) • 307 f'3ct =0. 

·~-

; ! .. 
;.~~-. .. 
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Figure Captions for Chapter VII 

Fig.·VII.1 The inelastic scattering of 10.1 MeV deuterons 
from 24Mg. The data for the o+ state is the result of a 
DWBA calculation using the parameters of Buck and Hodgson.76 
That for the 2+state is taken from the 10 MeV curve of ref.77 
In this coupled-channel calculation, the effects of succes
sively changing various of the geometrical parameters was 
studied. 

Fig. VII.2 As for Fig. VII.1, but here well depth parameters 
are varied. 

Fig. VII.3 The same reaction showing the fit obtained with 
the use of the X-parameters. Also illustrated is the 
effect of increasing the deformation to /3-,. =· 5 (with a 
concomitant decrease in surface thickness), the result of 
indluding the 4+ state in the calculation (no data), and 
the result of includingB.spherical spin-orbit potential. 

Figi VII.4 Inelastic. scattering of 12.1 MeV deuterons from 
54sm. For parameters used, see text. 

Fig.
6
¥II.5 Inelastic scattering of 12.1 MeV deuterons from 

1 Er. For P?nameters used, see text. Comparison of cc 
and DW13A.calculations. The real surface thickness parameter 
was reduced somewhat for the coupled-channel case. 

Fig. VII.6 Coupled-channel study of fgglastic sc~ttering 
leading to the gamma band head of Er. For the stripping 
calculation leading to the gamma band of 167Er, we required 
a calculation of the entrance channel problem involving the 
ground state and the~~~ only. We did not alter the surface 
thickness in this case. It is clear that Y-:to and ~~ deforma
tions give different angular dis;t;ributions and that h-:t is 
distinctly preferable. We also see that coulomb excitation 
plays an extremely important role in the excitation of this 
energy and that the inclusion of the 2+ of the ground band 
upsets the calculation. In our model we assumed that if the 
angular distribution was fitted, the wavefunction in the 
interaction region was suitable for a stripping calculation. 
This is not obvious, and probably not accurately true. 
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VIII. ·THE STRIPPING C.ALCULATIONS 

In this chapter we describe the cal6ulations that were 

actually carried out on a series of rotational bands in 

m~gnesium and in three rare earth nuclei. The calculatiofal 

procedure and the programs on which the calculations were 

carri~d.out evolved somewhat during the course of the wotk 

with the consequence that the degree to which any caJ.culation 

is a model· calculation or one in which meaningful' spectroscopic 

infb~matio~ was obtained varied from case to case. We do not 

treat the cases in exactly the order in which the calcul~tions 

were carried out.. Section B also expands the general 

dis~ussion in the Introduction 6f stripping on deformed 

rare e~rth nuclei. 

A. Magnesium 

The reaction 
24

Mg (d,p) 25Mg was studied in a series of 

model calculations intended to explore in detail the effect 

of inelastic processes. The advantage of working with light 

nuclei is that, owing to the smaller radius of integration 

and smaller number of partial waves required, the computing 

time needed for a complete study is much less. The fortu~ 

itous circumstance that the bands are pr6bably rather free of· 

first order coriolis mixing (the two k = 1/2 bands can mix; 

but they are 2 MeV apart in energy (See A(c).)) is offset·by a 
' 

congeries of drawbacks: first, as we have discussed in Chapter 

',I 

~· .. 
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II, the customary stripping formalism seems not always to 

work satisfactorily for light nuclei; then• the 24Mg core 

is not at all stable under the influence of the 25th particle; 

and fin~lly, the adiabatic wavefunction has been described 

(Ripka 38 ) as a much less valid approximation in· this region 

than it is for the rare earth deformed nuclei. Another 

problem that may effect our fit to the weaker levels is 

that compound nucleus processes seem to be present (but 

~ee Pearson and Wilcott 22 ). Possibly related to this is 
24 

the imp6~sibility of fitting Mg (d,d') as discussed in 

Chapter VII. 

Of the rotational bands in 25Mg shown in fig. IV.1, 

our study has been confined to those based on the [202) 5/2+ 

and [211)1/2+ intrinsic states. In particular, we shall 

attempt to fit the ''forbidden" 7/2+ levels at 1.611 and 2.736 

MeV. Magnesium region calculations differ from those in 

the rare earth region in the relatively larger range of 

outgoing proton energies involved. 

The reaction was studied at 10.1 and 12.3 MeV, energies 

at which this reaction has been studied by Middleton and 

Hinds83 and by Hosono26 respectively. We shall not exp~6t 

to calculate perfect angular distributions for the case of 

magnesium for reasons discussed if'l Chapter II. 

(a) The Reaction 24Mg (d,p) 25Mg at 10.1 MeV. 

The wavefunctions employed for most of the following 
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calculatioris are those listed in Table IV~2 ~nd Table IV.3, 

··calculated using the Faessler-Sheline program. We remark 

that in spite of the fact that the binding energies were 

about right, the deformation used is probably too small 

r~sulting, in this. case, in wavefuqctian components with 
. I 

excessive!~ long tails. See, however, section A(d) below 

where, in particular, we give a reference to a very recent 

use of the "constant deformation" assumption. Unless 

explicitly mentioned, all calculations employ proton 

parameters "A" or "B" of Table VII. 1 , according as the 

protons are treated in DW or CC approximations. Similarly, 

we alw~ys use "A" or "X" of Table VII.2 for the deuterons. 

The results of a model calculation of stripping leading to 

the ground band of 25Mg are illustrated in figs. VIII.1 to 

VIII.5. 

Note:These ground band calculations were performed with six 

radial components in the wavefunc tion. ·· The DWBA 

calculations without spin-orbit interactions that 

appear in figures VIII.1, VIII.2, VIII.4 were calculated 

with seven components. The comparison in these figures 

should be made with a DWBA calculation with six components. 

This latter is very close to the seven components 

calculation except that the stripping peak is reduced 

about ten percent. Thus, the apparent effect shown 

in fig. VIII.4 where spin-orbit interactions have reduced 
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the 5/2+ cross section ten percent, is spurious. The 

seventh radial component makes a smaller difference to 

the cross section than the sixth. See Appendix I.of 

Chapter IV. 

From fig. VIII.1 we conclude that inelastic process in 

the exit and entrance channels contribute comparable amplitudes 

to the "forbidden" 7/2+ state, but that the strong 5/2+ 

state i~ affected only in the details of its angular distri

bution by its coupling to the we~k 7/2+ state. The 2+ state 

in the entrance channels, excited in this instance according 

to a DW calculation, has had a clear effect (50% increase 

at the stripping peak) on the ground state. In this case, 

of course, the various amplitudes all involve the same 5/2+ 

component. Figure VIII.2 illustrates the effect of varying 

the deformation in the outgoing channels_and also compare~ 

the effect on the stripping reaction of the DW and CC 

excitation of the target 2+ state. The smaller effect when 

the latter state is CC excited corresponds to the smaller 

inelastic cross section when compared with DW excitations 

Using the same deformation. The different angular distribution, 

however, reflects the qualitatively different deuteron wave

function in the stripping region. In fig. VIII.3 we illustrate 

the effect of including a spin~orbit interaction in the 

entrance or exit channels. The "forbidden" 7/2+ state is 

rlepressed about 20% by a deuteron spin-orbit interaction 



v, 0 =5 (as we shall see, the effect is exactly the reverse 

for the 7/2+ state of the k=. 1/2 band). Deforming the 

deuteron spin-orbit optical potential was found to'have a 

very sm~ll effect. The spin-brbit pot~ntial in ~he ·proton 

channel~ had ~orne effect on improving the angular distri~ution 

in a CC calculation, but a lesser one in a DWBA calculation 

as can be seen in fig. VIII.4 where we match the data83 with 

the angular distributions of DWBA and complete CCBA calculations 

including spin-orbit interactions. The 7/2+ state is under~ 

estimated by a factor from two to three over most of the 

angular distribution. The excess measured protons could come 

from a number of sources. For reasons mentioned in Chapter 

VII, compound nucleus effects are likely to play a role in 

levels this weak. (A comparison with the case of calcium 

where compound nucleus effects play a role in levels this 
16 . strong discussed by Lee, Schiffer et al suggests that, 

a fortiori, they should play a role in the lighter magnesium 

nucleus.) We find that increasing the entrance channel 

deformation to .5 increases the 7/2+ cross section by 20% 

rather utiiformly. (It also increased the 5/2+ level 10% at 

the stripping peak.) Including transitions through the.4+ 
24 . 

state of Mg hardly affected the 5/2+ state but increase~ 

the 7/2+ by 20% at 90° with no effect at 0° and 180°. We 
. 56 

estimate from the experiments of Crawley and Garvey and the 

·gamma decay experiments of McCallum and Sowerby84 that the 
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amplitudes of the single particle interband transitions from 

the 3/2+ and 5/2+ states of the [21] 1/2+ might be about .25 

of the intraband transition amplitude from the ground state. 

There is also the 3/2+ state of the ~0~ 1/2+ band that is 

strongly excited in stripping. It is quite conceivRble, then,. 

that the coherent sum of amplitude~ from these inelastic 

processes could double the cross section to the 7/2+ state. 

Finally, although it is probably true that this ban& of 25Mg 

has a smaller deformation than 24Mg, the low calculated 7/2+ 

cross section could be taken as an indication th~t we have 

underestimated this (and perhaps the 24Mg) deformation. 

(See fig. VIII.2.) 

In fig. VIII. 5 we compare the polarization from the 

complete DWBA and CCBA calculations with p,JM) =.4, 

(3.,(f' 0t) =. 3. We shall comment about the somewhat surprisingly 

low overall experimental cross section of this band below (sec-

tion A(d)). 

A series of model calculations of stripping to the 

[211] 1/2+ bands were carried out using the F-S wavefunctions 

listed in Table IV.2; for reasons mentioned above and in 

Chapter IV, these.are probably not good wavefunctions: al-

though the cjl are probably about right, the tail on the 

j =3/~ component is relatively too long, and we have seen in 

Appendix I to Chapter IV that this could drastically over

emphasize the cross section of the 3/2+ state. 
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In fig. VIII.6, the effect of proton coupling between 

the states of the residual nucleus is shown. The overall 

cross sections of the three ~trong levels are not changed 

much; they are of comparable strength to each other and we 

shall find a tendency for weaker levels to be boosted by 

exit channel inelastic effects. Thus, in this case, the 

weaker 5/2+ state (weaker, that is, where, as in this case, 

there are no transitions through the target 2+ state) is not 

reduced by these processe~, whereas the 1/2+ and 3/2+ states 

are depressed by about 20~ and the 7/2+ state, which, wifuthis 
' wavefunction, would otherwise be forbidden, is now weakly 

excited. It is noteworthy that the angular distributions 

to the 3/2+ and 5/2+ levels are respectively depressed and 

augmented just beyond thE;! stripping peak. This is in qualita

tive agreement with the data 83 shown with the more realistic 

case in fig. VIII. 8 discussed be.low. Figure VIII. 6 .also 

shows the effect on a D\WA calculation of increasing the 

number of radial quanta included in the neutron wavefunction 

from seven to eight. By comparing with Table IV.2, it is 

clear that there. is an immediate correspondence between the 

effect seen in any .level and the amplitude of the corresponding 

eighth radial quantum. The result of includjng stripping 

·amplitudes arising from the first order (DVTBA) ex.oitation 

of the target 2+ state was studied and the results are shown 

in fig. VIII.?. The effect on the bandhead state is rather 

~ .. 
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small but the 3/2+ and 5/2+ states are respectively depressed 

b;y 50% and doubled at their stripping peaks. This figure also 

shows the effect of exit channel coupling. The changes 

evident in the previous figure in the two 1=2 levels persist. 

The larger effect of proton coupling on the 1/2+ state (c.f. 

fig. VIII.6)must b~ due to the fact that the 5/2+ state is 

now stronger. Again it seems that entrance and exit channel 

inelastic processes are of comparable importance for the 7/2+' 

state. The amplitudes arising from the 2+ state are smaller 

when a coupled channel deuteron calculation is employed to 

calculate the deuteron wavefunctions; these wavefunctions 

also result in a less drastic attenuation of the 3/2+ cross 

section in the backward hemisphere. This can ~e seen in 

fig. VIII.8 where we compare complete (i.e., including spin

orbit interactions) DWBA and CCBA calculations of this band 

and compare the results with the d~ta. 83 The 'levels are of 

incorrect strengths: the data, of arbitrary normalization, 

must be multiplied by .2882, .5714, and .40 for the three 

states in order to obtain the fit shown. These factors should 

be equal. Probably, the main source of error lies in the j=3/2 

component having too long a tail. When the calculation, 

identical but for the 3/2+ formfactor being scaled by .74 
2 . 

(.74 =.55) was carried out, the cross section of the 3/2+ 

state was scaled by .51 at the stripping peak, but was 

attenuated much less at back angles giving an overall improvement 
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to the angular distribution. As is clear from the figure, 

these normalizations factors would have varied over a much 

greater range in a DWBA calculation. The 7/2+ state was 

considerably weakened by this change in c 312 , due possibly 

to either entrance or exit channel effects. The 5/2+ 
I [1 

~tate was not chang~d much but the last diffraction minimum· 

of the 1/2+ state was somewhat displaced. The significant 

conclusion, however, is that even with inelastic .processes 

present, the cross sections still retain a semblance of 

proportionality to cj 2 o~er a fairly wide range. The 

• 51 facto-r ( in part ic:ular, the fact ·that it is lower !than 
2 . . . 

the .55 reduction factor for c ) is easily understandable in 

terms of thereduction of the largest of several destructively 

coherent amplitudes for this state. Because the deg~ee to 

which this approximate proportionality to c. 2 mieht vary 
. J 

from stat~ to state, we should probably make use of it only 

nver a small range of cj 2 where a few percent change might 

improve the overall fit. In the present case, however, making 

tlse of this approximate linearity, the orthonormality 
. 2 2 2 

(c 1; 2 + c 3; 2 + c 5; 2 = 1, in this case} and the data 

normalization numbers cited above, we find c 112
2 = ,3962, 

·2 2 
c 3; 2 :;::: .3933, c5; 2 = .2104. We give these for reference; 

apart from their approximate meth)d of derivation, the 

corresponding cj's are amplitud~s, of incorrect radial wave

functions. We give "better" values later in this section. 

' ~/' 
" ')" ' ·~ 
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The influence of spin-orbit interactions in the proton and 

deuterori channels is illustrated in fig. VIII.9. In this 

case, a deut·eron spin....:orbi t interaction enhances the 7 /2+ 

state, contrary to what was discovered for the ground band. 

There is one inconsistency in the above calculations: 

the deuteron optical potential was found by fitting scattering; 

the proton optical potential was determined as suitable for 

stripping and has a very small absorptive part. In fig. VIII .. 

10, we illustrate the effect of deepening W(prot) ~rom ~3 

to -6. ~l_lhis fjgure also demonstrates that the 1=4 components 

of the wavefunction used had a smaller effect on all but the 

7 /2+ angular distribution. Unfortuna teJ.y, the SAXOI\r:D wave

function employed in this calculation corresponds to ~.,. =. ~ 

and the 1~4 components have about half the amplitude of those 

in Table IV.6 so that this figure represents a lower limit 

of the effect of the 1=4 components. 

A stripping calculation was performed using the ''best" 

wavefunction (Table IV.6a) and th~ fit to the experimental 

data is shown in fig. VIII. 11. W,e have normalized the results 

as follows: the experimental points for each state are scaled 

so that the best (subjective) fit' near the stripping peak 

is obtained. The scaling factors for the three states are, 

respectively, starting with the bsndhead, 1.055, 1.333, 1.222, 

1.285. (These numbers are relative; they should not be 

compared with others that might be quoted.) The fourth of 
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these factors was a compromise value not obtained by fitting 

the 7/2+ state for which the theory is clearly too low. 

We note that this fit corresponds 
2 2 

of c 1; 2 = .283, c 312 = .501 and 

to the theoretical values 
2• 

c512 = .197. If we 

assume that cross sections are still roughly proportional to 
i 

£2 , we can extract "theoretical" c
2 

values by scaling c2 

so that.the factors by which the experimental data for each 

state wduld have to be multiplied for a match with the theory 

are all equal. In this manner we determine normalized values 
2 2 2 

c 1; 2 : .333, c
312 

= .467, c 5; 2 = .200. We emphasize 

that these are probabilities for the particular radial wave-

functions implicit in Table IV.6a 9 and that smal1 changes j_n 
2 radial form can potentially entail c values that are consider-

ably different. A problem that is evid~nt from fig. VIII.11 

is the difficulty, engendered by the i~perfect fit to the 

1=0 state, of determining the best angle for normalizing 

theory to experiment for this state. The fit of the strengths 

of these states is quite good, differing greatly from what 

would be the case for these wavefunctions in a DWBA calculation. 

We conclude that our adiabatic nu~lear model based on a 

prolate, axial intrinsic state of P1=.4 is substantially ~ 

86 correct- for further comment see section A(d) below and ref. · 

Moreover, the qualitiative difference between the shapes of 

the two 1=2 levels is reproduced in a way that ~s not possible 

with any spin-orbit potentials alone. However, real discre-

.• •• . .'"_! '• ' 

. ~-



-185-. 

pancies remain - the stripping peaks and minima for the 

three strong states are not perfectly reproduced in shape. 

This may in part be a result of.incorrect geometric factors 

in the optical potentials - perhaps ,the too thin surface of 

the de.uteron potential. The angular distribution to the 3/2+ 

state is not well explained at back angles. Very possibly 

there is coupling in the proton channels from the quite strong 

3/2+ state of the [200] 1/2+ band. It is just possible that 

compound nucleus components are present in the 7/2+ cross 

section; however, our theory does not explain the large. cross 

section at 150°. The difference is probably the sum of effects 

due to (a) inadequacy of treatment of proton charinel scattering 

for k = 1/2 bands (b) interband cdupling (c) the 1=4 compon~nts 

might very well be much larger th::m used in our calculation. 

An increase of the deformation of the optical potential and 

the introduction of a \ intrinsic deformation could both 

have a significant effect on this state; (d) coriolis mixing 

with the 1_200]1/2+ band (see discu.ssion in section A(c) below). 

The sensitivity of our results to the "{'l. deformation 

employed in the scattering part of the calculation will be 

shown. for the case of 12.3 MeV de~terons in the following 

section. 

It is to be noted that the c3lculations illustrated in 

figures VIII.4 and VIII.8 required rather different normalization 
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factors in order to fit the data.*. This may be interpreted 

in terms of a· core overlap (olo) for the ground band of 25Mg 

of about 0.8. Owing to uncertainties in the wavefunction, 

this must be regarded as a tentative figure. For further 

driscuss ion, see the account of the 12.3 MeV react ion be lo:W. 

(b) The Reaction 24Mg (d,p) 25 Mg at 12.3 MeV 

We have attempted to fit the 12.3 MeV data of Hosono. 26 

For our study, we used proton optical potentials "F'' and "G" 

of Table VII.1 and deuteron pot~ntials Band C of Table VII.2. 

With one exception, we used the wavefunctions of Tables IV.4 

and IV~5. The deuteron optical potential Was (see Chapter VII) 

obtained by extrapolation. Such procedures are somewhat 

doubtful for light nuclei. Energy dependent effects are, we· 

believe, most realistically studied where the deuteron and 

proton scattering can be fitted to ea·ch energy. For this 

reason, we employed the more ''realistic" proton optical 

parameters and neutron wavefunctions noted above, hoping to 

achieve good agreement with the 12.3 MeV angular distributions 

rather than attempt to study the energy dependence of the 

inelastic processes. To be realistic, such a study requires, 

if not detailed elastic and inelastic scattering data at each 

--------------------------~------------
*The fact that those for the calc~lations illustrated in 
fig. VII. 10 were quite different' is a result of different 
overall normalization employed in these later calculations. 

·, ·'' .. ·' k:. 

~ . 

.. 
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energy, then at least a well established energy dependence 

of the optical parameters, and we do not believe this exists 

for deuterons in magnesium. Unfortunately, it turns out that 

our angular distributions are not close enough to those measur-
26 . ' 

ed (which look somewhat unphysical in places) to allow us 

to unambiguously give normalizations. Qualitatively, the 

phenomena observed are similar to those at 10.1 MeV. 

Ground Band 

In fig. VIII.12 we give our results for the ground band. 

The DWBA cross section to the 7/2+ state is non-vanishing 

because of the small direct component. Including the 9/2+ 

state in the calculation had very little effect other than a 

30% decrease in the extreme back angle 7/2+ cross section. 

We see from this figure that the 7/2+ state is underestimated 

by a factor of 25.19/1.749 = 14.4. 

The k=1/2 Band 

It was here that there were normalization ambiguities. 

The r~sults were qualitatively similar to those illustrated 

for 10.1 MeV. The approximate normalization factors bywhich 

the theory must be multiplied to fit the data for the three 

lowest states (there is no 7/2+ data) are approximately given 

by: 

l. DWBA 6.097 (j=1/2), 2.452 (j=3/2), 9.673 (j=5/2). 

2. CC in, direct out 7.794, 4.525, 6.223. 

3. CCBA 7.236(-), 5.050(-), 5.952. 
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two points emerge: (i} these factors are much more uniform 

for CCBA than for DWBA, (ii) we see that they are greater 
' 

by a factor of about 3.5 than the ground state factors given 

in fig. VIII.12. This large ratio (for 10.1 MeV, using F-S 

wavefunctions, it was about 1.5) reflects the much longer 

iail of the 5/2~ component of the wavefunction in Table IV.5 

than of that in Table IV.4. The possibility that <olo/ may 

depart substantially from unity was examined. Using SAXOND 

wavefunctions and assuming the core for the ground band had 

a ~ deformation of .3 and that that for k=1/2 band was .4, 

then < E; lo/ ~ ·15 It seems quite plausible from the 
85 

different moments of inertia for these bands (see Chapter 

IV section F.1) that the deformations could differ this 

much. Therefore, unl~ss the core is a completely different 

self consistent solution for a [202] 5/2+ or a [211] 1/2+ 

orbital, the above mentioned ratio must result from an 
I 

excessively long tail of the neutron wavefunction. There is 

no way that c 5/ 2+ for the ground band can be substantially 

less than .98. If the asymptotic radial wavefunctions are 

about right, then the 10.1 and 12b3 MeV data imply that 
.(olo) ~ ·b- ·S 

(c) Note on Coriolis Mixing 

We have not studied the [200] 1/2+ band in 25Mg, although 

the 5/2+ state, for which c5/ 2+ is v~ry small and which has 

a greater than "expected" stripping cross section, would be 

,. 
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an interesting level to study. However, this level is also 

very sensitive to the coriolis mixing of the two bands.9° 

We comment that of the levels in the [211] 1/2+ band, the 3/2+ 

will probably be most affected by the coriolis admixing. 90 

The fact that the coriolis admixed components contribute 

coherently to thS cross section could mean that the relative 

strengths of the 1/2+, 3/2+ and 5/2+ states could have been 

affected. Litherland et a1 90 give admixing amplitudes as 

follows (for the [211] 1 /2+ band), written symboll ically: 

jY,_+/ =,.qq[211] ·t3[?.oo] 

r~;J..+/ c. . '11 [?.II] - ·"l"-[loo] 

15/l-i) ·qsf:tll] - · 31 [:too] ";. 

)"1/?..-+) """" ·'fl[:11t] ·?>'} f7..oo] 

The [20d] 1 /2+ intrinsic state has the largest probability 

amplitude for the 3/2+ component and almost zero for the 5/2+ 

component which is the reason for our statement above that 

the 3/2+ state is the most affected by band mixing. We add the 

proviso that with the above admixing and inelastic processes, 

the cross section of the 7/2+ state of the [21ij 1/2+ band coUld 

in principle be as much as doubled. 

(d) Conclusions for A- 25 

1. Th~ relative strengths of lev~ls within a band may be 

drastically changed when inelastic effects are included~ 

2. Certain features of the angular distribution that might 

be described as "j-dependence," appear for the two 1=2 levels 

within the [211] 1/2+ band in Mg. 
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3. The present generalization of zero range DWBA without 

cutoff is unable to account ~or the det~iled shape of 

angular distributions for stripping in light nuclei. 

4. The finding of Parikh, 86 who uses the results68 oi 
stripping at 15 MeV to determini t~at magnesium is prolate 

and 

for 

are 

axially symmetric is substantiated. 

the k=1/2 band; c1; 2
2 

= .333, c3; 2
2 = 

close to those of C~jec, 68 because in 
r 

2 Our best c values 

.467, c
512

? = .200 

her work, the result 

of an incorrect radial wavefunction and the neglect of inelastic 

processes seem to cancel within the k=1/2 band. 

5. We do not regard the parameters employed in the calculation 

of the ground band neutron intrinsic wavefunction to have 

been sufficiently well chosen (as compared with those for 

our "best" k=1/2 band calculation) to permit us to finally 

settle the question of the value of (ol o) for the ground 

band. We can say that our wavefunctions calculated according 

to the (probably erroneous) assumption that~the deformation 

was the same in each band ( see Chapter IV) lead to stripping 

results which suggest (olo/ ~- <b We note, however, that 

this assumption of equal deformations (again, probably 

erroneous) has recently been invoked, 87 to~ether with axial' 

asymmetry in a rather unsuccessful attempt at the explication 
25 . . 

of the · Mg spectrum. We regard this last work to be, if 

anything, evidence that th~s nucleus is axially symmetri9 

and that the k=1/2 and k=5/2 band have quite different deforms-

'1 
I 

., 
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tions. In fact, this should already have been ~lear from 

fig. 10 of the 1959 paper of Mottelson and Nilsson. 85 

B. Stripping Reactions on Deformed Rare Earth Nuclei 

Since the (d,p) experiments of Vergnes and Sheline, 46 

a wealth of nuclear level data have been amassed by this 

method for the deformed rare earth nuclei. These experiments 

have confirmed that the adiabatic model,together with the 

Nilsson scheme, contain a large degree of physical truth 

for strongly deformed nuclei. With an even-even target, we 

can see from the results of Chapter II together with eq(18) 

of Chapter VI, that the DWBA stripping cross section is of 
1. 

the form ()f. (}t(e) where ~(&) can be tabulated as 

a function of Q. Each band, then• has a characteristic 

"fingerprint" depending on the cj1 •s of the underlying single

particle state when the cross section for its members are 

plotted on a logarithmic bar graph. In this way, the band 

based on a particular Nilsson orbital can be traced through 

all the nuclides in whose spectra it appears. Most of the 

available data for this region are either for one angle or a 

small number of angles. Various authors claim that this is 

sufficient to determine the orbital angular momentum transferred' 

with the neutron. (This procedure is probably not unconn~cted 

with the large number of levels found. -Detailed angular 

distributions for a few levels along the lines of the work 

of Siemssen and Erskine 28 would be welcome in some lighter 
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rare earth nuclei chosen so that coriolis ambiguities will 

not cloud the inelastic processes issue.) This claim 

deserves examination as does any claim that c.
1 

can be 
'• J 

measured without taking account" of inelastic processes. 
I 

It is probably true that, by and large, the identificatio~ 

of bands using "fingerprint" techniques and the cjl tabulation 

of Vergnes and Sheline (really, Nilsson translated into 

cj 1-ese) is sound- especially. when it is.known what bands 

should be present. A possible exception will be discussed 

below. Our calculation will also invoive a better treatment 

of the state where a particular component of an intrinsic 
I 

state may have the characteristic long tail of a nearly 

unbound state - with a profound ekfect on the angular 

distribution. 

A very recent review article on the DWBA approach to 

nucleon transfer .on strongly deformed nuclei has been presented 

by Elbek and Tjpm. 1 All of the calculations discussed below 

were carried out before the analysis88 of coriolis coupling 

in various odd deformed rare earth nuclei were.published. 

1. The reaction 166Er (d,p) at 12.1 MeV 

The low lying levels of 167Er which are shown in fig. 

IV.3 are particularly appropriate for study because, in the 

first place, the level structure suggests that the ground 

ban~at least have little first order coriolis mixing 

(allowing for a less ambiguous interpr~tation of our findings) 

. •'•.,'}" ... 

' '~ 



-193-

, .... 

and then, there are certain levels, the ground state, for 

example, which shoul'd have very small direct amplitudes and 

should therefore be very sertsitive to inelastic effects. 
. 166 40 

The reaction Er (d,p) was studied by Harlan and Sheline· 

at 12.026 MeV, and the relative cross section at one angle, 

45°, was listed for many levels. We have studied the [633]7/2+ 

and the [51~ 5/2- b~nds as well as the "gamma band" at 5 32 KeV. 

The [633]7/2+ Band 

As can be seen from the wavefunction for the [63~7/2+ 

intrinsic state which is given in Table IV.?, by far the 

largest component is that with j=13/2+. As 1=6 levels are much 

lower in cross section than 1=4 levels of the same strength 
0 . 1 

(by a factor of 20 at 45 with 12 MeV .deuterons ), the 

13/2+ level (c 2=.85) is actually weaker than the 9/2+ level 

2 (c =.14). As our program was unable to handle more proton 

channels than those corresponding to the 7/2+, 9/2+ and 11/2+ 

states, the 13/2+ state was omitted from the calculation. We 

note, however, that the strong 131/2+ component~ were retained 

in the neutron wavefunction. In view of the moderate stren~th 

of the 13/2+ level, we might have expected a modification of 

the (weakish) 11/2+ cross section had it been included. The 

effect on the 7/2+ state would hafe been smaller as it is not 

coupled to the 13/2+ by the 1=2 (first order) components of 

the deformed optical potential. The calculations were perform

ed at 12.1 MeV, the energy of the standard CC and DW optical 
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uotentials "H" and "I" of Table VII. 1 and "D" and "F" 
L ' 

of Table VII.2. In order to study the consequences of 

scattering in the entrance and exit channels separately, we 

calculate the angular distribution first in pure D\'YBA, and then 

repeat first with scattering in the outgoing channels 9 sc+t

tering in the ingoing channels and finally the complete 

problem. Whenever there is a_ coupled channel or distorted 

wave calculation, we use the corresponding optical potential. 

In this case, we included only the. 2+ state of 166Er in the 

f T
. 166 0 !". deuteron wave unction. he deformations were: Er ~~=.2o, 

f3~t-=O.O, fo'J.(<o~.tl) =.307; 167Er (3-;.=.25, ~ct =.05, (Sico.J)=.3. The 

existence of ~ deformation in Er is doubtful, but will make 

very little difference in this case where there are no states 

to be coupled by it in first order that cannot be coupled 

by '( in first order. The DWBA calculations of the two 1=4 

states are of interest in themselves; while c 9; 2
2;c7; 2

2 =140, 

the corresponding ratio of the DWBA cross sections is about 

40. That must necessarily be a result primarily of the 

differ~nt radial formfactors; the Q dependence could have only 

a slight effect (see fig. 10 of the review article 1 of Elbek 

and Tjf5'm). As we found in Chapter IV, the details of the 

.wavefunctions depend sensitively on the separation energy. As 

explained there, it was not always possible to establish the 

best valrie for this perfectly and this might explain the large 

·direct (DWBA) 7/2+ cross section. We believe it is high, 

'' 
I 

.. 
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for when the inelastic scattering is switched on, the crbss 

section at 45° exceeds. the exper{mental value in this case. 

The angular distributionsfor the three states of this band 

for the four cases are shown in fig. VIII.13. The numerical 

results at one angle are summarized in Table VIII.1. 

The following points emerge: 

(a) The 7/2+ and 11/2+ levels are increased by factors of 

four and five respectively when the full calculation is 

carried out. 

(b) The relatively strong 9/2+ level is little changed, being 

reduced markedly (40%) only near 60°. 

(c) For the 7/2+ level, inelastic effects are about equally 

important in the exit and entrance channels. The exit 

channel scattering has less effect, except at forward angles 

on the 11/2+ level. Possibly the inclusion of the 13/2+ 

level would have altered this last conclusion. 

(d) In this particular case, the exit channel scattering 

appears to have induced a diffraction pattern on the angular 

distribution of the protons. We shall see that this does 

not happen in every case, however. 

As mentioned, our overshootirig of the 7/2+ level is 

probably due to an incorrect intrinsic wavefunction; this is 
' not in conflict with the fact that inelastic effects have 

increased the cross section by a tactor of four as can be 

seeri by considering the fact that the various amplitudes add 
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coherently. These calculations did not include the 4+ target 

state which makes a significant contribution in some cases 

as we see below. 

'l'he [512,15/2- Band in 167Er 

The wavefunction for the (512] 5/2- neutron intrinsic! 

state of A = 167 is given in Table IV.8. In this case, the 

stripping strength should be predominantly in the 1=3 and 

1=5 states. Harlan and Sheline 40 give the c~oss section for 

the 5/2-, 7/2-, 9/2- levels at erie angle, 45°, and these three 

states have been coupled .together in our calculations for· 

this band, except in one case whe~e we included the 7/2-, 

9/2- and 11/2- states. In figure' VIII.14 ( see also Table 

VIII. 2) we give the angular distribution to the first three 

states .of the band (a) direct, (b) pure CC, including the 2+' 

state in the incoming channel, and (c) pure CC including also 

the 4+ state of the target. The data of Harlan and Sheline 

at 45° are given in Table VIII.2, normalized to the case (c) 

7/2- state. The differ&nce between cases (a) and (b) for the 

weaker 5/2- and 9/2- states is dramatic, but not unexpected. 

What is not expected is the magnitude of the effect that the 

4+ ta~get state has on the 5/2- level, and the fact that for 

cases (b) and (c) the forward angle cross section of this 

level is so strongly boosted by the inelastic processes. The 

5/2- angular distribution appears now more like an 1=1 transi~ 

tion than·an 1=3 transition. Although the 4+ cross section 
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is much,lower than the 2+ cross section in 'inelastic deuteron 

scatteringon 166Er, it turns out that the scattering matrix 

elements leading to the 4+ state become comparable to those 

leading to the 2+ state for the higher partial waves. Hence, 
'> 

one might suppose the deuteron wavefunctions corresponding to 

the 4+ target state to have a relatively large a~plitude at a 

large radius, so that they lead to neutron stripping at a 

large radius which, according to the usual semi-classical 

arguments associating 1-transfer with· a particular angular 

distribution, should res~lt in a more forward peaked angular 

distribution. We remark in this connection, that the forward 

angle cross section is sensitive to quite ~mall high partial 

wave s-matrix elements whose coherent effect may be larger 

than would be guessed from their magnitude. We determined 

the required number of partial waves empirically by demanding 

convergence of the forward angle differential cross section. 

We might conclude that at energies near the coulomb barrier, 

elastic ahd also inelastic scattering takes place outside the 

range of the nuclear forces. Thoele deuterons reaching the 

nuclea~ surface have a large prob~bility of being associated 

with excited nuclear states. Thej are also, of course, moving 

very slowly having been nearly st(pped by the coulomb field. It 

would seem, then, that the import~nce of inelastic processes 

in transfer reactions is greatest precisely where the adiabatic 

model is least appropriate. The adiabatic picture of scattering 
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was used in a previous study of inelastic processes in 

stripping by iano and Austern. 3 

As can be seen from Table IV.8, there.are small amplitude 

1=7 components in the bound state wavefunction. These do 

not correspond to direct amplitudes to any states considered. 

In order to determine their r6le in stripping, we performed 

a calc~lation in which they were omitted. The results are 

displayed in fig. VIII.15 and Table VIII.2. The only real 

effect these components have is to depress the 912- lev~l. · 

We illustrate in the same figure the effect of the proton 

channel inelastic processes. It is clear that in this case, 

at least, the exit channel scattering contributes to the 

distinct forward angle peaking of one level (the 5/2- level). 

The agreement with experiment, though greatly improved, is 

not perfect for the 5/2- level and is poor for the 9/2~ le~el. 

The 11/2- level presumed by Harlan and Sheline to be at 668 

KeV, and certainly weaker than the 9/2- level when directly 

excited, is not seen, apparently r'lasked by levels at 654 KeV · 

and 674 KeV. The level at 654 Keir is unassigned and is about 

four times the DWBA strength expected of the 11/2- level. 

Harlan and Sh~line support their ~laim that the 1~/2- level 

should be at 668 KeV with the dat:1m that the 9/2- .level fits 

the I(I+1) ~6heme quite well. HoWever, if we examine the 

energies of the levels in the same band in 169Er, we find that 

I(I+1) places the 11/2- level in that nucleus at 439 KeV, whereas 
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it is seen at 420 KeV. Granting then, the somewhat different 

inertial parameters in 
169

Er, it is plausible that the 11/2-

in 167Er might be 14 KeV too low ( the breakdown of adiabati--

city always leads to higher levels of a band being somewhat 

low). A ~alculation was performed including the 7/2-, 9/2-

and 11/2- levels together and the results are included on fig. 

VIII.14. Although the fit to the cross section of the 654 

KeV level is not good, yet it is better than that for th~ 9/2~. 

level. The DWBA cross section of the 11/2- level was not 

calculated, yet it is plain that·inelastic effects have enhanced 

it by a greater factor than for the 9/2- level. We feel that, 

by including inelastic processes in this calculation, w~ can 

establish that the 654 KeV level is the 11/2- level with 

comparable plausibility to the hypothesis that the band is 

based on the [51~ 5/2- intrinsic state (in view of the 

inability to fit the 9/2- level). We note that Tj,eS'm and 

Elbek51 note the "breakdown of the single particle description 

of the [512]5/2- orbital" in Gd. 

This last calculation also shows that omitting the 11/2-

level from the previous calculatibnsdid not greatly affect 

the 9/2'- level; the exit channel 'inelastic processes are 

dominated by the very strong 5/2-· level. 

After this work was completed, the coriolis coupling 

analysis of Kanestr,eS'm and Tj,eS'm88 was published. This 

suggests that the 7/2- level is weakened and the 9/2~ level 
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doubled by coriolis mixing; this would greatly improve our 

agreement with experiment. (Recall our scheme of normaliz

ing the calcUlation to the 7/2._ level. See Table VIII.2.) 

88 It can be seen from ref. that this band cannot be 

fully accounted for with coriolis admixing and DvVBA and 

that the inelastic effects we describe are of comparable 

importance to this mixing in an overall picture of stripping 

on deformed nuclei. 

Although the strong 7/2- level has been only slightly 

enhanced by inelastic processes, this has some importance 

when different bands are compared; when measurements of the 

BCS u2 factors is attempted, or when absolute cross section 

calculations are essayed. We compare, for example, the sli.ght 

reduction in the intensity of the strong (9/2+) level in the 

ground band (which would be drastic if the measurements were 

t 600 . 1 ) a a one • 

An Erbium Gamma Band at 12.1 MeV 

The k=3/2+ band at 532 KeV in 167Er is identified by 

Harlan and Sheline as being a gam~a band on the (63~7/2+ 

intrinsic state, together with va~ious single quasi-particle 

admixtuves. Probably these latte:~ are dominant as far as 

stripping is concerned, for the 5/2+ level at 573 KeV in this 

band is excited in (d,p) nearly as strongly as the correspond-
' ing 9/2+ level of the ground band, whereas the amplitude for 

the i 2+ state being excited by deuterons is about one tenth 

.. 
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(cross section one hundredth) of the amplitude for the ~otational 

2+ excitation. This would imply that levels of a pure odd~ 

nucleus gamma band corresponding to those in the non-vibration

al band on which it is based, which are excited largely 
3 

through the rotational 2+ of the target, will have eros~ 
' sections. reduced by two orders of magnitude. Other levels 

of the gamma band are expected to have cross sections attenu-

ated even more compared to non-vibrational levels with the 

same intrinsic state. 

The empirically moderate excitation of the 5/2+ state 

of the gamma band is not inconsistent with ·~~is band indeed 

being largely of gamma band character as small non-vibrational 

admixtures with large stripping amplitudes could dominate the 

cross section. In spite of the large measured cross section a 

(model) calculation was carried out in which this band was 

considered as a pure gamma band excited entirely through the 

2+ gamma bandhead of the target nucl~us. The optical potential 

for the deuterons and the deuteron inelastic scattering are 

discussed in Chapter VII. We negJ.ect in this case the effect 

of the possible excitation of the core phonon by protons which 

are as~ociated with stripping to the ground band; our program 

was not set up to calculate interband scattering. Actually, 

in the one calculation performed there was not even ihtraband 

coupling in the exit channels. The angular distributions are 

shown in fig. VIII.16 where we cb~pare them with a pure DW 
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calculation of the ground band, the latter being redu<;ed 1n 

the figure by a factor of 100. The most conspicuous feature 

is the peaking at more forward angles, corres~onding perhaps 

to the deuteron wavefunction in th~ gamma band channel having 
I largest amplitudes at the nuclear surface. 

We remark tha:t the structure factor for the gamma band 

involves the product for state J of the gamma band: 

C'l ~ J c 
-'l. ..,, '31 j~ 

lt. ·1?. 

Thus for J=3/2 ,- there is j=7 /2 only as j ·~ 7/2; for J=5/2, 

possibl~ j values are j=9/2 or 7/2. As c7;2 ~ c 912 for 

the ground band, we may speak loosely of "corresponciing 

level~" between these bands (in the context of stripping 

reactions) for the two lowest levels of the respective bands. 

This gives point to the comparison made in fig. VIII.16. 

2. The Reaction 154 sm (d,p) at 12.1 MeV 

Deute~on stripping reactions on the even isotopes of 

samarium have been studied by Kent3fick and Sheline 49 at 

deuteron energies around 12 MeV. The isotopes involved 

straddle the transition region from spherical to strongly 

deformed. The nuclide 154sm is apparently very well described 

by the adiabatic model and is pro~ably relatively stable in 

deformation under the addition of, one neutron (i.e., (oto'>~l ); 

152'1
• this is not so obviously true for Sm. 

Kenefick and Sheline measure the relative stripping 

.. 
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. . 155 
intensity of about one hundred ilievels in Sm at a single 

angle, 65° 1 at 10.472 MeV. Our calculations were at 12.1 

MeV, the energy of the optical potential (and the energy 

quoted in the abstract of ref. 49 )~ The low lying levels of 

155sm as interpreted in ref. 49 have been discussed in Chapter 

IV and were illustrated in fig. IV.4. The present calculations 

are confined to the [521] 3/2- (ground) band, using the wave

function of Table IV.10 or, in one case, that of Table IV.11. 

Because of the shortcomings in these wavefunctions, discussed 

in Chapter IV, and the energy d isc:repancy ( 10.4-12. 1 I'IIeV is in 

the region of the coulomb barrier where changes could be 

rapid) our serious attempt at spectroscopy will be made in 

the very similar nucleus 157 Gd as described below. However, 

our model calculations of the first four levels of the ground 

band have yielded useful information about inelastic processes. 

Most of the results discussed below iri terms of ~igures are 

also given in a tabulated comparison with the 65° experimental 

results in Table VII.3. 

The ground band will be somewhat mixed with the. [523] 5/2-

band. As the latter band is weakiy excited in stripping, only 

the weak 5/2- level of the ground band should be much affected. 

In the [523J 3/2- band, however, thl:! 426 KeV level (see fig. 

IV.4) is five times as strong as the 338 KeV level, whereas, 

from the Vergnes and Sheline c.'s, they should have much 
J 

the same stripping strength (the 426 KeV level would mix 



-204-

with the very strong 1?8 KeV level). 

In fig. VIII.17, we compare the angular distributions 

for a pure DWBA calculation, a calculation including transi-

tions through the 2+ and 4+ target states but with no coupling • 

in the exit channels and the complete CCBA calculation. The 

strong levels are not markedly ch~nged. The influence of the 

exit channel inelastic transitions is quite comparable to 

that of the entrance channel scattering; as for 167Er it has 

imposed a relatively strong diffraction pattern on the band

head angular distribution. A calc~ula tion was performed with 

the wavefunction of Table IV.11, and the angular distributions 

are compared with those using the previous wavefunction. The 

nonlinear effects discussed in Chapter II are evident; at 

65° the ratio of the cross sections using the Table IV.11 

wavefunction to those using the wavefunction of Table IV.10 

are respectively: 1.2557, 0.7418, 1.077 and 0.8826 f6r the 

four states. The ratios of the cj 1
2 for the same twD 

wavefunctions are 1.2826, 0.}091, 1.091 and 0.7647. For 

the V'ieak states in particular, the departure from unity of 

these ratios has been clearly damped by the inelastic processes. 

We note that the shape of the ang\1lar distributions remains 

rather constant for ~his small change, except for the 5/2- level 

for which the new cross section is about 20% less depressed at 

the most forward ~ngles following from the fact that the 

subcomponents of the 5/2- component of the wavefunction with 

·, ·····: '· : .,. r 

i' 
I 
: 
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high n do not decrease commensurately. with the principal 

component. This is also true for the 9/2~ component. 

The ·effect of adding a spin-orbit term to the proton 

optical potential is found to be very small, being a slight 

depression of the cross section at the most backward angles 

(3/2-, 5/2- states) or most forward angles (9/2- state). The 

strongest state, 7/2-, is virtually unaffected. This is not 

illustrated. 

In view of the rather surprising contribution of amplitudes 

involving the target 4+ state for the 5/2~ band in erbium, the 

calculat~on was repeated with the 4+ state omitted from the 

entrance channels. The results are shown in fig. VIII. 18. 

Evidently the coherency between the various amplitudes feeding 

a particular state allows what must be a fairly small amplitude 

to have a significant effect on the angular distribution. Note 

the displacement of the diffraction minima for the 3/2- state. 

The addition of target states can depress a cross section, as 

is the case for the 5/2- level. If we compare the 9/2- angular 

distributions in fig. VIII.17 and fig. VIII.18, it becomes 

apparent that the 2+ target state and the 4+ target state 

result in respectively destrtictive and constructive coherent 

amplitudes. The provides a possi~le explanation of the over-
. 167 

estimation of the Er g.s. cross section for which we did 

not include the target 4+ state. 

: j 
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3. The Reaction 156Gd (d,p) at 12.1 and 16.0 MeV 

The spectrum, fig. IV.5, of 
157

Gd parallels that of 

155 sm quite closely. These nuclei have very similar deforma

tions, as this depends mostly on the neutron number in t~is 

region •. We have continued our study of the [521J3/2- band 
! 

in this nucleus for which these are differential cross 

section ~easurements at several angles, at 12.1 MeV 7 the 

energy of our standard optical potential. These are d11e to 

51 Tj~m and Elbek. The neutron single particle wavefunetion 

given in Table IV.12 is probably, as distussed in Chapter IV, 

better~ than that used for Sm. The larger separation between 

the 3/2- and 5/2- bands, as compared with 155 sm, sugg~sts 

that coriolis mixing is less for the [52il 3/2- band in this 

nucleus, though the ~eakly populated 5/2- level is no doubt 

affecte~. The predicted 5/2- direct amplitude is so small th~t 

in ref. 51 the measured intensity is attributed to band 

mixing. However, we shall show that indirect processes 

seemingly account fo~ the cross section. (This weak level is 

not tabulated in Table 5 of ref. 51 , but can be seen in their 

Fig. 11.) We have calculated the DWBA and 'CCBA cross sections 

for the 3/2-, 5/2-, 7/2-, 9/2- levels and compare them in 

fig. VIII.19 and Table VIII.4. The cross section of the 5/2-

6 o . I level is increased twentyfold at ,o and the strong 7 2-

level is attenuated by about 20% father uniformly. The ground 

state diffraction pattern is distinctly altered geometrically, 
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but not in overall strength: at 60°, one of the angles of 

measurement, a maximum takes the place of a minimum. This 

reveals not only a possible pitfall in the procedure of 

identifying angular momentum transfer by measuring three or 

four points, but the overall strength may not. be well judged. 

The strongest level, in the cases we have seen, retains its 

shape; but the 5/2- level in this case is not that weak. 

Note that in this case, the DWBA 5/2- also has a d j_st inct 

diffraction pattern. The predicted cross sections at 125° 

are all too low, a phenomenon familiar to us from Mg, but 

less expected here. A deuteron optical potential of 

excessive absorption seems a possible explanation or perhaps 

an inadequate representation of the proton coupling. To 

investigate the latter possibility, we repeated the calculation 

with p~=~3 in the exit channels, as is also shown in fig. 
0 . 

VIII.19 -the 125 experimental points remain unaccounted for. 

The 7/2- level is too strong relative to the 3/2- and 9/2-

levels. We. have beeri able to get a reasonable fit to the data 

by multiplying c
7 12_ by-\.85. (The ? /2- level is scaled by almost 

exactly, ,85 2 , ··the 5/2- :~y a factor somewhat less than .85 2 ; 

suggestiri~ that the contribution from the 3/2- single particle 

compon~nt adds destructively.) It is to the 7/2- 60° result 

of this fina~ calculation to which we normalize the data for 

each state in fig. VIII.19, in which the effect of the change 

in c712_ on the 3/2- and 9/2- angular distributions is also 
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visible. By scaling c712 in such a way as to fit the data, 
. 0 

we may say. we have determined (such is our agreement at 60 

and 90°) normalized cj's for the[521]3/2- neutron, A=157: 

c
312

= ~.366, c712 a .651, c
9
; 2= ~.515 (etc.) compared with the 

values of Vergnes and Sheline for ~hese three components of 

-~32, +.73, and -.5 respectively (our convention). 

Comment on the Structure of Gadolinium 

The case of coriolis coupling in 157Gd is not treated by 

88 ] ref. However, the authors do study the [521 3/2- band in 

15 9Gd. Band mixing should be greater in this case( the strong

ly admixed bands are much closer in energy), and we may infer 

from these calculati6ns that coriolis admixing will have 

little effect on this band in 157Gd. The 3/2- level will be 

barely affected, but probably the 9/2- level will be enhanced. 

This would be in the right ,direction, but the question remains: 

why is the c?/2.- ··calculated in our Saxon-Woods model (discu~sed 

in Chapter IV) too high (apparently for this band in 15 9Gd 

also88 )? Certainly, the value obtained by Vergnes and Sheline 

is too ,~igh to fit the stripping data. Neither coriolis 

admixing nor inelastic processes, though both help, can 

satisfactorily account for the discrepancy. In view of what 1 • 

we have learned concerning the crucial importance of the tail 

of the wavefunction, a suitable combination of changes in the 

potential parameters could possibly be sufficient and we may 

even have a means of determining these parameters. It is· 

.. ';, 
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unlikely that our choice of ~7.=.3 for the bound state 

wavefunction is too high; a reduction in f-z.would result in 

' b i . d 46 c712 _ · e ng lncrease • 

Nowhere have we considered (nor seen considered) any 

possible perturbati6n of the singie particle radial wave

function arising from the rotation-vibration interaction. A 

quite small effect in the surface region would be sufficient 

to affect stripping calculations. 

16.0 MeV Deuterons 

The DWBA and CCBA angular distributions were calculated 

at 16 MeV using the appropriate potentials discussed in 

Chapter VII. The results are shown in fig. VIII.20 and 

listed in Table VIII.5. There is no data. 

The change in the 3/2- and 7/2- levels at 16 MeV is 

almost entirely a matter of altering the diffraction pattern 

without changing the overall strengths. In this respect, the 

effect is less than at 12.1 MeV where there was a distinct 

overall attenuation of the 7/2- level. The effect on the 

5/2- and 9/2- levels is about the same as for 12.1 MeV, except. 

at the most backward angles where it was greater. 

·we can give some answer to the question of energy depen-· 

dence of inelastic processes. It appears that:., once above 

the energy where the elastic scattering becomes significantly 

different from Rutherford ( a more empirical criterion than 

"above the coulomb barrier"), then inelastic processes become 
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potentially significant. The coulomb barrier transition region 

is difficult to study, as optical parameters vary in a 

complex manner here, and scattering experiments would ideally 

be performed at each ~nergy. Above the coulbmb barrier (and 

12.1 MeV is above in the sense defined above~ ~or A ~160) i 

the energy dependence of the importance of inelastic processes 

is rather small~ The fact that at 12.1 MeV, the influence 

of the target 2+ state back on the ground state is small, 

seems not to imply necessarily that inelastic processes are 

without influence in stripping re~ctions. At 12.1 MeV, the 
I 

elastic differential cross sectiort of deuterons ~n Sm is 
0 

about 0.1 x Rutherford at 180 and greater everywhere else. 

As the Rtitherford cross section ib very small at back angles, 

this.might be thought to corres!)OYld to a very small absorption 

for the elastic channels. However, the large forward angle 

coulomb cross section corresponds to an impact parameter. 

beyond the range of stripping. Compare the comments we made 

above in connection with the 5/2- band in erbium. 

4. A Note on Alternative DWBA Calculations 

Our procedure used above to determine the deuteron 

"DW" optical parameters is not exactly that described in 

our general discussion. We required that the DW optical 

parameters fit the same (meagre) experimental data in a DW 

calculation as those fitted by the CC parameters in a CC 

(d,d') calculation • Subsequent to the above investigation, 
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we carried out trial DWBA calculations in order to compare the 

tesults obtained using the optical potentials discussed 

in Chapter VII with potentials obtained by requiring that 

the deuteron optical potentials give the same elastic scat-

tering (in a DWBA calculation) as that found for the CC 

calculation when the 2+ state was included (we treat the case 

166 . ) of Er • We used the optical model sSarch code Mercy for 

this a@.~e did for 16 MeV and 20 MeV deuterons. The use 

of optical potential thus brings our investigation for the 

rare earths more strictly in line with the general procedure 

discussed above and in Chapter II. However, we note that 

although the new DWBA calculations now bear the correct 

relationship to the CCBA calculations discussed above (as 

far as our scheme of model calculations is concerned), optical 

model ambiguities still exist. The original (DW) optical 

pdtential fitted the small amount of elastic data for 166Er; 

however, it has been used ?g,BO satisfactorily in other 

deuteron scattering reactions. We might more realistically, 

therefore, have searched for CC parameters that fitted the 

DW elastic deuteron scattering (i.e., instead of vice versa). 

No automatic search program was available that could handle 

coupled channel calculations, and the parameters found in a 

manual search that fitted the same elastic data were discussed 

in Chapter VII and were the ones employed. Using program 

Mercy, we found the following-parameters gave a good fit to 
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166 the CC calculated deuteron elastic cross section on Er: 

I 0. = . iCZ{, 
0 

These are to be compared with.set D of Table VIII.2. The1 

most notable feature is the reduction in overall strength 

of the absorptive potential which is apparently (as we shall 

see) more than countered by the greatly increased surfai_~e 

thickness of the absorptive region. 

We then studied the 5/2,-, 7/2- and 9/2- states in 

167Er using both the new set of deuteron optical potentials 

above, and the set of standard DWBA parameters. 

The changes in the 5/2- and 7/2- levels were very similar 

to each other. 0 Above about 90 , the cross section using the 

Mercy parameters above was 10-20% reduced. The stripping 
0 0 peak was reduced 10% and moved from 52 to 58 an~ the Slight 

0 peaking below 15 was removed and becomes a dip so that the 

0° cross section was reduced 35%. Experimental results are 

not usually given for rare earths in this region. It is 

evident that the increase in ao has resulted in a decrease of 

the wavefunction ih the nuclear surface. The total c~oss section 

is reduced 10%. For the 9/2- level, for which the wavefunction 

has greatest amplitudes for the n=O component, the cross 

section is reduced only by 2% at 180°, 10% at 90°~ 5% at the 

stripping peak (which is moved from 70° to 78°, but the angular 

.. 
r 
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) 

variation of the cross section is small.) At forward angles 

the change*is more pronounced: 1~ at 40°, 33% at 30°, 

60% at 20°, 70% a,t 10°. The total cross section is reduced 

6%. Thus, the changes in the optical potential appear to 

have reduced the deuteron wavefunction in the nuclear surface, 

but not changed it much in the nuclear interior. To interpret 

our previous results in terms of a model calculation in Which 

the DW optical pOtential precisely fits the calculateri CC 

elastic scattering, we should regard the DvWA curves, fig. 

VIII.14. For l ~ 5, there will be no appreciable change above 

90°. At forward angles, the DWBA cross section will be lower 

to an extent Which is greater for lower l transfers. The 

tendency for inelastic processes to increase stripping 

cross sections is thus somewhat enhanced in this model 

calculation. 

*The percentages indicate the extent to which the cross section 
is reduced by using the Mercy parameters quoted on the previous 
page. 
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~abfg VIII.1. Stripping o~ 12.1 MeV deu~ero~s leading to 'the [633J7 /~+ band 
ln 7Er. The c.m. angle lS 45°. Coupllng ln the entrance channels lncludes 
the target 2+ s~ate only. In all these cases~ the parameters are as specified 
in the text. · 

State. Expt.40 N** N y y 

N*** y N y 

7/2+ .9968x10-3 .484x1o-3 .928x1o-3 1.11x1o-3 1 . 78x1 o- 3 . 

9/2+ 1. 78x1 0 -2 1 • 83xl0 -2 1. 9x10-2 -2 -2 1.55x10 *1.78x10 

11/2+ 1.495x1o-3 .502x10-3 1.12x10-3 - 2.39x10-3 ~.58x10-3 

* The experimental points were normaliz~d to this. 

** N here means no coupling in incoming channels, Y means coupling.· 

*** N here means no coupling in outgoing channels, etc. 

--<-.._ 

.. 

I 
1'0 _, 
.p. 
I 
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Tabt6
7
vrrr. 2. Stripping of 12. l MeV deuterons leading to the [512] 5/2- band 

in Er. The experimental cross section exists only for 45°. 
+N signifies no coupling in entrance channels, Y signifies coupling. 

++N signifies no coupling in. exit _chanp.els, Y sJ_gn:l_f.'ies ___ c_oupl in,g. 

State Q) 

r-i 
QO 

Expt.40 

* 

s:: 
c:x; 

45° .054 

5/2- 60° 

90° 

45° • 567 

7/2- 60° 

90° 

45° • 0587 

9/2- 60° 

90° 

N+ 

N++ 

.00769 

.00802 

.00582 

.549 

.555 

.405 

.00382 

.00525 

.00281 

y 

N 

.0159 

.0157 

.0090 

.456 

.558 

.381 

• 00581 

.00761 

.00638 

We normalize the data to this number. 
** . 

y 

y 

.0187 

• 9215 

.00746 

.475 

.641 

.414 

.0112 

. 0112 

. 0105 

** y 

y 

.0345 

.0385 

• 0118 

* .567 

.661 

.459 

.0120 

.0133 

.0101 

** *** y ' 

y*** 

.0339 

.0386 

.0116 

.571 

.675 

.456 

.0132 

.0142 

• 0113 

I 
i\) _,. 
IJl 
I 

Includes the 4+ state of the target nucleus. The other calculations include 2+ only. 
*** Calculation excludes the 1=7 components of the single particle wavefunction. 



Table VIII.3. Partial differential cross s~ction at 65° for 
the stri~ping of 12. 1 MeX

9
deuterons leading to the [521] 3/2-

band in 55sm. The data was taken at 10~472 MeV. In this 
table, we have normalized both the data and. the theory to 1.0 
for the 7/2- state (lower of each pai~. The upper of each pair 
is unnormalized; note the nearly constant strength of the 7/2+ 
state. Note that 65° at 10.472 MeV does not correspond to 
exactly the same point in the angular distribution at 12.1 MeV. 
The best improvement is in the 3/2- stat~ where th6 experi~ental 
.633 is to be compared with DWBA (.4) and CCBA (.585 or .657) 
and in the weak 5/2- state. 

State Expt. 

3/2- 1.0 .026 

.633 .4 

5/2- . 06 • 0012 

.038 .0185 

7/2- 1.58 .065 

1.0 1.0 

9/2- • 1 2 .0056 

• 076 • 086 

y 

N 

.03 

• 461 

.0025 

• 038 

.065 

1.0 

.0056 

• 086 

y 

y 

.038 

.585 

.0052 

. 08 

.065 

1.0 

.;0083 

• 127 

y 

y 

.046 

.657 

.0037 

.053 

. 07 

1.0 

. 007 

• 1 

* For these, we employ the wavefunction of Table IV .11. In all 
other cases that of Table IV.10 was used. 

+In first line, N and Y signify absence or presence of inelastic 
coupling in entrance channels. 
++In the second line, N and Y refer to coupling in exit channels. 



... 

-217-

Table VIII.4 (part one). Stripping of 12.1 MeV deuterons lead
ing to the [521_] 3/2- band in 1 ?7 Gd. The upper numbers of each 
pair are the theoretical numbers as calculated; the lower 
are the values of (Experimental/Theory) for that angle. These 
numbers should ideally all be equal; the great reduction in 
the range of values when inelastic processes are included is 
evident -- especially if the 125° results are ignored. 

State 
y Expt.51 N+ 

----------------~--~--~----~----------

60 146 . 

3/2- 90 55 

125 23 

60 0 

5/2- 90 0 

125 0 

60 236 

7/2- 90 132 

125 69 

60 23 

9/2- go 9 

125 11 

For explanation of * 

N++ 

• 0309 
4725 

.0152 
3618 

.00639 
3333 

.000189 

.000129 

.000063 

• 1213 
1946 

• 0660 
1999 

.0229 
3013 . 

.003263 
6345 

.0199 
4520 

.0134 
8209 

.0141 
3901 

.00422 
5450 

.00442 

. 0015~~ 

y 

.000529 

.0981 
. 2343 

.0539 
2449 

• 0199 
3469 

.0055 
4182 

.0034 
2639 

.0024 
4490 

and +, see Fig. VIII.4 (part two). 
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Fig. VIII.4 (part two). ~In top row, Nor Y sifnifies absence 
or presence of coupling in entrance channels. + Same for exit. 

** 
State 

y N y 

* y N y 

60 . 0406 *** ** .0415 
' 3596 3518 

3/2- 90 .0139 .0145 
3957 3846 

125 .0042 .00456 
5470 5044 

60 .00492 • 003 33 
5/2- 90. .00157 .00126 

125 .000515 .000447 

60 .0981 • 08764 .0725 
2405 2639 3255 

7/2- 90 .0505 • 0447 .0393 
2614 2766 3358 

125 .0182 • 0166 . 014 5 
3791 4170 4759 

90 ' • 00587 .00507 
3918 4536 

9/2- 90 .00355 .00312 
2535 2885 

125 .0026 .00222 
4255 4955 

* 
~,. =. 3 !n this case in proton channels. 

**' In these cases, c7/2- is multiplied by .85. 

*** Where not given, as for the other N, N column. 

·~ ' . ' ' ,.. /. 

~ 
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Table VIII.5. StrtDning of 16 MeV deuterons Qeading to the 
1B2U 3/2- band in 51Gd. The effect on the. geometry of the 
3/2- dlifraction pattern is dramatized by the way that the 
450 cr6ss ~ection is halved, while at 30° ~nd 60° it is nearly 
:doubled. 
I 

State 

3/2-

5/2-

7/2-

9/2-

30 

45 

60 

30 
< 

45 

60 

30 

45 

60 

JQ 
45 

60 

·•''' 
•·.· 1,, 

DWBA CCBA 

. 0676 • 1 05 

.0470 .0242 

.0260 .0404 

.00052 .010 
' ., 

. 00031 .0054 

. 00019 .0048 

• 246 .202 

.117 • 131 

• 104 . 0837 

.00484 • 00974 

.00775 . 0103 

.00388 .00738 

\ 

; ~ 

' .. 
H ~ 



-220-

Figure Captions for -Chapter VIII 

Fig. VIII.1 The influence on stripping of the presence or 
absence of transitions going through the 2+ of 24Mg, and 
of no coupling or complete coupling among the two final 
states in 25Mg (g.b.) are illustrated. The inelastic 
transition to the 2+ state is calculated in first order 
(DW) in this figure. The deformations assumed are (1,.. =. 4 
in the deuteron channels and (3-z. =. 3 in the proton channels. 

Fig. VIII. 2 The same reaction as shown in Fig. VIII. 1. Curves 
labelled ~1=.4, P1=.3 have this deformation in cc calcula
tion of outgoing inelastic scattering together with a cc 
calculation with ~h =. 4 of the deuteron scattering which 
includes the 2+ target state. Also shown is the effect on 
this calculation of projecting the 2+ state out of the 
entrance channel. For comparison we show the result (see 
Fig. VIII.1) of treating the incident channels in with 
the 2+ state excited in f~r~t order (dw), and the pure 
DWBA calculation. 

Fig. VIII.3 The effect of varied spin-orbit interaction.on 
CCBA calculation ( ~=.4 in incident, t%.=.3 in exit 
channel scattering). Curves labelled VLSP=6 have this 
spherical spin-orbit interaction in the proton channel, 
those labelled VLSD=5 have this spherical spin-orbit inter
action in deuteron channels. 

Fig. VIII.4 Comparison of complete DWBA and CCBA calculations 
with spin-orbit interaction ( Vso =5 for deuterons ,~=6 for 
protons) included. The data has been normalized at the 
stripping peak of the 5/2+ state~ To facilitate comparison 
with other levels of the nucleus, we state that the experi
mental results have been multiplied by .625. For note on 
relative strength of the DWBA calculation without spin-orbit 
potentials, see text. 

Fig. VIII. 5 The react ion 24Mg( d, :p) 25Mg(g. b. ) with 10. 1 MeV 
deuterons. Comparison of polarization for CCBA and DWBA 
calculations leading to the ground state. 

Fig. VIII.6 The influence of couJ1ling in the exit channels 
upon the stripping Qf 10.1 MeV deuterons leading to the 
[211]1/2+ band of 2~Mg. The nu~ber of radial components 
in the Faessler-Sheline bound Btate neutron wavefunction 
is seven, except that the DWBA calculation is also shown 
where eight components are included. The calculation was 
performed with exit channel .deformation ~=0.2,0.3; in each 

l •' '· ,.'1,. 
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case ~e used optical potent~al ~of .Table VII.1. The 
1/2+ 9 3/2+:, 512+ states are normalized to the DWBA cross 
section at 20°, by multiplying by .785, .812, .99 respective
ly, for both values of P~ . The 7/2+ level has been 
scaled by 1.225 for M,=.2 and by .570 for ~, =.3. We 
comp~re (.3/.2)2=2.25 with 1.225/.570=2.15. 

Fig. VIII.? The stri~ping of 10.1 MeV deuterons on 24Mg 
i leading to the [21TI 1/2+ band. The effect on a direct 
' transition of successively adding transitions through the 

target 2+ state (excited in DWBA) and coupling among-the 
exit channels ( B2 =.3) is illustrated. There are no 
spin-orbit potentials used in these calculations. 

Fig. VIII.B The ef~~ct of inelastic scattering processes 
in the reaction Mg(d,p) at 10.1 MeV is illustrated by 
comparing the complete calculation CCBA with the usual 
DWBA which omits these processes. This calculation includes 
the four lowest states of the [211] 1/2+ band. Also shown 
is a CCBA calculation in which the nuclear deformation in 
the 25Mg channels is increased from 0.3 to 0.4. Spin-orbit 
interactions, Vs 0 (prot)=6 and Vs 0 (deut)=5 were used. . 

Fig. VIII.9 The influence of spin-orbit terms 
and proton optical potential is illust~~ted 
calculation of the (211] 1/2+ band in ?Mg. 
Vs 0 (prot)=6, V80 (deut)=5. . 

in deuteron 
in a CCBA 

We used 

Fige VIII.10 For the same reaction as Fig. VIII.9, we -
illustrate the effect of increasing the absorption of the 
proton optical potential by changing W from-3 to -6. Also 
shown is the effect of omitting the 1=4 component of the 
bound neutron wavefunction. This wavefunction (see text) 
was different from that used for obtaining figures 6 through 
g. 

Fig. VIII.11 Illustrated is a complete calculation for the 
[211] 1/2+ band, comparing with the data83 using the "best" 
wavefunctions (see text). The factor by which the data has 
been multiplied in order to fit the stripping peak for each 
state is shown. · 

Fig. VIII.12 Comparison of complete DWBA and CC:SA calculations 
of the stripping of 12.3 MeV deuterons leading to the ground 
band of 25Mg. Also shown on the figure is a hybrid calcula
tion (in which the deuterons but not the protons undergo 
inelastic scattering) and a CCBA calculation in which the 
scattering in entrance and exit channels is calculated with 
nuclear deformation ~~=.5. The factors N(5/2) and N(7/2) 
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are the factors by which the theoretical numbers have been 
multiplied in order to get the normalization shown. 

Fig. VIII.13 The influence of inelastic processes on the 
strip;>ing of 12. 1 MeV deuterons leading to states of the . 
[63~7/2+ band of l67Er is illustrated. Inelastic processes 

involving the entrance channels (target 2+ only) and exit 
channels are included separately and together in calculations 
that are compared with the DWBA calculation •. 

Fig. VIII.14 The effect of inelastic processes on the 
strippin~6~f 12. 1 MeV deuterons lea~ ing ~o th~ [512] 5/2-
band in Er. We compare calculat1ons 1n wh1ch trans-
itions through the target 4+ state are included with 
those with the 2+ state alone. We also give the result 
of a calculation in which the 7/2-, 9/2- and 11/2~ levels of . 
this band are coupled together instead of the 5/2-,7/2-, 9/2-. 

Fig. VIII.15 Further study of the reaction of Fig. VIII.14. 
Here we illustrate the effect of omitting exit channel 
coupling and of omitting the 1=7 components from the 
wavefunction of the bound neutron. 

Fig. VIII.16 We compare the excitation of the 532 KeV gamma 
band of 167Er with the D\WA excitation of the ground band. 
The states of the gamma band are fed direlbt~y through the 
1(2+ state of 166Er alone, with no exit channel coupling. 
The justification for this comparison is given in the text 
(end of Chapter VIII, section B.1). 

Fig. VIII.17 A study of inelastic processes in the stripping 
of 12.1 MeV deuterons leading to the g.b. of 155sm. Apart 
from the DWBA ·case, we include transitions' through the 
target 4+ state. 

Fig. VIII.18 In this figure we illustrate the importance of 
the ~arget 4+ state in the same reaction of Fig. VIII.17. 

Fig. VIII.19 A study of stripping to the same band in the 
neighboring nucleus 157Gd. We compare a DWBA calculation 
with a full CCBA calculations, and CCBA calculations in 
which we increase the exit channel optical deformation to 
0.3 or scale c ; 2_ by a factor of 0.85. The data is 
normalized to the 7/2- level, calculated using CCBA with 
c7 ; 2 scaled by 0.85. For the 7/2- level, we also give the 
DWB~-scaled by (.85)2. · 

Fig. VIII.20 The effect of inelastic processes at 16 MeV for 
the same reaction as that in F'ig. VIII.19 is illustrated 
by comparing complete CCBA and DWBA calculations. 
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IX. SUMMARY AND CONCLUSION 

A. Summary 

The customary theoretical analyses of stripping reactions 

ignore the possibility that the incoming deuteron and outgoing 

proton can excite the target or residual nucleus, although, 

if the nucleus is strongly deformed, the probability that 

a projectile (at typical stripping energies) will excite 

rotational transitions is quite large, There is now a large liter-

ature in which the conventional analysis of stripping reactions 
1 . 

on deformed nuclei has been employed to identify Nilsson 

states and measure the probabilities of j components within 

these states. In this work we have studied in detail, for 

magnesium and selected nuclei of A=155-167, the role that 

inelastic processes (specifically rotational excitations) play 

in stripping reactions, the extent to which they invalidate 

the customary analyses and the possibility that more refined 

spectroscopic information can be obtained if their effect is 

included in the calculations. 
4 . 

We have used the source term approach which we have shown 

is equivalent to the natural gene:c-alization of DWBA that had 

previously been written.down by Penny and Satchler. 3 We 

derive this~tter in a manner th~t exhibits the approximations 

that remain. We have discussed in some detail the calculation 
I 

of the neutron boudd state wavefunction and stress the sensitivity 

I 
I 
i 
I 
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of the results to the correctness of this procedure. In the 

course of determining suitable optical potentials, we fitted 
/ . 

certain inelastic deuteron scattering data for samarium and 

erbium, getting slightly different .deformation parameters from 

those appropriate to ( e~...;ot') experimen~s. 43 
I 

B. Conclusions 

It the end of Chapter II we listed possible consequences for 

stripping calculations on deformed nuclei of including inelastic 

processes. We shall now discuss these in the same order. 

1. We hav~ seen that it is no longer possible to factorize 

the angular distributions of various levels of arbitrary bands 
, 

in the form 0"'(19) oc:. CJ~ ~ (9) There is a strong tendency 

for weak states of a band to be enhanced: the cross section of 

the strong levels in a band may be enhanced .2E reduced, and 

.in pr~n6iple this is important where the quasiparticle occupa-
' 1.. 

t ion factors, ().,, of several bands are to be compared, for 

example, or an absolute cross section calculation attempted. 

However, it is probable that even with stripping transitions 

through the target 2+ state included (or other inelastic 

processes) that a ve~y strong state, I, will be fed mostly 

through the component j=I. In this case, there is approximate 

proportionality to c 2in the restricted sense that over a limited 
2 -~> 

range of c the cross section of this particular state I will 

be roughly proportionate to ci 2 . This is not true for weaker 

levels, and the proportionality constant is different for 

. ; .. 
',· 
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each state. 

2. Certain distinctL ve features of the angular distributions 

in light (A,... 25) nuclei can be explained, in particular the 

"j-dependence" of the 1=2 levels in Mg. However other details 
I 

such as the precise shape of the stiipping peak- or the large 

back angle cross section were not explained. This l~tter may 

be improved by decreasing W(deut) but this appears to be 

a furidamentally unmotivated artifice ( but see the end of 

Chapter II, section C). The inelastic processes considered 

do not account for the difference between "stripping" and 

''scattering" optical potentials. 

3. The angular distributions were often considerably altered, 

to the extent that a diffractio~ pattern might appear where 

none had been, or maxima and minima would interchange. The 

overall shape of the medium strength 5/2- level in erbium 

was changed to the point where it had more the appearance 

of an 1=1 than of an 1=3 transfer. For such levels more than 

four experimental points are necessary to set the scale or 

define the l-transfer unambiguously, unless, that is, a 

calculation including inelastic processes ( and, where needed, 

coriolis mixing) had been performed. Even so, there are as 

yet no experimental grounds to assure us that our calculation 

·is adequate for this. Unfortunately, we do not know precisely 

how an alternate deuteron optical· potential ( we say deuteron 

because of the particularly serious ambiguities that arise) 
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could affect the positions Pf 'th~ sometimes quite marked 

diffraction minima. 

We have mentioned above how j-dependence comes out of the 

calculations for Mg. Little is known experimentally about 

this for the heavier deformed nuclei. 1 In any case, for the 

heavier nuclei, we did not include a deuteron spin-orbit paten-

tial. 

4. Our discussion in Chapter VII makes the finding of ref. 28 

plausible, but we have not demonstrated it explicitly. 
' 

5. The speculations30 concerning the probable effect of inelastic 

processes on the angular distributions hae been shown to be 

untrue in general, except perhaps for the dominant member 

of a band. 

General Comments 

In our deformed rare earth calculations, we were not 

usually able to get perfect agreement with the experimental 

results. There was always ~ considerable improvement, however, 

and we were generally able to give plausible arguments about 

the discrepancies in terms of coriolis mixing (5/2- band in 
167Er) or perhaps an incorrect radial wavefunction (7/2+ band 

in 167Er). The cross section is isxtremely s'ensitive to this 

latter, and our (in principle, re.:ldily remediable) lack of 

knowledge of the effect of pairing on the ohserved quasiparticle 
157 energy made the asymptotic form uncertain. In one case ( · Gd) 

we achieved good agreement with the data (except at back angles) 
:··:~ 

II 
. ·~ ': 

•• 



-247-

provided one j-component was scaled somewhat. 

We have shown that inelastic processes are potentially, at 

least, as important as coriolis mixing, and suggest that these 

together might explain the very bad agreement with theory 

for the [512] 5/2- band in 167 Er. In add it ion, we have used this 

theory to make it plausible that a pr~viously unassigned level 

in the spectrum of 
167

Er is the 11/2- level of [512] 5/2- in 

spite'of its strength. This suggests how our program might be 

used to deduce spectroscopic information. In the s-d shell too 
. 80 24 we have strengthened the cla1m that Mg is prolate and 

axially symmetric. Further, we have been led to speculate 

that the core in 
25

Mg has a somewhat different structure to 

24Mg, although for reasons stated this is less certain. Our 

calculations did not seem to consistently underestimate or 

overestimate. the importance of inelastic processes. 

We claim that a "good" DVIBA angular distribution shouJld 

not necessarily lead to confidence in the theory; we have in 

27 mind the vibrational case discussed in Chapter II. Angular· 

distributions depend primarily on the 1-transfer, arid in some 

cases, the inelastic processes largely involve the same l, so 

that the overall cross section is scaled somewhat without much 

changing the angular distribution. This phenomenon occurs 

most markedly for a level in a rotational band ~hat has most 

of the direct stripping strength. 

Finally, we believe that we have demonstrated the utility 
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of the source term procedure 4 for the inclusion of inelastic 

processe~ in stripping reactions. We are still faced with a very 

big computing job (one calculation in the rare earth region 

can easily take an hour, filling the CDC6600) and it is not 
I 

always possible to repeat calculationsiperformed with too~ 

hastily chosen parameters. 

Extensions of the present work are (a) a less model is tic 

study of energy dependence (see, "Experiments" below), (b) 

the inclusion of coriolis mixing, (c) a better treatment of the 

proton scattering problem: a program to study the inelastic 

scattering of protpns for odd nuclei with spin-orbit interactions 

included should, be writ ten. Related to this is (d) the 

inclusion of tran~itions between bands. In the magnesium 

region in particular, the enhancement of collective transitions 

over single particle tran$itions is perha~s, ten. This 

corresponds to amplitude enhancement of about three, potentially 

a source of error where the effects of single particle transitions 

can act coherently. 

We also recognize the desirability of printing out and 

examining some of the wavefunctions involved, especially perhaps 

the deuteron wavefunctions in the case where the 1=3 transfer 

angular distribution was altered to look like an 1=1 transfer 

reac~ion. It was postulated that' the deuteron wavefunction 

component corresponding to excited target states was concentrated 

at the nuclear surface. It is to be understood that giving a 

(, 
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complete account of this might prove to be a substantial project, 

owing to the large number of degrees of freedom involved. 

Experiments Needed 

Most obviously, we have no assurapce that our predicted 
i 

angular distributions, which differ in many. instances from 

DWBA results, are.;: in fact, good. Perhaps instead of 150 

states at four angles, someone will measure 15 states at 40 

angles? Preferably in a hucleus where the co~iolis mixing is 

thought to be small, at least for one band, and specifically 

not tungsten. 
28 

An effort would be made to measure weak levels. 

The ground band of 
157

Gd might be a good candidate. The 

measurements would be carried out for a series of energies, 

at each of which (d,d) and (d,d'(24 ,4~)) angular distributions 

would be taken. If possible, (p,p') measurements would be 

taken at each corresponding energy. It would be interesting to 

carry out this program in an energy range straddling the coulomb 

barrier. A similar program is needed for A-25. Here, however, 

the seeming greater importance of the spin-orbit interactions 

makes desirable a full set of polarization measurements . 

We have scarcely mentioned the deformed actinides. Unfor-

tunately, the simultaneous increase in integration radius and 

number of partial waves make calculations with our program 

(in which the spins of the projectiles are treated correctly) 

prohibitive. 
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APOLOGY TO THE READER 

• 

~o be perfectly inteliigible, 

one must be inaccura tEJ; 

to be perfectly accur8te, 

one has to be unintel~igible. 
I . 
! 

Bertrand Russell 

~·-~ . 
1···1:, ·<'•. 
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