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BOUNDARY LAYER ON MASS TRANSFER FROM 

A ROTATING DISK 

PART I - THEORETICAL 
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Wh~n vaporization occurs in the presence of a 
temperature gradient in the boundary layer, homogeneous 
nucleation and condensation of droplets may occur. This 

,process is studied theoretically in a rotating disk flow 
system for iron vaporizing into an atmosphere o'f cold 
argon. The usual boundary layer conservation equations 
are provided with appr6priate sour~eor sink terms ,to 
account for the conversion of the gaseous diffus~ng 
species (monomer) to drops of liquid and vice versa; 
Conservation equations for the monomer and for drops of 
all sizes are required. The source and sink terms are 
developed from the classical theory of homogeneous 
nucleation. Simultaneous solution of the coupled monomer 
and droplet equations provid~s insight into th~ enhancement 
of the vaporization rate due- to condensation and also into the 
structur~ of the nucleation, droplet growth, arid re­
evaporation cycle which were found to take place in the 
bourid.ry layer on the disk. 

* Present address: Battelle Northwest Laboratory 
Battelle Memorial Institute, 
Richland, Washington 
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,I. INTRODUCTION 

The vaporization rate of a hot surface into a cold 

gas environment may be substantially increased'above the 

diffusion-limited value if the vaporizina species condenses 

in the thermal. bciundary layer. When condensation does 

occur, the diffusing ~ol~cules combine to form drops 

in accordance with the laws of nucleation kinetics. The 

creation of drops produces a sink in the ordinary convective-

diffusion process which depresses the vapor pressure profile 

andcaus~s .an increase in the gradient at the wall. Hence, 

a larger vaporization rate is obtained. 

Turkdogan(l) has investigated this enhancement in· 

the vaporization rate for molten iron spheres iri helium. 

He used the concept of the "critical supersaturation" 

from cla~~~cal infinite-medium nucleation kinetics~ which 

shows that if the supersaturation is above the "critical" 

value, coridensation takes place at an extremely rapid 

rate; if the supersaturation is below the critical value, 

(2-8) 
condensation take~ place at an extremely slow rate, . 

In Turkdo gan 's analys is, the boundary laye r wa's d i vid ed 

into two distinct zones: a condensate-freereg~on close 

to the vaporizing surface in which the supersaturation 

is less than the critical value and an outer portion in 

which sufficient condensation occurs to maintain the super-

saturation at the critical value corres~ortdingto the 



local gas temperatuie. The profile betweerithe condensation 

zone and the wall was assumed to be linear, as in the 
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stagnant film model of ordinary mass transfer. The theoretical 

results agreed qualitatively with a limited amount of 

rough exper~mental data taken by Tur~dogan and Mill~,(9) 

which in~~cated the enhancement in the vaporization rate 

to be approximately a factor of three. 

With the additional assumption that the logarithm 

of the critical super~aturation ~as a linear function of 

.. (10) . 
the reciptocal temperature, Rosner developed a set 

of analytical relati6nships to describe Turkdogan's model. 

The maj~r assumpti6ns of the critical supersaturation 

approach are: 

(1) Mass transfer is based uporithe stagnant 

film model. In particula~, drops formed in the outer 

condensing region of the boundary layer a~e not convected 

into the wall tegion, which is assumed to be free of 

dropsl~rger than critical size. 

(2) Th~ lo~ation of the nucleation zone is 

determined by a critical supersaturation value obtained 

from the infinite-medium solution of the nucleation 

kinetic equations for an arbitrarily selected nucleation 

rate. 

(3) The drop temperature is equal to the local 

gas temperature. Thermal radiation from the hot wall to 

the drop is neglected. 

(4) -Diffusion of the drops is neglected. Only 

the vapor species (the "monomer") diffuses. Elenbaas(ll) 
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has shown that if drops do not penetrate the outer edge 

of the boundary layer, drop diffusion eliminates enhancement 

of the vaporization rate in the stagnant film model . 

Epst~inand Rosner(12) have examined the validity 

of the second assumption of the critical supersaturation 

model by simultaneously solving the classical nucleation 
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equation~ (t~e infinite medium solution) with the conservation 

equations foi a stagnant film mass transfer situation. 

Their analysis corttains a~onvective ter~ caused by the 
. . 

interfaCial velocity which transports drops away from the 

vaporizing surface. As a result, drops leave the outer 

edge of the film and acceleration of the vaporization 

rate occu.rs. For this stagnant film ~odel, Epstein and 

Rosner suggest that drop diffusion is unimportant. 

Epstein and Rosner also found thatriucleation currents 

in the boundary layer were on the order of 10
10 

to 10
14 

3 . 3 
drops/em -~ec rather than the figure of 1 d~op/cm -sec. 

which is commonly used to define the critical supersaturatiort 

in cloud chambers(2-8) and in boundary layers.(9,10) A 

3 current of ldrop!cm -sec is easily countable by 

. 
visual techniques in cloud chambers. Its use to define 

the critical supersa turation in boundary layers is simply 

. ana d hoc. ass u m p t ion. The actual nucleation current in 

a boundary layer is, in fact, det~rmined by a mass balance 

between the drops and the vapor. 

The approach of Epstein and Rosner is similar to that 

(13 14) 
used in the analysis of condensation in expansion nozzles. ' 
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In this approach, droplets are nucleated at rates dependent upon 

the local supers~turation in accordance wit~ classical nucleation 

theory. These embryos are then convected along flow 

streamlines and grow by absorbing vapof from the surrounding 

This method is Lagrangian in flavor, since the 

chara6t~ristics of the drop population~t any point in 

the one-dimensi6nai flow field are determined by integration 

of the growth history of ' the drops from their upstream 

nucleation point. In mass transfer problems, this 

approach is co~venient if the dir~ction of ihe mass transfer 

and flow streamlines coincide, as is t6e case in the 

stagnant ,film model analyzed by Epstein arid Rosner. 

However, for many flow g~ometrics, the fl6w streamlines 

may be complicated curves while the conceritration streamlines 

of the ~ransf~rring species depend on only one distance 

ioordinate. Such is the case, for example, for the rotating 

disk where th~flow streamlines execute a spiral motion 

of increa~ing amplitude as the fluid moves toward the disk. 

The conc~ntration, however, is a function only of axial 

locati6ri. In this instance, it is obviously desirable 

to avoid integrating along streamlines. 

Consequently,tbe present analysis utilizes an 

Eulerian approach in which mass conservation of the vapor 

species and of each drop size is appl~ed in a fixed control 

volume in the flow field. Drops in the unit volume may 

grow or evaporate, thereby depleting or augmenting the 

concentration of the monomer. The source term in the drop 



, 

conserv~t~on equations and the sink term in-the monomer 

equation are derived from the microscopic balance equations 

of homo~eneous nucleation kinetics. The effect of thermal 

radiation from the wall on the drop temperature is included 
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bi a heat balance on the drops. With this approach, the final 

results of classical infinite-medium nucleation kinetics 

are not directly used to modify the mass transfer problem. . ' 

Rather, by integrating the nucleation rate equations into 

the drcip conservation equations, an internally consistent 

de~cription of the drop c6nvection-diffu~ion-condensation 

procesS is obtiined. 

The equations wer~ solved fo~ the r6tating disk 

flow geo~etry, which is one of the few fluid-mechanical 

systems which has an exact solution for the continuity, 

momentum, and energy equations.(15,16) This means that 

the velocities and temperature in the monomer and drop 

conservation equations can be determined from first 

principLes; the correlations or approximations needed 

to solve other hydrodynamic systems are not required. 

The monomer and drop equations for the totating disk 

also reduce _toone-dimensional forms which simplifies 

the nu~erical solution. Experimental verification of 

the theory is also pos~ible, since rotating disks can be 

operated as high as 2000 o K. Experimental results will 

be rep6rted in the second paper. 

-------------- -----'---------'""---'-



II. PROBLEM FORMULATIDN 

Consider, first, the general conditions which produce 

nucleation and condensation in a boundary layer. Figure 1 

shows a hot vaporizing surface surrounded by an inert 

gas. Two cases are shown: an isothermal case in which 

the gas is at the sam~ temperature as the surface, and a 

non-isother~al case in which the gas far from the surface 

is considerably colder than the hot surf~ce. In the iso-

thermal c~se, the equilibrium vapor pressure is the same 

at all points in the bou~dary layer and'is equal to the 
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value at the wall. Since the partial pressure of the diffusing 

'species decreases monotonically through the boundery layer 

f~om its value at the wall, it is always less than its 

equilibrium value and hence nucleation ~nd condensation 

cannot occur. 

In the non-isothermal case, the detrease in temperature 

through the boundary layer produces a rapid decrease in 

the lo~al equilibrium vapor pressure. The equilibrium 

vapor p~essure profile [p (T)] may fall considerably 
eq 

below the isothermal diffusion-convectionprof~le [p*(z)] 

and hence nucleation and condensation c~noccur. In any 

event, the partial pressure of the monomer [p(z)] cannot 

fall below the local equilibrium profile; its exact 

location in this region, however, is determined by a mass 

balance between the drops of all sizes and the monomer. 

A schematic of the vaporizing rotating disk is. shown 

in Figure 2; The disk is infinite in extent and ~s surrounded 

.. 
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by ~ cold inert gas. Flow is assu~ed to be' laminar. The 

surface of the disk is at cons~ant tempe~ature T while . w 

the gas far from the disk is at constant temperature Too. 

The disk rotates with angular velocity w~which induces 

angular and radial ~elocity components in the gas in the 

boundary layer. Con~equently the gas adjacent to the 

surface flows radially outward and ~y continuity the gas 

far ~bove the surface flows downward. The molecules of 

the monatomically vaporizing substance diffuse out from 

the disk into the laminar boundary layer, the thickness 

of which can be shown to be independent of radius. If 

the conditions in the boundary layer are conducive to 

drop for~ation, monome~ molecules may combine to form a 

droplet nucleus,' or more probably, may combine with an 

exi~ting. drop by colliding with it. 

The" drops thus formed are convected With the bulk 

of the fluid (and ~lso difftise relative to the bulk flow) 

while growing or evaporating. The net motion of the 

drops relative to the bulk gas velocity was neglected 

in this analysis. This implies that the gravitational 

and centrifugal forces on the drops were negligible 

compared to the drag forces exerted by th~.bulk gas flow. 

This assumption is reasonable if very large drops are 

formed. (17) not 

Only "dilute" systems were considered in this work. 

UCRL-19635 
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While no precise concentration level separating "dilute" 

and "concentrated" mixtures is possible, the term dilute 

implies neglect of: 

(1) Interfacial velocity. 

(2) Propertt variations due to concentration 

changes in the boundary layer. 

(3) Th~ eff~ctof he~i r,lease due to conden~ 

sation on the boundary layer energy equation. 

Most fu~tal·inert gas syitems, because of the low vapor 

pressur~ bf the met~l, are dilute; the m~thano1~air mixture 

coasid~r~d by Epstein and Rosner(12) is not. 

The effect of restrictions (1) - '(3) above is to 

uncouple the momentum and energy equations from the 

materialconse~vation equa~ions. The Dom~~tum and energy 
. . 

equations, however, are still coupled to each other 

be6ause of temperature induced physical property variations 

(viscosity, d~ns~ti, ~nd ther~al conductivity) in' the 

boundary layer. The thermal-hydrodynamic problem, however, 

can be solved independently of the material conservation 

equations. 

(1) ~he Conservation Equations 

The equations describing steady-state mass, momentum, 

and energy conservation on a rotating disk are of the 

standard variety except for the temperature-induced 

variations in the transport coefficients. By appropriate 

variabl~ transf6rmations, these equations may be cast into 

UCRL-19635 
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th~ c~nstant property f~r~sprovidedthat t~e Prandtl 
. . 

number and the dens i ty-vis cos! ty produc t can be assumed 

. . (17) 
temperature independent. Solutian of this set of 

ordinary differential equations is straightforwar& and will 

not be detailed here. The necessary infrirmation which the 

hydrodynamic and energy equations provida is the gas 

temperature profile in the boundary. layer and the axial 

velocity as a function of distance from the disk surface. 

We confine attention her~ to the species conservation 

equations. It is a well known feature of rotating disk 

ma~s transfer that the concentration of the transferring 

species ~s a function only of axial distance from the disk. 

Anticipating that this independence of radial location 

holds in the presence of nucleation and condensation,!l7) 

the equation governing tonservation of monomer in the 

rotating disk boundary layer may be written as: 

(1) 

wh~re w is the z-component of the hydrodynamic velocity, 

P is the density of the gas and D is the di£fusioh 

coef£icient of the monomer in the inert carrier gas. 

The dependence of these quantities on axial position is 

provided by the solutions of the hydrodynamic and energy 

equations. 3 f is the cbncen~ration of ~onomer in atoms/cm , 

which is related to its partial pressure by the ideal gas 

UCRL-19635 
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law: 

f =p/kT 

.. . 3 
Sl is the monomer source term in atoms/cm ~sec .. 

The conservation equation for drops containing g 

atoms is: 

dc 
~= d 

w dz dz + S 
g 

(2) 

(3) 

where c. 
g 

3 
is the concentiation of size g drops in drops/em, 

D is the diffusion coefficient for size g drops, and S 
g g. 

is the sol.lrce of size g drops in drops/cm]. One su'ch 

equati~n is required for each drop size g. 

(2) The Droplet S~ur~e T~rm 

The droplet source term S in Eq. (3) is obtained 
g 

from the microscopic balance equations of nucleation 

kinetics.(3,4,6) Consider a distribution of drops of 

all sizes in a unit volume. Let A be th~ surface area 
g 

of a drop of size g, Bg the rate at which vapor atoms 

in the gas condense upon a unit ~rea of a drop of size g 

and a the rate at which atoms are evaporated 
g 

from a drop of size g per unit area. Let 

J be the net rate at which drops pass from size g-l 
g 

3 to size g per cm per sec, i.e., the droplet current in 

.UCRL-1963 
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g-space.* Since the product a lA lC I' is the rate g- g- g-

at which drops of size g-l to size 3 grow g per cm per 

sec', and the product ex A c is the rate at which drops 
g g g 

of size diminish to size g-l 3 the net g per cm per sec, 

rate J at which drops of size g-l gtow to size g is 
g 

gi venby: . 

J = a A c - ex A c g g-1 g-1 g-l g g g 

The net rate S at which drops of size g are formed per 
g 

3 cm per sec is equal to the net rate at which drops ~f 

(4 ) 

size g-l grow to si~e g minus the net rate at which drops 

of size ggrow to size g+l, i.e. 

s 
g = J g - J g+l (5) 

At this point, it is appropriate to review the various 

conditions under which drop current a~d drop source have 

been applied in other nucleation studies. 

(1) The bal.nced equilibrium theory of homogeneous 

nu~leation(2-6) applies to a system with no con~entration 

* The droplet current in g~space is very sim~lar to the 
copcept of the p~utron slowing down depsity which occur~ 
in calculations of the behavior of the neutron population 
in nuclear reactors • 

UCRL-I963' 
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gradients, no bulk flow, and no means of removing drops 

from the system. rhe~e conditions are summarized by the 

statements: S = 0, J = O. 
g g 

Because balanced equilibrium 

theory r~quires abnormally high concentrations of drops 

larger than the "critical" size*, some means of removing 

gr6wing drops mus~ be ~ncluded forn~cle~t~on theory 

to be applied to real systems. 

(2) 
(2-6) . 

In the unbalanced equilibrium case drops 

are per~itted to grow throrigh g-space at a constant rate; 

large d~ops are assumed removed from the system by an 

unspecified mechanism and returned to the vapor phase 

as monomer. Since this process is consi~ered to be at 

steady st~te, and since no concentration gradients or 

bulk flow exist, it will be i~ferred to as the infinite-

medium steady-state case. It is characterized by the 

requirements: S = 0; J = constant. 
g g 

The source-free 

condit~onfollows from Eq. (3) if the crinvectiv~ and 

diffusive terms are set equal to zero. The evaluation 

of the constant J for ,this case, which is commonly termed 

UCRL-19635 
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(2-7) 
the nucleation rate, has been the subject of many studies. . 

(1) (12) 
Turkdogan and Epstein and Rosner .. have utilized the 

nucleation rate derived from the steady~state infinit~-

medium solution ~n their analysis of condensation effects 

on mass transfer in stagnant films. 

(3) The infinite-medium transient case has been 

(3 4 6 18 19) studied by various authors. ", , 

* 

The governing 

The'critical size drop is one that has an equal 
probability of growing or evaporatingnnder the existing 
supersaturation. I 

1 

.. 
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equation .in thiS. case is 3cg/3t = Sg = J g ~ J g+ l which 

is the ~nsteady analog of Eq. (3) for an infinite medium. 
I 

(4) The pr~sent situation may be characterized 

as the finite-medium steady-state case because in the 

finite system, convection and diffusion of the monomer 

and dro~s must be considered. 

(3) The Kinetic Coefficients 

The condensation coefficient S is given by: 
g 

S 
g 

(6) 

where m i.s the mass of a monomer atom and T is the local 

gas temperature. Eq. (6) assumes a sticking probability 

ofuni~y ~nd represents the Hertz-Knuds~n equation modified 

by the factor n to give the correct transfer across the 
g 

drop-vapor interface for large drops, i.e., drops whose 

growth rate is diffu~ion-limited rather than kinetically 

limited. (17 20) 
The coefficient ng is given by: ' 

1 

n g = 1 + ( rID )/k T / 2 7T m 
g 

(7) 

For small drop radii r ,n approaches unity and Eq .. (6) 
g g 

reduces to the ordinary Hertz-Knudsen equation; for large 

drop radii Eqs. (6) and (7) reduce to the ~olution of the 

molecular diffusion equation for mass transfer from a 

sphere. Eq. (7) is not completely accurate for drop sizes 
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on the order of the mean-free path; however, the contribution 



of drops of this size or larger to th~ vapo~ization rate 

was found to be small and hence the error accured through 

this inaccuracy is very small. 

The evaporation coefficient a is given by classical 
'g 

1 ° k O ° (3-5) nuc eat10n 1net1Cs as: 

ex 
g 

= n '( A!_l ') Peg (Tgl( exp 
g ,g 12nmkT ' 

',', ' g' 

2b 
3kT 

g 

where Peq is the equilibr~um vapot pressure and Tg the 

tempera~ure of 'a drop of g atoms. The paramet'er b is: 

b 
.. ( )2/3 

41TY 4;N 

when y ~s the surfac~ tension of the bulk fluid and N 

i i d ' ° ° / 3 5 ts ens1ty 1n atoms cm . 

ac60unts ~orthe fact that the surface aria of a drop 

(8) 

(9) 

changes while ~dding or removing an atom, an effect which 

is imp~rtant only for small drops. The relation between 

area and drop size is: 

(
_3_)2/3 2/3 

Ag= 4n 4nN g (10) 

The exponential term in E~. (8) accounts for the increase 

in the vapor pressure at the drop surfac~ due to the finite 

radius of curvature of the drop. Note that ex has been 
g 

modified by a factor ng to give the correct transfer rat~ 

for large drops. 

There is still considerable controversy over the 

UCRL-19635 
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proper form of the evaporation coeffici~nt ~ .(21-24) 
g 
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In thi~work we used the clas~ical form embodied in Eq. (8) . 

because of the *greement between classical nucleation 

theory and experiment obtained by Katz and Ostermier. (7) 

(4) The B~undary Con~itions 

Cons~rvation of drops of size g atoms is described 

by Eq. (3) with th~ source term S given by 
g . 

and (5). It has been shown by zeldovich(6) 

Eqs. (4) 

that S 
g 

can be approximated. by an expression involving the fir~t 

and second partial derivatives of c with respect to g. 
g 

This is accomplished by expanding Sg in a Taylor series 

i~ g and neglecting higher drder terms. The result is an 

interestirig sit~atiori in which th~ basic physics is 

~xpressedin finite difference form, whereas the differential 
. . 

foim is an approximation. Since machine computation 

invariably requires approximation of partial derivatives 

by their finite difference analogs, nothing is gained by 

transforming the source term in the dro~let conservat~on 

equations to derivative fo~ 

(However, the fact that the source term in 

Eq. (1) is equivalent to a second order paTtial derivative 

of the. drop concentration c suggests that tw~ boundary 
g 

conditions on c in g-space are required. 
g 

This is consistent 

with the fact that the infinite medium problem also requires 

two boundary conditions in g_space.(4-6) It is evident 



that two boundary condit~orisare required' in the z-ditection 

be6ause the proble~ is of the boundary lay~r type. These 
". ,. . . 

conditions are consistent with the mathematical form of 

Eq. (3) if S is represented by a second order partial 
g 

derivative 
(25) 

c • 
g 

In this case Eq. (3) is an elliptic in 

partialdiffer~nti~lequation which requires two boundary 

conditions in both g and z; in addi;ion,' c must approach 
g 

z~ro as g a~d i approach irifiniiy. 

In ,the' z-direct ion, the boundary condi tions . are as 

follows. -At the disk-vapor interface, the supersaturation 

is unity and the droplet concentration is assumed to be 

given by the balanced equilibrium model~ith unity 

- (2- 8) 
supersaturation: 

at z=O for all g (11) 

The subscrip' t w den6te~ wall values (z=O) and f is p (T)/ . . w eq w -

kT . w 
In the bulk gas far from the disk the droplet con-

cent ration mus tbecome. vanishingly small , i.e. 

c -+ 0 as z -+ co 
g 

for allg (12) 

To determine the g-space boundary condition for the 

present problem, it is instructive to review the method 

of assigning the boundary conditions in the infinite-

medium steady-~tate case. It is known that drops of small 

size spend most of their time oscillating back and forth 

UCRL-19635 
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between larger and smaller g while only ~ few pass on to 

constitute the 
, (4) 

droplet current J. So for small drops 

in the steady~state infinite-medium case, J of Eq~ (4) 

is the smali differenc~ between two large rtumbers. Thus 

since B lA, IC I» J and a A c »J then B IA IC I ~ 
, g...g- g- g g g g- g- g-

a A c wh.ichleadsto balanced equilibrium values of c . 
g g g g 

Hence, in the ste~dy-state infin~te~medium anaiysis, 

one boundary condition is that the solutidn must approach 

the balanced equilibrium solution as g + 1. 

In the present analysis, the balanced equilibrium 

bdundary condition for small g could, in principle, be 

used provided that matching is done for a drop size smaller 

UCRL-1963: 
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than the critical size. Howev~r, because the supersaturation 

can become very large ~t some points in the boundary layer, 

the critical drop size approaches unity. The, kinetic 

coefficient a (Eq. (8» is calculated from the bulk 
g 

properties of the liquid, which is approximately cortect 

fo~ small drops but is clearly untenable for drops 

approaching ato~ic size. The normal technique in nucleation 

theory is to assume that the bulk properties of the liquid 

apply to drops greater than ten or twenty atoms in size.(3,18) 

Courtney, (18L~.!_h-O studied the infinite-medium transient 

case, matched his numerical s6lution to the balanced 

equilibrium solution at a drop size of twenty. 'Courtney's 

critieal Size was approximately sixty. Thus, if the 

critical drop size is sufficiently large, "balanced equilibrium 

theory ~an provide a boundary condition without extensive 

, ,! 



error in the ~alc~la~ion of ihe kinetic co~fficient a . . g 

aowever, because the critical size in the present case 

was so small, this technique could n~t be used. 

It hecame apparent during the calculations that a 

nucleation "zone" existed in the boundary layer;.a zone 

formed approximately midway through the b~undary layer 

where th~ nu~leati6n rate was extre~ely high, and, in 

all other regions the nucleation rate was extremely low. 

Rosner~rid Epstein(l2) also encountered this phenomenon 

of order of magnitude differences in nucleation rates. 

This pr6duces the following result. Inside the nucl~atiori 

zone, the concentratiort of small drops w~s determined 

primarily by nucleation kinetics, while outside the 

UCRL-19635 
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nucleation zone the concentration of small drops was primarily 

determi~ed by diffusion and convection frpm the nucleation 

zone rather than by l~cal n~cleation. This type of 

beh~vi~r can result iri numerical instabilities if one 

attempts to apply a nucleatiori kinetic boundary condition 

throughout the entire boun~~ry layer, because the concentration 

of sfuall drops outside the nucleation zorie is not determined 
, 

by nucleation kinetics alone but by diffusion and con~ection 

as well. 

At the location of the maximum nucleation rate, the 

conceritration of small drops (i.e. g ~ go' where go is 

an arbitrarily selected starting size) was assumed to be 

that given by the steady-state infinite-medium solution. 

This is a physically acceptable alternative to the balanced 

equilibrium boundary condition because the steady-state 
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infinite-mediu.soluti~nis,infact, the solution that 

does extst in an infintte medium as drops grow beyond the 

critical size. Using this solution is equivalent to 

assuming that the droplet currents J are large compared 
g 

to the sum of the diffusive and convective terms in Eq. (3), 

i.e., that J » 
g 

by Eq. (5), J :t 
g 

'V 
Sg' J g+1 » Sg,Sg 'V 0 at g=go. Thus 

'V . 
J g+

1
'V constant, which is. the basis of 

the infinite medium solution. 

Sinee the nucleation zone is a region of high super-

saturation, the droplet growth rate is muih greater than 

the droplet evaporation rate for drops l~rger than the 

critical size, and so from Eq. (4) 

C 
'V J/S A g 'V g g g < 8

0 

where J is given by the steady-state infinite-medium 

expression:(4,7) 

where S is the supersaturation: 

S = p/Peq 

3 1 L 
kT N2 

For a specified variation of the tempefature T and 

(13) 

(14) 

(15) 

the monomer partial pressure p with position in the boundary 
i . . 
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layer, the nucleation rate J(z) is determined by Eq. (14). 

At some location, z ,J is a maximum. 
max 

At this point, 

the concentration of drops of size g was assumed given by 
o 

Eq. (13). 

Thecpncentration of drops of size g is also known 
. 0 

at two other points in the boundary layer, namely at z=O 

wherec .' is 
go 

given by E q . ( 11 ) and z = 00 ,w her e c is zero. • . . g . 
, 0 

An interpolation scheme is tequir~d to itifer values of 

c at all other z {rom the known values it these three 
go 

referenc~ loca~ions in the boundary layer. 

T6 faithfully reflect the importance ~f transport 
, . 

protesses in establishing the concentration of small 

drops outside the nucleation zone, interpolation was accom-

plished by determining. c (z) from the solution of the 
, ,go 

diffusion-convettion equation, Eq. (3), with g=g . 
.' 0 

To 

effect this arixilla~y sol~ti~n, the source term S was 
go 

approxi~ated bya constant times the local nucleation rate, 

J of E q. ( 1 4) • While fhi's approximation to S has no 
, go 

theoretic~l justifica~ion, the precise description of the 

small-g source term is not important as long as it 

is small compared to diffusion-convection ou~side the 

nucleation zone. 

In this manner, the concentration of drops of the 

selected starting value size was determined for all z. 

This auxilIary solution furnished the small-g boundary 

condition for the full coupled set of conservation equations 

represented by Eqs. (1) and (3). 
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The boundary condition for large d~ops was 

c -+ 0 as g -+ 00 
g 

for all z (16) 

The value of g was varied between 10 and 150 atoms; 
o 

the results were found to be insensitive to 'the value 

used. 

The concentration of monomer atoms at the wall f w 

was taken as the equilibrium value. The net mass flux 

at the wall is small compared with ~e rate at which atoms 

leave the surface and condense upon it. The surface 

kinetic limitations characteristic of vacuum vaporization 

are absent since boundary layer diffusion is by far the 

slowest step in the overall process. Hence the equilibrium 

vapor pressure is obtained at the disk surface. At large 

z, f -+0. 

(5) The Monomer Source Term 

The monomer source term Sl in Eq. (1) is found as 

follows. Both sides of Eq. (3) are multiplied by g and 

the respIting equations summed for all g > g . 
- 0 

When 

this sum is added to the monomer conservation Eq. (1), 

the result is a conservation statement for the vaporizing 

species in any form - drops or monomer • Since the source 

term in this total species balance must be zero, then 

gS 

g=g 
o 

g 
• 

(17) 
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The coupling b~tween the monomer and droplet equations 

can now be clearly seen. The source term Sl in the monomer 
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bal~nc~ depends upon the droplet source SgbY Eq. (17) and S 
~ 

d~pends upon the droplet concentration c via Eqs. (4) 
g 

and (5)~ Thec6efficient a
g 

in ·Eq. (4) depends upon the 

monomer p~rtial pressrire pby Eq. (6), and p is related 

t6the m6ri6mer concentration f via Eq. (2). Finally, 

f is determined by Eq. (1), which contains Sl' 

(6) The Diop Temperature 

Only the t~mperature.T of a drop of size g atoms 
g 

remains to be specified for a well-d~fined .problem. 

Since the drop is in a strong thermal radiation field, 

it may not be at the temperature of the surrounding 

gas. A quasi-static energy balance upon the drop gives 

th~ follbwing transcendental equation for T :(17) 
g 

a£T
4

A + CA h a . (T - T)A gg . P t gas·· g g 

(18) 

I~ this e~uation, a is the Stephan-Boltzmann constant, 

£ the ~missivity of the drop surface, and 1 is the latent 

heat of vaporization. The heat capacity of the inert gas 

and the thermal accomodation coefficient of the inert 

gas atoID~ on the drop surface ar~ denoted by Cp and Ath 

respectively. a is the Hertz-Knudsen co~fficient o~ 
gas . 

the inert gas, given by Eq. (6) with the monomer partial 



-0', 

pressure replaced by the inert gas pressure and the mass 

m denoting the mass of the inert gas species. The first 

term in Eq. (18) represents the quantity of heat radiated 

from the disk to the drop, the second t~rm represents 

the heat added to the drop by condensation of vapor on 

the drop, the third term is the heat rad~ated"from the 

drop to the surroundings, and the last ter~ is the quantity 

6f heat ~e~oved fro. the drop by inert gas atoms colliding 

with the drop. 

(7) The Solution Method 

The advant~ge of the rotating disk asa vaporizing 

surface is that the governing equations ~an be reduced 
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by a series of transfotmations to one-dd~ensional forms.(lS,l6) 

For the piesent ~~se, the transformations of t~e conservation 

equations differ slightli from the "usual rotating disk trans­

formations because they include the effect of variable properties.(l7) 

Inc1uiion of this effe~t was necessarybecaus~ practical 

boundary layer nucleation experiments requdre very large 

" (1 9 17) temperature gradients. " Analytical solutions can 

then be obtained for the mass, momentum, and energy con-

s~rvation equations if an approximate axial velocity profile 

i d
• (17,26) s use .. However, analytical sol~tions cannot be 

obtained for monomer and droplet conservation equations 

becaus~ their source terms are complicated functions 

determined by nucleation kinetic relationships~ Because 

of this, ~ computer program was written to solve the monomer 



and dropl~t equations numerically. 

If the drop conservation equaiion had to be solved 

for each drop size g, an enormous amount of machine time 

would hav~ b~en requi~ed. 
, (18) 

Courtney . found that the 

amount 6fmachi~e time became excessive if he attempte4 

to carry his calculati~ns beyond drop sizes of a few 

hundreda.toms. To circtimvent this ~ifficulty, a multigroup 

scheme was formulated.* Thi~ consisted of combining a 

number of drop sizes into a single group. The droplet 

conservation Eq. (3) was then rewritten to describe 

the group-~veraged drop concentration; the source term 

in this equation described the net transfer of drops 

acros~ the ends of the group into adjac~nt groups. This 

mu1tigroup scheme considerably reduced the amount of 

machine time required. The group-averaged equations 

are shown in Reference 17. 

Two different estimates of the drop diffusion 

coe~ficient were investigated. In the fi~st case, the 

dfffusion coefficient of the drops was assumed to be equal 
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to the ~iffusioncoefficient of~the monomer. The approximat~on 

D = D makes the set of drop conservation Eqs. (3) much 
g 

mOre tractable because the diffusion boundary layer thick~ess 

is the same for all drop sizes. The disadvantage of this 

approach is that it overestimates the mobility of the 

large drops. 

I~ the second case, the diffusion coefficient of the 

drops was assumed to vary as the monom~r diffusion 

*Mu1tigroup methods (in energy sp~ce) 
react~r calculations. 

are common in nuclear 
.' 



• 

coefficien:t divided by drop size to the two-thirds power.* 
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'. . / 2/3 The relation D = D g produces a variation in the diffusion 
g 

. . (27) , 
boundary layer thickness of a factor of twenty for 

'6 
drdp sizes covering a range of 10 atoms. This large 

variation in the b~undary layer distance between equations 

in a coupled set requries a novel approach in order to 

obtain accurate numerical solutions. To avuid the computational 

problems which would have resulted if some of the equatiuns 

had to be~olved numeric~lly over a distarice many times 

their boundary layer thickness, the m~thod of Singular 

perturbation ~as used~28~or each drop size~ the procedure 

consisted of ~evelDp~ng an inner expansion within the dr~plet 

boun:dary l~yer and an outer expansion beyond ~t and then 

match~ng the ~wo solutions in a suitable fashion to give 

a continuous solution. The application of this technique 

is diseussed in more detail in Reference 17. 

The division of the boundary layer into inner and 

outer regions is not simply a mathematical artifice but 

refle~ts the following physical situation. In the inner 

* This is the cla~sical molecular diffusion relationship 
and is strictly true for drops smaller than the mean-free 
path.(20) Since it will be shown that there are few 
drops larger than the mean-free path ~n the iron-argon 

'rotating disk system, this approximation can safely be 
used for all drop sizes. 
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region, the concentration is determined by a balance between 

diffusion and convection, and the source term ~s of 

second or~er. In the outer region, the concentration is 

dete~mined by a balance between the convective term and 

the source term and ~iffusion is of second order. This 

~s what w~uld be expected physically; applying the method 

of singular perturb~tion makes it ~lear mathematically. 

Th~ droplet conservation equation wa~ solved for a 

discrete set of groups covering a rang~ of approximately 

20 
10 to 10 atoms. A range in g of this magnitude was 

~ 9 
required even though drops of size greater than 10 

atoms made no contribution to the monomer source term 

arid thus had no effect upon the vaporization rate or 

the coupling betwe~n monomer and droplet equ~tions. 

The boundary condition for large g required setting 

the drop concentration equal to zero at som~ large size; 

·9 
unless this point was considerably beyond lOatoms, 

an infl~ence ,upon the droplet concentrati~n at sizes 

. 9 
l~ss than 10 atoms,and hence an infl~ence upon the 

vaporization rate, was found. 

The calculations were made for disk temperatures 

ranging from l500 0 K to 1900 o K; the iron disk was assumed 

to be vaporizing in argon with an ambient temperature of 

The properties of iron which were used in the 

nucleatLon kinetic relationships, such as surface tension 

and vapor pressure and density, were obtained from Refs. 

1, 29, and 30. 



III. ENHANCEMENT OF THE VAPORIZATION RATE 

The thange in the vaporization rate in a system with 

condensation enhartcement from that in an isothermal system 

i~ due to three factors: 

(1) Condensation 

(2) PrOperty variations 

(3) Thermal diffusion (the Soret effect) 

All three of these effects are due to the extremely large 

temperature difference (up to 1S00°C) across a boundary 

layer which is only a fraction of a centimeter thick. 

The fractional increase in the vaporization rate 

due to temperature-induced pro~erty variations c~n be shown 

to be:(17) 

where the subscript 00 d~notes bulk conditions. 

and p'V1/T, property variations do not affect the 

. ~aporization rate.Fo~ the iron-argon system, D 'V T1 . 9S , 

and so this condition is approximately true. (17) Because 

of this, property variations will be neglected. 

The effect of thermal diffusion cart be ~va1uated 

indep~ndently of the first two; an analysis of its effect 
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shows it to be small for the iron-argon system ~t temperatures 

below the melting point of iron. (17) 

The mass flux at the wall is the sum of the fluxes 

due to monomer and drop of all sizes: 



00 

J = jl + Ljg w (19) 

g=go 

or: 

00 

-m(PD)w[:z (i) L 
D d (~)] jw -. + g(~) 

P D dz P w 
(20 ) 

g=go 

If the system could be considered so~rce-free and the 

fluid properties are. constant,then Eq~ ~1) has an analytic 

solution if the dimensionless axial velocity profile is 

. (26) 
approximated by a straight line. Applying this 

approifmation to an isothermal rotating disk then gives 

the m~s~fl~x at the wall asi 

mf D w w 
/w 

V 
w 

(21) 

where V is the kinematic viscosity of the fluid, and Sc the 

Schmidt number (V/D). Since it is immaterial where one 

evaluat~s the properties in an isothermal system, we 

have arbitrarily evaluated them at the wall (denoted by 

sub s c r1 p t w). 

Since the isothermal, source-free mass transfer rate 

in a rotating disk system is well known, th~ effects 

due tn non-isothermal conditions are best pres~nted by 

computing the ratio of the mass fluxes.ih the two cases: 

(22 ) 
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~ is the factor by which the isothermal transfer rate is 

enhanced by condensation . 

. The enhancement due to condensation can be calculated 

by three methods: 

(1) Bulk equilibrium condensation 

(2) Critical supersaturat~on using the Turkdogan-

Rosner method 

(3) Present theory. 

In case (1), condensation is not kinetically limited 
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and the equilibrium vapor pressure is ~ssumed to be attained 

at each point in the boundary layer. The monomer con-

cent ration gradient at the wall is obtained directly from 

the gas temperature profile and the equilibrium vapor 

pressure-temperature relationship, and drop diffusion and 

convection need not be considered. Assu~ing a linear 

axial ve~ocity profile,(26) and solving the rotating disk 

energy equation in conjunction with the Clauius-Clapeyron 

equat~on yields for this model:(17) 

~ 
kT 

w 
(1 - T IT ) 

00 w 

where ~ is the latent heat of vaporization, k is the 

Boltzmann constant, and Pr the Prandtl number. This 

derivation neglects the effect of heat release due to 

condensation. Hills and szekeley(3l,32) and Rosner and 

Epstein(12) have deriv~d analogous formulae for ¢ which 
. 

include the heat release due to condensation but are 

(23) 
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restricted to systems with a Lewis numb~i (Sc/Pr) of unity. 

Their results show that the effect of la~ent heat release 

is less than 4% for the cases considered here, i.e., 

for iron-arg6n systems below the melting point of iron. 

For this reason the effect of. release of latent heat in 

the boundary layer has been neglected i~the present 

analysis. 
/ 

The results of the critical supersaturatidn model, 

case (2), can also be expressed by a condensation factor. 

This was 'done using Turkdogan' s (1) graphic~l method and 

Eq. (14). Rosner's analysis,(lO) alth~ug~more convenient, 

could not be used because it requires that' the logarithm' 

oft he c ri tic a 1 sup' e r sat u rat ion be ali n ear f un c t ion 

of reciprocal t~mperature; at temp~ratures which are 

practically attainable with a rotating disk in an iron-

argon system, th~s is definitely not true~ In calculating 

UCRL-1963. 
30 

¢, a nucleation current J of 1012 was used. This corresponds 

to the value which Epstein and Rosner(12) found in their 

boundary layer study. The properties in the nucleation 

equation (Eq. (14», such as surface tension and density, 

were e~aluatedat the film temperature of the boundary 

laye r. 

The effect of nucl~ation in the boundary la~er on 

~he vaporization rate from a rotating disk is shown in 

Figure 3. Here the condensation factor ¢ is shown as a 

i 
, I 

.\ i 
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function of the dijk temperature T for·· a rotational w 

speed of 1500 rad/sec. The effect of drops diffusing 

.back into the wall, (i.e., the sum in Eq. (20)) was , 
neglect~d because it was less than 1% of the monomer 

mass flux at the wall in all cases. In the case of no 

condensation, ~ is independ~nt of temperature and has a 

value of unity. Below l600 o K, Figvre 3 indicat~s that 

the effect of condeniati6n is nil; above l600 o K, the 

effect increases rapidly with temperature. At 1900 o K, 

the enhancement is a factor of two and one-half for the 

case D = D, and a factor of six for the case D = D/g2/3. 
g g 

The greater enhancement in the variable diffusivity 

case istaused by the fact that the lower diffusivity of 

the larger drops in this case gi~es them less mobility~ 

which bas two consequences. 

First, the large drops find it more difficult to 

diffuse into the regiQri close to the wall there the 

convective transport is weak. The region close to the 

w.ll ~s muc~ hotter than the outer regions and a drop 

which tended to grow in the cooler outarregion tends 

to evaporate, or at least grow much less rapidly, near 

the wall. The drops tend, to evaporate in this region 

because the evaporation coefficient a is a very 
g 

sensitive function of temperature and increases rapidly 

as the temperature is increased. Thu~ the ability of the 

drops t6 evaporate is smaller in the variable diffusivity 

case and so the monomer sink is larger and hence the wall 

gradient is increased. 
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'Thesecand effect arises from drops l~aving the nucleation 

zone in the direction of the outer boundary layer edge. 

As the diffusion coefficient becomes smaller, the ability 
. , 

of the drops to move outward agai~st the convective 

inflow is impaired. Thus low diffusivity drops h~ve a 

greatet tendency to stay in that p~rt afthe bound~ry 

l~yer where their capacity to absorb monDmer is larger. Thus 

the smaller drop diffusion coefficient of the variable 

diffusivity case effectively stops the large drops in 
. , 

the region of the boundary layer where they can most 

efficieritly remove monomer ftom the vapor phase. 

It can be seen in Figure 3 that the two effects described 

above increase the conderis~tion factor in the vari~ble 

d~ffusivity case over· that of the constant diffusivity 

case by signif~cant a~ountsat high temi~ratur~. However, 

the point at which nucleation becom~s s~gnificant (1600 0 K) 

is practically the same in the two cases. This is 

consistent because a variation in the d~op diffusion 

coefficient cannot affect the wall gradient until a large 

number of drops are formed by nucleation. 

The Turkdogan-Rosner results are also shown in Figure 

3. The enhancement in this case in approkimately equ~l 

to that- of the constant diffusivity case~ The results 

of the bulk equilibrium condensation model are not shown, 

but gi~e values of ~ ranging from 20.4 at lSOOoK to 

16.0 at 2000 o K. 



IV. STRUCTURE OF THE NUCLEATION ZONE IN THE BOUNDARY LAYER 

Figure 4 shows a profile of a typic~l nucleation 
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rate J as a function of axial distance through the boundary. 
I 

layer. The axial distince is expressed in terms of a 

dimensionless distance x which is related to z by: 

x = .[(Pl1)ooJl/2 (~ .) 112J Z(L) cj.z' 
. (Pl1)f 00 Poo 

(24 ) 

where the subscripts 00 and f denote bulk gas and film 

average condition~ respectively. If property variations 

are neglected, Eq. (24) reduces to the standard distance 

variable transformation for the rotating disk.(lS) 

The value 6fJ was calculated from the classical Becker-

Doring-Ze1dov.i~h expression, Eq. (14), using the monomer 

partial pressure profile which was a solution of Eqs. (1) 

and (3). The important characteristi~ of the figure 

is the' existence of a " n u c Ie a t i 0 nz 0 n e" , i.e., a region 

where th~ ri~cleation rate ~s very high~ and which is 

surrounded on either side by regions with relatively 

low nucleation rates. It is in this nucleation zone 

that the drops are formed. Such a zone ,was also found 

by Epstein and Rosner. (12) Th~ maximum nucleation rate 

in the zone ~ccurs at x ~2 1/4, or between one-half 

.and three:quarters through the boundary layer; the 

rotating disk flow boundary layer is generally considered 

to end at x ~ 3 1/4. (15) In addition to being skewed 

toward the outer region of the boundary layer, the zone 



, 

(if measured by its width at half-maxi~~m)occupies 

approxim~tely 50% of the bo~ndary layer. The nucleation 

rate in the first third of the boundary layer (0 < x < 1) , 
is essentially zero compared to the rate further out in 

the boundary layer. The nucleation rate in th~ nucleation 

14 . 3 
zone is approximately 10. drops/cm -sec, which is 

b .. . f· .0 14 d / 3 compara Ie to the maximum rate 0 ~. rops cm -sec 

in Epstein and Rosner's study. (12) No special significance 

should be attached to this at cord however, for it is not 
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j , 

obvious why nucleation rates should be the same in different 

systems. 

Figure 5 shows a typical drop size distribution in 

the nucleation zone (x = 2 1/4) and alBO near the wall 

(x == 1/4). The infinite-medium steady-state solutions 

are also plotted for comparison. 

In the nucleation zone (x = 2 1/4) the boundary layer 

solution approaches the infinite-medium.solution for 

g < g~, as is required bi the bo~ndarycondition. For 

large drops, it falls increasingly below the infinite-

medium solution as drop size increaseS. This is the 

expected behavior because in the infinite-medium solution 

the drcp~et current J is aconst~nt and hence the same 

number of drops pass through eac~ size~ In the boundary 

layer case, drops can also leave an increciental 

volume element by convection and diffusion; since the transport 

by these mechanisms in the nucleation zone results 

primarily in an outflow of drops to other regions, the 
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boundary-layer concefttration should lie below the infinite-

. medium concentration. 

Near the wall (x = 1/4), however, few drops are formed 

and th~ transport mechanisms in general produce an inflow , . 

of drops into this region. Hence the boundary layer 

concentration should be larger than the infinite 

~edium c6ncentration, and Figur~ 5 indicates that this 

is in fact so. 

The balanced equilibrium solution at x = 2 1/4 is 

also shown in Figure 5. The minimum of the balanced 

equilibrium curve occurs at the critical drop size and the 

figure indicates that this is approaching atomic size. 

The value of g , i.e., the matching point between the 
o 

infinite-medium and boundary layer solutions, was ten 

in this case and is shown in the figure. 

Figure 6 shows the variation of the dimensionless 

droplet evaporation and condensation coefficients with 

axial position in the boundary layer for a typical drop 

size. The evaporation coefficient a is higher than the 
g 

conden~ation coefficient B in the vic~nity of the wall 
g 

where the temperature is high. This is because the vapor 

pressure is a rapidly increasing function of temperature 

and the.evaporat{on coefficient is proportional to the 

vapor p~essure at the drop temperature . As the temperature 

decreases with increasing axial distance through th~ 

boundary layer, the evaporation coefficient decreases 

rapidly and in fact is considerably smaller than the 
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condens~tion coeff~cient throughout most ~f the boundary 

layer. The linear scale is somewhat d~ceptive at large 

distances for at x ~ 4, the evaporation coefficient is 
• 

orders ~f magnitude les~ than the cond~n~ation coefficient. 

However, the im~ortant point is that drops very close to 

the wall terid to evapora~e rather than grow. 

Figure 7 shows the monome rsou.rc et erm as a furic t ion 

of axial distance through the boundary layer for a typical 

case. The source is positive close to the wall because 

the droplet evaporation coefficient is larger than the 

droplet condensation coefficient there.' The source, 

however, rapidly becomes negative at an a~ialdistance 

x = 1/4 because the evaporation coeff~cient decreases 

much more rapidly than the condensation coefficient. 

Thus,drbps formed in the nucleation zorie and transported 

tOward the wall grow very rapidly in this region, and 

in do~ng so consume monomer, thus driving the monomer 

source t~rm to large negative values. Note that Figur~ 

4 indicates that very few drops are nucleated in the 

region where the large negative source term occurs 

(x ~ 1/4) and Fig~re 7 indicates that,little monomer 

is consumed in the nucleation zon~ (x % 2 1/4). The 

small drops born in the nucleation zone cbnsume relatively 

little monomer while being transported out of it; however, 

as they grow into large drops nearer the wall, the amount 

of monomer they consume increases tremendously. This is 

consistent with the results of steady-state infinite-

I, 

" 



medium theory where it hasb~en found that the larger 

drops consume the mo's t monomer. ( 4 ) As the axial dis tance 

from ehe wall increases farther, the ~onomer source term • 
beco~ei small because the monomer con~~ntration, and hence 

the dioplet condensation coefficient, has been depressed 

. ' 

to th~ point where the drops grow much more slowly. Thus 

the mon6mer depletion rate becomes. small. 

The oscillatory nature of the monomer source (Figure 

7) causes many numerical problems. It was the principal 

reason that the calculation could not be made for very 

largeenhance~ent~ in the vaporization rate, (i.e~, 

for vaporization rates aRproaching the bulk equilibrium 

c6ndensation rate value) or for nucleation models such 

as that of Lothe and Pound,(24) which give much larger 

nucleation rates than the classical theory under the 

same conditions. Th~ reason for this is that the monomer 

source is, in effe6t, the small difference between two 

very large numbers and any error made in computing the 

source in the positive or negative source regions of 

Figur~ 7 has a large effect on the monomet concentration. 

Figure 8 ~hows the dimension1essc6ntribution from 

the individ~a1 groups to the monomer source ter~ for a 

typical case. The profile in g-space was taken at the 

position of the maximum monomer sink, 1/4. Plotted 

on the ordinate is the product g . S (x), which is the 
g 

contribution to the monomer source from drops of size 

g. The total monomer source is given by the negative of 
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the sumo! the contributions from the individual groups 

(E4~ (17», arid so is approximated by th~ area under the 

curve in Figure 8. 

between 10 3 and 10 6 

The figure shows that drop sizes . -

are the principle contributors to 

the monomer source; drop sizes below 10 3 and above 10 6 

make-negligible contributions. Small drops contribute 

little t~ the monomer sink becau~e.their small surface 
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area does allow them to consume significant quantities 

6 of vapQr. For drop sizes greater than 10 , the contribution 

to the m6~omer ~ourc~ term approaches ~er6becau~e the 

drop toncentration becomes so small (see Figure 5). 

Thus only intermediate drop sizes contribut~ to the source 

term. 

Figure 9 shows the ratio of the drop temperature to 

the wall temperature as a function o£ drop size foi 

a p~rticular i~cation in the boundary layer as given by 

the en e r gy b a 1 an c e E q . ( 18) . For most -of the drop sizes 

shown, the drop temperature is equal to the temperature 

of the surrounding gas; only at large ~rop sizes does the 

drop temperature differ from the gas temperature. As 

15 the drop increases beyond 10 atoms in size,thedrop 

temperature 'rises quite rapidly because of heat transferred 

by thermal radiation from the wall to the drop, and it 

.approaches the wall temperature at sizes approaching 10 20 . 

The reason that the drop temperature remains very close 

to the gas temperature over such a larg~ range is that 

the rate at which heat is removed from the drop by gas 



.. 
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atoms colliding with it is very large. 'that is, the 

coefficient of the fourth term in Eq. (l~), is large. The 

coefficient B is directly pioportional to the pressure 
gas • 

of the surrounding gas. In the calculations presented 

here, the inert gas pressure was assumed to be one atmosphere. 

For nucleation in rarified environments, however, the 

effect of radiation would become v~ry imp~rtant because 

the heat removed by the inert gas atoms colliding with 

the drops would be much smaller. Hence,the drop temp-

erature would depart from the gas temperat~re at much 

smaller drop sizes. At any total pressure, the population 

of large drops would be limited by radiat~on heating. 

v. EFFECT OF SOME PARAMETRIC VARIATIONS 

The effect of variations in the angular velocity of 

the rotating disk on the vaporization rate is shown in 

Figure 10, where the vaporization rate is plotted against 

the square root of the angular velocity. As expected from 

Eqs. (21) and (23), the vaporization rate in the bulk 

equilibrium condensation case and in the condensation-

free case are directly proportional to the square root 

of the angular velocity • Th~ vaporizat.ion rate in the 

nucleation kinetic case is not pr~portional to the square 

root of the angular velocity, as can be seen from the 

middle line of Figure 10. This differen~e in behavior 

is produced by the fact that the angular velocity controls 

the convection term in the conservation equations and 



and hence the balance am6ng diffusion, convection, and 

condensation is affected by disk speed~ 

Figrire 11 shows s~rface tension decreases the vapor-
• 

ization rate, with all other parameters held constant. 

This is because the evaporation coefficient a decreases 
g 

wiih decr~asin~ surface tension and thus the rate at 

which dro~s evaporate is reduced, ~hereby increasing th~ 

monomer gradient at the will. 

VI. CONCLUSIONS 

The structure of the. nucleation zone in the gas film 

on a r6tatingdisk is such that drops are produced in 

significant quantities only near the middle of the boundary 

layer.'As shown in Figure 12, drops formed there are 

then tianspoited by diffusion and convection into a region 

closer ~o the wall wh~re rapid gro;th is favored. Finally, 

they move very close to the wall where they evaporate. 

This effect produces a cycle because the monomer produced 

by the drops evaporating is transported away from the 

wall and into the nucleation zone where some of it is 

reformed into drops which are again returned towards the 

hot surface. Thus a recycle is superimposed upon the 

ordinary outward transport of the vaporizing species which 

.normally occurs in the isothermal boundary layer. Under 

the proper conditions, it is possible that the recycle 

mechanism could retard rather than enhance the vaporization 

rate. However, only rate enhancements were found for the 

range of input parameters studied here. 
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FIGURE CAPTIONS 

(1) Schematic of temperature and partiai pressure profiles 

during isothermal and non-isothermal v~porization 
• 

(2) Rotating disk geometry 

(3) Enhancement of the rate of vaporization of iron into 

argon 

(4) Variation of the nucleation rate through the boundary 

l~yer 

(5) Drop concentrations at t~o positions in the boundary 

layer 

(6) Variation of evaporation and condensation coefficients 

through the boundary layer 

(7) The monomer source in the 'boundaiy layer 

(8) Contribution to the monomer source from drops of 

different sizes at x = 1/4 

(9) Ratio of drop temperature to waLl temperature in 

the nucleation zone 

(10) Effe~t of disk rotational speed on the vaporization 

rate 

(11) Effect of drop surface tension on the vaporization 

rate 

(12) S~hematic of vapor recycle in the non-isothermal, 

boundary layer of a rotating disk 
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resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



'V 

~ tl 

TECHNICAL INFORMJrllu'N-DIVISION 
LAWRENCE RADIATION LABORATORY 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 .. 

;:;.....,. () 

\j9F"" .. ' 

o 


