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ABSTRACT 

Far infrared spectroscopic techniques are used to study 

the magnetic resonance of Fe(III) and Mn(III)· ions in molecu-
, , 

lar sites with large axial and rhombic fields~ Measurements 

-1 of transmission spectra over the range 3-100cm are discussed 

for a group of polycrystalline compounds, including several bio-

logical complexes, at temperatures between 1.3 and 50 0 K and in 

applied magnetic fields up to 50 kOe. The spectra show magne-

tic resonance absorptions which are consistent with a number 

of cases of the spin Hamiltonian formulation, and the spin 

Hamiltonian parameters (D,E > 1 cm-l ) are directly obtained 

from the spectra. The observation of resonances due to high 

spin Mn(III) and to the ferromagnetic resonance of «C2H5)2NCS2)2 

Fe(III)Cl is reported. These measurements show that present 

far-infrared techniques offer a direct method for the investi...; 

gation of the effects of large ligand fields on paramagnetic 

ions in molecules. 

i 
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I. INTRODUCTION 

A number of powerful techniques have been applied to the investigation 

of the electronic properties of paramagnetic ions in molecules. Consider-

able information has been obtained from spectroscopic measurements in the 

microwave, near infrared, visible, and ultraviolet regions of the electro-

magnetic spectrum, and from Mossbauer resonance at higher frequencies. 

Although the detailed structure of the electronic spectrum is complex, 

it has frequently been found that the magnetic properties of the ground 

term could be adequately described by a simple Hamiltonian first proposed 

1 
by Abragam and Pryce in 1950. The simplicity of the description results 

from the interaction of the ion with the surrounding ligands. The ligand 

field splits the multiply-degenerate free-ion ground state, and the new 

ground term, which is often an orbital singlet and spin multiplet, is 

further split by second-order spin-orbit coupling. The ground term may 

then be described by the spin Hamiltonian 

where H is the applied magnetic field, g is theg-tensor, S the elec-
...... ~-

tronic spin, and D and E are parameters which describe the effects of 

axial and rhombic ligand fields, respectively. 
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Conventional electron paramagneti'c resonance techniques have been 

widely used to investigate ions whose ground terms are approximately 

, ' 

described by Eq. (1). Such measurements, on compounds for which the 

values of the ligand field parameters correspond to microwave fre-

quencies, have demonstrated that this description is often adequate, 

and have obtained accurate values for D and E. However, there is a 

large class of interesting compounds where the values of the spin 

Hamiltonian parameters are considerably larger (D,E > 1 cm-
l

). This 

class of compounds contains many extensively-studied biological molecules, 

,the most well-known of which are various derivatives of the hemoproteins, 

such as myoglobin and hemoglobin. In addition, it also includes a number 

of metal~organic complexes, such as the transition-metal porphyrins. 

Microwave measurements on these compounds have been interpreted in terms 

of Eq. (1), but although the observed resonances can be used to obtain 

estimates of the spin Hamiltonian parameters, they only depend upon D in 

second order, and are relatively insensitive to the effects of small mod-

ifications of the spin Hamiltonian. However, higher frequency magnetic 

resonance measurements, using far-infrared spectroscopic techniq~es, can 
" 

. 1/ 
obtain detailed information on the spin Hamiltonian for substances in 

this class. 

We have measured the far-infrared transmission spectra of a group of 

such compounds containing Fe(III) and Mn(III). The measurements ~ere" IIlade 

-1 
over the frequency interval 3-100 cm The samples were polycrystalline 

powders or frozen solutions at temperatures betweeh 1. 3 and 50oK, and in 

magnetic fields up to 52 kOe. The spectra show magnetic field dependent 

absorptions due to magnetic dipole transitions between states of the 

.. 
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paramagnetic ground multiplet. Our experiments may be thought of as 

high frequency; high field electron paramagnetic resonance, with the 

exception that a continuous range of both frequency and field is available. 

The measurements have enabled us to investigate the validity of the spin 

Hamiltonian approximation, and to obtain directly values for the parameter 

D (and occasionally E). 

In this paper, we shall present results for ferrichrome A, tris 

(pyrrolidyl dithiocarbamato) Fe(III), and certain complexes of 

ferrimyoglobin, ferrihemoglobin, Fe(III) porphyrins, Mn(III) porphyrins, 

and bis Fe(III) dithiocarbamates. This group of compounds is 

particularly well suited for such a general study because it contains 

illustrative examples for a variety of cases ofEq. (1). In terms of 

the spin Hamiltonian parameters, the cases investigated include: 

8=3/2,2, and 5/2; D > 0 and D < 0; E/D « 1, and E/D=O.25; and 

gJ.lBH/D «1' .to gJ.lBH/D »1. In addition, one of the compounds, 

((C2H5)2NCS2)2Fe(III)Cl, is ferromagnetic, and several show spectra with 

strong magnetic field-independent absorptions which may be due to low­

frequency molecular vibration modes. Our experiments on the manganese 

porphyrins have obtained the first magnetic resonance data for these 

complexes which can definitely be attributed to Mn(III). Finally, the 

results for myoglobin, hemoglobin, and ferrichrome A indicate that 

detailed information on the effects of the ligand field can be obtained . 

from investigation of intact biological molecules in the far-infrared 

region. 

The organization of this paper is as follows: Section II includes 

a discussion of the relevant cases of the spin Hamiltonian of Eq. (1) 
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and brief comments on the calculation methods used to analyze the data; 

Section III contains an outline of the experimental techniques employed; 

Section IV present,s our experimental results for each compound together 

with some discussion. 
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II. THEORY 

A. The Spin Hamiltonian 

Excellent discussions of crystal or ligand field theory2,3 and of 

more general forms of the spin Hamiltonianl ,4 are available, and a 

complete derivation of the spin Hamiltonian for ferrihemoglobin has been 

given by'Weissbluth. 5 In this section, we shall confine our discussion 

to the cases of the spin Hamiltonian of E~. (1), which are applicable to 

our study. Although the general theory is widely understood, the 

details of the predictions of Eq. (1) for specific cases may be un-

familiar. 

We shall consider a simpler form of Eq. (1) ,which is sufficient to " 

analyze our polycrystalline spectra: 

In Eq~ (2), the g tensor has been replaced by an isotropic g-factor 
~ 

with the free spin value g=2.00. Our results also do not require the 

small quartic terms in the spin operators which are occasionally in­

cluded6 in Eq. (1). 

B. Eigenvalues and Eigenfunctions 

The energy-level spectrum of Eq. (2) is distinguished by two 

general characteristics: 

'(i) In zero magnetic field, the eigenvalues of Eq. (2) are separated 

by "zerO-field splittings", which are functions of the parameters D and E. 
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For 8=3/2 and 8=5/2, the states are Kramers doublets. For 8=2, the 

states are all singlets except in the case E=O where. there are two 

doublets and a singlet. 

(ii) In a magnetic field, the eigenvalues are further split by 

the Zeeman interaction, and they are strongly dependent on both the 

magnitude and direction of the applied field. 

The behavior of the spin Hamiltonian spectrum for each spin value 

can be most easily investigated in terms of the dimensionless parameters 

A=E/D and H'=g~BH/D. Departures from axial symmetry are indicated 

by the value of A. The range ° ~ A ~ 1/3 describes all of the distinct 

physical possibilities; for X > 1/3, a new set of coordinate axes may be 

chosen7 in which the spin Hamiltonian has new parameters D' and E' and 

a value A' < 1/3. 

We have calculated the variation of the eigenvalues and eigenfuhctions 

as a function of H' and A for 8=3/2, 2, and 5/2. Although the detailed 

behavior is complex, a few simple comments can be made which are very 

useful in the interpretation of our experimental spectra. In the 

following discussion, we shall use the eigenstates of 8 as a basis set. 
z 

The variation of the zero-field eigenvalues. for each 8 as a 

function of A is given in Fig. 1. For A=O (E=O), the eigenfunctions of 

Eq. (2) are eigenstates of 8 with Kramers doublets characterized by the 
z 

value of 1m I. The zero field splittings are integer multiples of tbe , s 

axial crystal field parameter, D. For D > 0, the ground state is given 

by the minimum value of 1m I; for 
s 

. [ 2 If A is non-zero, the term E 8x -

D <: 0, the level system is inverted. 

8
2

] couples s.tates differing by !:in = 2. 
y s 

The eigenfunctions are no longer pure eigenstates of 8 and this 
z 
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admixture is reflected in a shift of the Kramers doublets for S = 3/2 

and 8 == 5/2, and a splitting for 8= 2 (Kramers ' theorem does not hold 

for ions with an even number of electrons.) The zero-field splittings 

are therefore a function of A, and this dependence can be used to 

obtain a value of A as discussed below. 

The eigenvalue spectrum as a function of H' for Eq. (2) with 1..=0 is 

given for each 8 in Fig. 2. The eigenvalues depend upon the magnitude 

and orientation of the external field H with respect to the coordinate 

system in which the spin Hamiltonian is written. For 1..=0, only the 

polar angle eH of the field with respect to the z-axis is required to 

determine the spectrum, and we have given curves for eH = 0 and rr/2. 

(For 1...1 0, the spectrum also depends upon the azimuthal angle CPH' and 

can differ markedly from the curves shown, although the qualitative 

characteristics remain the same8). 

For ~ II z (e
H 

= 0), the eigenfunctions of Eq. (2) are eigenstates 

of 8z ' and the Zeeman splitting is linear in H'. For Hl z (e
H = rr/2) , 

the Zeeman term g~B H·8 mixes states differing by ~ = ± 1. For 
~ ~ s 

H' «1, this admixture produces a linear splitting of the zero field 

m = ± 1/2 doublet for 8 = 3/2 and 5/2, with an effective g-value which s 

depends upon 8 (for 8=3/2, gl =4; for 8=5/2, gl =6). The remaining 

doublets, for each 8, split quadratically. For H' ~ 1, the eigenfunctions 

are mixtures of all eigenstates of 8z ' and the variation of the eigen­

values with H I is complex. However, for large H', the eigenfunctions 

are nearly pure eigenstates of 8H, the projection of ~ onto the magnetic 

fieldH, and the variation of all eigenvalues with H' then becomes linear. 
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This behavior is completely analogous to the Zeeman effect in atomic 

multiplets split by the spin-orbit interactiori, and the high field limit 

corresponds to the Paschen-Back effect. The limiting values of m and 
s 

~ for H II z and H 1 z respectively are indicated on the figures for the 

case D >0; for D < 0, the signs of ms and ~ should be reversed. 

The most important feature of the spectrum for powder spectroscopy 

is the large variation of the eigenvalues and eigenfunctions with the 

orientation of the applied magnetic field. In practice, this results 

in broad, complex absorption lineshapes. 

C. Polycrystalline Absorption 

The transmission spectra of samples containi~g paramagnetic ions 

whose ground multiplet is described by Eq. (2) show absorptions due to 

magnetic dipole transitions between the states discussed in the previous 

section. The observed spectrum for a single crystallite can be described 

by an absorption coefficient a(v), which is, in general, a function of 

D, E, H, 8H, and <PH' as well as of the direction of propagation and 

polarization of the incident radiation. For a given transition n 

between initial state I in > and final state I f n> ' the absorption 

coefficient may be written (see Appendix A, Section 1) 

A 

p(v-vn)l(fnlk X"U • ~lin>12 

where N is the concentration of paramagnetic ions; P is a lineshape o 

function, k and u are unit vectors in the direction of propagation and 

electric field polarization respectively of the incident radiation, S 

is the spin operator, and V is the frequency corresponding to the 
n 

• ! 
! 

, 
I!. J 

J 
. ; 
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difference of the eigenvalues of the initial and final states. In 

addition, ata given temperature T, the absorption coefficient must be 

multiplied by Pn(T), the difference in the thermal population of the 

two states. The total absorption coefficient for a single crystallite 

is then 

Ct (v) = z:: Ct (v) P (T) ( 4 ) 
, n n n 

where the sum is over all transitions within the ground multip~et. The 

spectrum thus described will show a series of absorption lines, one 

for each transition. 

The transmission spectrum ofa polycrystaliine specimen in a 

fixed magnetic. field may be obtained by averaging Eq. (4) over all 

crystallite orientations. In our experiments, the incident radiation 

was unpolarizedand was strongly scattered within the sample, which was 

placed within a low-Q transmission cavity. Under these conditions, the 

average over crystallite orientations reduces to three independent 

averages over the directions of polarization~, propagation k~ and 

magnetic field H. In general, the first two averages may be carried out 

analytically, but the last must be performed .. numerically. (Later, we 

shall briefly discuss the important case H' » 1, in which the absorption 

coefficient may be obtained in closed form.) After the averages over 

polarization and the direction of propagation have been calculated, the 

expression for the average of Eq. (4) maybe written (see Appendix A, 

Section 2) 

aCv) 

'1, 

= h 2 3 m c 
L~p(V_V ) P (T) W ]dQH 
n n n n 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

J 
1 
1 

1 

11 
I 1 

j. 
1 
! 
I 

! 
I ., ,. 
J 
f 
I 

I 

I 

I 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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where 

W _ 1/3 {I<s > 12 + I<s ) 12 +I<s >12} 
n xn. yn •. zn 

and 

The integral over the orientation of H inEQ. (5) is most easily calcul-

ated by numerical methods because W and V are in general not simple n n . 

functions of the parameters of the spin Hamiltonian of EQ. (2). 

The" results of a calculation of a depend upon. a few simple properties 

of the integrand in EQ. (5). The factor of v, which appears because 

. ex is defined as the power absorbed per unit length, enhances high 

freQuency transitions. The term P (T) strongly suppresses transitions 
n 

from states elevated more than -kT above the groUnd state. Further-

more, at high temperatures, when D/kT « 1, Pn(T) is very small for all 

transi tions·. The magnetic dipole transition probability W only allows . n 

transiti6ns with ~s = ± 1,0. Finally, the solid angle d~H strongly 

enhances transitions corresponding to H 1 z. 

As art example of the effects of P (T) and W' we consider the n n' 

absorption coefficient for S=5/2 in zero applied field. For low temp-

eratures, only transitions from the greund state will contribute 

appreciably .. If A = 0, only the transition from the ground state to 

-the first excited state is allowed by the selection rules of W , and ex 
. : n 

will show only one peak. However, if A # 0, the admixture of states 

described previously will allow a transition to the second excited sta~e. 

't 
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The strength of this second transition increases rapidly with A, and for 

A > 0.1, two strong peaks will appear. The frequencies of the two corres­

ponding experimental absorptions are sufficient to measure both D and A. 

If the temperature is sufficiently high to populate the first 

excited state, a third peak due to the transition between the first and 

second excited states will appear ina for any value of A; in particular, 

for small A, the positions of the first and third peaks can be used to 

obtainD and A. Therefore, the zero-field spectrum is sufficient in 

principle to determine the parameters of the spin Hamiltonian. We shall 

later discuss specific examples of these two cases. Similar observations 

may be made for the zero-field spectrum in the .case S = 2, with the 

exception that the splitting of the doublets with A provides additional 

information. However, for S = 3/2, measurement of the zero-field absorp­

tion coefficient is not sufficient to obtain values for D and A, and it 

is necessary to measure the absorption spectrum in an applied field. 

In order to compare our experimental spectra for S = 3/2 with the 

predictions of the spin Hamiltonian, we have written a program to cal­

culate (XCv) for a specified D, E, H, T, and linewidth. This calculation 

is described in Appendix B. A Gaussian lineshape function, due to site 

inhomogeneities, was assumed, and the linewidth was chosen to fit the 

zero field spectrum. An example of the results of this calculation for 

D < 0, IDlikT = 0.8, and a small value of A are shown for several values 

of H' = g]..lBH/D in 'Fig. 3. The upper graph shows the contributions of 

the various transitions to the total lineshape, and the lower diagram is 

a composite plot of the variation of a with H'. These curves illustrate 

the complex. nature of the powder lineshape. We shall compare these 
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calculations with experiment in a later section. 
. . 

For H' » 1, the bare polycrystalline absorption coefficient 

(calculated assuming p(v-v ) = cS(v-v )) can be obtained inc,losed form, 
n n 

because the quantities V and W can be expressed as simple functions 
n n 

of the spin Hamiltonian parameters and the angles specifying the 

orientation of H. This can be seen by writing Eq. (2) in a coordinate 

system {x'y'z'} where H II z', and choosing the eigenstates of S , as 
z 

a basis set. In this system, off-diagonal terms may be neglected, 

since the eigenfunctions are very nearly eigenstates of SH :: Sz" The 

magnetic dipole transition probability W is large only for transitions n . 

between adjacent levels, and the transition frequencies cluster about 

V = g].lBH with a spread that is a different linear function of D and A. 

for each transition. The lineshape for each transition can be calculated 

by expressing the solid angle d~H' which is a function of two angles, 

in terms of the transition frequency and one angle using a Jacobian 

determinant. The double integral in Eq. (5) then reduces to a single 

integral which can be expressed in terms of the complete elliptic 

integral of the first kind. The resulting individual lineshapes can 

then be multiplied by the appropriate factors P (T) and W , and added 
n n 

to give the total bare absorption coefficient. This calculation is 

described in greater detail in Appendix C. We shall compare the results 
I 

of this calculation for S = 5/2 with our experimental results for 

ferrichrome A in a later section of the paper. 

'I. 

.. 
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III. EXPERIMENTAL TECHNIQUES 

Our spectra were obtained using the techniques ·of far-infrared 

Fourier transform spectroscopy.9 The Michelson interferometer, sample 

dewar, and detection system employed have been recently described 

10 elsewhere. Although the results obtained arean&logous to those of 

electron paramagnetic resonance, there are a number of significant 

differences. Our spectra were measured for samples in fixed magnetic 

fields over a continuous range of frequencies roughly determined by 

the spectral bandpass of the sample, and the experimental methods used 

more nearly resemble those of near infrared spectroscopy than conventional 

microwave techniques. In addition, the lack of intense broad-band 

far-infrared sources places severe restrictions upon the application of 

far;..infrared spectroscopy to problems of the type discussed in this 

paper. Since these restrictions do not generally apply to other magnetic 

resonance methods, we shall briefly discuss them. 

The most widely-used far infrared source is the Rayleigh-Jeans 

region of the black body spectrum emitted by a high pressure mercury arc 

lamp. The intensity of the radiation emitted by the lamp varies 

2 approximately as v , and the total power radiated by the lamp used in our 

experiments into the f:1.5 optics of the Michelson interferometer in 

-1 -5 the region 0-100 cm is -2 x 10 W. Our experiments were typically 

-, 
made over the smaller spectral range 0-30 cm -, where the power falling 

-8 OIl the detector, with no sample in place, is of the order of 10 W. 

This very small power requires the use of high sensitivity, low temper­

ature detectors; the Ge bolometerll used in our experiments has a noise 
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equivalent power of _10-12W!IHZ, and it is the limiting source of noise 

in our detection system. The methods of Fourier transform spectroscopy 

are especially suited9 to this situation. However, in practice the 

small available source intensity means that: 

(i) Spectral features in the sample which absorb less than 5 per 

cent of the incident radiation cannot be accurately measured. 

(ii) Spectral regions in which the sample transmission is less 

than 1% are virtually inaccessible to our present techniques. 

These two practical limitations have several implications for the 

present study. For example, accurate measurements of magnetic dipole 

lineshapes in the far infrared require samples which contain in excess 
19 .... 

of - 10 spins: for compounds such as myoglobin where the paramagnetic 

ion concentration is very dilute, a typical sample· consists of 1 gram of 

material. Many large biological molecules are difficult to obtain in 

such quantities. In addition, the sample temperature must be low enough 

so that there is an appreciab:j..e Boltzmann population difference P (T). . . n 

For values of D on the order of a few cm-l , liquid helium temperatures 

are necessary. Low temperatures are also required because the thermal 

population of higher frequency excitations in the sample, such as 

vibrational modes, may substantially reduce the low frequency transmission, 

and because magnetic resonance linewidths generally increase rapidly 

with temperature. 

We have also observed strong broad-band absorption at high frequencies 

in all of the compounds investigated. This absorption, which may be due. 

to low~lying vibrational modes, has an onset which varies roughly 

inversely with molecular weight, and it essentially creates a low 
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frequency spectral window which liniits the frequency range in which 

our measurements may be performed. For example, the available frequency 

range for our measurements of myoglobin and hemoglobin was approximately 

6 -1 3.5-1 cm.· The low frequency limit is approximately the same for all . 

samples, and is due to the small source intensity at low frequencies. 

Within the restrictions outlined above, however, far infrared 

magnetic resonance has several adva.ntages over other techniques. The 

major advantage is that both frequency and field information can be 

obtained over relatively wide ranges; in particular, large zero field 

splittings for polycrystalline samples may be directly measured. The 

observed spectra clearly show the variation of the transition frequencies 

with field., and the individual transitions are easily identified. 

Paramagnetic resonances which are too broad to be accurately measured 

by microwave techniques can be observed more easily at higher magnetic 

fields in the far infrared, and the high frequency information which can 

be obtained is particularly sensitive to the approximations of the spin 

Hamiltonian. Finally, far infrared results can be used to determine 

the parameters of the spin Hamiltonian even when the zero field splittings 

lie in the microwave region (we shall illustrate this point in the 

discussion of our results for ferrichrome A). 

Our far infrared transmission spectra show effects due to both 

magnetic resonance transitions and the background transmission spectrum 

." of the sample. In order to remove the background, spectra were 

customarily obtained at several values of applied magnetic field, and 

ratios of spectra for different fields were computed. An example of 

this method is illustrated in Fig. 4. The upper graph shows an observed 
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spectrum for zero applied field compared with the spectrum obtained 

with no sample in place. The shape of the latter curve is due to the 

\)2 rise of the source intensity, the frequency variation of the efficiency 

of the dielectric film beam splitter, and the attenuation of low-pass 

filters which are used to eliminate unwanted high frequencies. The 

-1 
sample sp,ectrum shows a weak magnetic resonance absorption at\! :::::: 33 cm 

and a strong broad band attenuation at frequencies above ~20 cm-l The 

broad band attenuation is due both to the absorption in large molecules 

previously mentioned and to the onset of large scattering within the 

polycrystalline sample at wavelengths approximately equal to crystallite 

d
. .12 lmenS10ns. The lower graph is a plot of the ratio of a spectrum for 

high applied field to the spectrum for zero field. The ratio shows clearly 

the zero field absorption and the resonance due to the Zeeman splitting 

of the ground state, as well as noise on either end of the frequency 

range which is enhanced by computing the ratio of small numbers. This 

technique works well whenever the shift of the magnetic resonance 

spectrum with field is large compared to the linewidths, but for spectra· 

such as those described in Fig. 3, the analysis is difficult. 

Several of our spectra show effects due to alignment of the sample 

crystallites in a magnetic field. The alignment is due to the torque 

produced by the interaction of the low temperature ionic moment with the 

applied field, and is discussed in Appendix D. This torque is widely 

13 used to measure the low temperature magnetic susceptibility of 

paramagnetic ions whose groUnd term is described by Eq. (2). The torque 

acts to align one of the coordinate axes of the spin Hamiltonian with 

the applied field, and therefore strongly affects the observed magnetic 

.", 

..... 
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resonance spectrum. In addition, the crystallite alignment can 

significantly increase or decrease the high frequency background 

attenuation due to scattering if the crystallites are plate-like. We 

have attempted to avoid these effects in our measurements by dispersing 

the crystallites in transparent glasses, such as mineral oil, and fine 

magnesium oxide powders, or by packing samples which are too valuable 

to disperse. 

The.samples were typically placed within the far-infrared light 

pipe in cylindrical polyethylene containers with a sheet of thin Mylar 

covering the top. The container diameter was -1.1 cm, and the sample 

length varied from 0.1 to 2.5 cm. Metal cones were placed above and 

below the sample container to form a low-Q transmission cavity. For 

temperatures T ~ 4.2°K, the sample mount was immersed in liquid helium. 

For higher temperatures, the sample mount was placed in an evacuated 

tube and heated by means of a heating coil. The temperature was moni­

tored by measuring the resistance of a GaAs diode in thermal contact 

with the sample mount. 
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IV. EXPERIMENTAL RESULTS 

A. Ferrichrome A 

Ferrichrome A14 is a metabolic product of the smut fungus Ustillago 

sphaerogena; its precise biological function is unknown. The crystal 

and molecular structure of ferrichrome A tetrahydrate have been recently 

I 15 
obtained by X-ray crystallography. The molecule contains one Fe(III) 

ion in the configuration shown in Fig. 5. Although the iron coordina-

tion is rC)'lighly octahedral, the local symmetry is that of a lefthanded 

propeller, which suggests that there should be a large rhombic component 

in the ligand field at the iron site. 

Electron paramagnetic resonance measurements 7 at 9 GHz for poly-

crystalline ferrichrome A have been reported by Wickman, Klein, and 

Shirley. These measurements showed a broad asymmetric resonance at 1550 Oe 

for 'temperatures between 1.0 and 300 0 K and additional smaller structure 

was observed at both higher and lower fields in the spectra for tempera-

tures less than 4.2°K. The spin Hamiltonian of Eq. (2) was used to 

analyze the spectra, under the assumption that the Zeeman term was small 

compared to the ligand field terms, and reasonable agreement was 

obtained for S=5/2, D > 0, and ;\=0.25 ± 0.04. The assignment D > 0 was 

based upon a fit of the low field effective g-values for the two'possible 

ground doublets to the additional low temperature structure, and the 

range of ;\ was obtained from an approximate fit to all of the observed 

resonances. The temperature variation of the spectra was used to give 

-1 
a rough estimate of 3.5 cm for the zero field splitting between the 

two lowest Kramers' doublets, and the temperature dependence of subsequent 

. i , 

. i 
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. . 16 
Mossbauer effect measurements . was used to obtain an improved estimate 

-1 of 2.4 - 3.5 cm for this splitting. 

Our far infrared spectra for approximately 70 mg of poly crystalline 

ferrichrome A, kindly supplied by Dr. M. P. Klein, showed no absorptions 

-1 in zero field above our experimental lower frequency limit of 3.0 cm ; 

spectra were obtained at T = 1.3 and 4.2 oK. In high applied field, a 

broad asymmetric absorption which peaked at a frequency slightly less 

than V =2~BH was observed. The average of three experimental absorption 

coefficient measurements for H=52.2 kOe and T=4~2°K is plotted in Fig. 6. 

The positions of the absorption maximum and the shoulders on either side 

were quite reproducible. No evidence of crystallite orientation due to 

magnetic torques was observed. 

-1 The absence of zero field absorptions above 3.0 cm suggests that 

the observed high field lineshape corresponds to the limit HI »1. The 

bare polycrystalline absorption coefficient in this limit was calculated 

according to the method outlined in Section II-C for various values of 

D and A, and the results for two sets of values are also plotted in Fig. 6. 

The theoretical absorption coefficient at T = 4.2°K is largely given by 

the sum Of the lineshapes for the two transitions from the ground and 

first excited states. The small delta-function at V=2~BH on the curve 

for D < 0 is due to the transition from the second excited state, and 

the contribution of the remaining transitions is negligible. The major 

features of the calculated Ci are the absorption edges and the position 

of the~axima; the frequencies at which they occur can be easily 

expressed in terms of the spin Hamiltonian parameters. The absorption 
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edges occur at frequencies" V. given by 
l. 

4D 

V2a = g~BH + D(1+31~1) 

V2b = g~BH 2D 

UCRL-19651 

where i = 1.,2 indicate the transitions from the ground and first excited 

states respectively, and the maxima occur at frequencies V! given by 
l. 

V' = 
1 

V' = 
2 

2D(1-31~1 ) 

D(1-311..1)· 

These frequencies are indicated in Fig. 6 for the solid curve. Although 

D and ~ have the same sign,7,8 the calculated absorption coefficient for 

a given field depends only upon the sign and. magnitude of D and the 

magnitude II.. I. Therefore, apart from the effects of the Boltzmann term 

P (T), the lineshape for D < 0 may be obtained from the lineshape for 
n 

D > 0 by reflecting through the line V = g~BH. For 11..1 = 1/3, the 

absorption coefficient depends only upon the magnitude IDI, and the 

sign of.D can be regarded as arbitrary. This result. is due to the 

t t · f th . . H 'It . 7,8 A 11.1 h 1/3 symme ry proper l.es 0 e spl.n aml. onl.an., s A approac es , 

the distinction between positive and negative Dbecomes smaller, and 

consequently the sign of D becomes more difficult to obtain from para-

magnetic resonance spectra. 
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The theoretical absorption coefficient forg = 2.00~ D = -0.27 cm-l 

and IAI =0.25, which is plotted in Fig. 6, represents our best fit to 

the observed lineshape; reasonable agreement places limits of ±0.01 cm-l 

on D and ±0.02 on IAI. Considerably poorer fits are obtained for 

positive values of D, since the calculated maxima lie at frequencies 

higher than v = 2l1BH for IAI < 1/3. The best fit to all of the observed 

features for D > 0 requires IAI = 1/3 and D = +0.27 cm-l ; however, as 

indicated above, the same curve would be obtained for a negative D. The 

curve for these values is also plotted in Fig. 6. Both sets of values 

derived from our data yield zero field splittings between adjacent 

. . 8-1 Kramers 'doublets in the range o. to 1. 0 cm . These values are con-

siderably smaller than the estimates previously obtained. 

The analysis of the paramagnetic resonance spectra of ferrichrome A, 

given by Wickman, Klein, and Shirley, rests upon the assumption that 

the Zeeman terms of Eq. (2) are much smaller than the ligand field terms, 

which is approximately equivalent to the statement that the energy of 

the microwave quantum is much less than the zero-field splittings. Our 

measurements indicate that this assumption is not justified at the 

-1 eXperimental microwave frequency of 0.3 cm It has recently been 

pointed out
8 

that the effective g-factors in finite fields (such that 

geff l1BH - D, E) may vary considerably from those calculated in the limit 

of infinitesimal fields, and that resonances due to transitions between 

states originating in adjacent zero field doublets may also be observed. 

Under these conditions~ the analysis of the low temperature paramagnetic 

resonances for ferrichrome A in the small field approximation is incon-

clusive with respect to the sign of D. Our data are fit more accurately 
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by negative values of D, as indicated in Fig. 6. Prelimi~ary calculations 

of the X-:band electron paramagnetic resonance spectrum,17using the 

. .-1 
methods outlined in Ref. 8, indicate that the values D = -9.27 cm and 

I A I = 0.25·· obtained from our data can account for· the published 

resonances. More accurate values of D and A could possibly be obtained 

by further analysis of X-band spectra, or by directly obtaining the 

zero field splittings at K-band. 

B. Tris (pyrrolidyl dithiocarbamato) Fe(III) 

A series of interesting tris Fe(III) dithiocarbamates, Fe(III) 

. 18 
(82CNRR')3where R,R' are alkyl groups~ have recently been synthesized. 

Although X-ray crystallographic data are unavailable, the molecular 

structure of these compounds is presumed on stericgrounds19 to be that 

shown in Fig. 7. A comparison of Fig. 5 and Fig. 7 illustrates the 

similarity of the iron environment in these complexes to that in 

ferrl.chromeA. 

Most of these substances show room temperature magnetic moments 

which lie between those of the limiting "low spin" (8=1/2) and "high 

spin" (8=5/2) states of the Fe(III) ion. Visible and infrared spectra 

and the temperature and pressure dependence of the magnetic susceptibility 

19 .. 20 
for several compounds have been reported, as well as Mossbauer effect 

d 1 t · 21 t d' an nuc ear magne 1C resonance· s u 1es. Good agreement·with the 

qualitative effects observed in these measurements has been obtained by 

2 6 
assuming that the octahedral T2 and Al terms of Fe(III) are separated 

-1 by only a.few hundred cm in these complexes. However, quantitative 

agreement with the experimental results has been frequently hampered 

,... 

Wi, 
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by the lack of detailed information on the effects of the-ligand field 

at the iron site. For example, the similarity of the iron site in the 

tris Fe(III) dithiocarbamates to that in ferrichrome A suggests that 

the ligand field should have a strong rhombic component in these complexes. 

Such information can in principle be .obtained by electron paramagnetic 

resonance techni<lues, and a study at microwave fre<lueneies is now in 

17 progress. 

One of the compounds, tris (pyrrolidyl dithiocarbamato) Fe(III), 

shows only high spin behavior. We have measured the far infrared spectra 

of a polycrystalline sample of this substance at T=4.2°K. The sample 

was supplied by Dr. A. M. Trozzolo. Data obtained from our spectra are 

plotted in Fig. 8. The zero field spectrum shows. a strong absorption 

-1 -1 at 8.4 em and a weaker one at 13.2 cm . The first absorption 

corresponds to a transition between the ground and first excited Kramers 

doublets, and the second corresponds to a transition between the ground 

and second excited doublets. As discussed in SectionII-C, the presence 

of the second absorption at low temperature implies that A ~ O. Our 

-. 1 
zero field data are fit by the values D = -2.14±o.05 cm- and 

A = -0.10 ± 0.01. The sign of D was established by observing that the 

first absorption occurs at a fre<luency more than half of the total zero 

-1 field splitting, 13.2 cm ; if D > 0, the reverse is true. In addition, 

no absorption due to the Zeeman splitting of the ground doublet was 

observed. which is further evidence for a negative value of D. 

Our measurements indicate that the ligand field in this compound 

does in fact have an appreciable rhombic component, as expected. It is 
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interesting to note that low temperature microwave magnetic resonance 

. 17 
measurements for frozen solutions of this compound in N,N dimethyl 

formamid indicate that IAI -1/3 and that IDI is somewhat smaller. 

Previous experiments
18 

have also shown differences between the room . . , 

temperature magnetic moments of solid and dissolved compounds of this 

series. 

C. Fe(III) Porphyrins 

Metalloporphyrins22 have been investigated by a variety 'of techniques 

because of their occurrence as the prosthetic group of paramagnetic ions. 

in many biological molecules. In particular, studies on iron prophyrins 

. 24 
(hemes)23 have been stimulated by interest in related work in hemoproteins. 

The approximate structure of such heme compounds and the local coordina-

tion of the iron ion in the porphyrin molecule are indicated in Fig. 9. 

The iron is coordinated to the four pyrrole nitrogens of the porphyrin, 

and two other coordination positions, labeled 5 and 6, are available in 

positions approximately perpendicular to the plane defined by the four 

nitrogen atoms. In the compounds we shall discuss, one of these positions 

is unoccupied, and the other is occupied by one of a number of ligands. 

Under these conditions, X-ray crystallographic measurements 25 have 

indicated that the iron lies slightly above the nitrogen plane in the 

direction of the fifth ligand. Hemes are also identified by the presence 

of various groups attached to the periphery of the porphyrin skeleton. 

Protoheme (iron protoporphyrin), the prosthetic group of hemoglobins, 

myoglobins, and several other hemoproteins, is the best-known. 

The far-infrared spectra of several halogeno deutero-and proto-

26 porphyrin Fe(III) complexes have recently been reported. The spectra 
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for these compounds were successfully analyzed in terms of the spin 

Hamiltonian in Eq. (2) for S = 5/2, D > 0, and A :::: o. The observed zero 

field splittings for the compounds investigated were quite large, 

-1 -1 ranging from 11.1 cm to -33 cm Preliminary results for several 

. other complexes were also reported. 

We have measured the far-infrared s.pectra of foUr polycrystalline 

Fe (III) porI>hyrins. The s.ample preparation and characteri zation tech­

niques were similar to methods recently describedelsewhere. 27 These 

measurements have yielded more accurate values of· the ligand field 

parameters for two compounds included· in the previous work, :i,odo- and 

azido deuteroporphyrin IX dimethyl ester Fe(III). In addition, we have 

also obtained data for two additional compounds, fluoro- and azido 

protoporphyrin IX dimethyl ester Fe(III). The last two substances are 

of particular interest because of the existence of the corresponding 

myoglobin and hemoglobin complexes. 

The spectra for all of the compounds investigated showed absorptions 

characteristic of high spin Fe(III) and positive values of D. A typical 

transmission spectrum has been previously shown in Fig. 4. The 

frequencies of the experimental absorption peaks at T =4.2°K are plotted 

as a function of field for fluoro protoporphyrin IX dimethyl ester Fe(III) 

in Fig. 10. The observation of absorptions corresponding to the Zeeman 

splitting of the ground doublet establishes the sign of D as positive. 

The frequency of the zero-field absorption corresponds to the zero-field 

splitting ~l between the ground and first excited Kramers doublets. If 

A = 0,. as 
. 28 

we would expect for this complex, ~l= 2D. The calculated 

frequencies of strong transitions for the spin Hamiltonian in Eq. (2) 
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-1 for D = +5.0 cm ,A = 0, T = 4.2 0 K, and H 1 z are also plotted in Fig. 

10 for comparison. The values of the zero field splittings and derived 

values of D obtained from our data for the two halogeno complexes 

investigated and previously reported values for related complexes are 

listed in Table I. 

The azide complex of ferrihemoglobin has a static magnetic suscepti­

bility29 characteristic of the low spin S = 1/2 state of Fe(III). 
30 

Electron paramagnetic resonance measurements show a strongly asymmetric 

. . 31 32 . g-tensor which has been successfully analyzed ' In terms of· a rhombic 

ligand field. Similar results have been obtained for the azide complex 

of ferrimyoglobin. The origin of the rhombic field in these complexes 

is in dispute. It has been ascribed to the attachment of the distal 

histidine30 (which is coordinated to the iron in the fifth position in 

these compounds), to the displacement of the iron atom out of the nitro-

32 . . . 31 
gen plane, and to a non-axlal attachment of the azide lon. An 

X t 11 h · t dy f f . 1 b' .. d 33 h' h h d . -ray crys a ograp lC suo errlmyog 0 In .aZl e,·· w lC s owe 

that the azide ion is inclined at 21° to the porphyrin plane, has given 

support to the latter explanation. 

Our measurements for the corresponding heme compound, azido 

protoporphyrin IX dimethyl ester Fe(III) and the similar deuteroheme 

complex show spectra characteristic of high spin Fe( III). However, an 

orientation of the azide ligand in these substances similar to that 

observed in ferrimyoglobin should produce a substantial rhombic component 

in the ligand field. In order to determine the value of A for these 

complexes, zero-field spectra were obtained at T = 4.2 and 50o K. At the 

higher temperature,an additional absorption was observed in the spectra 
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at a frequency corresponding to the second zero-field splitting 6
2 

between the first and second excited Kramers doublets. As discussed 

in Section II..;.C, the values of 6
1 

and 62 obtained in this fashion can 

be used to obtain values for D and A. The observed splittings and the 

derived values of D and A for the two compounds are also listed in 

Table I. Both complexes show non-zero values of A, in~icating that the 

ligand field does in fact have a rhombic component. The value of A for 

the protoheme complex is particularly large compared to.the limiting 

value A = 1/3 for a completely rhombic field. (A tyPical value of A for 

an axial complex, obtained· from high-temperature data for chloro proto­

porphyrin IX Fe(III),26 is A = 0.01 ± 0.01.) Although the iron atom in 

these compounds may be displaced out of the nitrogen plane, an axial 

displacement cannot account for a rhombic component to the ligand field. 5 

The most likely source of such a field is an inclination of the azide 

ion to the· porphyrin plane such as that observed in ferrimyoglobin azide. 

If this is the case, our measurements on these complexes indicate that 

the orientation of the azide ligand can significantly coritribute to the 

rhombic character of the ligand field in ferrimyoglobin and ferrihemo-

globin. 

D. Mn(III) Porphyrins 

Studies of manganese porphyrins, like those of iron porphyrins, 

have been stimulated by interest in their properties in relation to 

biological systems. For example, several studies have investigated the 

possible role of these compounds in the oxidation-reduction systems of 

photosynthesis. 34 ,35 In addition, synthetic enzymes made by replacing 
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heme prosthetic groups with Mn porphyrins have been shoWn to have partial 

activity. 36 Elemental analysis and magnetic susceptibility measurements 

on manganese hematoporphyrins 34 have shown that the stable oxidation 

state of the manganese in these complexes is Mn(III), with a spin S=2. 

However, no electron paramagnetic resonances that can be directly 

attributed to Mn(III) have been observed. 

We have measured the far infrared spectra of four polycrystalline 

Mn (III) deuteroporphyrins. 'The spectra for three of the compounds inves-

tigated show magnetic resonance absorptions which are consistent with 

the predictions of the spin Hamiltonian in Eq'. (2) for S=2, D < 0, and 

A. ~ O. Data for a sample of azido deuteroporphyrin IX dimethyl ester 

Mn (III) at T=4. 2°K are shown in Fi.;g. 11. The zero-field spectrum for this 

complex showed only one absorption, indicating that A. - O. For small A., 

the zero-field spectrum should show two absorptions separated by 6E, as 

indicated in Fig. 1. The width of the observed zero-field lineshape was 

used to obtain the upper limit E ~O.l cm-l Since transitions corres-

ponding to the Zeeman splitting of the pair of zero field states with 

m ~ ± 2 'are forbidden to first order, the absence of such absorptions s 

in the observed spectra does not imply that Dispositive. In order to 

establish the sign of D, we have obtained spectra for this complex in 

zero field at temperatures up to 40oK. No additional absorptions appeared 

above 3.5 cm-
l

, which shows that D is negative and that therefore the 

observed zero-field splitting is' t.l = 31 D I. These observations yield 
1 ' 

D = -3.08 ± 0.10 cm- and A. ~ 0.04. The calculated transition frequencies 

for Eq. (2) with D = -3.08 cm-l , A. = 0, and H 1 zare also plotted in 
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Fig. 11 for comparison. Similar observations were used to derive values 

of D and A for chloro deuteroporphyrin IX dimethyl. ester Mn(III). 

However, no absorption in zero field was observed for the thfrd complex, 

bromo deuteroporphyrin IX dimethyl ester Mn(III).The spectra in an 

applied field showed substantial changes in the background attenuation 

at high frequencies due to crystallite orientation. In addition, a 

-1 broad magnetic resonance absorption with a peak at \) = 211BH + 3.4 cm 

was observed at high field. These observations are only consistent with 

a small riegative value of D, and analysis of the observed high field 

lineshapein the manner described for ferrichrome A yields the value 

-1 D = -l~l ± 0.1 cm The derived values of the spin Hamiltonian 

parameters for these three complexes are listed in Table II. The fourth 

compound. studied, iodo deuteroporphyrin IX dimethyl ester Mn (III) , 

showed spectra similar to those observed for the bromo derivative, 

indicating a small absolute value of D. However, the extremely broad 

absorptions observed prevented an accurate measurement of either the 

sign or magnitude of D for this complex. 

Our measurements have therefore shown magnetic resonance absorption 

which is definitely due to high-spin (S=2) Mn(III). The observed large 

values of D, coupled with the small transition probabilities for transitions 

between.Zeeman-split "doublets" for S=2, may account for the lack of 

microwave paramagrietic resonance signals for these complexes. In addition, 

we can make some interesting comparisoris of the spin Hamiltonian 

parameters obtained for corresponding Mn(III) and Fe(III) porphyrins. 

For example, the values of D obtained for halogeno proto- and deuteroheme 

" 
,. 
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complexes increase in the order F <CI < Br < I, as indicated in Table I. 

The relation of this effect to various chemical series (nephelauxetic, 

electronegati"irity, and metal-halide bond strength) and to TI-bonding in 

the porphyrin system has been recently discussed. 37 The algebraic 

values of D obtained for halogeno mangan~se porphyrins also show this 

behavior. It is interesting to note that the small negative value of D 

for the bromo derivative implies that D for the iodo complex may be 

positive. In addition, the algebraic value of D for the azido derivatives 

of both Fe(III) and Mn(III) deuteroporphyrinsis less than that for the 

chloro derivatives. Finally, the limits of A for azido deuteroporphyrin 

IX dimethyl ester Mri(III) include the measured value for the corresponding 

deuteroheme compound, indicating that the effects of the azide ligand 

are similar in the two complexes. 

E. Ferrihemoglobin and Ferrimyoglobin 

Hemoglobins and myoglobins are found in all vertebrates: hemoglobin 

in the red blood cells and myoglobin in the tissues. A large number of 

chemical, biological, and physical techniques have been applied to the 

study of these compounds because of their central importance to the 

process of respiration. 

Both hemoglobin and myoglobin contain iron atoms coordinated to a 

protoporphyrin prosthetic group and to a nitrogen atom of a histidine 

residue of the globin. Hemoglobin contains four such iron atoms~ and 

myoglobin contains one. In the respiratory process, the iron atom is 

in the Fe (Ir) state, and the sixth coordination position is available 

for the reversible bonding of molecular oxygen. Studies of hemoglobin 

and myoglobin where the iron is in this state are therefore of 

'. 
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greater value to the understanding of the biological function of these 

compounds. However, a large amount of useful information has been 

obtained from measurements on complexes containing Fe(III).Perhaps 

the most striking examples df such measurements' are the determination 

of the orientation of the heme planes in hemOglObln38 and myoglObin39 

by electron paramagnetic resonance measurements on Fe(III), in the high 

spin (S=5/2) state. In particUlar, such paramagnetic resonance measure-

ments have been restricted to complexes containing Fe(III) since the low 

spin (S=O) Fe(II) derivatives have no paramagnetism and since no electron 

paramagnetic resonance has been observed for high spin (S=2) Fe(II) 

compounds. 

Hemoglobin and myoglobin derivatives in which the sixth coordination 

position is occupied by a water molecule. (we shall refer to these as 

met-hemoglobin and met-myoglobin) or a fluoride ion have been shown to 

contain Fe (III) in the hi;'gh spin state. Static magnetic susceptibility 

, 40 
measurements for these complexes have found room-temperature magnetic 

moments slightly less than the value of 5 .. 92 Bbhr magnetons expected for 

S=5/2. 
'. 41 

Microwave electron paramagnetic measurements for these complexes 

have found gil = 2.0 and an isotropic gl = 6.0, which is characteristic 

of the Zeeman splitting of the ground doublet for the spin Hamiltonian 

in Eq. (2) for S=5/2, D > 0, and a magnitude ofD much larger than the 

microwave quantum. A number of indirect methods have been used to obtain 

values of D for these compounds: for example, micr.owave paramagnetic 

resonance,42 temperature dependence of the magnetic susceptibility,43 

torque magnetometer measurements of magnetic anisotropy,13 and Mossbauer 

44 resonance. As the results discussed for heme compounds indicate, far-
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infrared spectroscopy can, in principle, directly measUre the zero-field 

splitting and thus the value of D for s'Uch compounds. 

We have measured the far-infrared spectra of bovine hemoglobin and 

sperm whale myoglobin w.ith both water and fluoride ligands. The spectra 

for each compound show absorptions corresponding to the Zeeman splitting 

of the ground doublet in applied fields up to 52.2 kOe, and to the 

zero-field splitting for the fluoro derivatives. The polycrystalline 

sample of met-myoglobin was supplied by Dr. G. Feher. The remaining 

samples were pastes made by mixing approximately 1 gm. of lyophilized 

material (obtained from Mann Research Laboratories and Sigma Chemical 

Company) into 1 ml of distilled water buffered to pH 7.0 with a drop of 

1 M mixed phosphate buffer. The fluoro derivatives were obtained by 

using an aqueous solution containing appvoximately four molar equivalents 

of fluoride. The composition of the paste samples was verified by 

measuring the optical spectra of suitably diluted aliquots. 

Data obtained from the far-infrared spectra of the two fluoro 

complexes at 4.2°K are shown in Fig. 12.· Since A ~ 0 for these complexes, 

the observed absorption in zero field corresponds to 11 = 2D. Curves 
1 

for the transitions calculated from Eq. (2), using values of D derived 

from the zero field splitting, are also plotted for A = 0 and H 1 z. 
The frequency region in which accurate data can be obtained from the far 

infrared spectra for these compounds is indicated by the plotted range. 

For comparison, the typical transmission range for a heme compound sample 

with approximately.the same number of Fe(III) ions is indicated in Fig. 4. 

In addition, the high-frequency attenuation in hemoglobin and myoglobin 

increases very rapidly with frequency. For example, a reduction of the 

.. 
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sample path length by a factor of two only increases the available 

f by· 1 -1 reQuency range ...:. cm . 

Absorption corresponding to the Zeeman splitting of the ground 

doublet was observed in the spectra for met-hemoglobin and met-myoglobin. 

However, no absorptions were observed in zero field below the maximum 

-1 freQuency limit for these compounds of ~16 cm This observation 

-1 . 
implies D ~ 8 cm for these complexes. A more accurate estimate of 

D for met-myoglobin can be obtained from our data for the Zeeman splitting 

of the ground doublet, shown in Fig. 13. The points plotted are the 

average values of the measured freQuencies of peak .absorption obtained 

from eight experimental runs at4.2°K. The curves are the transition 

freQuencies calculated from EQ. (2) with A = a, ~ 1 Z, and the indicated 

values of D. A comparison of this figure with the data obtained for the 

fluoro derivative in Fig. 12 indicates that D~ 9 cm-l , and a conservative 

estimate places D in 45 . -1 
t~e range D = 9.5 ± 1.5 cm. Preliminary 

observations for met-hemoglobin indicate that Dis slightly larger 

(~lO.5 cm-l ) in this compound. 

The values of D derived from the far-infrared data are listed in 

Table III. We have also included several values of D obtained from 

indirect measurements, and have reproduced the value for fluoro proto-

porphyrin IX dimethyl ester Fe(III), for comparison. It is interesting 

to note that the value of D for the fluoro derivatives of myoglobin, 

hemoglobin, and protoheme are very similar, indicating that the influence 

of the protein on the ligand field at the iron site is relatively small. 

In addition, no evidence for ineQuivalent sites due to the two different 

protein chains in hemoglobin was found in the far-infrared spectra for 
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the fluoro derivative. If two inequivalent sites are assumed, the 

observed zero-field lioeshape places an upper limit of -0.4 cm-l on 

the difference of the value of D between the two·sites. 

F. Bis Fe(irr) Dithiocarbamates 

Further studies of the tris Fe(III) dithiocarbamates, discussed in 

Section IV-B, have resulted in the synthesis of a series of novel 

bis Fe (III) di thiocarbamate compounds, the bis (N,N dialkyl dithiocarba-

mato) Fe(III) halides; 

is a halogeno ligand. 

(R2NCS2 )2 FeX where R is an alkyl group and X 

46 X-ray crystallographic measurements on one of 

the complexes in this series have obtained the molecular structure 

shown in Fig. 14. The iron atom in these compounds is pentacoordinate, 

and lies approximately at the centroid of a rectangular pyramid formed 

by the foUr sulfur atoms of the two di thiocarbamate ligands and the 

halide atom. The local symmetry of the iron site is thus nearly square 

pyramidal, but the total symmetry is much 10wer·(C2). 

Measurements of the static magnetic susceptibility,46;47 electron 

.48.. 49 . 
paramagnetlc resonance, and Mossbauer resonance·. have shown that the 

Fe(III) ground multiplet is described by the spin Hamiltonian in Eq. (2) 

with the unusual "intermediate spin" value S=3/2, A~, and large values 

of D. Although the energy of the 4T1g octahedral state never lies 

50 lowest ,the low C2v symmetry of the iron site in these comple.xes 

1 completely removes the degeneracy of the d levels. A simple argument, 

given in Appendix E, shows that under these conditions it is possible to 

stabilize a 4A2 ground state derived from the (t2g
4e

g
) 4Tlg octahedral 

state. 

In order to investigate the validity of the spin Hamiltonian 

" .,'~"'. 
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parameters, we have measured the far-:infrared spectra of seven poly-

crystalline compounds in this series. A brief account of this work 

. . 51 
has been recently published elsewhere. Data obtained from the far-

infrared spectra of «i-C3H7)2NCS2) Fe(III) Cl at 4.2°K are shown in 

Fig. 15. As discussed in Section II-C, the zero field spectrum for 

S=3/2 shows only one absorption, and is therefore not sufficient to 

determine D and A. However, electron paramagnetic ~esonance measurements 

on this compound47 have obtained the value A=0.036±0.003. Using this 

value, the measured zero-field splitting ~ = IDI[l+3A2 ]1/2 gives IDI= 

-1 
2.35± .03cm A comparison of the polycrystalline absorption 

coefficient, calculated using the program discussed in Section II-C, 

with the observed spectra showed that D < o. The frequencies of the 

calculated absorption maxima for D = -2.35 cm-l , A = 0.036, and T=4.2?K 

are also plotted in Fig. 15. The calculated polycrystalline absorption 

coefficients for these parameters have been shown in Fig. 3. The fit 

between the observed absorptions and the calculated maxima is excellent. 

The zero field splittings and derived values of the spin Hamiltonian 

parameters obtained in this manner from the far-infrared spectra for 

the compounds investigated are listed in Table IV. Since the poly-

crystalline spectra are relatively insensitive to values of A < 0.1, we 

have only listed the values of A obtained for two compound~. The listed 

values of D for the remaining compounds were obtained from the zero 

field splitting:, assuming; A = O. In addition, the calculated poly-

crystalline absorption coefficient is relatively insensitive to small 

changes in the spin Hamiltonian, such as the assumption of a slightly 
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anisotropic g-factor. 

One of the compounds investigated, ((C2H5)2NCS2) Fe(III) Br, can 

be obtained in relatively large crystals (0.5 x 3 x 3 mm). The .far-

infrared spectra of a polycrystalline sample of this compound at 4.2°K 

showed sharp absorptions that were approximately consistent with the 

predictions of the spin Hamiltonian in Eq. (2) for D > 0 and e
H 

near 

n/2, indicating a substantial alignment of the crystallites by the 

low-temperature magnetic torque discussed in Section III. (A calculation 

of the torque (given in Appendix D) for this compound at T = 4.2°K and 

H = 52.2 kOe yields a maximum t0rque per unit volume of 8.65 x 105 dyne/cm2 

whi ch tends to rotate the crystallites toward H 1 z.) In order to obt ain 

a more accurate comparison of the predictions of the spin Hamiltonian 

with the observed spectra, an ordered sample of this complex was 

constructed with the crystallites approximately oriented with H 1 Z. 

The data obtained from the far-infrared spectra of this aample is plotted 

in Fig. 16. A "best fit" to the observed spectra was calculated from 

Eq. (2) by varying 8H and using values of n and A chosen to fit the 

zero-field splitting and the Zeeman splitting of the ground doublet 

(gl - 4). The calculated transi tionfrequencies for the values obtained, 

8H - 3n/8, D = + 7.50 cm-l , and A = 0.067, are also plotted in Fig. 16. 

The value of 8H obtained was consistent with both the construction of 

the sample and the effects of the ~agnetic torq~e. Although the fit to 

the observed absorptions is quite good, the deviation of the high-

frequency experimental absorption maxima from the calculated curves is 

( 
-1 more than the experimental error 0.1 cm ). This small discrepancy 

cannot.be explained by imperfect alignment of the crystallites. It is 

;. 
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more likely due to the assumption of an isotropic g-factor made in Eq. 

(2) • 

Another compound in this series, ((C2H
5

)2 NCS2)2 Fe(III) Cl, has 

been 
. ·4 
shown 9 to be a ferromagnet with a low transition temperature 

T = 2.43°K. Mossbauer resonance data for this complex in the paramag­
c 

netic state have indicated that D < 0. Our zero-field spectra for this 

compound at 4. 2°K showed ~nly a very weak, broad absorption in the 

-1 1 
range 2.5 to 5 cm ,in contrast to the sharp (half width -0.4 cm- ) 

absorptions observed for other complexes in this. series. The large width 

of the zero.;..field resonance is probably due to the effects of exchange 

broade~ing, since the Heisenberg exchange coupling parameter J is of the 

same order as D (see Appendix F). For T = 1. 3o K, the spectra showed a 

-1 sharp ferromagnetic resonance absorption at 3.85 cm in zero field. 

The zero-field resonance frequency is related to the anisotropy of the 

iron environment which is reflected in the strong axial ligand field. A 

. 52 
simple classical calculation, suggested by Dr. A. M. Portis, can be 

used to derive the relationship between the zero field resonance 

frequency at T = 0, vo ' and D .. This calculation, given in Appendix G, 

obtains the effective anisotropy field ~A at T=O due to the axial term 

in the spin Hamiltonian by expanding it in a power series in the polar 

angle. The result, for D < 0, is v = 21Dls. o 
This expression, which is 

exact in the limit of large spin, must be corrected by the factor53 

n = (1-1/(2S)). Thus, for spin S = 3/2, v = 21DI. o 
In this case, the 

zero-fie1dfesonance should broaden, and the absorption maximum may 

shift, as T approaches T (see the discussion in Appendix G). Our 
c 

measurements, obtained for temperatures between 1.3 and 2.3°K, showed 
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a progressive broadening and a decrease of only - 0.05 cm-l We have 

therefore taken 21DI = 3.85 cm-l Data obtained from the spectra for 

a polycrystalline sample of this compound at T = 1.3°K are shown in 

Fig. 17. The observed absorption maxima lie close to the line 

v = 2~BH + 3.85 cm-
l

, which corresponds to an orientation of H" z 
(or ~" ~A)' These observations are consistent wi th the simple theory 

of ferromagnetic resonance54 and with the effects of the expected large 

magnetic torque. 

The ferromagnetic coupling in this complex presumably arises from a 

super-exchange interaction via the sulfur atoms of neighboring molecules, 

which lie at normal Van der Waals distances. 45 This observation is 

interesting in the light of recent measurements on the iron-sulfur 

protein spinach ferridoxin55 which indicate that the two iron atoms in 

this compound are antiferromagnetically coupled at low temperatures. 

The similarity of the chemical and macroscopic properties of the 

bis dithiocarbamates indicates that they form an isostructural series 

obtained by substitution of either the halide ligand or the alkyl groups. 

As an example of the effects of such a substitution, we have listed in 

Table IV the change in the zero field splitting on substitution of a 

chloro ligand for a bromo ligand for a fixed alkyl group. This quantity, 

LlBr-LlCl ' is nearly independent of the dithiocarbamate ligand for the 

first two pairs of complexes, which implies that the effect of alkyl 

group substitution upon Ll is either small or independent of the halide 

ligand. However, LlBr-LlCl for the pyrrolidynylderivatives is very 

diff.erent, indicating a substantially different bonding in these complexes .. 

This effect .may be due to a greater degree of TI-bonding for the 
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pyrrolidynyl derivatives because of the existence <of a pseudo-ring 

structure including-the nitrogen atom. A similar effect may explain the 

temperature-independent high spin magnetic moment of tris (pyrrolidyl 

dithiocarbamato) Fe(III), discussed in Section IV-B, compared with the 

temperature-dependent magnetic moments of the otner tris' di thiocarbamates . 

All of the compounds investigated also showed an increase in the 

algebraic value of D upon substitution of bromo for chloro ligands for 

a fixed dithiocarbamate ligand. As discussed in Section IV-D, similar 

effects are observed in the Fe(In) and Mn(In) porphyrins. Furthe:nnore, 

we may compare the values of D obtained for the bis Fe(III) dithiocarbamates 

with the quadrupole spliting ~EQ' obtained from Mossbauer effect 

measurements, which is also listed in Table IV. Since ~EQ and D both 

depend upon the strength and asymmetry of the ligand field, we might 

expect a correlation between them. This comparison has been made for 

the Fe(III) porphyrins ,37 where an approximately linear variation of 

~EQ with D, passing through the origin, 'is observed. Our data clearly 

eliminates such a correlation for the bis dithiocarbamates, but does not 

discriminate against other possible zero-intercept·functions. For 

example, the data can be fit to a saturating function of D with either 

even or odd parity. Mossbauer resonance and far-infrared measurements 

on the fluoride and iodide complexes would help to clarify this point. 

G. Additional Spectral Features 

A number of the compounds investigated in this study showed 

additional sharp structure which was not magnetic field-dependent. These 

absorptions were typically at higher frequencies than the observed 

paramagnetic resonances, and were stronger by factors ranging from 
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approximately two to ten. In general, more sharp lines were observed 

in the spectra of compounds with relatively small molecular weight, such 

as the bis Fe(III) dithiocarbamates, than in the 'spectra for the large 

biological molecules. However, all of the compounds showed the broad 

high-frequency attenuation discussed in Section III. 

In most cases, the samples used for the magnetic resonance measure-

ments did not transmit sufficient far-infrared radiation to observe such 

-1 absorptions at frequencies above approximately 30 cm • In order to 

investigate these absorptions in ((C2H5)2NCs2)2Fe(III) Br, we measured 

the far-infrared spectrum of a thin polycrystalline sample at T = 4.2°K. 

The spectrum obtained in zero applied field is.~hqwn in Fig. 18. 

Although the linewidths and strengths of the observed absorptions are 

typical, the number of observed lines is not. For example, similar 

measurements on another bis Fe(III) dithiocarbamate, ((i-C3H7)2NCS2)2Fe(~II) Cl, 

showed only one such absorption in the same frequency interval. The 

frequencies of the absorption maxima for several compounds, obtained from 

the far-infrared spectra at 4.2°K, are listed in Table V. It is 

-1 
interesting to note that a sharp absorption (width - 0.75 cm ) was 

-1 observed at 8.9 cm in the spectra for the fluoro derivative of ferri-

myoglobin. The strength of this absorption was approximately twice 

that of the zero~field magnetic resonance. In addition, we have included 

data from preliminary measurements on phenoxo deuteroporphyrin IX 

dimethyl ester Mn (III) . High-temperature spectra for this compound show. 

an increase in the strength of the field-independent absorptions for 

temperatures up to 77°K. 
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Although we have not investigated the source of the additional 

structure in the far-infrared spectra of these compounds, our observations 

suggest that they are due to transitions between excited molecular 

vibration states. The linewidths are much too small for absorptions due 

to lattice vibrations. The temperature dependence-of the structure in 

the manganese deuteroporphyrin compound indicates that the transitions 

observed are between excited states. In addition, the structure depends 

strongly upon changes in ligands within a series of similar compounds. 

Finally, the observed strengths indicate that the.a?sorptions are due 
~ .. . 

to electric quadrupole transitions, rather than electric dipole transitions. 
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V. CONCLUSIONS 

Our measurements have shown that far-infrared spectroscopic techniques 

offer a direct method for the investigation of the effects of large axial 

and rhombic ligand fields upon paramagnetic ions in molecules. The 

polycrystalline magnetic resonance absorptions observed are consistent 

with the predictions of a wide variety of cases of the simple spin 

Hamiltonian of Eq. (2). We have directly obtained values of the axial 

ligand field parameter D from the spectra for twenty-one compounds, and 

have measured A :: E/D for several substances with a large rhombic ligand 

field. In addition, our investigation has shown that such detailed 

information can also be obtained for paramagnetic ions in intact 

biological molecules. 

!. 
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APPENDICES 

A~ PolycrystallirieM~etic Dipole Absorption 

In this appendix, we shall derive the form of the polycrystalline 

absorption·coefficient Ci for magnetic dipole transitions between states 

of an orbitally non-degenerate term described by the spin Hamiltonian of 

Eq. (2). The derivation of a in the first section parallels a deriva-

tion of the electric dipole absorption coefficient given by J. S. Griffith 

in The Theory of Transition Metal Ions (Cambridge University Press, 

London, 1961), chapter 3. 

1. Derivation of the Expression for a 

The transition probability per unit time 6iif between two states 

ljJi and ljJf due to a perturbation Hamiltonian JCp is given by Fermi's 

GOlden Rule 

Wherep(Ef ) is the density of final states in energy, and Mif is a 

matrix element given by 

- ( ljJf I JC 11jJ . ) . pl.. 

(Al ) 

In the case of the interaction of an electromagnetic wave with an atom 

or ion with N electrons of momentum ~j" the classical perturbation 

Hamiltonian may be written 
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eN 
Xp = ~ ~=l ~ (qs ~jS·~j +q*S ~jS·~j) (A3) 

where we have" quantized"the electromagnetic fi~ld into modes with vector 

potential ~J8 at the position of the J-th electron. The * indicates the 

complex conjugate.· The total vector potential A of the radiation field 

is given by 

where ~S and qs are respectively functions of space and time only: 

(A4) 

and 

where V is the volume of space over which the (periodic) boundary 

conditions are applied, TIS is the direction of polarization of the 

radiation mode 13, Ws is its angular frequency, and ~s its wave vector. 

The quantum-niechanical perturbation Hamiltonian is obtained by 

replacing the functions qs' q*S by the corresponding operators qs and 

qS:' where the radiation field alone for one mode: is described by 

(A6) 

and 
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h 
- 2WS • 

a. 

-The operators qs and qs now correspond to·photon annihilation and 

creation 9perators, respectively. We write 

where InS> is an eigenstate of the radiation field vith n.photons of 

mode S and la> is an atomic state. The matrix element Eq. (A2) becomes 

N 

Mif=m: j~l ~ <Sfl<nfSI (<lIS ~. jSO~ j+q~ ~ jS·~ j)lniS>lsi >· (A8) 

For the absorption of one photon of mode S, nfS = niS -1, and since 

and 

the matriX element Eq. (A8) becomes, for a single mode, 

S e 41TC nff- 1/2 N . A 0 • 2 ) 
MO f = -( 2 If· L (aflp j o1TS exp(1.k Sor j) lao) • 

1. mc Ws j=l - - - 1. 

Since the maximum value of k or is B - j 

i i 

(A9 ) 



:"46-

UCRL-1965l 

we may expand the exponential in M~f: 

exp(ikQ-r.) ; l+i(kQ-r ) 
-I-' -J -I-' -j 

The first term leads to the well~known electric dipole absorption, which 

we shall not consider. The second term leads to a matrili: element of the 

operator (!:S -:j)(~j oTIS) which may be expanded 

1 
(!:B-:j)(£j~RS) = ~ ~/3XTIS·!j 

+ electric quadrupole term 

where ~j is the angular momentum of the j-th electron. The inclusion 

of the electronic spip !j leads to a similar term in !:SXTIS ~j,and the 

matr=i-x element Eq. (A9) with this addition beco:iD.e~, for a magnetic dipole . . 

For an orbitally non-degenerate ground term, 

where S is 

w 
k ::::.Ji~ 
-13 - c 11..13 

(A10) 

where KS is a unit vector in the direction of propagation of the radiation, 

we can finally write 

(All) 
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This is a· reasonable form, since ~13~.nl3 is in the direction of the 

. magnetic vector of the perturbing radiation. At tfuis point, we shall 

drop the,.c;mode index 13, and .continue the calculation under the assumption 

that only photon absorption processes from particular modes are included. 

The absorption coefficient is defined as the pmrer absorbed per 

unit length from a radiation beam of unit intensity passing through a 

substance. In order to calculate this quantity., we assume the boundary 

conditions indicated in the f~ililowing figure: 

Area D 
k 

I · L ·····~I 

A sheet of infinitesimal thickness /), containing N absorbing atoms per 
o 

unit volume. is positioned normal to the propagation vector of the 

radiation field, in periodic boundary conditions defined by the box 

shown of length L and cross-sectional area D. We wish to calculate the 

power PI absorbed in the thin sheet; the absorption coefficient ex is 

then defined by 

where· P ... is the 
·0 

(AI2) 

(AI3) 
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and that /:,. is so small that the absorbing atoms are bathed in the same 

radiation. We also write 

It is easy to show that 

and 

PI = h-w IRif No 

Using the expression for &tif , Eq. (Al), and the equation for IMif12, 

Eq. (All), the expression for (\f' the absorption coefficient for one 

transition, is 

This expression can be written in the form ofEq. (3) by labeling·each 

possible transition by an index n and observing that 

w p{w-w .. f) := w p(w-w ) = V p(V":V ) 
~ n n 

where V is the frequency in any appropriate Units; Then 
41T2e2~ . 2 

a = ~ V p(u-v )I<f lixff~S~i >1 n L 2 3 n n . - n 
um c 

(AI5) 

2. Derivation of the Expression for a 

In order to obtain the polycrystalline average absorption coefftci~nt 

we must average a over the direction of K and 'IT, which are expressly a n 
n 

indicated in Eq. (AI5), and over the direction of the external magnetic 

field H in the spin Hamiltonian of Eq.(2) ;Which enters into Eq. (Al5) 

through the states 1 in ? and 1 f n>. !J:i general, these averages are not.· 

independent. For example, if 1(11 II H, the averages are related through 
'" 

this constraint. However, if the inCident radiation is not parallel 
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and is strongly scattered by a sample placed in a transmission cavity, 

we mayassunie that K is randomly oriented with respect to both H and the 

coordinate system in which the spin Hamiltonian is written. If, in 

addition, the radiation is unpolarized, the three averages can be taken 

independently. Both of these conditions hold to a good approximation 

in the e~periments described in this paper. 

The first two averages may be performed analytically because of the 

explicit dependence of the operator K~iT.~ on the directions of K and iT. 

The orientation of these two vectors with respect to the axes of the 

spin Hamiltonian is specified in the following figuz:e: 

z 

'" k 

'" '" k X 1T 

y 

x 

We have chosen the angles e~, ¢IR' and $rr to be EUler angles, as defined 

by, Herbert Goldstein, Classical Mechanics (Addison Wesley Publishing 

Company, Inc., Reading, Massachusetts, 1950). 

Using thes e angles and the trans formation matrIx (Goldstein, p. 109), 

we may write the matrix element in Eg. (A15) as 
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<fnlfCxiTe~lin> = [cO$l/I7Tcos¢~-cose6tsin¢~sin~ ... ]<Sx>n 

+ [cos~7TSin¢~+C0se~cos¢~Si~t]<Sy>n 

+ [Sine~Sl11'i/l7T]<SZ>n 

where we have defined 

<S > = <f Is Ii > x n n x n 

(A16) 

The square of Eq. (Al6) contains a m.unber of cross terms as well as 

terms like l<s > 12. However, upon integrating, all of the cross terms 
, x n 

vanish, and the result for the average over fCand-rr is 

I<f IfCx-rresli >12 = ~ {I<s > 12+I<s> t2+I<s > 12} 
n ~ nave 3 x n Y n z n 

= W n 

which is a very reasonable form. 

The transition probability between two states Ii > and If > is also n n 

proportional to the difference in thermal populations. of the two states, 

exp(-E. /kT) - exp(-Ef /kT) 
( ) ~n n P T = --~'--------:;;;";;';;""-

n E exp(-E./kT) 
i . 1. 

(A18) 

where E. is the eigenvalue of the spin Hamiltonian for state Ii>. Since 
~ 

P (T) depends upon the eigenvalues and therefore upon the orientation of 
n 

~, it must be included in the remainingaverage~ We may then write the 

following expression for the polycrystalline average of Eq. (AI5), 

including all transitions 

a(v) = 

where 

2 
7TN .e V 

Q 

I:. 2 3 11m c 
E f [ P (v-v) P (T) W ] dnH n n n n 

dnH = sineH deH d¢H 

(AI9) 

and eH and ¢H are respectively the polar and azimuthal angles of H with 

respect to the spin Hamiltonian axes,. 
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B.· Calculation of the Polycrystalline Absorption Coefficient 

In this appendix, we shall briefly describe the calculatiqn techniques 

used to evaluate the polycrystalline average absorption coefficient a, 

derived in Appendix A, for the case S = 3/2. We shall also include a 

discussion of the program SHAZAM, written for the CDC 6600 computer, 

which performs the calculation. 

1. Calculation Techniques 

We have evaluated the modified form of a 

(Bl) 

where the numerical factors have been eliminated. The transition 

frequency v has been substituted for V since the absorption coefficient 
n 

for each n is large orily at frequencies V ~ v. Finally, the assumed 
n 

Gaussian lineshape function p now explicitly depends upon a linewidth 

parameter !::,., defined as the half width at half maximum. The definitions 

of the ladder operators 

S+ - S +i8 x Y 

S - S -i8 x y 

can be used to rewrite Wn in terms of matrix elements of S+' S_, and Sz' 

and symmetry considerations imply that the integral in Eq. (Bl) need 

only be evaluated over the first octant in eH and ~H' Finally, for 

S = 3/2 there are in general four separate energy eigenfunctions and 

therefore six distinct transitions of index n •. With these observations, 

Eq. (Bl) becomes 
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6 [2!. i1T ~ r 2 d~ . 0 2 de
H 

{v
n 

p(v-v
n

,6) P (T) sin e
H 

• 
31T n=l 0 'fiR n . (B2) 

The integrand in Eq. (B2) is an exceedingly complex function of the 

parameters v, H, D, E, T, 6, eH and <PH' Futhermore, since the evaluation 

of the integrand for a particular pair of values (eH,<PH) involves 

diagonalization of the 4x4 spin Hamiltonianmatrix, straightforward 

integration of a. is a very time-consuming process, even on the highest 

s~eed computers presently available. We have therefore used several 

specialized calculational techniques which can greatly reduce the 

required computation time. 

The calculation of a can easily.be divided into six separate 

calculations, one for each transition. This division reduces the 

complexity of the calculation, and has the added advantage that the 

contribution of each transition to the total lirieshape is explicitly 

obtained. We shall describe one of these calculations of a. in detail 
n 

to illustrate the methods employed in the program SHAZAM. 

We use as input parameters the values of H, D, E, T,.and 6. For 

specified values of H, D, and E, we may construct a surface, defined by 

the value of Vn as a function of eH and <PH' by obtaining the eigenvalues 

of the spin Hamiltonian for a net of values of eH and <PH and computing 

the energy difference which corresponds to the transition n. The 

absorption coefficient a. (v) will only have appreciable values for 
n 

frequencies V which lie between the minimum and maximum values of V 
n 
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over this surface. (In fact, since a lineshape is included, the 

appropriate limits are approximately vmin - 2~to VIDaX + 2~.) For a 
n n 

given vin this range, the integrand of Eq. (B2) will be a sharply 

peaked function of eH for a given ~H. Conventional integration techniques 

converge slowly for such functions, since the general approach is to 

subdivide the entire integration interval into an increasing number of . 

equal divisions. With such methods, a large amount of time is spent 

evaluating the integrand at points whel'e it is.nearly zero. This 

disadvantage has been avoided in our calculations by determining the 

region of (eH'~H) where the integrand is appreciable, and using the 

limits of this region to define the integration interval. This 

corresponds to determining the (eH'~H) region between the intersection 

of planes at V = V ± y • ~ with the V surface,where y is a parameter 
n n· 

that maybe adjusted until the desired accuracy is obtained. Since a 

scan of this kind need not be made over ~H for small E, we have used a 

single calculation for ~H = 0 to determine the limits of integration; 

for large E, provision has been made to integrate over the entire eH 

range. In addition, we have included a calculation of P (T) over the 
n 

(eH'~H) net for all n corresponding to transitions from excited states. 

Whenever the maximum value of P (T) is less than a specified minimum . n 

value, no calculation of a is made. Finally, in order to concentrate n . 

on frequency regions where a is rapidly varying, the calculation has 
n 

been arranged so that input data may specify a range of frequency and 

number of frequencies to be calculated within that range for any 

transition. 

These teChniques have reduced the time required for an accurate 
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calculation of Cl with high resolution by about a factor of fifty. The 
n 

results of the calculation for each transition and :frequency for the 

specified set of input parameters H, D, E, T, and~ are then used as 

input data to a short program, POST, which interpolates and adds them 

to give the total absorption coefficient, d(v). 

2. Program SHAZAM 

The program SHAZAM (Spin Hamiltonian Averaged Zeeman Absorption: 

Magnetic-dipole) was written to perform the calculation of Cl for S=3/2 .' n 

according to the methods described in the preceding section. An 

extensively annotated listing of the program SHAZAM and a listing of ~he 

program POST are included at the end of this section. Also, a flow 

chart of the main subroutine of SHAZAM, ABSRBNC, is given in Fig. B1. 

The compiled field length of the listed version of SHAZAM on the 

Lawrence Radiation Laboratory CDC 6600 computer is 543008, and the 

execution length is approximately 300008 . Approximately 20 decimal 

seconds are required to compile the program and to generate all of the 

transition tables, and the calculation of a(v) for a single frequency 
. n 

requires approximately 1. 5-3. decimal seconds .•. To avoid duplicate 

calculation of the transition tables, they are transferred to a tape 

and subsequently punched dr stored on a disk. Further calculations for 

the same input parameters (H,E,D,T,~) can then make use of the stored 

tables. This option is exercised by placing a card with READ TABLES in 

the first 11 columns anywhere in the parameter input string, which 

contains a card each for H,E,D,T,DELTA, and PMIN in any order according 

to the format specified in the program. The tables s:upplied by an 

earlier run are then appended as the last cards in the deck. Otherwise, 
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a card with TABLES in the first six columns causes transition tables 

for the specified parameters to be generated. Finally, if integration 

over the·entire range of 6H is desired for a large input value of E, a 

card with ¢T¢PI/2 in the first seven columns should be inserted in the 

input parameter card string. 

If a card with zero in the first column immediately follows the 

parameter input cards, a standard integration of five frequencies for 

each transition, equally spaced over the entire ~frequency range for 

that transition. If any other character appears in this coluinn, SHAZAM 

reads cards containing a transition index, frequency range, and number 

of points to be calculated within that range. The format is specified 

in the program. For each transition (the transition index is defined in 

a note in the program), the value of PMUMAX, the maximum value of P (T) 
n 

for the transition, is compared with the input value PMIN. If PMUMAX is 

less than PMIN, no calculation for that transition is performed. Finally, 

when a zerO is encountered in column one, the calculation ends. Some 

examples of the results of the calculation with SHAZAM are shown in 

Fig. 3. 



C 
C 

c 
C 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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--- ---------------------------

-PROGRAM SHAZAM(fNP(J1=401 ,OUTP-UT. TAPE4=401. TAPE51 

PROGRAMSHAZAM CALCULATES THE POWDER AVERAGE MAGNETIC DIPOLE 
ABSbRP-TION -OF A SYSTEM-DE"SClfHfEDBY THE APPROXIMATE SPIN 
HAMILTONIA'N ---- .----_. 

--------------S-HAH M. 
SHAZAM. 
SHAZAlif.­
SHAZAM. 

-S-HAZ-AM';--
SHAZAM. 

-------SfiAZAM-;--
SHAZAM. 

IHI = GB H*S + DI SIZI**2 - 1/31 515+1111 + EI SIXI**2 - SIYI**21 
SHAZAM. 
SHAZAM. 
SHAIAJI";--

WHERE 5 = 3/2 AND THE INPUT PARAMETERS ARE 

H .. 

SHAZAM. 
----S-HAlAM. ---

SHAZAM. 
SHAZAM. 
SHAZM4. 

C 

* 

D = 
E .. 

EXTERNAL MAGNETIC FIELD IN UNITS OF AMPERES THROUGH A 
SUPERCONoUcfiije; -SOLENOID WITH HI leOEI = 3.48 * I / AMP 
TETRAGONAL CRYSTAL FIELD PARAMETER IN UNITS OF CM**-l 
RHOMBIC CRYSTAL ffE[i5--PARAMEiER-W-UN'ITS--OF-CMi'-tr~--' 

* FURTHER INPUT PARAMETER-SAift"--------­

* 

- -MODS.1 
SHAZAM. 

-~-"-------"-.. -- --- ----.- -S-HAZAfif. -.-

* 
* 
* 

T = TEMPERATURE: OF-SYSTEM IN DEGREES KELVIN 
DELTA = HALF WIDTH AT HALF MAXIMUM OF H .. 0 TRANSITION 

* THE FOLLOWING ASSUMPTIONS ARE MADE IN THE CALCULATION 

* 

SHAZAM. 
SHAZAM. 
SHAZAM. 

---SHA--Z;ur;-­
SHAZAM. 
SH~--

* III THE HAMILTONIAN IS WRITTEN IN A COORDINATE SYSTEM FIXED IN SHAZAM. 
it THE CRYSTALLITE-'-ANO---.RE CALCULATED ABSORP I ION IS FOR A SAMPLE SAAZAM. 
* OF CRYSTALLITES WITH RANDOM ORIENTATION TO THE EXTERNAL MAGNETIC SHAZAM. 
* FIELD. H., --.-------- SAAU""-
* 121 LARGE SCATTERING OF THE INCIDENT RADIATION WITHIN THE SHAZAM. 
* SAMPLE lSASSUMED-O-TtfAT-rs. IHE DIRECIION OF PROPAbAllON OF THE SRAZAM., 
* PERTURBING LIGHT IS ASSUMED TO BE RANDOMLY ORIENTED WITH RESPECT SHAZAM. 
* TO TRE EXTERNAL MA(;N1:TlC FIELD. H. - SAAZA"'. 
* 131 INDIVIDUAL TRANSITIONS ARE UNIFORMLY ASSUMED TO HAVE A SHAZAM. 
* GAUSSIAN LINE SHAPE-UIJF TO SIrE INHOMOGENEITy. IHE HALF wlDrR SRAZA"M.-
* AT HALF MAXIMUM IS ASSUMED TO BE DELTA FOR ALL TRANSITIONS. THE SHAZAM. 
* LINE SHAPE FUNCTIONHAS--aEEN NORMALIZED so I HA I THE 101 AL ABSORP I I~ SHAZAM. 
* FOR A TRANSITION IS INDEPENDENT OF DELTA. SHAZAM. 
* (41 'tHE G-FA-CTOR ~1--cS~An:S~STOIliMn:E"T'D.-----"fT.."OI1:lB;cE--,.I~s""OM't"l:lR'TlO"'P'TIT(-UWTITTDH--YA-'-'VlrArL"Ot:"E-G~==--2.,.--::c. O"'O"'--~S"'A""'A""'zr:A"Mr.::--

C lSI THE THERMAL ENERGY KT IS ASSUMED TO BE OF THE SHAZAM. 
C ORDER OF D. SO TH~T -~HERMAL POPOLAIION OF IHE INlliAL SAAZAM. 
C STATE OF A TRANSITION MU, PIMU, TI. MUST BE INCLUDEP SHAZAM. 
C IN THE CALCULATIONVUh 'THE---oE1fSTTY"OF INIIIAL SIAIES. SAAZAM. 
C SHAZAM. 
C -----·------------------,----------------,S",H"'A.-Z""A"'""'-.-

C 
C 
C 

98 
CALL ABSRBNC 
FORMATI15F8.31 
CAI.L EX IT 
END 

SUBROUTINE ABSRBNC 

C SUBROUT I NE ABSRBNC I ABSORBANCErlS- -TffEMAT1'r-CONTROL-- --
C ROUTI~EFOR SHAZAM. IT CALLS ALL OF THE NECESSARY_ 

SHAZAM. 
------sF/JIXAM.--

SHAZAM. 
---smD;Me--

-"SH-AZA"'. 
SHAZAM. 

-------smttA1If. --' 
SHAZAM. 

- SRAZA"'. 
SHAZAM. 

XBL 706-1228 
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C ROUTINES TO CALCULATE THE POWDER AVERAGE-ABSORPTION, 
C FOR A TRANSITION WITH AN INDEX HU, AS FOLLOWS. 

SHAZAM. 
SHAZAM • 
SI-fAZA"M. C 

C 
C 
C 
C 
C 
C 

.. . ----_.----- _.------.. -_ ... --".-_._-- .-
LET 

S I A'B' DX I F I SHAZAM. - .. _-- ----.---~------ .. -----~---------- ·-·--------·-5HA-ZA1'4~-

BE THE INTEGRAL OF FUNCTION F OVER THE X-INTERVAL FRoM SHAZAM. 
A TO B. THEN ABSRBNC CALCULATES, FOR -"---FREQUErfCY-------------------SRAZAM. 
OMEGA, THE ABSORPTION SHAZAM. --. -----.. -------.. --- -------------,---- ~------~ZJI:M. 

C RESULTIMU' ~MEGA' = SHAZAM. 
c' 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
( 

( 

c 

- ----.---- --- .. -------- - ------"SH;a;l7(M.----

1~/13.PI)' 510. PI/2' DPHtlHI 510, PI/21 DTHETAIH' IF' SHAZAM. 
.- -------------~---:------- .. -----~--------------_SmZ-A'M.· 

WHERE F IS PROPORT IONAL TO THE ABSORPTION COEFFICIENT' SHAZAM. 
OF TRANSITION MU. EXPLICITLY, --------smUlll~ 

. SHAZAM. 
FIMU, H, E' D, T, DELTA. OFilEGA. THET'A'rnn--'PH11lfTT="--~------------- -_S'HAZ"A'M. 

PIMU. TI * GIOMEGA, MU, D'ELTAl---.-lfMUlt-SflHiHETAt-------------

* 10.5*1 I S+' 1**2 + -0.5ITS"'TTlflI'Z + 71 SZ 11**2' 
WHERE 

PI MU, T' =. BOL TZMAN'N WEIGHTIRG- 'FA'CTOR-------------- --------- --------
G = LINE SHAPE FUNCTION 
WMU =FREQUEN(Y OFTRANSTTION MO 

SHAlAM. 
SAAZAM. 
SHAlAM. 
SRAZi'{fIt.--­
SHAlAM. 

-- SHA-ZAM. -
SHAlAM. 

( AND 
C /(S+II**2 :i MATRlX"ELEMENI OF rHE LADDER OFtERAIOR 

S-PLUS, BETWEEN THE STATES CONNECTED 
'BY TRANS IifUllr-liltr. ABSOLUTE SQUARE. 

-- ---SRA'LA'M .------­
SHAlAM. 
SHAZAM. 

'SHAlAM. 
----sRALA~---­

SHAlAM. 
-s-HALAM.----

( 

( 

C 
( SIMILARLY FOR THEOPERATORS-S=MttiNHU~S-TAtiN~D~S-;Tl~E~E~.-------~-----

C 
( 

C 
C 
C 
( 

( 

C 
C 
C 
( 

C 

C 
C 

SHAZAM. 
THECALCULATIUN --OF'RESt1t: I IS PERFORMED FOR ALL 5 I X SHAlAIoI. 

TRANSITIONS FOR FIVE OMEGA VALUES BETWEEN THE RESPECTIVE SHAZAM. 
MAXIMUM AND MINIMUM---rRANSTi-rON-c'FREQUEIRIES, OR -~---------saAlAM. 
PROVISION IS MADE TO CALCULATE RESULT FOR SPECIFIED MU, SHAZAM. 
OMEGA SETS. THE -INTEGR'ATl'ON IS NORMALLy CARR I ED OU rWI rH SHAlAM".- ----
THETAIH' LIMITS BETWEEN WHICH F SHOULD BE RELATIVELY SHAZAM. 
LARGE .'PROV ISIOlf"TS-'QSo MADE 10 cALcOLA I E OVER I AE 
ENTIRE INTERVAL WHEN E IS LARGEo ISEE LATER COMMENTS.' 

COMMON/ANGLES/TH,COSPHI.SINPHI,SINTH.COSTH 
COMMON I tNT iA! 2T ,el21.EPS(2) 
EXTERNAL FNCTN 
EXTERNAL FINT 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SAALAM. 
SHAZAM. 
SHAZAM.----
SHAZAM. 

-S-tfA7,6Jl-. ----
COMMON/THLIMIT/LIMITS SHAZAM • 

. (OMMONI iTHJPHUHR;JJfR1 sAAZAM. 
OATA A/2*0/.B/l.57079.1.570791 SHAlAM. 
COMMON/ARGSIPHI ------------- --------- ~n_,;y~-~-

COMMON/PARAMS/HINIl"E.D.T.DELTA.OMEGA.WT,WH SHAZAM. 
DATA SMALL 11~-E::IT--~- -~:"""------':'-------'-------~---rS";'H-'--A~ZA~M"--=-. 
DATA EPS/-.Ol,-.0051 SHAZAM. 
DIMENSION NO"lEGAMb'------ SAALAM. 
DATA NOMEGAS/6*51 SHAZAM. 
DIMENSION MUCNTRLf6T - -----.:.~S-.H~ATA~r;----

-- _._------- ----_._---------
XBL 706-1229 



DATA NCNTCRD/OI , MUCNTRL/6*01 
DATA NCNTRL 101 
DIMENSION EIG/Z9,5,6) 
EQUIVALENCE /A,PHIMIN),/A/Z), THMIN), /B,PHIMAX),IB/Z).THMAX) 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM •. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

C 
C 

C 

COMMON IMUMU/MU 
DIMENSION ITAB /Z9,5,6),PHITAB/5),THTAB/Z9) 
COMMON/EIGEN/ALPHAS/4,4),W/4) 
COMPLEX ALPHAS 
COMMON/IMUJMU/IMUT/6),JMUT/6) 
DIMENSION EIGMAX/6),EIG~INI6) 
DIMENSION XEIGMIN/7),XEIGMAXI7) 
EQUIVALENCEIXEIGMIN/Z),EIGMIN) , /XEIGMAX/Z)'EI~MAX) 
DIMENSION ZEROS(30) 
DATA ZEROS/30*OI 
DIMENSION MUPTAB(6),MUNRGY/6),MUYES/6) 
DATA MUPTAB/I,Z,0,3,0,OI 
DATA MUNRGY/5,6.0,6,O,OI 
DIMENSION PMUTAB/Z9,5,3) 
COMMON/PROB/PRBMUT ' 
DIMENSION INDEX/6),LOWIIO,6),LHIIIO,6) 
DATA INDEX/6*O/,LOW/60*O/,LHI/60*OI 
DIMENSION EIGENSIZ9) 
COMMON/INPUT/HINl/1),HINzT06/6) 

COMMON/FINTER/MNA.MXA 
DIMENSION TBLCNTL/31 
INTEGER TBLCNTL 
F INTRP / X ,XA, YA,XB,YB I =YA+/ X-XA II / XB-X:.fHH YS--YA I 

PRINT 997 
997 FORMAT/1Hll 

CAL.L REAI)ATA 

C READATA READS INPUT VALUES FOR H, E. D, T, DELTA AND PMIN 
C IN ANY ORDER, AND PLACES THEM IN A COMMON BLOCK CALGED 
C PARAMS.PMIN IS TEMPORARILY PLACED IN OMEGA OF PARAMS 
C BY READATA. READATA ALSO CONVERTS H/I) TO H/KOEI. THE 
C UNCHANGED PARAMETERS ARE STORED IN A COMMON BLOCK CALLED 
C INPUT. 
C 

998 FORMATIIOX *H =* F5.ll 

* PMIN=OMEGA 
C 
C PMIN IS USED LATER AS A LOWER LIMIT TO THE BOLTZMANN· 
C FACTOR P/MU, TI. SEE COMMENT AFTER STATEMENT ABSRBNC 
C 8004. 
C 

PRINT 8015./HINl/K),K=I,6) 
8015 FORMAT/ IOX,* H E D T DELTA PMIN* I 

* lOX 6F6.Z ) 
C 
C WH AND WT ARE THE PARAMETERS H/KOEI AND T IN UNITS OF 
C INVERSE CENTIMETERS. 
C 

C 
C 
C 

WH= .09337 * HIN 
WT= .6950 * T 
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C IF TBLCNTL = TABLES. ONLY A TABLE OF TRANSITION ENERGIES 
C AS A FUNCTION OF THETA(HI AND PHI(HI IS GENERATED. 
C OTH'::RWISE. THE TABLE IS READ FROM THE INPUT DECK OR FROM­
C A STORAGE _D I SK. I F ANY OF COLUMNS 11 TO 20 ARE NOT BLANK. 
C ON A tARD WHERE TBLCNTL = TARLES. 
C THEN THE TABLE IS GENERATED AND STANDARD INTEGRATION 
C OF FIVE OMEGAS PER TRANSITION IS DONE. -
C THE TRANSITION TABLE. CALLED EIG. IS USED LATER 
C TO DETERMINE INTEGRATION LIMITS INTRETA1~T -BETWEE~ 
C WHICH THE INTEGRAND F IS LARGE. A DEVICE DESIGNED TO 
C REDUCE PROGRAM TIME. (SEE COMMENT BEFORE CALL TO HERMIT 
C IN ABSRBNC. I 
C 
C 

C 
C 
C 
C 
C 

C 

C 

8017 
READ 8017.TBLCNTL 
FORMAT(3AI0) 
NCNTRL=O 
IF(~BLCNTL .EO. 6HTABLES 

READ IN GENERATED TABLES· 

READ 801.EIG.THTAB.PMUTAA 
READ 802.INDEX.LOW.LHI 

NCNTRL :: 1 

GO TO II) 

C SET CONTROL TO READ DATA DIRECTED INPUT 
C 

C 
C 

15 

C 
C 
C 
C 
C 

C 
C 

GO TO 121) 

CONTINUE 
IFITBLCNTL(2) .EO. 1H NCNTRL '" 1 

NON BLANK FIELD MEANS INTEGRATE 

DELPHI=(1.1)7079-0)/(I)-I) 
DELTH=(1.1)7079-0)/(29-1) 

C THIS IS THE START OF THE LOOP THAT GENERA I ESIFfE 
C TRANSITION TABLE. EIG. DELPHI AND DELTH ARE THE 
C INCREMtNTS IN PHI (H) AND THETA(H). RESPECTIVELY. 
C 
C 

DO 100 MU '" 1.6 

SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SFfAZAM. 
SHAlAM. 
SFfAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 

- ----SFfAZAM.­
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SAAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 

------- - --SRAZAM. 

SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

C 
-- ------------------ --------- ------ ----- ----- - -- -- -- - --SlY\lAJIIr.-- -

C MU IS THE TRANSITION 
C TABLE ( W( I I ARE THE 
C DESCENDING ORDER ) 

INDEX ACCORDING TO THE FOLLOWING SHAZAM. 
EIGENVALUES. IN ALGEGRAICALLY _SHAlAM. 

SHAlAM. 
C MU 1 TRANSITION W(2) 

W(3 ) 
W(4) 
W(3) 
W(4) 

TO WIll 
TO W( 1) 
TO Wei)-­
TO W(2) 
TO 1,.1(2) 

SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 

C MU 2 
C 
C 
C 

MU 
MU 
MU 

3 
4 
I) 
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C 
C 
C 

C 
C 
C 
C 

"':60-

MU = 6 W(4) TO 1\1(3) ----------- .---- -.- SH·A.rAM. 

SHAlAM. 
-----,--------------.S;..cH-'-"AlAM-;-

I F I MU • NE. 6 I GO TO. }~~ __________ _ 
PRINT 901 -----~~------

901 FORMAT 1 I If ITH.JPHI If * *t-ND"X* . --- -~-.----.--------.-

If If MU If 4X 6HTHETA .6X.4HPHI ,10X10HEIGENVALUE , 
"it ·lOX - -5HTi2--.--SX5H 1/2 • 5X 5H-I/Z .5x 5H-3/2 ) 

155 ;CO'HINUE 

THE MINIMUM AND MAXIMUM OF EiGIMU) ARE PRINTED OUT 
LATER, AS EIGMIN AND ErGMAX~--~ERE-THE'i'~RE INITI1'LIZ"EIY. 

EtGMAX 1 MU 1=0 . 
EtGMINIMU)=1.E5 

SHAlAM. 
------SHA-lAM;-

SHAlAM. 
~ALAfi1.­

SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAMc 
SHAlAM. 

-- ----sHALAfif;--
SHAlAM. 
SHAlAM. 
SHAlAM. 

C .. -----------.. -.. --.. ------ ----s-HAlAM;--

C SHAlAM. C . - -------.--_.----.---------------------.---- -------SHA-z.~"M. 

C IMU AND J"'IU ARE THE INDICES OF THE INITIAL AND FINAL SHAlAM. 
C STATES FOR TRANS I T ION MU.-·-THEY-ARE----uITTNED IN A DATA n------SH7aA~;---

C STATEMENT IN FUNCTION FNCTN. AS IN THE TABLE ABOVE, AND SHAlAM. 
C STORED INA CO"'lMON BLOCK. IMU:JMU;-- --------------~ZA1'l_. 

C SHAlAM • 

C 

I MU = _ I MUT ( MU I 
JMU = JMUTIMU) 

.. -----.. _--_._---- -------SHA·Z7(M; - --

SHAlAM. 
·-----------·--'--------'-.:.....:c..--'--'---------<S:-.;An!A...,Z .... A~Mf7. 

C GENERATE EIG. PHITAB. THTAB. PHITAB ANDTHTAB ARE SHAlAM. 
-----·---SHAZ"A"M. - . C TABLES OF THE PHIIHlo-T/'fEi"Afff1--VA1:UES FOR WHICH THE 

C TRANSITION FREQUENCIES ARE EVALUATED. 
C 

DO 140 JPHt= (,5 
PHI =0 + (JPHI-IJlfl)Et1"Hl--­
PHITA81JPHII = PHI 
COSPH I =. COS 1 PH I 1 --.-----------.----

SINPAI = SIN(PHII 
DO 180 ITA" 1 ,29 - ------------
ITABIITH.JPHI,MU)=ITH 

SHAlAM. 
------saAL-A1VI.-

SHAlAM. 
SAAZJljlt;-­
SHAZAM. 

---saA7A1VI;- -
SHAlAM. 

·---------sm"l"A"M.- ---
SHAlAM. 

TH " 0 +( ITH-lI* OELTW---------------------- SAAZAliIO--­
SHAlAM. 

--------sRA7A1'ir.--
THTAFH JTHI " TH 
COSTH = COSITHI 
SINTH = SINITH) SHAlA['I. 

C -- __ u.__ SAAZAM.----

C SHAlAM. 
C SUBROUTINE HERMIT SETS-UP-iRE"riA1«tTONIAN MATRIX~ALL5 THE SFiAZA"'. 
C ROUTINES THAT GENERATE THE EIGENVALUES AND EIGENVECTORS. SHAlAM. 
C SUBROUTINE EIGVCTR PRINTSiFfE1NDEX-~RS OF THETA1rfr-------· - u ___ -"SRA-ZA1VI.--
C AND PHIIHI, THE ANGLES, THE EIGENVALUE INDEX AND SHAZAM. 
C EIGENVALUE, AND THEIR RESPECT1VE"t:1GE1'tV€-c:TORS.---t::fuVCfR---------·--------SHA·Z·A"'I. 
CONLY PRINTS OUT FOR TRANSITION INDEX MU = 6. SHAlAM. 
C ----.-.---------------- SAAZAM.---
C . SHAlAM. 
C EIG IS THE TRANSITION TABLE. USED TOtJETERMl"Nt'/'fE--LT1VI1-TS--·- SHAlAM. 
C OF INTEGRATION IN THETAIH) FOR A GIVEN TRANSITION INDEX SHAlAM. 
C MU AND FREQUENCY OMEGA. THE -LIM1TS -ARC FOUND BY -----------.-- ·-SAA·Z-,.;M. 
C DETERMINING THE INTERVAL OF THETAIHI WHERE EIGIMU) LIES SHAlAM. 
C BETWEEN OMEGA PLUS OR MI"NUS2."lFUEL T"A-. -- - SHAZA1'II. H. 

C THIS IS THE REGION OF THETAIH) WHERE THE INTEGRAND lOR SHAZAM. 
C TRANSITION />ROSAS I L1 TY I f'ORTHE sPE"CU··fEO--M1::J-cA1't"I3C--· . - ---- ---- -SHAlAM •. 
C EXPECTED TO BE NON-ZERO. SHAlAM. 
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C 
C 

CAL.L HERM IT 
CALL EIGVCTR(TH,ITH,PHI,JPHI,MU) 
EIGIITH,JPHI,MU) =WIJMUI- WIIMUI 

-61-

EIGMAXIMUI =AMAXI IEIGMAXIMU I ,EIGI ITH,JPHI ,MU)) 
EIGMINiMUI=AMIN1IEIGMINIMUI,EIGIITH,JPHI.MUI) 

C 
C MUPTAB IS A SIX-COMPONENT VECTOR. IF A COMPONENT IS NON­
C ZERO. THEN THE BOLTZMANN FACTOR p, CALtULATED IN GPW, 
C IS COMPARED WITH PMIN TO DETERMINE WHETHER THE INTEGRALS 
C FOR THE CORRESPONDING MUSHOULD BE CALCULATED. THIS .' 
C COMPARISON IS MADE FOR MU = 1, 2. 4. THESE ARE ALL 
C TRANSITIONS FROM EXCITED STATES, AND WOULD BE EXPEC~ED 
~ TO HAVE A SMALLER EFFECT DUE TO BOLTZMANN DEPOPULATION. 
C THIS COMPAkISON SCHEME IS DESIGNED TO REDUCE PROGRAM TIME. 
C 

C 

MUPTABM=MUPTABIMU) 
IF(MUP~ABM .EQ. 0) GO TO 180 

C GPW CALCULATES THE BOLTZMANN FACTOR PIMU.Tl. THE L1NE 
C SHAPE FUNCTION GIIOMEGA ~ WMU). DELTA). AND RETURNS 
C GPW = G * P * WMU 
C THE VALUE OF P IS STORED IN A COMMON BLOCK. PROB.· AT THIS 
C POINT, THE ONLY PART OF GPW USED IS THE CALtULATION O~ P. 
C A TABLE. PMUTAB, STORES THE VALUES OF P FOR ALL THETAIHI 
C AND PHIIHI FOR THE THREE MU VALUES SPECrFIED BY ~UPTAB. 
C 

C 

GPWMU=GPWIMU) 
PMUTABIITH,JPHI.MUPTA~M) = PRBMUT 

180 CONTINUE 
140 CONTINUE 

C PRiNT OUT EIGIMU). 
C 

PRINT 8003.MU 
8003 FORMATI* MU =*13) 

DO 110 J=I,5 
110 PRINT 8002.J,IEIGII.J.MUI,I=1,291 
8002 FORMATII5,10E12.3.1 15X 10E12.3)) 

C THE FOLLOWING SECTION SCANS THE TRANSITION TABLE. EIG,' 
C FOR PHI = 0 FOR EACH MU TO LOCATE THETA-VALUES OF . 
C RELATIVE MAXIMA AND MINIMA. 'IT CREATES A TABLE LHi~ LOW 
ClIO X 6) WHERE THESE THETA INDICES ARE STORED. THE 
C STORED INDICES ARE THE BOUNDARIES OF REGIONS OF THETA 
C WHERE THE TRANSITIONS ARE MONOTONIC, FOR-EACH MU.· 
C INTERVAL NUMBER 3 FOR MU WOULD BE 
C ITHETAI LOWI3.MU) ). THETAI LHII3.MU)T) 
C SINCE THE CODING WOULD BE TOO TIME-CONSUMING, NO SCAN 
C OVER PHI IS MADE. THE PHI = 0 INTERVALS-"m:-KS5UMEDTO 
C HOLD OVER THE ENTIRE PHI REGION. WHICH IS ACTUALLvtRUE 
CONLY .FOR. THE CASE E = O. THEREFORE, A SWITCH IS INCLUDED 
C ELSEWHE~E TO ALLOW INTEGRATION OVER THE WHOLE THETK 
C RANGE r~ THE CASE OF LARGE E. FINALLY,~NDEXIMU) IS .SET 
C EQUAL TO THE NUMBER OF INTERVALS FOR THAT MU. 
C 

S=SIGNIl •• EIGI2,1.MU)-EIGI1,1,MU)) 
C 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
5HAZAM. 
SHAZAM. 
SHAlAM. 
5HAZAM. 
5HAZA.M. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
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C 
C 

C 
C 
C 

500 

505 
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INriIALIZE SHAZAM. 
SHAZAM. 

INDEX(MUI=l 
LOW(l,MUI=l 

...... -'-'---'--'-' ---- --.----.----- -- ---- --------------S HAt AM. -
SHAzAM. --------- - -------5 iiAtA M • 

SCAN SHAZAM •. ... --.---------------.---.------'---- ------- --SHAzAM~------

DO 510 1=3,29 
S8=SIGN 11. ,EIG( I, i ~M(.f":"E-IG( 1-1,1 ,MU) I 
IF( S8 .EQ. SI GO TO_~_<?.L ___ . __ _ 
NDX=INDEX(MUI ---
LHt(NDX,MUI=I-l 
LOW(ND~+I,MUI = I-I 
INDEX(MU)=NDX+l 
S;"SB 
GO TO 510 
CONT INUE 
NDX=INDEX(MU) 
LHI! NDX ,MU) =29 

SHAZAM. 
SHAZAM. 
SHAZAM. 

-------SHAZAM. -----
SHAZAM. 

-----------------SHAnM~ ---
SHAZAM. 
SHAZAM;-- ------

510 
C 

CONTINUE 

SHAZAM. 
S-i-IAZAM. 
SHAZAM. 
SHAZA"M. 
SHAZAM. 

... __ ..... -.--"--.----------------.-----------.~~----. -SH"ALA,p;.r;-- -----.--

C PRINT SHAZAM. 
C 

.. - -~---~----------------.---------- .... -------SHA-ZAM. 
PRINT aOl0.INDEX(MU),(LOW(KNDX,MU),LHI(KNDX,MU),KNDX=1,NDX) SHAZAM. 

a"OlO FORMAT(* NUMBER OF INTERVAL-PARTIn~= * 15,7:-------------- -----S~ZAM. 

* * LOW, HI* , I SHAZAM. * ( 2 I 5 ) ) - ------------SHJiZAM.- .. 
PRI~T ~02l, EIGMIN(MU), EIGMAX(MU) SHAZAM. 

a02l 
100 

C 

FORMAT (20X,*EIGMIN =*E18-~4.-*_-----ETGMU-il~qT----·---------"""sHALAM"~-
CONTINUE SHAZAM. 

·---·----·-------------------------------SHAZAM. 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

SHAZAM. 
--------sR"A""ZA"M. ----

SHAZAM. 
THE FOLLOWING PLACES THET"AlJLESCTG' I Al AB, """"PfiIUTAlr.-INtJEX-.------------SHAZAM.-··-
LOW, AND LHI ON TAPE 5, FROM WHICH THEY CAN BE PUNCHED OUT SHAZAM. 
OR STORED ON A 01 SI( FORSUBSEQtJE~T -o-AiA-DI RECTEo----Rt1ltS.--· -' ---------------·-:SffA"z-A1'II.---

BOI 
B02 

SHAZAM. 
-'.- _. -.----- .. ---------------- ---""SHALAl'lr;- -----

WRITE(S,aOl) EIG,THTAB,PMUTAB SHAZAM. 
WRITE( 5 ,a02) I NOEl( ,LOW,LHY- ------------------,------------- ---- ·-·---"SHA"ZA"M. 
FORMAT(5E16.61 SHAZAM. 
FORMAT(BIlO) -----.- ----------- ---------------.--.---------- ·-SHAZA"M. 
ENDFtL£5 SHAZAM. 
REW I ND 5---------.------ ------ -·····---------------""SfJALAM-; -

SHAZAM. 
- -.- --.-----.----------------- .--- - -. ----- --.----.-- - .. - ---SIfAZAM. 

WE NOW HAVE THE NECESSARY INFORMATfON -ro-~ERFORM-TRE .----------­
AVERAGING INTEGRAL FOR EACH TRANSITION IN THE MOST 

SHAZAM. 
SHAZAM. 
SHAZAM. 
-SHAZAM. 
SHAZAM. 

EFFICIENT MANNER, I. E., BY CHOOSING""REGTQNSOF-THETA-------------­
FOR FREQUENCY OMEGA WHERE TRANSITION MU LIES WITHIN 
(STDEVI HALF-WIDTHS OF OMEGA. 

125 CONTINUE 
IF(NCNTRL .EQ. 0 I GO TO 153 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

.. - .. ---- -. ·SHAlAM. 
SHAZAM. 

C --.-----.-- -------------.--.. -- SHAZAM. 
SHAZAM. C IF NCNTRL ~ 0 THE PROGRAM USES EIG AND THE OTHER TABLES 
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C TO DETERMiNE REGIONS OF OMEGA FOR EACH MU WHERE ABSORPTION 
C OCCURS. - tF NOT. THE SECTION FOLLOWING READS IN DATA-
C DIRECTED LIMITSIMUI OF OMEGA AND THE NUM~ER OF POINTS 
C BETWEEN THOSE LIMITS TO BE CALCULATED. -
C 

8013 

152 
153 

C 
C 
C 

DO, 152 MU=106 
READ 8013.MUMUCN~EIGMINIMUMUCNI,EIGMAX(MUMUCN).NOMVAL 
PRINT 8013.MUMUCN.EIGMIN(MUMUCN).EIGMAX(MUMUCN).NOMVAL 
FORMAT(II0.2E20.4.II01 
IFINoMVAL .GT. 01 NOMEGAS(MUMUC~I=NOMVAL 
IF(MUMUCN • EQ • 01 GO TO 153 
MUCNTRL(MUMUCN)=1 
CONTINUE 
CONTINUE 

C PRINT-OUT OF THE MAXIMUM AND MINIMUM NUMBER OF ITERATIONS 
C REQUIRED TO OBTAIN CONVERGENCE OF THE INTEGRAL IS 
C PROVIDED ELSEWHERE. HERE THE OUTER (PHIl INTEGRAL 
C ITERATION I~DICES ARE INITIALIZED. 
C 
C 

C 
C 
C 
C 
C 

MNAFLG=20 
MXAFLG=-20 

THIS IS THE START OF THE MAIN INTEGRATION LOOP~ 

DO 200 MU = 1.6 
IFIINCNTRL .NE. 01 _.AND. IMUCNTRL(MU) .EQ. a) GO TO ZOO 

C 
C IF MUCNTRL IN THE DATA-DIRECTED INPUT IS ZERO. NO 
C FURTHER INTEGRALS ARE CALCULATED. 
C 

c 

MUYESIMUI=O 
MUPTA~M=MUPTABIMUI 

C MUNRGY IS AN INDEXIMUI MARKER FOR A PRINT STATEMENT OF 
C WHICH INITIAL STATE ENERGY HAS THE MAXIMUM P FOR THE 
C CASES WHERE P IS ~ESTED AGAINST PMIN. . 
C 
C 

C 
C 

MUE=MUNRGYIMU) 
IFIMUPTABM .EQ. 0) GO TO 205 
PMUMAX=TABMAXIPMUTAB(1.1.MUPTABM).29.5.JNTH.JNPHII 

C PMUMAX IS THE MAXIMUM VALUE OF THE BOLTZMANN FUNCTION 
C P FOR THE E I G I MU ) SURFACE. d_ ------ --- ---

c 
c 

PRINT 8004.PMUMAX.EIGIJNTH,JNPHI.MUEI.PMIN 
8004 FORMATI* P(MU.T) =*EI6.4.* AT ENERGY -*F7.3.* • 

* EI6.4) 
IF(PMUMAX .LT. PMIN) GO TO 200 

c 
C IF MAXIMUM P I CALLED PMUMAX I IS LESS THAN PMIN. SKIP 

PMIN =* 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
Sl'tAZAM. 
SHAZAM. 
SmlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

- SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

XBL 706-123: 



C CALCULATION. 
C 
C 

Z05 CONTI NUE 
MUYESIMUI=I 
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C 
C 
C 
C 

INTEGRATE IF ABOVE TEST_~ ___ ~~~~ED __ 

OMEGAA = EIGMINIMUI 
OMEGAB = EIG~AXIMUI 

SHAZAM. 
SHAZAM. 

---~-'---'-' ______ "o SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

---- SHAZAM. 
SHAZAM. 

-----------SHAZAM--;--
SHAZAM. 

. -----SHAZAM. 

IFIOMEGAA .GE. OMEGAS) GotO-i(Jef------------------"------·---· 
SHAZAM. 

- - --sHAzAM. 

8001 
DELOMEG " (OMEGAB-OMEGAAI/(NOMEGASIMUI-lI 
FORMAT (* MU·" *. 14-,-------

SHAZAM. 
--·----·--SHAlAM;--- -

SHAZAM. PRINT 800I.MU 
NOMVAL=NOMEGASIMUI 

.- ..... -.----.... ------- -- .. --.-----------.- ----------- -- --SHAZA-M. 

C SHAZAM. 
C NOMEGAS (MU I ARE ALL SET EQUACio--FlVI: -UNLESS DATA- --- -- ------5H'.-Z-AM~ 

C DIRECTED INPUT CHANGES THEM VIA NOMVAL. NOME GAS IS THE 
C NUMBER OF OMEGA VALUES AtuWHl"CH ABSORPTION IS CALCULATED. 
C 
C 
C 
C 

C 
C 

THIS IS THE START OF-THE·O~EGA.L-UOP FOR EArn- MO. 

DO 2Z0 NO=l.NOMVAL 
OMEGA '" OMEGAA -+ TNO-"-ITI I*-D....,.E,-,LO~M~EGr:------'-----'--------

SHAZAM. 
·-S-HAZAM~ - . 
SHAZAM. 

-----sHJ;ZAM-;--- - --
SHAZAM. 

------------SRAZ AM ~- -
SHAZAM. 

---sRAZJUlf.-·----
SHAZAM. 

- ----SRJrZ-A"M.-
C IF ILIMITS .NE. 01. THEN SKIP THE THETAIHI LIMIT 
C CALCULATION {GO TO 610 ,_. - ------ ... ------. 

SHAZAM. 
----.---- ----- . --·--SRAZAlil. 

C SHAZAM. 
----.S::rAflA'"'Z'A .... M .-----.. 

C SHAZAM. 
C OTHERWISE... -.-----."~---- ----------sm-ZA1tf-~-·-·--~·--·---

C SHAZAM. 
C . - - -.-.-- --.----sm\-ZJ(M.---
C SHAZAM. 
(THIS SECTION I THROUGHSTAT£MENT 520 I DEIERMINES IAE SAAU1lt.---·-
C INTEGRATION INTERVAL IN THETA. FOR EACH OMEGA. WHERE THE SHAZAM. 
C INTEGRAND SHOULD BERELATIVEL-rLJffiGE. IHIS IS DETERMINED -----smU"M.-
C BY INTERSECTING PLANES AT OMEGA + 2.*DELTA AND SAAZAM. 
C OMEGA -2.*DEL TA WITH nrr·---S~CF,EIGI MOl. lHt:----·--· ---·----SHALJ(M.--
C REGION OF TAETA BETWEEN THE INTERSECTIONS WILL AAVETHE . SHAZAM. 
C LARGEST CONTRIBUTION--m rAE INrEGRAL. WHEN EIGIMOI IS SHATA1't;--
C NOT MONOTONIC. THE INTEGRATION LIMITS ARE DETERMINED SHAZAM. 
C WITHIN THE INTERVALS "WHERE-El"GTRlTJ -TS-MONOTON[c.p;m),ur-· -------------SffA-Z"A-M~-­
C INTEGRAL IS CALCULATED FOR EACH OF THESE INTERVALS. THE SHAZAM. 
C LIM lTSARE SET AS ------------- ---·------·-------·--··-~--------------_SHAZ-AM._ 
t TAETA AIZI TO BIZI SHAZAM. 
C PAl AlII TOS n I -- -- - . ----------------------.--. --- -SHAZAM. 
C A SCAN OVER PHIIHI IS MADE WITHIN EACH INTERVAL IN SHAZAM. 
C THETA AND THE MINIMUM LIMITIPHII AND MAXIMUMLIMITCPHII SHAZAM. 
C ARE USED TO DETERMINE THE INTEGRATION INTERVAL. THE PHI SHAZAM. 
C INTEGRATION LIMITS ARE ALWAYS SET TO- SHAZAM. 
CAllI = 0 BIll = PI / Z SHAZAM. 
C -- --.------------- .--.------ - _SHAZAM. 
C SHAZAM. 
C .--.-------.-----.. ----.--------------- SHAlAM. 

NTHMIN=Z9+1 SHAZAM. 
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NTHMAX=O 
C 
C NTHMIN AND NTHMAX WILL BE THE THETA-INDICES FOR THE 
C INTEGRATION~ HERE THEY ARE I~ITIALIZED. 
C 

C 

NDX=lNDEXIMU) 
SUMINT=O 

C SCAN OVER PHIIH) TO DETERMINE MAXIMUM INTEGRAT~6N 
C INTERVAL IN THETAIH). THE LOOP IN NO MAKES THE SCAN IN 
C EACH MONOTONIC INTERVAL. AND'CALCULATES THE INTEGRAL 
C THERE. THE LOOP IN JPHI IS THE PHI SCAN. 
C 

C 

C 

C 

DO 550 ND=HNDX 

ND~OW=LOWIND,MU) 
NDHI=LHIINO.MU) 
ITSIZE=NDHI-NDLOW+1 

DO 520 JPHl=I.5 

C SUBROUTINE MOVE TRANSFERS COMPONENTS FROM ONE VECTOR 
C TO ANOTHER. HERE IT TRANSFERS THE COMPONENTS 
C (EIG(NDLO~.JPHI.MU) TO EIG(NDLOW'+ (ITSIZE-lt.JPHt.MU)} 
C INTO tHE .VECTOR EIGENS. USED BELOW. 
C 

C 

CALL MOVE( ITSIZE.EIG( NDLOW,JPHI.MUl'jTTGENST 
OMDELA=OMEGA-2.*DELTA 
OMDEL13=OMEGA+2.*DELTA 

C CHECK TO SEE WHETHER EIG IS MONOTONICALLY INCREASING 
C OR DECREASING IN THETA-INTERVAL ND. 
C 

S=1. 
C 
C SET SWITCH. S. TO READ (EIG INCREASING). 
C 

IF( (EIGENS(2) -EIGENS) .GE •. 0) GO TO 600 
C 
C NOW CHECK. IF EIG IS INCREASING. GO TO 600. 
C IF NOT. SET S TO READ (EIG DECREASING). 
C 

S=-I. 
C 
C IF EIG IS DECREASING. THE FOLLOWINGLOOPfN NEIGENS 
C REVERSES THE SIGN OF EACH EIG COMPONENT IN INTERVAL NO. 
C MAKING EIGENS INCREASING MONOTONICALLY. THIS ~EAN~ THAT 
C THE LATER SCAN OVER THETA TO DETERMINE THE INTEGRATION 
C INTERVAL NEED ONLY DEAL WITH INCREASING FUNCTIONS. A 
C GREAT SIMPLIFICATION. 
C 

C 

DO 601 NEIGENS=1.ITSIZE 
601 EIGENSINEIGENS}=-EIGENS(NEIGENS) 

TOMEGA=OM!)ELB 
OMDEU3=-OMDELA 
OMDELA=-TOMEGA 

600 CONTINUE 
C 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZM~. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZA~. 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM 
SHAZAM 
SHAZAM 
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C ASCENT F 'I MACH I NE LANGUAGE I SUBROUffNE-'TtBLKP--- ..--- --- - . SHAZAM. 
CITABLE LOOK-UP I IS A BINARy SEARCH ROUTINE. IN THE FIRST SHAZAM. 
C CALL, 'IT FINDS THE INDEX~ IfBTKP;-OF EIGENSBETWEE-lii---;;rolow------------SHAi"AM;--
C AND NDLOW + I ITSI ZE-1I WHERE SHAZAM. C -------- .. -- --- ------------------------ ------------. SHAlAM. 

C EIGENS( ITBLKPI .LE. OMOELA.L!!._E..!_~~!'!~.i..!..rBL~ __ ~!L_- ___________ SHAZAM o 
C .... -- SHAZAM~ 

C THAT IS~ IT FINDS THE THETA INDICES OF THE EIG INTERVALND SHAZAM. 
C BETwEEN WHICH EIG CROSSES OMoELA -,; OMEGA - 2.*DEL TA. - SHAZAM. 
C THEN 11 IS THE LOWER LIMIT THETA INDEX OF THE INTEGRATION SHAZAM. 
C INTERVAL. 12 SIMILARLy'S'ECOMtS--THE-tTJ5P"ER LIMIT INDEj(~------ 'SHA-Z/\M~ 
C SHAZAM. 
C . - -- .... ----.-.------.------------------.-- -----SHAZAlWf. 

11 R ITBLKPIOMDELA.ITSIZE,EIGENSI + NDLOW -1 
li=ITBLKPIOMDELB,ITSTZ""E'-,EIGTNSf + NDLOW -1 

SHAZAM. 
SHAZAM. 

C SHAZAM. 
C THE FOLLOWING SECTION- CHECKS -l'HE-l'N"DTCESTl-}JifD-i-Z------------Si-fAZAM. 
C AND SETS ,THE THETA INDICES NTHMIN AND NTHMAX TO THE PROPER SHAZAM. 

,C VALUES AS THE SCAN OVERPHfTS-MAbE;-----------------'--------------·------Si:iXZAr;4'.'--
C SHAZAM. 

t F III .L T. NDLbwl--<;'CffO-!r'[6 ---'""5HAU1'l-;--
IF! 12 .GE. NOH! I GO TO 515 SHAZAM. 
12= 12+1--- -.---- .... --,---- --------------- -S~AM-;_-

512 NTHMIN"MINO I NTHMINtlll SHAZAM. 
NTHMAX"MAXO! NTHMAX .121- ------------'----------·-.--·---------5FtALJ;M~-

GO TO 520 SHAZAM. 
515 CON TIN UE SHAlAM. 

IF(1l .GE. NI)HII GO TO 520 SHAZAM. 
I I=MAXO (MINO( I1 ,NDHI-IT.NDLO'wf) .. ----------.-----, --------S'RAL"~~ --, 
12=NDHI SHAZAM. 
GO TO 512---------· '------------SRAU'M'.-·· 

516 CONTINUE SHAZAM. 
IF!I2.LT.NOLOWI GO TO-~'2-0 5HAlJJio1.--
Il=NDLOW SHAZAM. 
I2=MtNOI12+1.NDHII .-.... -...... ---..... ---- . ·-----------SHA7AM"~ 

GO TO 512 SHAZAM. 
520 

( 

CONTINUE ---- ---"--- ----- -------SlfAZA"M.'· 
SHAZAM. 

( 

( 

( 

C 
C 
( 

( 
( 

( 

( 

( 

C 

( 

( 

END OF PHI SCAN lOOP;-"'""' ----.--- --SRlrZA~--

SHAZAM. 
NOW CHECK TO SEE WHETHER -1'{TFfM1N--""AND N I HMAx-t.1E---,--------- ------SHAZ'A"M'.--

OUTSIDE THE WHOLE INTERVAL. IF THEY DO, THE GO TO 540 SHAZAM. 
STATEMENT SE T S THE I NTEGRALEOtJAt'-IQ' iHE'l1'f111~L'V"Att1E ----------. --cSffAZA'M. " 
OF SUMINT. ZERO. SHAZAM. 

- - ---- -. ---. - --- .----- ---------- SAAlAM'.-

OTHERWISE, THE THETA LIMITS, THMIN, THMAX ARE SET SHAZAM. 
EQUAL TO THE APPROPR I ATE VALuES. ---TffE-se-ARr!:QU1VALENCm------------------------SffAZA'M •. 
TO A121' BI21 RESPECTIVELY, AND PLA(ED IN THE (OMMON SHAZAM. 
BLOCK, I NT. ,-- ------------------------------. ---.. --- 'SffAZAM.-· 

IFI INTHMAX .EQ. 01 .OR. {NTH1~TN---.1:'!T.-"T2"9'-'F-rn--T GO 
THMIN=THTABINTHMINI 
THMAX=THTABINTHMAXI 

SHAZAM. 
10 540---- '--SHAZAl'I.----

SHAZAM. 
SHAZM4. 
SHAZAM. 
SHAZAM. 

610 
( 

(ONTINUE SHAZAM. 
SHA"ZAl'I." 
SHAZAM. 
SHAZAM. 
SHAZAM. 

( SMALL AND EPS (ONTROL THE ACcURA(Y OF THE INTEGRATION 
( ROUTINES ASMPSN AND ASMPSN2. IF A l-S'HE VALUE- OF-'HE . 
C lNTEGRALAFTER SOME NUMBER OF ITERATIONS, DA IS THE 
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C nIFFERENCE OF THE LAST TWO SUCCESSIVE ITERATIONS. THEN 
C THE CONVERGENCE TEST IS 

SHAZAM. 
SHAZAM. 

C ABS(_DA) I ABS(A + SMALLI LESS THAN EPS SHAZAM. 
C 
C 
C 
C 
C 
C 

C 

EPS IS A TWO-COMPONENT VECTOR. EPSlll -IS USED FOR 
THE OUTER IPHII INTEGRAL. AND EPSIZI. STORED IN THE 
COMMON BLOCK INT. FOR THE INNER !THETA I INTEGRAL. 

TR:SMALL 

C 
CARE 

HERE THE HmER 
INITIALIZED. 
MNA=20 

ITHETAI INTEGRAL ITERATION INDICES 

MXA=~ZO 
C 
C INTEGRATE. SUBROUTINES ASMPSN AND ASMPSN2ARE VIRTUALLY-­
C IDENTICAL ADAPTIVE SIMPSON INTEGRATION ROUTINES. T~ IS 
C A TEMPORARY RESULT. IF MORE THAN ONE INTERVA[ TN THETA --- -
C OCCURS. THE TR VALUES ARE ADDED IN SUMINT TO GIVE THE 
C TOTAL INTEGRAL. - -------- ----------------
C EXTERNAL FUNCTION FINT CALCULATES THE INNER (THETAI 
C INTEGRAL AND SETS THE INNER ITERATIONINDtCES. "INA AND 
C MXA. 
C 
C 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

- SHAZAM. 
SHAZAM. 
-SHAZAM. 
SHAZAM. 

-SHAZAfiI.­
SHAZAM. 
SHAZAM. 
SHAZAM. 

------SHAZ-AM. -
SHAZAM. 

AFLAG=ASMPSN (FINT. A.B. EPS. TRl ---- -------------.--~------------------_SRAl"A1'I.- ---
SHAZAM. 

-- - ------ .. -----------------.----:-'----------------- SHAZAM. C 
C 
C 
C 
C 

REMOVE SMALL FROM TR AND APPLY FACTOR OF (2/13*P I I I. SHAZAM. 

C 
C 
C 

8020 
C 

---- -------- ----------------------------------------- - ---------~OO_s_;2 

TR= I TR-SMALL 1* • 3333333-/1 ~"570'79--------------~­
PR I NT '8000 .OMEGA. TR. A ( 1 I • B ( 11 • A (2 J • BIZ I 

- - ..... _- - --------- --_ .. _--- ... _------------

PRINT INNER ITHETAI INTEGRAL ITERATION INDICES 

PRINT 8020.MNA.MXA 
FOR MA T( - 5 X • *M t N = * I 5. *- -"MAX-:lfY-S-r--

MODS.3 
-- ---------sHAT,QI; -~-

SHAZAM. 
-SHAZXM. ---

SHAZAM. 
SHAZAM. 
SHAZAM. 

----- ----smTAMO------

SHAZAM. 
UPDATE OUTER (PHIl rNT£GRAC-TTERATTON INDICES fO ---------------sHAZAM;,--C 

C 
C 

MAXIMUM AND MINIMUM OVER ALL PRECEDING INTEGRALS. SHAZAM. 

C 
C 
C 

540 
C 
C 
C 

C 
C 
C 

550 

-- ------------- ----------------~---------------SRAZAM;----
MNAFLG=MINOIIFIXIAFLAGI.MNAFLGI SHAZAM. 
MXAFLG=MAXOI IFIXIAFLAGr'~LGI S~.--

SHAZAM. 
ADD TR TO PRECEDINGRE:SIJLTSFO"R-UTHER THETA rNTtR~l.T.--- ---------SR-i\ZAM".---­

SUMINT=SUMINT+TR 
CONTINUE 

RE-INITIALIZE NTHMIN. NTHMAX FOR NEXT PASS 

NTHMIN=Z9+1 
NTHMAX=O 

END OF THETA INTERVAL -(liIiYl!.cib--P- ----

RESULT=SUMINT 

SHAZAM. --------------- -------SWAz-AM; ---
SHAlAM. 

-'-'-------- 5AAZJJ11o---'--

SHAZAM. 
----------------"--~-----SHAZAM~ 

- SHAZAM. 
.- ---~------------- ----SHATAM-' --

SHAZAM. 
----------~mZAM.._---- --

SHAZAM. 
--------SA A ZAM • 
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C 
C 
C 

8014 

-68--

STORE RESULTS ON TAPE 4. 

WRITE 14.8014) HIN1.E,D.T.DELTA.MU.OMEGA,RESULT 
FORMATISF6.2,IS,2E20.4) - .-
PRINT 8011.RESULT 

8011 FORMATI10X • *INTEGRALIOMEGA) = * E16;4) 
8000 FORMATISX *OMEGA =*F9.3.* INTEGRAL = *E16.4.* PHI =1* F6.2. 

C 
C 
C 

220 
C 
C 
C 

200 

C 

C 

10 

* *.*F6.2.*) THETA =1* F6.2. *.*--F6-;2~--*T* - i 

END OF OMEGA INO) LOOP 

CONTINUE 

END OF TRANSITION IMU) LOOP 

CONTINUE 
PRINT 8020.MNAFLG,MXAFLG 

WRITEI4.8014) HINl.E.D,T,DELTA 
ENDFILE 4 
REWIND. 4 
STOP 

END 
FUNCTION XMINMZIAMIN.B,J,JMIN) 
XMINMZ=AMIN 
IFIAMIN .LE. B) RETURN 
XMINMZ=B 
JMIN=J 
RETURN 
END 
SUB~OU~INE MOVEIN.A.B) 
DIMENSION 11.(1).811) 
DC 10 K=l.N 
BIK)=AIK) 
CONTINUE 
RETURN 
END 

FUNCTI ON F I NT( X) 
. COMMON/ARGS/PHI 

COMMON/ANGLES/TH.COSPHY,SINPHI. COSTH,SINTH 
COMMON/INT/A(2).812).EPSI2) 

COMMON/FINTER/MNA.MXA 
EXTERNAL FNCTN 
DATA SMALl/1.E-21 
DATA SMALL' 11. E-ll 
PHI=X . 
COSPHI=COSIPHI) 
SINPHI=SINIPHI) 
RESUlT=SMALl 
ASMP:ASMPSN2IFNCTN.A(2).BI2),EPS(Z),RESUlT) 
MIiIA=~fI NO I I FIX I ASMP) .MNA) 
MXA=MAXOIIFIXIASMP),MXA) 
RESULT=RESULT-SMALL 
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.. 

.. 

C 

C 
C 

C 

C 

C 

C 

c 
c 

* 
20 

10 

FINT=RESULT 
RETURN 
END 

FUNCTION FNCTNISECOND) 

COMMON/I MUJMUI I MU( 6) • JMlJI 6) . 
COMMON/MUMU/MU 
DATA JMU/3*1.2*2.31 
DATA IMU/2.3.4.3.4.41 
COMMON/ARGS/PHI 
COMMON/ANGLES/TH.COSPHI.SINPHI 
COMMON/ANGLES/SINTH.COSTH 
COMPLEX SMATRIX 
COMMON/SMATS/SMATRIXI4.4.3) 
DIMENSION SCOEF(3) 
DATA SCOEF/.5 •• 5,1.1 
DIMENSION SSUMV(6) 

TH"SECOND 

COSTH=COSITH) 
SINTH=SINITH) 
CALL HERMIT 

I=IMlJIMU) 
J=JMlJIMU) 
SUM=O 

DO 20 K'= 1. 3 
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SUM = SUM + SMATRIXIJ.I.K) * CONJGISMATRIX~J'I,KII 
* SCOEFIK) 

CONTINUE 
PROD=SUM*GPWIMU)*SINTH 
CONTl~WE 

FNCTN"PROD 
RETURN 
END 

SUBROUTINE HERMIT 

COMMON/ITHJPHI/ITH. JPHI 
COMMON/MUMU/MU 
COMPLEX STRANS 

COMMON/ANGLES/TH.COSPHI,SINPHI 
COMMON/ANGLES/SINTH.COSTH 
COMMON/PARAMS/HINIl),E.D.T.DELTA.OMEGA 
COMMON/PARAMS/WT.WH 
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C 

C 
C 

COMPLEX ALPHA 
COMMON/EIGEN/ALPHAI4,4' .W(4) 
COMMON/RIEIGEN/RALPHA.AIMALPH 
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DIMtNSION RALPHAI6.6'.AIMALPHI6,6' 
COMPLEX SPLUS,SMINUS,SZEE 
COM~ON/SMATS/SPLUSI4'4"SMINUSI4~4'.SlEEI4'4" 

COMPLEX H 
DIMENSION HI6,6' . _ 
COMMON/SREALS/SRPLUSI4.4"SRMINUSI4,4"SRiitI4,4' 

DATA SRPLUS.SRMINUS.SRlEE/48*01 
DATA SRPLUSI1,2"SRPLUSI3,4',SRMINUSI2.1,.SRMINUSI4,3, 

* DATA 
DATA 

1 4* 1.7320508081 
SRPLUSI2,3"SRMINUSI3.2,/2*2.1 
SRlEEll.l'.SRZEEI2'2',SRZEE~3.3' ,SRZEEI4,4' 

* 1 1.5 •• 5 , -.5 , -1.5 1 
DAtA ROOT3 1 1.732050808 1 
COMMON/IMUJMU/IMUI6"JMUI6' 

* SINPHf~ COSPHI SHOULD HAVE BEEN COMPUTED1N OUTER INTtGRAL 
C 

C 

GBCTH=WH*COSTH 
GBSTH=WH*SINTH 
GBSTCP=GBSTH*COsPHI 
GBSTS~=GBSTH*SINPHI 

* GENERATE H MATRIX 
C 

C 

C 
C 

DO 10 K=1,4 
DO 10 L=I,4 

10 HIK.Ll=O 

HI1.l)=1.5*GRCTH+D 
HI2,2'=.5*GBCTH-~ 

HI3,3)=-.5*GBCTH-D 
HI4.4)=-1.5 * GBCTH+O 
HI1,3)=ROOT3*E 
HI2.4'=HI1.3) 
Hll,2,=ROOT3/2. * CMPLXIGBSTCP,-GBSTSP' 
HI2,3'=CMPLXIGBSTCP~-GBSTSP' 
HI3,4'=HIl,2, 
HI2,1)=CONJG1HIl,2)) 
H{3,1;=HIl,3, 
HI3,2)=CONJGCHI2.,3" 
HI4,2'=HI3.1) 
HI4.3'=CONJGCHI3,411 

* OBTAIN EIGENVALUES (W'AND EIGENVECTORS IALPHA) 
C 

CALL HERMQRIH.4,4.W.RALPHA.AIMALPH) 
C 
* RALPHA = REAL OF ALPHA 
* AIMALPH = IMAG. OF ALPHA 
* W = EIGENVALUES IN ALGERRAICALLY DESCENDING ORDER 
C 
C 
C 

DO . 1 00 I L = 1 • 4 
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• 

C 

C 
100 

C 
C 
C 

C 

C 
C 
C 

C 
C 

C 

C 

C 

C 
C 
C 
C 
C 

C 
10 

C 

C 
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DO 100JL=1.4 
ALPHA! I L ,JL I =CMPLX (RALPHA 1 I L .JL itA IMAl,:PHT IU::tt.:rr 

CONTINUE 

MUT:MU 
IMUT=IMUIMUTI 
JMUT=JMUIMUTI 

SPLUSI JMUT. IMUTI 5 TRANS IJMUTtlMUT.-SRPLttSr----' ..... -----------.--. 
SMINUSIJMUT.IMUTI " STRANSIJMUT.IMUT.SRMINUSI 
SlEEIJ~UT. IMUTI STRANSIJMUT.-rMUT,SRZEEJ --------.------- --

RETURN 
END 

COMPLEX FUNCTION STRANSIJM.IM.SI 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 

-------SmUAM. 
SHAlAM. 

.. ·SHAlAM. 
SHAlAM. 

···----sHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 

----·-··-SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SAAlAM. 

SAAZAM. 
--Sm-l~~.--

SHAlAM. 
COMPLEX SU,,", . ---.. -------------.------------.--- ------~-SHAlAM.-

COMPLEX ALPAA SAAlAM. 
COMMON/EIGENI ALPHA 14.41 .Wf4T·- -.------------.-.-.----.: .. ----.-.---'--.------ ... - -.- ··-SHAZAM. 
DIMENSION 514.41 SHAZAM. 

SUM=O 

DO 10 K=I.4 

DO 10 L:o:l.4 

JMU :: FINAL STATE 
IMU :: INITIAL STATE 

.... ------.-.-----------~~ 

·------SHAn~ •. 
SAAlAM. 
SAAZAM. 
SHAlAM. 
SHA-ZAM. 
SHAZAM. 
SHAZAM.--­
SAAlAM. -.. - -.--.--.-- ---.----. -.. --.--.----.-. -------------.- SHAZAM; 
SHAZAM. 

.. ----.... -- ..... ------- ----.---.--- ---.-.-- .------.- .. --. -- ·--'-SHAZAM. 
SUM~SUM+ALPAAIL,IMI*CONJGIALPHAIK.JMII *SIK.LI SAAZAM • 

CONTINUE 

STRM~S = 

RETURN 
END· 

SUM 

FUNCT ION·· GPW (MU I 

. ----.--..... -.-.------- ----------smZAM.- . 

SAAlAM. 
--SHAlAM. 

SAAZAM. 
. - .-c------------ - --.--.-- ·SHA lAM .- .-

SHAlAM. 
·--S"'A~A7Ji1if'--· -----

c 
* GPW = Gil W-W"1U I • DELf A) * P (MO.Tl --'-WMU--

-------- - -------sHATAR.-· 
SAAlAM. 

.----.--.--.--- SHAZAM. 
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(OMMON/PARAMS/HI11~E.D~T.DELTA.OMEGA 
(O~MON/PARAMS/WT.WH 

(OMPLEX ALPHA 
(OMMON/EIGEN/ALPHAI4.41.WI41 
(OW-l0N I I MUJMU II MU 161 • JMU 161 
(OMMON/PROB/P 

I=IMUIMUI 
J:.JMUI MU; 
WMIJ=WIJI-WIII 
SUIII\=O 

DO 10 L=1.4 
SUM=SU~+EXPI-WILI I WT I 

P~ (EXP(-WIIl/WTI - EXPI-WIJI/WTI II SUM 
(DELT = D~LTAI 1.1773 

THIS MAKES GAUSSIAN HWHM = MEASURED HWHM 

G = (EXPI-.5*( IOMEGA - W~Ul I COELTl**2 I I iCOELt 

FA(TOR OF (l./(DELTI NORMALIZES G 

GPW=G * P * WMU 

RETURN 
END 

SUBROUTINE READATA 
(OMMON/PARAMS/HI61 
(OMMON/INPUT/HIN1161 
DIMENSION KEYTABI61 
DATA KEYTAB/IHH.1HE.IHD.IHT.5HDELTAI 
DATA KEYTABI61 I 4HPMINI 
(OMMON/THLIMIT/LIMITS 
DATA LIMITS/OI 
DATA NRANGE/7HOTOPI/21 

DO 100 K=1.6 
(ONTINUE 
READ 900.KEY.VAlUE 
FORMATIA10.F10.21 

( (KECK TO SEE IF FULL THETA INTERVAL FOR INTEGRlrT1{)N 
( 10 TO PI/21 IS TO BE USE!). 
( 

IFIKEY.NE.NRANGEI GO TO 25 
LIMITS = 1 
GO TO ., 

25 CONTINUE 
( 

DO 20 J=I.6 
( 
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.. 

IFIKEY .EO. KEYTABIJII GO TO 30 
20 CONTINUE 

PRINT 901.KI:Y 
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901 FORMATI*l ERROR IN INPUT DECK KEYWORD * • AIO I 
CALL MORT 

30 HINIIJ)=VALUE 
100 CONTINUE 

DO 50',J=1.6 
50 HIJ)=HINIIJ) 

C 
C CALtuLArE HIKOEI FROM HICURRENT) 
C 

( 

H=3.48*H 
RE'rURN 
END 

FUN(TI ON TABMAX (TAB, NA ,NB. INA ,JNB I 

( FUN(TION TABMAX FINDS THE MAXIMUM OF A TABLE, TAB. OF 
( DIMENSION ,INA. NBI. AND RETURNS THE MAXIMUM VALUE AS 
( TABMAX TOGETHER WItH ITS INDICES IMBEDDED IN THE PARAMETER 
( STRING ~S INA. INB~ 
C 

( 

( 

C 

( 

C 

DIMENSION TARINA,I) 

DO 10 I=l.NA 
DO 10 J=I.NR 

X=TAAII.J) 
IFIXMAX.GE.X) GO TO 10 
XMAX=X 
INA=I 
JNB=j 

10 CONTINUE 
TABMAX=XMAX 
RETURN 
END 

SUBROUTINE EIGV(TRITH,ITH,PHI,JPHI.MU) 

( SUBROUtlNE EIGV(TR PRINTS OUT THE EIGENVALUES AND 
( RESPE(TIVE EIGENVECTORS OF THE HAMILTONIAN TOGETHER 
( WITH THE VALUES OF THE PARAMETERS THETAIH) AND PHIIHI. 
( TO AVOID DUPLICATION IN THE (OURSE OF HERMIT. THE 
( (ALLI~G PROGRAM. THIS IS ONLY DONE FOR MU = 6. 
C 
( 

(OMMON IR I E I GEN/, E I GR I 6,6) • EI G I 16,6 ) 
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C 
C 
C 

902 
C 

901 
100 

C 

* 
* 
* 
* 

ENT 

GOA 

GOB 

GOC 

GOD 

GOE 

COMMON/EIGEN/ALPHAI4.41.WI41 
COMPLEX ALPH/\ 

IFI ~U .NE. 61 RETURN 
PR I NT' Q02 
FORMATI II 

DO 100 KE=1.4 
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PRINT 901. ITH. JPHI. KE. MU. TH. PHI. WIKEl. 
* IEIGRIJ. KEI. EIGIIJ. KEI. J=I.41 

FORMATI4I3.2F8.4.E15.4.8F8.4). 
CONTINUE 

RETURN 
ENp 

ASCENTF SUBROUTINE ITBLKP 

BINARY SEARCH .. ITBLKP 
V IS OF DP"IENSION L 

/T.L.V) 

S.T. VI IT BL ICP I • LE. T 

.. -.. - ... ---- .. -- .-.--. 

BSSZ 5 
BSSZ 1 
SA2 82 .X2=L 
584. 1 .B4=I=KL 
SA 1 Bl .Xl=T 
SB5 X2 .. a5"'1. 6 J(H 
SA '3 ~3 .X3=Vll) 
rX4 Xl-X3 .X4 = T-Vll1 
NG X4.GOD .GOD FOR T .LT. VI1I 
5133 B3-1 • R3=LOCIV1-l 
SA5 X2+83 ' .X5=VIL) 
rX4 X5-Xl .)(4'=VlLl-T 
NG X4.GOE .GOE FOR T .GT. VILl 
S97 B5-B4 .R7=KH-KL 
SB7 B7-1 • R7=KH-KL-l 

. NE BO.B7.GOB 
SX6=, 84 
EO BO.BO.ENT .KH=KL+l • • • DONE 
SX4 84+85 
AX4 1 .X4=IKH+I{LJ/2 :: J 
SA5 ,X4+83 .X5 = VIJI 
rX5 XI-X5 .)(5=T-VIJJ 
PL X5.GOC .GOC FOR T.GE. VIJ) 
5135 X4 .KH = J 
EO BO.BO.GOA 
SB4 X4 • VIJI .LE • T 
F.O BO.BO.GOA .KL=J 
1>1 X 6 0 • T • LT • VI1I 
EO 80.BO.ENT .ITBLKP=O 
SX6 X2 .T .GT. VILl 
EO BO.80.ENT .ITBLKP = L 

END 

"eLT. Vl ITBLKP +11 
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* 

* 

* 

* 

* 

C 
C 
C 

C 

C 
C 
C 

XIT 

BGN 

STRT 

CONT 
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ASCE~TF SUBROUTINE SORTV(N,X,VI 

I3SSl 5 
ASSl 1 
SA5 B1 
51'\5 =1 
SB1 X5 

SA6 1'10 
SAl 1'12 
SM B5 

SA2 B2+B4 .C(X21=X(KI FOR 
IX5 X2-Xl • X(KI-XIK-11 
PL X5,CONT .GT ••• OK 
AX7 Xl 

, BX6 X2 .PERMUTE X .AND 
SA7 A2 

'AX;? Xl 
SA6 A2-B5 
SA3 1'13+1'\4 
SA4 A3-B5 
AX7 X3 
1'!X6 X4 
SA7 A4 
SB6 B5 
SA6 A3 

AX1 X2 
SB4 B4+B5 
II/E B1,B4,STRT 
Nt A6,I'\O,BGN 
EO ~O,I'\O,XIT 

E~D 

F0N~TION ASMPSN2IF.XA,XB.EPS,AREAI 
ADAPTIVE SIMPSONS RULE 
NOV. 3. 1966 

K= 2, ••.• ; N 

YPATRS 

DIMENSioN X(7'15I'FX(7'15I'AESTI3'15I,DX(15I'TO~(15I,J(151 
DATA LMAXIl5/ 

THREE=l. $ FIRST=O 
FiRST=1. 
THREE=1.7 

ABOVE CA~ BE REPLACED By THREE=3. A~D ~IRST=). 

TOL=ABS(EPSI 
LSMPS=lOO 

SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM • 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 

SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SI-fAZAM. 

XBL 706-1247 



C 
50 

C 
C 
C 
C 

C 
C 
C 

C 

C 

100 

150 

110 
C 
C 

C 

C 

120 
C 

C 

I' 
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LSAVE=l SHAZAM. 
AI=O SHAZAM. 
IF e E~S • LT. 0 I A I =AREA ----------------------- -.----------- -------·---St--iAZAM •. 
xc 51 =XA $ xc 71 =XB __ . ___ .. __ .... ____ . __ . __________________ .__________ __ SHAZAM. 
Fxe5'=FeXA' $ FXI71:2FeX61 -SHAZAM. 
xe6,=exe51+xe71'12 _____________________________ ._ SHAZAM. 
Fxe6'=4*Fexe611 SHAZAM. 
Dx=eX{71-Xe511/2 .. SHAZAM • 

. AES T e 3' =DX* e FX e 5 I +FX e 6) +Fi{f'7 iT/3---------------------------SH-"-ZAM; -
EST=.AESTe31 +AI . ___________ .____ .. _____ .___ SHAZAM. 

SHAZAM. 
SHAZAM. 

. -SHAZAM. 
ERRSU"1=O 
TOTSUM=EST 
L=1 .' . SHAZAM. 
J=3 .. -~.- ---------------------------------sHAU;M-~-

BEGIN ADA~TIVE 

INCREASE LEVEL 

L1=L 

~ROCEDURE 

L=L+l 
LSAVE=MAXO(LSAVE.L) 
TOLCLl~TOLCL11/rHREE 
J1=JeL11 
DXCU=DXIL1)/3 

~USH DOWN 

KJ=2*Jl-2 
DO 110 KI(=I.3 
KA=KJ+KK 
K=3*KK.-2 
KLl=7*L1 
KL=KLl+1( 

eK.Ll = KL 
KLA=KLl-7+KA 

OLD 

e KA .L11 =KLA 
XIKLl=xeKLA) 
FX I KLl =FX I KLA I 

COOlmtNJiTES 

CALCULATE 
DXL=DxeLl 
H=DXL/3 
JILl=l 

NEW COORDINATES 

DO 120 KA=2.3 
DO 120 K=KA.6.3 
KL=7*Ll+K 

eK.U = KL 
XCKLl=XCKL-l1+DXL 
FX e KL I =F e X C KU 1* e 4-3*MOD (l(. 211 

SUMK=O 
DO.130 K=I."I 
KA=.2*K-l 
K6=K..\+2 
KL=3*Ll+K 

CK.LI=KL 
AESTeKL'=O 

DO 135 KJ=KA.KB 

SHAZAM. 
SHAZAM. 
-SHAZAM. 
SHAZAM. 
SHAZAM. 

-------- --n--S-HAZ~~" 

SHAZAM. 
----- --"sRA-ZAM~-

SHAZAM. 
-.---------. ---·-----------------SlfA-Z-fi"M. 

SHAZAM. 
SRAZ1\Jill.­
SHAZAM. 

----SRAZAM.­
SHAZAM. 

--- --------sHAZAM.-· 
SHAZAM. 

~A_Z7(M.-

SHAZAM. 
------~-___sHA_ZATii. 

SHAZAM. 
SFfAZAM. 
SHAZAM. 

·"SFrALAl'fO­
SHAZAM. 
SHAZAM.­
SHAZAM. 
SHAZA10t • 
SHAZAM. 

.. -- -·--------------sm-Z-AM.-· 
SHAZAM. 

- --- SHAZAM. 
SHAZAM. 

.- .. - SHAZAM. 
SHAZAM. 

-.. -----.---- -- ... --- -.----.-------.-------.-- - --- -SHA'·ZA1-t. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAI'I. 
SHAZAM. 
SHAlAI'I. 
SHAZAM. 
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135 

}'30 

C 

C 

C 
C 
C 
C 

200 
C 

205 

C 
210 

C 
220 

C 
300 

C 
C 
C 

C 

AEsTIKLI=AESTIKL)+FX(KJ.LI 
AESTIKLI=H*AESTIKLI 
SU~K=SU~K+AESTIKL) 

DSU~K=SUMK-AESTIJl.LII 
SUMK=SUMK+DSUMK/80 
ABD=ABSIDSUMKI 

TOTSUM=TOTSUM+DSUMK + AI 

--77-

IFIABSIISUMK+AI) * EPS) .GE. ABD .OR.TOLIL.*TOTSUM .GE. ABDI 
*GO TO 200 

IFIL •• Lt. LMAX) GO TO 100 

~lT 80TTOM OF TREE 

ERRSUM=ERRSUM+ABD 

AESTIJl.LIJ=SUMK 
IFIJI .GE. 3 I GO TO 210 
Jl=Jl+l 
jl LI) =Jl 
GO, TO "150 

IFI( ~LE. 2) GO TO 220 
L=Ll 
U=L-l 
Jl=JILlJ 
Ll.3=~*Ll+1 
11.L)=LI3 " 
SUMK=AESTIL13)+AEST(L13+1)+AESTIL13+2) 
GO TO 205 

AREA=AEST( 3) +A I 
ASMPSN2=MINOILSMPS.LSAVE) 
IF IA~SIEPS*AREA) .GE. ERRSUM/80.) RETURN 
IFIFIRST .NE. O. ) GO TO 300 
LSMPS=O 
FIRST=I. 
THREE=3. 
Goro 50 

ASMPSN=-LMAX 
ASMPSN2=-LMAX 
RETURN 
EIiiD 

FUNCTION ASMPSNIF.XA.XB.EPS.AREA) 
ADAPTIVE SIMPSONS RULE 
NOV. 3. 1966 

DIMENSION XI7.15).FXI7.15).AESTI3tl5).DXI15)~rOLI15).JII5) 
DATA LMAXIl51 

THREE=I. $ FIRST=O 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
S'HAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
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C 
C 
C 

C 
50 

C 
C 
C 

C 
C 
C 

C 

C 

10,0 

150 

110 
C 
C 

C 

C 

120 
C 

THREE=I.7 
FIRST=I. 

-78-

ABOVE CA~ BE REPLACED BY THREE=3. 

TOl=ABSIEPS) 
lSMP<;=100 
lSAvE=l 
AT=O 
IFfEPS .IT. 0 ) AI=AREA 
XI~)=XA $ X(7)=XB 
FX(5)=FIXA) $ FX(7)=FIXB) 
X (6) = I X I 5) +X I 7) ) /2 
FX (6) =4*F I X (6) ) 
DX=IX(7)-X(5»/2 
AEST(3)=DX*IFXI5)+FX(6)+FX(7»/3 
EST=AEST(3) +AI 

ERRSUM=O 
TOTSUM=EST 
l=l 
J=3 

BEGIN ADAPTIVE PROCEDURE 
INcREASE lEVEL 

ll=l 
l=l+l 
lSAVE=MAXOIlSAVE.l) 
TOlIl)=TOl(ll)/THREE 
Jl=J(lU 
DX I l) i::DX Ill) /3 

PUSH DOWN OLD COORDINATES 

KJ=2*.J1-2 
DO 110 KK=1.3 
KA=KJ+KK 
K=3*KK-2 
Kll=7*ll 
Kl=Kll+K 

(K. l) = Kl 
KlA=Kll-7+KA 

(KA.L1l=KlA 
X(KLl=XIKlA) 
FXIKll=FXIKlA) 

CALCULATE NEW COORDINATES 
DXl=OXILl 
H=DXl/3 
JIll=l 

DO 120 KA=2.3 
DO 120 K=KA.6.3 
Kl=7*ll+K 

(K. l) = Kl 
XIKl)=XIKl-ll+DXl 
FXIKl'=FIX(Kl,'*14-3*MOD(K.2» 

SUMK=O 
1)0 1'30 K=I.3 

AND FIRST=I. 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

. SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
·SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
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c 

135 

130 
C 

c 

c 
c 
c 
C 

200 
C 

205 

C 
210 

• 

c 
220 

C 
300 

c 
c 

KA::2*K-l 
KB=KA+2 
KL=3*Ll+K 

I K.L 1 = KL 
AESTI KLl =0 

DO 135 KJ=KA.KB 
AESTJKLI=AESTIKL)+FXIKJ.L) 

AESTI~L)=H*AESTIKLI 
SUMK=SUMK+AESTIKLI 

DSUMK=SUMK-AESTIJ1.Ll1 
SUMK~SUMK+DSUMK/80 
ABD=AI3SIDSUMKI 

TOTSUM~TOTSUM + DSUMK + AI 

-79-

lFIABSiISUMK+AI) * EPSI .GE. ABD .OR.TOLIL1*TOT~OM .GE. ABO) 
* GO TO 200 

IFIL.LT. LMAXI GO TO 100 

HIT BOTTOM OF TREE 

ER~SUM=ERRSUM+ABD 

AESTIJ1.L11=5UMK 
IFIJ1 .GE. 3 I AO TO 210 
Jl=Jl+.1 
JIl1l=Jl 
GO TO. 150 

I~IL .LE. 21 GO TO 220 
L=L1 
Ll=L-i 
Jl=Jllll 
Ll3:=3*L1+1 
(l.Ll=Ll3 
SUMK=AESTIL131+AESTIL13+1J+AESTfL13+21 
GO TO 205 . 

AREA=AESTl31+AI 
ASMPSN=MINOILSMPS.LSAVEI 
IF IA85IEPS*AREAl .GE. ERRSUM/80.1 RETURN 
IFtFIRST .NE. O. 1 GO TO 300 
LSMPS=O 
FIRST=l. 
THREE=3. 
GO TO SO 

ASMPSN=-LMAX 
RETURN 
END 

SUBROlJTINE HERMQRIA.N.IVEC.E.Zl.Z2J 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAIAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
Sf-fAZAM. 
SHAZA~. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM.' 
SHAlAM. 
SHAZAM. 
SHAZAM. 
Sf-fAZAM. 
SR)(ZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

--SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

SRAZAM. 
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_. - _._---" .!-----------~-.---- -_..:. __ . __ .. ----.--- --~----
DIMENSION AI2,6,61,EA6ItZl(6,61,Z216,61 
DIMENSION ALPHAI61,BETAI61 
DIMENSION BBI 71 .------ ---.---

DIMENSION TAU12,61 
( ETA-': RELATIVE MACHINE-PRECTsIO"N----

ETA =2.**(-481 "GA,MMA=ET'A**2 -.. ~-------------.----~-----------------..... ----

(ALL HHERM IA,N,GAMMAtTOL'BETAtA=L~P~H~A~,~T~A~U~I ____________ __ 
BBI U=O.O .- -------.-----. 
DO 2 1=1,1'4 
HI I=ALPHA I I 1 

2 BBII+l)=~ETAIII**2 
( INFINITY NORM OF TRIDIAGONAL MATR I X---·------------------ ------ --.. ----.--.. 

RHORM=ci.o 
DO 5 I", 1 tN 

5 RNORM=MAXIFIRNORM,SQRTIBBI I))+ABSIEI II)+SQRTIBBII+l)l 
DEL TA=ETA*RNORM .-- . ---.- .. --.--------------.- - --' -.-"-' 

EPS=DELTA**2 

SHAZAM. 
SHAZAM. 

---SHAZAt.r;--
SHAZAM. 

----SHAlAM~---

SHAZAM. 
- ----SHATAM •. 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM~--'-

SHAZAM. 
SHAZAM. 
SHAZAM. 

---S-H"AiAM .-
SHAZAM. 
SHAZAM. 
SHAZAM. c .~---.--.-.-'----------~--- .. -.--~-. ...:...---. --_.. -SHAZAM. 

C W.KAHAN AND J.VARAHt TWO WORKING ALGORITHMS FOR THE EIGENVALUES OF A SHAZAM. 
C SYMMETRIC TRIDIAGONAt: MATRIX-;-TECRNTCAt: REPoRT -,qO~3~UGU5rTl,-----SHA-ZAJIII-; 
C 1966. COMP.SC.DEPT. STANFORD UNIVERSITY. SHAZAM. 
( .... -.-- ... -.... -.-.-.--... .-·------------S~·iAZAlII~-·· 

K=N 
6 M=K 

IFIM.LE.OIGO TO 56 

SHAZAM. 
--SHAZ-~; 

SHAZAM. 
8 K=I(-1 -.---- u______ SAAZAI'-r.-

IFIBBIK+ll.GE.EPSIGOTO 8 SHAZAM. 
C NEXT --------- -SAAUM.-

IFIK.NE.M-llGO TO 13 SHAZAM. 
BB I K+ 1 1 =0.0- - - ---- -------"SAA-Z-~.--

GO TO 6 SHAZAM. 
C TWOSY 2 --- ------- -----------~---------S:-.:HnrA-Z"JJlr.--

13 T:EI~I-EIM-l1 SHAZAM. 
R=BB I M 1 .. - .. - .--------- ·---~---·--------__SAAL~M.-

IFIK.GE.~-2IGO TO 22 SHAZAM. 
W=BBI~-11 ------.---------------. -------- -SffAL~.-· 

C=T**2 SHAZAM. 
S=RI I C+W 1 -·-·-··-------·--------------·----e-STTIlAAnllr.-
IFIS*IW+S*CI.GE.EPSIGO TO 22 SHAZAM. 
M=M-l . -------------------------SHAZAJIII •. 

BBIM+ll=O.O SHAZAM. 
GO TO 13 ------------S-AAZA1II-.-

C END NEGLIGIBLE BS SHAZAM. 
22 I F lABS (T 1 .GE .DEL TA )GO-,O""£"5 SAAZJOir.-

S=SQRTIRI SHAZAM. GO TO 28-' -- ______________________________ c. ___ -'-_________ . "S\iA7:A1II.· 

25 W=2.0/T SHAZAM. 
S=W*RI (SQRTI W •• 2.R+l.Or+T.-01-----------------·~·--··-·------ --------SHAZAM. 

28 IFIK.NE.M-2IGO TO 33 SHAZAM. 
EIMI=EIM,+S --------.---------------- ~; 

EIM-ll=EIM-I'-S . . SHAZAM. 
BB I K+ll =0.0 --.. --.----.------.--.--------------.------- - ··SHAZAM. 

GO TO 6 SHAZAM. 
C DO A QR STEP ON ROWS AND COLUMNS-IC·n--TIfROUGH li\-.. --------.. ------.---- -SHAZAIll. 

33 SHIF~=E(MI+S SHAZAM. 
IF 1 ABS I T 1 • GE. DEL T A) GO TO '37 . -- .-.-.---~-.-.-------.---:-------.-------- SHA-ZAJIII.· 

W=EIM-ll-S SHAZA~. 
IFI ABSI WI.L T .ABS (SHIFT 11SHTFT::W---- -.-------------.-----. SHAZAM. 

37 S=O.O SHAZAM. 
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G=EIK+l'-SHIFT SHAZAM. 
C=I.0 SHAIAM. 
GO TO 45 SHAZAM. 

C lOOP SHAIAM. 
40 C~P/T SHAIAM. 

S~W/T SHAIAM. 
W=G SHAZAM. 
EK1=EIK+11 SHAIAM. 
G=C*(EK1-SH'FT)~S*W _ .. -,'---". SHAZAM. 
EIKI=I~~GI+EKI SHAZAM. 

C ENTRY SHAZAM. 
45 IFIARS(GI.GE.DElTAIGO TO 48 SHAIAM. 

IFIG.GE.O.OIGO TO 47 SHAZAM. 
G=G-C*DElTA SHAZAM. 
GO TO 48 SHAZAM. 

47 G=G+C*DELTA SHAIAM. 
48 P=G**2/C SHAZAM. 

K=K+l SHAZAM. 
W=BBIK+lI SHAIAM. 
T=W+P SHAZAM. 
B8IKI=S*T SHAZAM. 

50 IFIK.lT.MIGO TO 40 SHAIAM. 
EIKI=G+SHIFT SHAZAM. 
GO TO ~ SHAZAM. 

C SORT--------------.. ----.-.-. ----------SRAZ~M. 

56 IFIN.EQ.IIRETURN SHAZAM. 
Nl=N-l---------- --. ---------sRAZA"Me-
DO 70 I=l.Nl SHAZAM. 
K:: I .. -- -_ .. --' - -_. ~----- ----·-S·R1fl~~-li(. --. 

T-Elt) SHAZAM. 
11=1.1 -------- -----------SRA-ZAM.-
DO 62 J=ll.N SHAZAM. 
IFIE(J).LE.TIGO TO 62 --q------ _____ n_. SHAZAM.-
T=EIJI SHAZAM. 
K=J . ---- ---------... ------------ .------ - SHAZAM. 

62 CONTINUE SHAZAM. 
IFII.EO.KIGO TO 70 ---------------- ------------ - SHA-Z'AM. 
EIKI=EIII SHAZAM. 
E(I)=T .-.-.---- ~--. 

70CONTtNUE SHAIAM. 
1Ft TVEC. EO. 0, RErlJRN- -----------------.. --------- --·------"SHALAM .. ·-
CAll TRIDINIAlPHA.BETA.N~E.RNORM.N.ETA.ZI' SHAIAM. 
DO 72 I Z=I.N-----------------------~---· -------0--------------- --5HALA~~-

DO 72 ~Z~I.N SHAZAM. 
I2 I I I. JZ I =0. -. ------.---.---- ---·-c----------5CH~Z:ur.-

72 CONTINUE SHAZAM. 
CALL. REVERSE I BET A .A; TAU;jifo,...GAMMA;IOl.fZT,n,--··-·-'-----------SHAZAR;-
RETURN' SHAIAM. 
END ,,- ----~------ ---S-HATA~~-' 

SUBROUT IHE TR IDINI C.B'-N'W-'-'Nol'flof.Mr'MACHEPS.Z I 7--·------·-_· ------S-HAZA-/o1~ 

C SHAZAM • 
C J.H.WIlKINSOH. CALCULATION OF'--TAt""tTGENVECTORS OF-A"- SYMMETRrc----------SHATAI\f"~ 
C TRIDIAGONAL MATRIX BY INVERSE ITERATION. NUMERISCHE MATHEMATIK 4. SHAIAM. 
C 368-376 (1962'--------------- ----SHAZAM. 
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c 

C 
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SHAZAM. 
INTEGER N.~1 SHAZAM. REAL NORM.MACHEPS ---- .. -----.---.------- .---.--------.---- ·---S-HA-ZAM. 

DlMENS lONCI 6 1.13 I 6 I .WI 6 I.Z 16.6 I ________ ._______ . __ . ___ . __ .. SHAZAM. 
REAL M I 6l.t P 16 I .a I 6 I. R I (; I. j"·ff(-6" ,- - -SHAiAM-~ 
REAL XI81 SHAZAM. 

SHAZAM. 
INTEG£~ 1.J SHAZAM~ 
REAL B I .BI 1.Z 1 .LAMBDA.U.·S~-V;H_;EPS~-E~----------------- ·-·------SHA"lAM;-

SHAZAM. 
LAMBDA=NOR~ SHAZAM. 
EPS=MACHEPS*NORM SHAZAM. 
DO 90 J=l.-Ml .... ------------.--- "SHAZAM. 

LAMBDA=LAMBDA-EPS SHAZAM. 
I F I W IJ I • LT. LAMBDA I LAMBOi\;;-W (::;,'- .--- ---------.------- ----- .----"--- "SHAtAM~ 

U=CI1,-LAMBDA SHAZAM. 
V=B 11 I SHAZAM. 
IFIV.ta.OlV=EPS SHAZAM. 
NMINUS1=N-1 SHAZAM. 
DO 60 1=1.NMINUS1 SHAZAM. B I =B ( I) --- -.... ----0--_----"---- -S .. fA"ZA-M. 
IFIBI.Ea.OI~I=EPS _____ . ___ .. __ .. ___ ___ SHAZAM.· 
BIl=f\11+1I - SHAZAiiI~ 
IFIBI1.Ea.01~I1=EPS SHAZAM. 
I F lABS ( B 1 I • LT. ABS 1 U I ,-(30-1'0-50-------------·------·--·-------·--- - ---SHAZAM~-

MII+11=U/~1 . SHAZAM. 
I F I I MI I +1 I • Ea.O I .AND~TBl ~LE-;usnlifl hll=1 --- --S"j:fA"Z"A"R;---" 
PIII=BI SHAZAM. 
all I=CI 1+1 I-LAMBDA .. ------------------·--------·---·----SHAL/i)4"~ 

RIII-Bli SHAZAM. 
U=V-M( 1+1 I *al 1'----·------------------'-----..,---·------------SHAZAM;; 

V=-MII+1J*RIII SHAZAM. 
tNT ( 1+1 ) =+ 1 .---", .. -+------ ----- ··----··----sHAZAM"; ---.. ". 
GO TO 60 SHAZAM. 

50 M( 1+11 =BI IV -------------------------------·--SHAZAMO-
PI I"I =U SHAZAM. 
a II I =V ----------------·-'·-·----·----------S~-LAM. 

RII,=O SHAZAM. 
U=CI 1+1 I-LA~BDA-M( 1+11*V-------------sHAViI'.r;-----
V=BI1 SHAZAM. 
INT 11+11 =-1 .... - ·-·----------------------------SHAZ-AM.--

60 CONTINUE SHAZAM. 
PIN I =U .-'. --.-.-.---------------.----.------- -·--·-··"SRAZAM. 

QIN'=O SHAZAM. 
R (N 1:0 '.-- -------------:-----------------sHATA"M"".-.---
XIN+1,=0 ." SHAZAM. 
X I N+2 I =0. ---.------------,--~. ------------------sm"ZAM.-- , .. 

H=O SHAZAM. 
ETA=1.0/N ··--------------·--------'-----------SAATAM;-·· 

DO 67 II=l.N SHAZAM. 
I=N-Il+l ... --.---------------.--. --------·-----·---sRAZAM.-

U=ETA-alll*XII+1'-RIII*XII+21 SHAZAM. 
IFI PI I I.NE.O IGO TO 65 --------------------------------------- --SRAZAM. 

XII,=U/EPS SHAZAM. 
GO TO 66 ---------- ----.------ .. --- ----- ·SHAZAM. 

65 XII,=U/Pill SHAZAM. 
66 H=H+ABS I X I I I I - -----.-.------ .----. SHAZAM. 
67 CONTINUE SHAZAM. 

DO 68 l=l.N SHAZAM. 
68 X I I I =X 1 I I/HSHAZ.AM. 
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00 75 1=2, N 
I F I I NT I I I • LE. 0 I GO TO 70 
U=XII-::l I 
XI I-U=XI" 
Xll'=U-MIIl*XII-11 
GO TO 15 

70 X I I ; = X I I I -N) f I I * X I t -1 I 
75 CONTINuE 

H=O 
DO 82 tI=I.N 
{=N-It+l 
U=XIU-G)fI)*XII+I)-RII)*XII+2) 
IFIPIIl.NE.OIGO TO 80 
XfII=V/EPS 
GO TO 81 

80 Xlt)zU/PIJ) 
81 H=H+XIJ)**2 
82 CONTINUE 

H=SQRTIHI 

-83-

C STORE VECTORS AS COLUMNS 
DO 85 J = 1, "I 

c 
c 

85 ZII,J)=XIIl/Y 
90 CONTINUE 

RETURN 
END 

SUBROUTINE HHERM IA,N.GAMMA.TOL.B.C.TAUI 

DIMENSION AI2.6,6l.BI61~TAUI2,61.Cf61 
INTEGER R.RMI 
NMl=N-l 
TOl=O. 
0020 I =1.N 
DO 20 J=I.1 
DO 20 L=1.2 
ARVAL~ARSIA(L.I.JI) 
IF (A~VAL-TOLI 20.20.10 

10 TOl = ABVAL 
20 CONTINUE 

DO 120 R=2.!I4N)1 
RMl=R-.1 
VR=TAUll.Rl=TAUI2.RI=TAUI2.1l=0. 
DO 25 L=R,N 
VR=VR+ Afl,L.RMll**2+AI2.L,RMll**2 

25 CONTINUE 
IF rVR-GAMMA*TOL**21 120.120.30 

30 IFIAll.R.RMlII 60,40.60 
40 IF I,AI2.R.RMl)) 60.50.60 
50 Atl.R.RMll=SQRTIVRI 

DElTA=VR 
TAUll.l'=-Afl.R,RMl1 
GO TO 70 

60 ROOT=SQRTIIAI1.R.RMII**2+AI2.R.RMll**2l*VR) 
DELTA=VR+ROOT 
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SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 

SHAZAM. 

SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAlAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM. 
SHAZAM • 
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- _ ... " - -~-~-~--.- --- -- - .-_. - -~.- ... ._. _. - - _ .. 
RATIO=VR/ROOT SHAZAM._ 
TA011.11=-RATIO*All.R.RMll SHAZAM. 
TAU 12.1 I =RAT I O*A I 2 .-R. RM1 ,--- ---------------.----.-.-- --.. -.. ----- ---. SHAlAM. 

Al1.R.RMl,=IRATio+11*All.R.RMl, SHAZAM. 
A 12. R. RM 11 = I RAT I 0+ 1 I * Ai 2. ,f.RM! r .-- .--------.- ----.----------~-- SHAZAM. 

70 DO 90 J=R.N SHAZAM. 
TAUIl.JI=AII.J.RMlI/DElTA SHAZAM. 
TAUI2.JI=AI2.J.RM11/DElTA SHAZAM~ 
C I J I =13 I j I =0. ------.------------. ------ -SHAZAM. 

DO 80 l=R.J SHAZAM. 
CI J I =C I J I+AI I.J.l I *AI 1.l.RMI I ";AI 2. J,L)*AI 2 .l.irMi I SHAZAM. 
BIJI=8iJI+AI1.J.ll*AI2.l.RMII+AI2.J.ll*AII.l.RMll SHAZAM. 

80 CONTI NUE-- --" - ---------- SHAZAM. 

JPlUSl=J+1 SHAZAM. 
DO 90 l=JPlUSl.N .----- --.--------- ----------------.-.----.-. -SHAiAM;- -
IFll .GT. NI GO TO 90 SHAZAM. 
CIJI=CIJI+AII.l.JI*AII.l.RM11+AI2.L.JI*AlZ'-l.RMll SHAZAM. 
BIJI=BIJI+AII.l.JI*AI2.l.RM11-AI2.l.JI*AII.l.RMI1 SHAZAM. 

90 CONTINUE'- SHAZAM. 
RHO=O. SHAZAM. 
DO 100 l=R.N --------.--.. -.- .. ---.-.--- SHAZAM. 

RHO=RHO+CIlI*TAUIl.ll+BILI*TAUI2.LI SHAZAM. 
100 COI'HINUE - - - - --- ------- .--------- SHAZAM. 

DO 110 f=R.N SHAZAM. 
DO 110 J=R.I ----------------.-- ------------- ·SHAZAM. 

Xl=TAUll.tl*CIJI+TAUI2.tl*SIJI SHAZAM. 
X2=TAUI2. I I *C I J) -TAUI 1. I )*IH :1)--- --·------------SRAZlI."M;------
Ql=C I Il-RHO*A 11. I. RMll SHAZAM. 
Q2=B (I' -:RHO*A r 2. I .R~11 - -------··------------'.-0----------- - ·SHAZAM". 

Tl=Q1*TAUll.JI+Q2*TAUI2.JI SHAZAM. 
T2=Q2*TAUlltJ I -Ql*TAUl 2 .J1 --- --------------- .---.---- .---- SHAZAfIiI. 
AlltI.JI=AII.I.JI-XI-Tl S-HAZAM. 
A (2. I. J I =A 12. I.J I -X2:"T2 ----------- ---------------'---··-----·--------sHAZAM-;--

110 CONTINUE SHAZAM. 
T AU 11. R) = TAU I 1.1 I ----------------------'------'--------'-----.----- ------SH;6.ZAM; 

TAUI2.RI=TAUI2.11 SHAZAM. 
120 CONTINUE- --- .. ------------------------------ -------SffAZAM. 

DO 1~0 I=I.N SHAZAM. 
CI I I =A I 1. I. II -- --·---------------;--:-'--------------sHAZA1'I;----

130 CONTINUE SHAZAM. 
IF INMll 150 0150 .140------------------·-~------------------------SHAZA1"1.-

140 TAUlliNI=All.N.NM11 . SHAZAM. 
TAUI 2.N I =-AI 2 .1iI.wn ,--·----------------------------------------SRAZAM.---

150 TAUl1.11=l. SHAZAM. 
TAU I 2 .11 =13 IN I =0. ----.--.--.--. ----------------·---------s-RAZA:IIt. -----
DO 180 I=2.N SHAZAM. 
1M 1 = I -1-------'- --- '---'-- ----.--------.-------------.-.---------- SHAZAM. --

BB=BIIMll=SQRTITAUII.II*TAUII.II+TAUI2.II*TAUI2.III SHAZAM. 
IF If3B) 170.160.170------------------·--.. ·------- ----- ---SHAZAM.; 

160 TAUl1.I'=8B"'I. - SHAlAM. 
170 TTl:TAUI 1. I I *TAUI 1. IMI I -TAOl2'TT*1 AUI 2.l1'I1T----·-------------- '-'--SHAZAM;-

TT2=TAUIl.II*TAUI2.IMII+TAUI2.II*TAUII.IMll SHAZAM. 
TAUll. I I =TTl/BB -----.-.----------------- --------- --. SHAZAM. 
TAUI2.II~TT2/8B SHAZAM. 

180 CONTINUE------ .--------------. - .. --------- ---SHAZAM. 
RETURN SHAZAM. 
END -... ---.------------.--- .-----... --·SHAZAilil. 
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SUBRbuTINE REVERSEIB.A.TAU.N.MI.GAMMA.TOL.ZI.ZZI SHAZAM. 

DIMENSION BI61.AIZ.6.61.TAU(Z.61,ZlI6.61.Z216.61 SHAZAM. 
DIMENSION ALPHAIZ.61 SHAZAM. 
INTEGER R.RM1 SHAZAM. 
DO 1.0 J=2.N SHAZAM. 
DO 1.0 X=l.Ml SHAZAM. 
Pl=ZIIJ.KI*TAU(I,JI+ZZIJ.KI*TAUIZ.JI SHAZAM. 
~Z=Z~IJ.KI*TAUll.JI-ZIIJ.KI*TAUIZ.JI SHAZAM. 
ZIIJ.KI=Pl SHAZAM. 
ZZIJ.KI=P2 SHAZAM. 

1.0 CONTINUE S~AZAM. 
NM}NUS2=N-2 SHAZAM. 
bo 6.0 ~R=1.NMINUS2 SHAZAM. 
R=N-MR SHAZAM. 
RMl=R-l SHAZAM. 
IF IBIRMl'-GAMMA*TOL**ZI 6.0.6.0.20 SHAZAM. 

2.0 DEL T A=B I RMI I *SQRTI A I I.R .RMl ) **Z+A-( Z '-R.~rr*"*2T SHAZAM. 
DO 4.0 j=I.M1 SHAZAM. 
ALPHAll.JI=ALPHAIZ.JI=.O. SHAZAM. 
DO 3b K=R.N SH.ZAM. 
ALPHA 11 .J I =ALPHA I I. J) +A I1.K iRMrJ *Zn1('-:1T+AT2.J:.'~JIlIrpfZZ1K-'JT SHAZAM • 
• LPHA(Z,JI=ALPHAIZ,JI-AI2.K,RMll*ZlIK,JI+AI1.K,RMll*ZZIK,JI SHAZAM. 

3D CONTINUE-- ---------- ---- - ------------SRAZ-AM;-- -----
ALPHAIl.JI=ALPHAli.J)/DELTA SHAZAM. 
ALPHA( Z.J I =ALPHA I Z.J) IDELTA--- ----------------------------------- -- SHAZAM. 

4.0 CONTINUE SHAZAM. 
0.0 5.0 J=l.Ml - ---------- ---------------.------------- SHAZAM. 
D6 5.0 K-R.N SHAZAM. 
Z 1 (K,J I:';Z 1 I K. J I-AI 1.Ki RMfJ1f1i"LPHATTTJT+AT2. K ,RAIl *ALPRA 12. J ,------ -SRALA"M";-----
ZZ{K,JI=Z2IK.J)-All.K.RMll*ALPHAI2.JI~AI2.K.RMll*ALPHA11.JI SHAZAM. 

5.0 CONTINUE -------'------------------------ SHAZAM. 
6.0 CONTINUE SHAZAM. 

RETURN---------·- ---- ----------------------- SHAZAM. 
END SHAZAM. 
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.' PROGRAM POST( INPUT.OUTPUT.TAPE2=INPUT.TAPE3=OUTPUTr 

DIMENSION OMEGAT(2001.VALUET(2001 
DIMENSION I CNTl61 .OMEGA (21.6) • VALUE ( 21,6r·------------- -
DI~ENSION PARAMSI51 
COMMON/PRAMDTA/H Ill. E. D. T • DELTA .fiilU IN.OMEGA-IN ,VALUE1N-
~rMENSION HEAOINGI31 ' 
DA TA HEADI NG/30H H E-'-D ----'--r5tliA--7--·-----
DATA ICNT/6*11 
DATA OMEGA/O/.VALUE/OI 
DIMENSION FOMI31 

C .READ IN NO. OF PTS TO BE USEDIN--YlIfTERPOlATTON--------··-----------

* READ 12.9131 NPTS 
913 FORMATIIIOI 

* 

900 
C 
C 
C 
C 
C 
C 

1 

10 

100 

C 
C 

HH 
C 

READ 12.9001 PARAMS 
FORMATI5F6.2.15.2E20.41 

ABOVE TO READ IN PARAMETERS 

NOW READ IN ALL CARDS AND JUST KEEP THOSE THAT MATCH 
THE I NPUT PARAMETER OAT-A------

CONTINUE 
READ(2.9001 IH(II.I=I.81 
1FIH.EQ. 01 GO TO 101 
CONTINUE 
IFIEQVCTRIH.PARAMS.51 "~~t~Or 
IO=ICNTIMUIN) +1 
ICNTIMUIN)=IO 
OMEGA IIO.MUIN) = OMEGAIN 
VALUEIIO.MUINI = VALUEIN 
CONTINUE 
IFIEOF.2J 101.1 

CONT rrtlUE 

---- ... _-_._---------_. 

GO TO 100 

* * ~ * * * * * * * * * * * * • * * * * .* * * * * ** * * * * * * * * * 
* * * * * * * * * * * * * *. *" 'if '-lr1f--lrtt. * •.• * .• * ... -y--y---.---.---.-.---..----
* NOW SORT ALL VECTORS FOR EACH MU 
C 

200 
C 
C. 

DO 200 MU= 10 6 
IO=ICNT(MUI 

.. -_._---------. --'------- -----_ .. _--_ .. ----------

IFIIO .EQ. 11 GO TO 200 

CALL SORTVIIO-1.0MEGAI2.MUJ.VALUE(2.MUJI 
OMEGAI 1 .MUJ=OMEGAI'2,MU'-:;:Z;·ifi5E-Or------· -------.- --.. ---.------
OMEGAIIO+1.MUJ=OMEGAIIO.MU) + 2.*DELTA . 
VALUEr IO+l.MUf=o ---'--'---~--

VALUEl1.MUI=0 
CONTINUE 

, .. _._---- .. _----._---------
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* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * *. * * * * * * * * * * * * * * * * * * * * *' * * * * * * * * * * 

C FORM SUMS OF ALL INTERPOLATED VALUES 

JOM=O 
DO 300 MUA=I,6 

NA=ICNTIMUAI +1 
IFI.NA .LE. ~I GO TO 300 

DO 400 N=I,NA 
.SUM=O 
. JOM=JOM+l 

DO 500 MUB=I,6 

IT=lTBLKPIOMEGAIN,MUAI,ICNTIMUBI+I,OMEGAII,MUBIJ 
IFIIIT .EQ. 0)' .OR. IIIT-ll .GE.ICNT(MUB)) ) GOIO 500 
IT=MAXOll,IT-INPTS-1)12) '., 
NDX=MINOIICNTIMUBI+l-INPTS-II,IT) 

* INTERPOLATE 

CALL' NTPOIOMEGAIN,MUAI , FOM,nPTS,·OMEGAINDX,MUBI ,VALUEINDX,MUBII 

• 

SW4=SUM+FOM 
500CONTtNUE 

VALUEr I JO~) =SUM 
OMEGATIJOM)=OMEGAIN,MUAI 

400 CONTINUE 

300 CONTINUE 

* * * * * * * * * * * * * * * * * * * * * * * * * ** * •. * ** * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* EnIT 

PRINT 901 
901 FORMAT 11Ml) 

PRINT 912,HEADING 
912 FOR~ATI3AI0) 

PRINT 900,PARAMS 

DO 600 MU= It 6 
iO=ICNTIMU)+1 
PRINT 910,MU 

910 FORMAT I II , lOX * MU =*12 , I ) 

IFI10 .LE. 2) GO TO 600 
PRI~T 911,II,OMEGAII'MU)JVALUEII'MU)'I~I'IOJ 

600 CONTINUE 

911, FORMATIIOX,II0,2E20.4) 
PRINT 901 
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CALL SORTVIJOM.OMEGAT.VALUETI 

PRINT911.II.OMEGATIII,VALUE~III.I=I.JOMI 

* * ** * * * * * * * * * * * * * * * * * • * * * * * •. * * * * * * * * * 

* 
* 
* 
* 

STOP 

END 

FUNCTION EOVCTRIA.B.Ni 
DIMENSION Al11.BIII 

EO=O 

DO 10 K=I.N 
IFIAIKJ .NE. 81KI I GO TO 20 

10 CONTINUE 
15 EOVCTR = EO 

RETURN 

20 EO=: 1. 
GO TO 15 
END 

ASCENTF SUBROUTINE ITBLKP IT.L.VI 

BINARY SEARCH •• ITBLKP S.T. V(ITBLKPI .LE. T .LT. VIIT8LKP +11 
V IS OF DIMENSION L 

ENT 

GOA 

GOB 

'3SSZ 
8SSZ 
SA2 
SB4 
SA 1 
S85 
SA ~ 
IX4 
NG 
SB~ 
!;A5 
IX4 
NG 

, SB7 
S87 
NE 
SX6= 
EO 
SX4 

'AX4 

5 
1 
A2 
1 
81 
X2 
133 
XI-X3 
X4.GOD 
83-1 
X2+B3 
X5-)(1 
X4.GOE 
135-134 
87-1 
AO.B7,G08 
84 
80.'30.ENT 
A4+85 
1 

.X2=L 

.84=I=KL 

.X1=T 

.85=L=KH'··' , 

.X3=VIlI 
.X4 =T-VIII 
.GOD FOR T.LT. VIII 
.B3:LOCIVI-1 
.X5:VILI 
.X4=VILI-T 
.GOE FOR T .GT. VILI 
.A7=KH-KL 
.B7=KH-KL-I 

.KH=KL+l ••• DON£ 

.X4=IKH+KLI/2 ~-J 
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GOC 

GOD 

GOE 

xu 

BGN 

STRT 

CONT 

SA5 X4+83 
IX5 Xl-X5 
PL XS,GOC 
SB5 X4 
EQ BO,!30,GOA 
SR4 X4 
EQ BO,BO,GO,\ 
MX6 ° EO BO,BO~ENT 
SX6 X2 
EO BO,BO,ENT 

END 

-89-

.X5 = VIJI 

.XS=T-VIJI ---- ;GOC-FO'--,'R~T,-.-cG---'-E--.-V I J 1 ------------- ----------
·~':t ___ =:c_,L ____________________ -________________ _ 

.VI JI .LE. T _ -;KL. ,,;T------~-----------------

• T .LT~.~V~I~l~I-------~------------­- --- -; I TBLKP=O 

-~-h-~r~p -"-~~I-;tc:I----

- ------- -- ----------------

ASCENTF SUBROUTINE SORTVIN,X.YI 

END 

BSSZ S 
~SSZ 1 
SAS Bl 
SBS =1 
SBI X5 

SB6 BO 
SAl B2 
SB4 BS 

SA2 B2+B4 
IXS X2-Xl 
PL XS.CONT 
eX7 Xl 
BX6 X2 
SA7 A2 
BX2 Xl 
SA6 A2-BS 
SA3 B3+B4 
SA4 A3-A5 
BX7 X3 
BX6 X4 
SA7 A4 
SB6 B5 
SA6 A3 

eXl X2 
SB4 B4+BS 

.---------------------------'---'---;-----------

.CIX21=XIKI FOR K=2 ••••• N 
;X rKT~-XT~.;;-y-J ----- ---------------

. _____ ~_G_T_"_. _. __ O_K~ _______________ _ 

.PERMUTE X AND YPAIRS 

- - ----- --_._- -----'-- --------

NE Bl,B4.STRT 
NE B6.BO.BGN 
EQ BO.BO.XIT 

ASCENTF SUBROUTINE NTPOIXX.FF.N.X.FI - _ 
B55Z 7 .LAGRANGIANlNTERPOt.:ATION FOR-:F~ AT XX 

ENT BSSZ 1 .USING N POINTS FROM ARRAYS'~ AND F 

XBL 706-1261 



SAl B3 
"1X6 0 
SB3 Xl 
SA2 B1 
GE BO.B3.ERR 
SX3 36418 
SB6 BO 
LX3 47 
SAO 1 

LP1 SA4 B5+B6 
SA5 84+86 
8X7 X3 
587 BO 

LP2 SA 1 '84+87 
FXO X5-Xl 
EQ 86.R7.END2 
NXO XO 
FX 1 X2-Xl 
FX7 X7*XO 
NXO Xl 
FX4 X4*XO 

END2 587 AO+87 
LT B7.B3.LP2 
FX 1 X4/X7 
586 AO+86 
FXO X6+Xl 
NX6 XO 
LT 86.B3.LP1 
SA6 B2 
EQ, 80.BO.ENT 

ERR FX6 X6/X6 
SA6 82 
EQ BO.~O.ENT 

END 

-90-

.INITIALIZE FF 

.83 HAS N 

.X2HAS XX 

.X3 HAS FLOATING POINT 1. 

.FETCH F( I I 
• FETcH X ( I I 
.INITIALIZE DENOMINATOR TO 1~ 

.FETCH XIJ) 
• X,I I I - XIJI 

.XX - X(JI 

.DENOMINATOR MULTIPLIED BY XIII - XIJI 

.NU'1ERATOR MUL TlPLIEO BY xx - XIJI 
• INCREMENT COUNTER 

.ACCUMULATE FF 
-,- _ .. __ .- ..... _-

.STORE FF 

.ERROR RETURN IF N' .LE. 0 
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C. Polycrystalline Absorption Coefficient for H'»l 

In this appendix, we shall outline the general approach to the 

calculation of the magnetic-dipole absorption coef·ficient of a para­

magnetic ion, described by the spin Hamiltonian of Eq. (2) in the text, 

in thecaseH' :: (gJ.lBH)/D»l. We shall also explicitly calculate the 

absorption coefficient for S = 5/2. 

1. Method 

The spin Hamiltonian in Eq. (2) contains two types of terms, Zeeman 

and ligand-field. It is written in a coordinate system which diagonalizes 

the axial ligand-field term, and which gives a value of A :: E/D S; 1/3. 

However,when H'»l, the Zeeman term is the largest in magnitude. If 

the spin Hamiltonian is written in a coordinate system which diagonalizes 

the Zeeman term (Le. ,where ~llz) the off-diagonal contributions to the 

eigenvalues and eigenstates, due to the ligand-field terms, will be 

second order in (l/H'), and may be neglected. The eigenstates are then 

simply eigenstates of SH' the projection of Son .. ~, and simple expressions 

for the eigenvalues can be obtained from the diagonal terms of the new 

spin Hamiltonian. Under these conditions, the expression for a can be 

analytically evaluated, since the magnetic dipole transition probability 

will be a constant for each transition, independent of the orientation 

of ~ with respect to the ligand-field coordinate system. The lineshape 

can be obtained by converting the integrand in Eq. (5), a d0., to a dv n -If n 

by mathematical manipulations involving a single integration and a 

Jacobian determinant. We shall first calculate the diagonal part of 

the spin Hamiltonian in the new coordinate system for a general value 

of the spin, S, and then outline the calculation of a for S = 5/2. 
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Finally, we shall include a computer program for calculating a for 

s = 5/2, H = 52.2 kOe, and specified values of D,A and T. 

2. Derivation of the Diagonal Terms of J( 

We first write the spin Hamiltonian as 

(Cl) 

where the· coordinates {x '. ,y', z '} . refer to the p:r:"0per axes of the ligand 

field, ~uch that A == E/D S;. 1/3.' We now define a new coordinate system 

{x,y,z}, such that ~llz, with the orientation shown in the following 

figure: 

z,H 

. z' 

x 
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With these definitions, 

S , = [cosljJcos<p-cosesin<psinl/J]S x . . . x 

+ [cosljJsincp+cos8cos<pSinljJ]S . y 

+. [sin8sinljJ]S 
. z 

S , = [-sinljJcos<p-:cos8sin<pcosl/i]S 
y x 

+ [-sinljJsin<p + cos8cos<pcosljJ]S .. y 

+ [sin8cosljJ]S 
z 

S , = [sin8sin<p]S + [-sin8cos<p]S z x. y 

+ [cos8]S . z 

UCRL-1965l 

(C2) 

When these expressions are substituted into Ego (Cl), a number of 

terms wiil result 0 There will be terms in the operators S z' S z 
2

, Sx 
2 

, 

and S 2, as well as in the cross terms [S S +SS ], [S S +S S ], and y x y yx· x z z x . 

[S S +S S J. It is easy to show that the sUbstitution of the ladder y z z y 

operators 

S+ - (S +is ) x y 

S - (S -is ) 
x Y 

leads to the relations 

S 2 = 1 (S 2+S S +S S +S 2) 
x "4 + + - - + .-

212 2 S.· = -,- (s -s S -s S +s ) y ~ + + - - + -

[s s +s S ] = ~ (s 2_S 2) 
x Y Y x C - + 

[s s +S s ] = 1 (s s +s s +s s +s s ) 
x z z x 2 + Z - z z + z-

[s s +s s ] = 12" (S s -S s +s's -S S+)o 
y z z y - z + Z Z - Z 

(C3) 

(C4) 
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It is clear from the properties of the ladder operators that only 8z ' 8z
2

, 

8 8 and 8 8 terms are diagonal in the new system. These terms only 
+ - - + 

arise from the first set of operators mentioned; ,This observation 

considerably simplified the algebra, and sUbstitution of the" appropriate 

terms of Eqs. (C2) into Eq. (Cl) yields the diagonal terms of the spin 

Hamiltonian, Xd " 
~ag 

x ~', 
diag (C5) 

We note that there is no dependence on the angle <P, in Eq. (C5). This 

is true for the complete Hamiltonian as well, and is due to the fact 

that only two angles are required to specify the orientation of the 

vector H~Thus, only two angles can have, physical significance in any 

system, as long as the relative orientation of the two systems has been 

properly defined in terms of Euler angles. 

3. Derivation of the Form of ex. for 8~:::: 5/2 

For a given value of 8, we can easily calculate the eigenvalues of 

K" using the general formula 
d~ag 

8+lm > = [8(8+1) - m (m ±1)]l/2 lin ±l> 
- s s ss, (C6) 

where we have set h=l. 8ince the states of X
d

" ,are eigenstates of 
~ag 

8 == 8' , the magnetic dipole transition probability derived, in Appendix B H z 

W _! j 1/ <8 > 12 + ! 1 <8 > /2 + / <8 > /2 l 
n 3j2 +n 2 -n ,zn \ 

only allows transitions between adjacent energy levels. For 8 = 5/2, 

the transitions giving rise to absorption (frm = +1) occur at energies 
s 

given by 

• i 
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n Ii > .. Ifn>· E 
·n n 

1 I-t> 1_1 > El = g~H-4D+6D6(e,ljJ) ·2 

2 1_1 > 1_1 > E2 = g~BH-2D+3DMe ,1)1) . 2 ·2 

3 I-~ > I~> E3 = g~BH 

4 I...! > I~ > E4 = g~BH+2D~3DMe ,ljJ) 2 

5 I~> 1..1. > E5 - g~BH+4D-6D6(e,ljJ) . 2 2 

where the <angular dependence is specified by 

Me,ljJ) - sin2S(1-Acos2ljJ) 

UCRL-19651 

(C8) 

and the transition probability is proportionalt() I<S > 1
2 , Similar 

... + n·· 

relations may be obtained for any value of S. At low temperatures, the 

fact()r P (T) will be largest for the transition n=l, and will rapidly 
n 

decrease·with n. 

We shall now concentrate on a single transition, n. Assuming that 

the lineshape function is given by 

p(v-v ) = 6(V-v ) n n (CIO) 

the expression for the powder average absorption coefficient for a single 

transition, neglecting numerical factors, becomes 

a . v ) = ~ V -C· 1 f 
n n ~n n 

(ell) 

The integrand can be written, 

a (v )dnH :: h I<s+> .1
2 

[v (e,ljJ)p (S,ljJ,T) sinS] dSdljJ n n ~n . n n . n . (C12) 

where we have explicitly indicated the functional dependence of each 
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term. Note that 1 <8+> n 12 does not depend on (8,l/J}. We now choose the 

pair (il,l/J) as independent variables, rather than (-S,l/J). We may then 

re~rite Eq. (C12) as 

(C13) 

where 

as ~ 

*1) ail ail 

a il,l/J) - (C14) 

ae ~ 
al/J al/J 

is a Jacobian determinant. Note, from Eqs. (c8), that v and P depend n n 

upon il alone. The polycrystalline absorption coefficient ~ (il) can _ n 

then be obtained from Eq.(C13) by integrating over l/J: 

ex (il ) dfl = f [ a. (il, 1/1 ) <:1.6] dl/J n n -
'. . .. . 

(C15) 

and the relation between a(il) and a(v-) is easily made through the - n n - n 

relation of v and il given by Eqs. (C8). It is easy to show that the 
n 

two "distribution functions" a(il) and a(v ) are equal at the correspond~ 
n n n -

ing values of il and v . 
n 

We can write the l/J-dependent part of Eg. (C13) as the distribution 

function. f (il, l/J ) : 

~ f(il,l/J) - sinS(il,l/J) ~ 

We then use the definition of il, Eq. (C9) to obtain equations for S(il,l/JJ', 

l/J(il,S)and sinS(il,l/J), and calculate the Jacooian. After considerable 

algebraic manipulation, Eq. (C15) can be rewritten 

f(il,l/J) = { (1-Acos2l/J)[ (l-Acos2ljJ)-il] }-1/2 (c16) 
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We note ,as usual, that only the first octant in' (e;rp) is required to 

obtain the full lineshape. In the present terms, then, the integral to 

be calculated over tjI is 

J
rr / 2 

f(t:d = ~' 0, [f(il ,tjI )]dtjl (C17 ) 

and the' absorption coefficient will be given by 

a(il) = \) (il) P (il,T) f(il) 1<8 > 12 (c18) 
n n n , .' + n , 

Although the nominal integration limits on'tjI are now (0,rr/2), the 

change of variable used has introduced a constraint which limits the 

actual range of tjI for a given il. This can be seen by rewriting Eq. (C9) 

as 

sin
2
e = (1-A~OS2tj1) (C19) 

8inceO~sin2e~1, this relation places limits on tjI. Since IAI ~ 1/3, 

(1-Acos2tj1) L 2/3 for all values of tjI, so the lower limit on sin2e merely 

requires ALO. The upper limit, however, fixes the possible range of tjI. 

There are two cases, D>O and D<O. If D>0,A>6; if D<O, A<O. In 

either case, the full range of il can be seen tobe, 

The appropriate range of tjI for any il in this range can be seen by plotting 

(1-Acos2tj1) as a function of tjI for the two possible signs of A: 

1+1 A I-------~-.., l+IAI 

il 

l~IAI~-
A > 0 

l-IAI 
A <0 

tjlmin rr/2 o~------~----------~ ° tjlmax rr/2 
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Using Eq. (C19), the condition sin 2e5ol can be rewritten 

(1-Acos2ljJ) ~ ~ (C20) 

Therefore,for a given ~, as indicated on the graphs, the condition (C20) 

establishes a lower limit ljJ. on ljJ for A:>O ,and an upper limit ljJ for nu.n , ,max 

A<O. These limits are both given by 

1 1 ~ 
ljJmin,max; 2 arc cos [-X-] (C21) 

and only hold for l-IAI ~ ~ S 1 + IAI. For ~ ~ 1 - IAI, the integration 

range is the whole interval. 

With these conditions in mind, the evaluation of the integral in 

Eq. (C17) is straightforward and exceedingly tedious. The integrand, 

given by Eq. (C16) can be transformed to a standard form for elliptic 

integrals by the variable substitution 

x = tanljJ 

With this substitution, the integral can be reduced ~o the forms 

[M dx 
for 

A>O 0~~51-A 

[(x2+a2 )(x2+b2 )]1/2 A<O Os~~l-IA I 

1M d.X 

[(x2+a2 ) (x2_b2 )]1/2 for A>O 1- A ~~$.l+ A 

for A<O l-IAISA$l+IAI 

where a and b are functions of A and~. These integrals are related to 

the complete elliptic integrals of the first kind (see P. F. Byrd and 

M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, 

(Springer Verlag, Berlin, 1954~. 

;, 

1 
1 

'I 

I 
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Although the limits and integral forms depend upon the sign of A, the 

results do not. The general result, for any sign of A, and therefore of 

D, can be written 

05ll$1-IAI 

where 

. and (C22) 

fell) = K(k) 
rr[2IAlll]l/2 

where k2 _ (l-IAI)(i+tAI-ll) 
- . 21Alll' 

where K(k) is the complete elliptic integral of .the first kind. 

The f1.U1ction fell) varies between an awning and a circus tent in 

shape as,1 A I varies from 0 to 1/3. At the two ll::-limi ts, 0 and 1+ I A I , it 

is non-zero, and rises to a sharp peak at II = I-Iii. Examples of fell) 

for several values ofl AI are plotted in Fig. Cl. 

Eq;(C18) can now be explicitly evaluated for each ll, and we can 

write 

(C23) 

The absorption coefficients for each n, calculated from this equation, 

can be graphically added to obtain the total a(v). 

4. Calculation of a for S=5/2, H=52.2 kOe 

We have written a computer program for the IBM 16202 computer to 

calculate a-(v ) for eachtransi tiona The program,. called LINESHAPES, 
n n 

is listed immediately following this section. The input parameters are 

D, IA I, and T. The results for each transition are printed, and can be 

graphically added. An example of the results for two values of D and 

IAlhas been plotted in Fig. 6. 
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PROGRAM LINESHAPES 

PROGRAM LI NESHAPES CALCULATES THE BARE -POWDER-AVER~E LTNESBAPE--- -
IN THE HIGH FIELD LIMIT FOR S = 5/2 FOR A SPECIFIED ABSILAMBDA), 
D. AND T. THE APPLIED FIELD IS-ASSUMED TO,BE-S-2.rl<'oE. 

DIMENSION AKII01) 

READ IN A TABLE OF THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST 
KIND. AKIK**:?). 

READ 50. IAKIII. 1=1.101) 
50 FORMATI10F7.2) 

C 
C , READ PARAMETERS 
C 

51 

52 

5 

53 

54 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 

55 

READ 51. ALAM 
FORMATI1F5.3) 
READ 52. 0 

" FORMAT(1F6.3) 
READ 51. T 
PRINT 5'--'--'--' - -- --

FORMATl1r1l1 " 
PR INT 53 " ----------------
FORMAT(5X.45HABSORPTION LINESHAPES FIIEI) FOR H = 52.2 KOE) 
PR:INT 54, ·D. ALAM. '-T "-- .. _-.---.----, 
FORMATI/5X.4HD = F7.3115X.9HLAMBDA :: F5.31/15X.4HT = F6.3)) 

CALCULATE DELTA INTERVAL 

DMAX = ALAM + 1. ' 
DMID = 1. - ALAM 
OIl = DMID 1 20. 
ALAMT = 2. * ALAM 
012 = ALAMT 1 20. 

CALCULATE KT IN CM**-l 

AKT :: 0.695 * T 

•• _~ __ ..L ______ .' 

PRINT 55 
FORMATiIIIBX.2HEl.BX.6HFIIEI).BX.2HE2.8X.6HF21E2).BX.2HF~.10X 

1.2HE4. BX .6HF4 (E4) .BX. 2HE5. 8X.6Hr-S (E5,1 .7Tf---'-~-'-'-------------'-----' 

THIS LOOP ~ALCULATES THE ABSORPTION COEFFICIENT FOR ALL 
TRANSI T IONS FOR DELTA IN rHt'RAJii[G£----o-ro-r'='-AB-~8UJir~-- .. -------'-'-

DO 1 N :: 1.20 
AN = N - 1 
DELTA = AN * 011 

CALCULATE TRANSITION FREQUENCIES 

EA1 4.B74 - 4.*0 + 6.*D*DELTA 
EA2 = 4.814 - 2.*D + 3.*D*DTI'A-­
EA3 =4.874 
EA4 - 4.874 + '2.*D 3.*D*DELTA ------------

XBL 706-1263 
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EA5 = 4.874 + 4.*0 - 6.*0*OELTA 

CALCULATE EIGENVALUES, 

WA2 EA1 
WA3 :: WA2 + EA2 
WA4 = WA3 + EA3 
WA5 ~ WA4 + EA4 
WA6 = WA5 + EA5 

C C~LCULATE DENOMINA~OR OF PIN.TI 
C 

SUMA = 1. + EXPpl-WA2/AKTI + EXPF(-WA3/AKTI~~XPFI-WA4/AKTI 
1+ EXPFI-WA5/AKTI + EXPFI-WA6/AKTI 

C 
C CALCULATE K**2 
C 

BKS = IALAMT*OELTAIJIOMID*IOMAX-DELTAII 
C 
C ,tNTERPOLATE TO FIND AKIK-*21 
C 

C 

,BKS = 1100. * BKSI + 1. 
LBKS BKS 

'MBKS = LBKS + 1 
PBKS = LBKS 
DIFK = AKIMBKSI ~AKILBKSI 
ElK ~ AKILBKSI + DIFK * leKS - PBKSI 

C ElK IS AKIK**21 
C 

ElK = ElK * 0.0001 
C 
C TARGA IS MULTIPLICATIVE FACTOR FOR THIS 'REGION OF D1::L TA 
C 

TARGA 1.113 .14159*SQRTF I OMI 0*( DMAX-1)EL rAn) 
C 
CPATN IS PIN~TI 
C 

C 
C 
C 

C 

C 

C 
C 
C 

100 
1 

PAT} 
',PAT2 
PAT3 
PAT4 
PAT5 

FEAN 

FEAI 
FEA2 
FEA3 
FEA4 

,FEA5 

PRINT 

IS 

11. - EXPFI-WA2/AKTII/SUMA , 
IEXPF(-WA2/AKTI - ExPFI-WA3/AKTII/SUMA 
IEXPFI-WA3/AKT) - EXPFI-WA4/AKT))/SUMA 
IEXPF(-WA4/AKTI - EXPF(-WA5/AKTII/SUMA 
IEXPF(-WA5/AKTI - EXPFI~WA6/AKT))/S0MA 

ALPHA(N. EAN) 

0.555 * EA1 * PAT} * TARGA * ElK 
0.888 * EA2 * PAT2 * TARGA * ElK 
EA3 * PAn 
0.888 * EA4 * PAT4 * TARGA * 'E I K 
0.555 * EA5 * PAT5 * TARGA * ElK 

~RINT 100. EAl.FEA1.EA2.FEA2.FEA3.EA4.FEA4.EA5.FEA5 
F6~MATI/IX.9F12.41 
CONTINUF 

THIS LOOP CALCULATES ,THE ABSORPTION COEFFICIENT FOR DELTA IN THE 

XBL 706-1264 
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C RANGE 1 - ABSCLAMBDAITO 1 + ABS(LAMBDAI~ 
C 
C 

DO 2 M = 1,20 
Alii! " M 
GELTA.= DMID + AM * DI2 
EB1 4.814 - 4.*D + 6.*D*GELTA 
EB2 4.814 - 2.*0 + 3.*D*GELTA 
EB3 4.814 
EB4 4.814+ 2.*0 - 3.*D*GELTA 
EB5 4.814 + 4.*0 6.*D*GELTA 
WB2 EB1 
WB3 WS2 + EB2 
WB4 ,. WB3 + EB3 
WB5 IIIB4 + EB4 
WB6 WB5 + ES5 
SUMB = 1. + EXPF(-WB2IAKTl + EXPF(;.;wa3tAAT1--T-1:Xff1-~4'AK-TI 

1+ EXPF(-WB5/AKTJ + EXPF(-WB6/AKTJ 

2 
C 
C 

15708 
16124· 
16596 
17139 
17775 
18541 
19496 
20754 
22572 
25781 
99999 

CKS· = - C DM 10* C DMAX-GEL T A I1/t ALAMT*GEL i~-)--------------------

CKS :: (100. * CKSI .+·1. 
LCKS CKS 
MCKS= LCKS + 1 
PCKS" LCKS 
DIRK = AKCMCKSI - AK(LCKSI 
ORK: AKCLCKSI + DIRK .--(el(S- ""--l7CKSr---------:------------------ --------.---.-----
ORK :: ORK * 0.0001 
TARGB= l.fl3.14159*SQRTFfACA"JIIIT1FGELTAII 
PBTl :: (1. - EXPF(-WB2IAKTII/SUMB . 
PST 2 (EXPF C -WB 21 AKT I .-."'-' EXPfT-''-lffl3 TA1(rTTTSt11'Ia::-,---'~----' ---------- ---------- --.-- -- -. - -- -- ---
PBT3= (EXPFC-WB3/AKTI - EXPF(-WB4/AKlII/SUMB . 
PBT4 = (EXPF(-WB4/AI(TI '" -EJ(PfT-'-WffSfA""KTlI/SOMB ------------.------------ ... - --.-------- - --. 
P~l5 (EXPF(-WB5/AKTI - EXPF(-WB6/AKTIIJSUMB 
FEB 1 O. r; 5 5 * EB 1 .---p BT1---.IA"R"Glr"--,*..,O"'RO'1Kr------~-----
FEB2 0.888 * EB2 * PBl2 * lARGB * ORK 
FEB3 EB3 * PBT3 --- ------------------~-~------------ --. ----------.----- -----

FEB4 0.888 * EB4 * PBT4 * lARGB * ORK 
FEB5 - 0.555 * EB5 * PBT5 *lliRGB--.--uR~---------;,------------·---·-----------

PRINT 100. EB1.FEB1.EB2.FEB2.FEB3.EB4.FEB4.EB5~FEB5 
(ONTINUE--------- -----

CALL -EX IT 
END 

15747 15181 
16169 16214 
16647 16698 
17198 17258 
1.7845 17916 
18626 18714 

·19605 19718 
20904 21059 
22805 23052 
26278 26836 

----_._-------------_ .. _--------

-----------------

--._--_._----- -----_. 

1582815869- T59TO------r5952------rs"9l)4---T6U3,~50_eU------- -- -- - ----
16260 16306 16353 16400 16448 16497 16546 
16751 1-680li-P -T08"5T 16912 1696717024 ----rT01fr---------- ____ n ____ _ 

17319 17381 17444 17508 17513 17639 11706 
1 7989 - 1 8063- I1JT3g----r"B7Hi----r8"2"95 --1U,5 -- UI-z. 57--
18804 18895 18989 19085 19184 19285 19398 
1913 3 4- T995T--ZO-(J7o 20203 ----znTI7+--Z\rliOg--2TIM-'T--- - -------
21221 21390 21565 21148 21940 22140 22351 
23314 2"3-593-m --z:nrg-O 24209 24553. 24~Z5'JTI--------

27471 28208 29083 30161 31559 33541 36956 

XBL 706-1.265 
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D.Magnetic Torque for a Para.m.agnetic Ion in an Axial Ligand Field 

'In this appendix, we shall derive the gener'al equation for the 

magnetic torque on a paramagnetic ion in an axial ligand field and an 

external magnetic field. We shall also give ~ brief calculation of 

the torque per unit volume for tWd specific cases where the ion has 

spin S <::' 3/2. 

1. Derivation of the Expression for the Magnetic Torgue 

We consider an ion described by the modified form of the spin 

Hamiltonian 

(Dl) 

where the form and definitions are the same as those given for Eq. (2) 

wi th the exception that we have assumed a stric,tly axial field, and 

thus E=O. The torque per unit volume, ~, is given by 

T = M x H (D2) 

where~ is the magnetic moment per unit volume. For N ions per unit 

volume, Mis defined as 

where <]1> is the magnetic moment per ion. We may also define 

~ = ~ ~ (n4) 

where, ~ is the susceptibility tensor. We may relate ~ to the 

principal'values of ~by observing that, in the system in which the 

spin Hamiltonian is written, '25- is diagonal, so Xxx = Xyy = \, and 

Xzz = XJI' If we choose H to lie in the x-y plane at an angle e to the 

z-axis, 
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(D5) 

where e and e are unit vectors in the x- and z- directions respectively. 
x z 

If we now substitute the expression for M, Eq.(D5), into Eq. (D2), the 

result is 

or 

T = ! (Y'I -Xl) H
2sin2e e··. 

- 2',y 

We may observe the following: 

(i) If D=O, Xjl= Xl' and I~I = O. 

(ii) If 8=0 or TI/2, I~I = O. 

'" e 

(iii) The maximum torque occurs for e = TI/4. 

y 

(D6) 

Now, in order to calculate ~, we need oniy calculate Xj, and Xl' 

Since ~ is diagonal, Eq. (D3) and Eq. (D4) imply that 

Therefore, we need only calculate the quantities <11 > for H=He and 
x - x 

<l1 z> for ~=Hez in order to obtain Xjl and Xi . 

At a temperature T, the thermal average value of <11> for ions in 

therm~ equilibrium with the lattice is given by 

L 11 exp(-E /kT) s -6 s 
<11~ = ~~--~--~~--

L exp(-E /kT) 
s . s. 

where the sum is over all electronic states 6 of energy E. The s 

(DB) 

• 
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corresponding equations for <J..l1 > and <lill > follow directly. For ions 

described by Eq. (DI) at low temperatures, the sum need only include 

the states in the ground multiplet. 

The ,.calculation of <J..lII> is simple, since the states are eigenstates 

of S wit,h magnetic moments J..l given by 
·z .-

whereJ..lB.is the Bohr magneton, and m is the eigenvalue of S for the s Z 

states. The energies E are simila.rly given by s 

E = gJ..lB H m + D[m 2_S(S-H)!3J s s s . (DIO) 

However, 'for a perpend. icular field H=He , the situation is slightly 
- x 

more complicated, due to the admixture of states 'dtscussed in Section II. 

We need to calculate the quantity 

J..l s :: - <1jJ ·.1 gJ..l s 11jJ > sB x s x 
(DII) 

where <1jJ 1 is the eigenfunction of the spin Hamiltonian for state s. s 

However,we note that 

Therefore 

E = <1jJ IJellJi > s s s 

= <lJi IgJ..lB HS IlJi> + <lJi ID[S 2_S(S+I)/3JllJi > s x s s Z s 

= -HJ..l s x 
_ DS(S+I) + D<lJi Is 21lJi > 

3 s zs .. 

-(DI2) 

(D13) 
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If we have the, expansion of <~ I in terms of eigenstates of 
s 

S , obtained 
z 

from diagonalizing the spin Hamiltonian, the calculation of <~ 18 21~ :> 
s z s 

is simple. Since we shall have to diagonalize the spin Hamiltonian to 

obtain E , this is a useful form for ~ • We note that Eq. (D13) also 
s s 

x' 
gives Eq.(D9) if H=He andEq. (DlD) is used to obtain the value of 

z 

E. We also note that the equations in this section involve no 
s 

approximations, and that in general no approximations may be made in 

the calculation of L for the compounds discussed in this thesis'. 

2. Calculation of 1 for 8=3/2 

We shall now briefly outline the calculation of !: for two specific 

cases with S=3/2. For this spin value, the exparisionof the eigenvectors 

in terms of eigenstates of 8 can be obtained from the integration . . z , '.' . 

tables printed out by the program SHAZAM, discuSsed in Appendix B. If 

the eigenstate B of Sz with eigenvaluem
S 

is represented by Imf3> the 

expansion is 

where the coefficients of asS must be calculated for H 1 z. In 

particular, . 

! > I 1 2 + as 4 - 2 > 

and the evaluation of <~ Is 21~ > is simply 
s z s 

a. Case 1 

(D15) 

(D16) 

-1 We choose the specific case D=+7.58 cm ,T=4.2°K, and H=52.2 kOe, 

.. 
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which is a.ppropriate to our measurements for the compound 

«C2H5)2NCf32)2 Fe(III) Br. Some useful values are 

k(T=4.2°K) = 2.919 cm-l 

and 

~B(H=52.2kOe) = 2.4370 -1 cm 

UCRL-19651 

with these values and the information obtained from SHAZAM, the 

calculated values of <~I > and <~l > are 

<~II > = +0 .7462 ~B 

<~l > = +2.2804 ~B 

where we have used Eqs. (D8), (D9) and (D13). We note that <lll> > <llil >. 

This result is due to the fact that the magnetic moment is largely due 

to the states originating in the ground doublet, because the zero field 

spli tting is large. However, the ground doublet has gl ~ 4, gil ~ 2, 

indicating that <lll> > <llU >, as found. 

Using Eqs. (D7), we m83 calculate 'Xfl and Xl: 

Then Eq.(D6) becomes 

N . 
Xl = - <\1 > H 1 

and sUbstitution of the value N=2.33 x 10
21 

ions/cm3 , which is obtained 

from x-ray crystallographic data for the bis Fe(In) dithiocarbamates, 

gives 

sin 28 e 
y 
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'h" ~'r / 3 where t, e. unl. ts are """" ne-em em • Note that this torque. tends to 

rotate the crystallite toward H 1 z. 
b. Case 2 

For D=2.35 -1 cm T=4.2°K, and H=52.2 kOe,asiimilar calculation 

yields,,' 

<]11> = +2.0384 ]1B 

We note that in this ease, <]11/> is more nearly equal to <]11>. Although 

consideration of the ground coublet alone (~I ~ 6 ,gl ~ 0) would imply 

<111> » <]11>' the value of D chosen is small enough so that all of the 

states must be included. This calculation is ,a.ppropriate to the 

T = +(4.67 x 105 ) sin28 e 
y 

with the same units. This torque tends to rotate the crystallite 

toward H liz. 

These calculations serve to illustrate two important points: 

(i) If D>O, the torque tends to rotate the crystallite toward 

H1 '" if D<O, the torque tends to rotate the crystallite z' , -
toward H 1/ '" z. 

(ii ) If IDI is such that IDI/kT S 1, the torque becomes small. 

However, the calculated torque in both cases is qUite large, and is 

certainly sufficient to produce SUbstantial orientation in a 

polycrystalline sample. 

.. ! 
I 
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E. Stabilization of a4A2 State for Fe(III)in bis.Fe(III) Dithiocarbamates 

In this appendix, we 

the stabilization of a d5 

shall give a brief plausibility argument for 

. 4 
ion A2 state in C2v symmetry, with the 

specific application of the comments to Fe(III) in the bis Fe(III) 

dithiocarbamates. The approach will be to examine the effects of 

successive reductions of symmetry 1 
from 0h to C2v on the d levels, and 

then to populate these levels with five electrons to obtain the d5 state. 

We will use the notation and character tables given by Tinkham3 , and the 

representation multiplication table given in G. F. Koster, J. O. Dimmock, 

R. G. Wheeler, and H. Statz, Properties of the. Thirty-'two Point Groups 

(M. I. T. Press, Cambridge, 1963). 

We shall consider the specific reduction 

D -+0 -+D4 -+C4 -+C ' 
2 h h v 2v 

where we have denoted the full rotation group for ~=2 (appropriate to 

1 
d ) by D 2 . In terms of the bis Fe (III) di thiocarbamates, this reduction 

sequence corresponds to the changes in the iron environment shown in 

Fig. El. ·We consider the iron to lie at the origin of the coordinate 

system shown in each case. The symmetry 0h corresponds to an octahedron 

of sulfur atoms surrounding the iron site. The reduction to D4h is 

accomplished by replacing two sulfur atoms with halogen atoms, as shown. 

Two changes can be made in lowering the symmetry to C4v: one of the 

halogen atoms is removed, and the iron site (the origin) is moved out of 

the plane of sulfur atoms to the approximate centroid of the square 

pyramid formed by the ligands. Finally, in the reduction to C2v symmetry, 

the coordinate axes are rotated 45° as shown (in order to correspond to 
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the definitions of the operators of this group), the square formed by the 

sulfur atoms is distorted to a rectangle with the lqnger dimension in 

the x-direction, and additional ligands are added in the xz-plane as 

shown. 

The effect of these changes on the d
l 

orbitals is schematically 

indicated in Fig. E2. The splitting of states on a reduction of 

symmetry is found by decomposing the irreducible representations of the 

higher~symmetry group into those of the lower-symmetry group using the 

character tables given by Tinkham. Some care is required to determine 

the correspOnding symmetry operators in the two groups, especially in 

the last reduction which is accompanied by a change of axes. (The 

general method is described by Tinkham.) However, the magnitude of the 

energy splittings and the order of the split states in energy must be 

obtained by arguments based upon the specific .changes in the iron 

environment outlined above. We shall discuss these effects for each 

reduction in the following sections. 

The effects of this reduction are well-known. The decomposition is 

where the 0h representations Eg and T2g give res.pectively doubly- and 

triply-degenerate states with the basis functions 

E : 
g d 2 2' d 2 2· 

x -y 3z -r 

d ,d. , d 
xy yz xz 
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Since the lobes of the E basis functions point tQwa.rd the ligands, the g . 

energy of this state is higher than that of the T2g state, where the 

lobes pohit between the ligands. The energy separation, commonly 
4 .. -1 

designated 10Dq, should be of the order of 10 em for this system. 

Here, the decomposition is 

(E2) 

where the basis functions are indicated in Fig. E2. The order of these 

states in energy is obtained by assuming that the. interaction of the 

iron and halide is weaker than that of the iron and sulfur. This 

assumption~ which will be made in all of the remaining arguments, is 

consistent with the stability of the series of dithiocarbamate compounds 

with diff~rent halide ligands. With this assumption, the Alg(d 2) state 
. z 

should decrease in energy and the Bl (d 2 2) shoUld increase in energy 
g x-y 

with respect to the octahedral E state, and the splitting of the 
g 

octahe. qral T2g state shoUld be small , with the E (d ,d ) lying lowest. 
g xz yz 

3. D4h -C4.v 

. I 
The irreducible representations of D4h for d have a one-to-one 

rela.tionship with the corresponding representations of C4v ' However, 

substantial changes in the energies of the states should occur because 

of the changes -in the environment shown in Fig. EL The removal of one 

halide ligand should substantially reduce the energy of the AI(d 2) 
z 

state ,and should slightly lower the E( dyz ' dxz ) state. (We have 
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dropped the subscript g since there is now no center of symmetry.) 

However, the displacement of the iron site out of the sulfur plane should 

substantially increase the energy of the E states; while decreasing that 

of the B2 (dxy) state. This situation is shown in Fig. E2 by the crossing 

of the two levels on the reduction from D4h to.C4v ' Similarly, the 

energy of the Bl(d 2 2) state should decrease. 
x -y 

4. C4· ~C v .. 2v 

In this case, the only decomposition is 

The changes made in the environment should result in the small splitting 

shown, with the B2 (d ) state lying lowest. However, the change of 
. yz 

axes has brought about a corresponding change in the basis functions and 

representations, as indicated. IThe shifts in energy of the remaining 

states should be small. 

With this system, a quartet state may be stabilizeq. by the large 

splitting between the ground Ai(d 2 2) state and<the cluster of three 
x -y 

states Al (d 2)' Bl (dxz ), and B2 (dxy) . The large separation between 
z 

this cluster and the highest A2 (dxy) state suggests that an appropriate 

population of the dl levels, as shown in Fig. E2,.would be 

where the representation of the product state has been obtained by the 

relation 

(E4) 

obtained from Koster et al. A more complete analysis of this system 
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would require at.least a calculation usingtheco¢plete d5 manifoldof 
.,.',\ . 

states, 'and the behavior .ofthe tris and his pyrrOlidylcomplexes suggests 

that a',m:ol~cular' brpital analysis would· be more;,appropriate . 
. ," 

.. - •... : 

.:,-' .... : .. 
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F. Exchange-coupled Paramagnetic Ions with 8=3/2 in an Axial Ligand Field 

In this appendix, we shall examine the behavior of a pair of para-

magnetic ions with Sl' 82 = 3/2, whose Hamiltonian is 

(Fl) 

This Hamiltonian corresponds to two ions with spin~l and ~2 in the 

same axial field,and coupled by a Heisenberg exchange interaction. We 

shall study the variation of the eigenvalues arid eigenvectors as a 

function of the dimensionless parameter J/D. 

4. Limiting Cases 

In the two limits, J/D=O and J/D=oo, the Ham~ltonian in Eq. (Fl) 

can be easily analyzed. For J/D=O, the appropriate representation is in 

terms of the operators {~l' ~2' Slz' S2Z}' and the eigenstates are 

simple products of eigenstates of S::Lz( ImSl» arid S2z (Ims2»' The eigen­

values are easily calculated from Eq. (Fl) with J=O: 

state Eigenvalue Degeneracy 

I~>I~> 2D 4 

I ~>I.J:.> -2 -2 ' I.J:.> I ~> -2 -2 ° 8 
(F2) 

I.J:.> i.J:.> -2 -2 -2D 4 

where all possible permutations of the states ImSl>lmS2> are to be 

taken. 

For J/D=oo (D=O), we choose a representation in terms of {~l' ~2' ~, Sz}' 

where 

8 = 8 + §2 (F3) 
- -1 "-

The e.igenstates of j( are now eigenstates of S2 and S , Is ,m >. This 
z s 

"'-

.. 

i 
• I 
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can be easily seen by noting 

and therefore 

2 22, 
JC = 2JS'S = J[S - Sl - S,21 ",1 ",2 

UCRL-19651 

(F4) 

(F5) 

The eigenyalues clearly only depend upon S, and they are easily obtained 

from Eq. (F5): 

State 

13,m > , s 

12"m. > , s 

Il,ms> 

10,0> 

Eigenvalue 

(9/2)J 

-(3/2)J 

-(11/2)J 

-(15/2)J 

where we have used the fact that Isl -s2 1 :SS~Sl+S2' 

2. Intermediate Case 

Degeneracy 

7 

5 
(F6) 

3 

1 

We now consider the intermediate range O<J/D<oo. In this range, we 

must diagonalize the entire Hamiltonian of Eq.,' (Fl). This task seems 

formidable at first, since, for two S=3/2 ions, JC'is a 16 x 16 matrix. 

However, the form of the Hamiltonian introduces 'considerable simplifi-

cation. 

We shall choose as a basis set the product wave functions Imsl>lms2>' 

In thisr,epresentation, the axial ligand field ,terms in Eq. (Fl) are 

easily evaluated. The exchange term may be written 

and the SUbstitution of the ladder operators for each ion, 
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S = S + is + . x y 
(F8) 

S = S is 
x Y 

into Eq. (F1) yields 

The term .in SlzS2z is diagonal, and the properties of the ladder operators 

show that the remaining terms couple the state -1m·> 1m > to 1m 1+1> 1m -1> sl s2 s s2 

and Im
sl

-l>lms2+1>. If the Hamiltonian matrix is arranged so that 

coupled states are adjacent, the result is a blocI:--diagonal matrix with 

zeros everywhere except in seven blocks along the diagonal. These blocks 

are formed matrix elements of the coupled sets 

--> ---> {1 3 3 } {I 3 3 }. 
2'2 ' -2' 2 .' 

Thus, there is one 4x4 block matrix and two lXl, two 2x2, and two 3x3 

matrices on the diagonal. A calculation of the matrix elements using 

the equation 

. 1/2 
S+lm > = [S(S+l) - m (m ±l)] . 1m ±l> - s s s .. s 

(FlO) 

shows that the pairs of ma~rices of the same dimension have the same 

eigenvalues. In addition, an examination of the coupled sets of states 

listed.above shows that each set corresponds to a single value of m , s 

the eigenvalue of S , and that the paired matrices of the same dimension 
z 
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have opposite values of m. We therefore observe , , s 

(i) The quantity m is a good quantum number for all J/D 
s 

(ii ) For every state with m =10 ' 
s ' there will be another state with 

m'=-m with the same energy. s s 

The'secular equation for each matrix can be solved in closed form 

by appropriate factorization. The resulting eigenvalues are 

m E 
s 

·±3 2D+ (9/2)J 

±2 

±l 

'0 

-(3/2)J 

(9!2)J 

'-( 3/2)J 

-D-J/2 ± [D2_2DJ+25J2 ]1/2 

-(9/2)J ± T4D2+9J2 ]1/2 

-J /2 ± [4~,2":'16DJ+25J2 ]1/2 

(F1I) 

It is easy to show that these eigenvalues tend to the proper values in 

the limits previously discussed. 

It is clear from Eqs. (Fll) that for values of J/D>O.l, substantial 

splitting of theJ=O eigenvalues occurs. For example, in a magnetic 

resonance experiment such as that discussed in this thesis for 

(C2H
5

)2NCS2)2 Fe(III) Cl in the paramagnetic state, this splitting 

results in,a large broadening of the zero-field magnetic resonance at 

v=2D. 
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G. Ferromagnetic Resonance Frequency·· for 

Ions in an Axial Ligand Field with D<O 

lri this . appendix, we shall use simple classical arguments to derive 

the relationship between the ferromagnetic resonahce frequency for H=O 

and T=O, for a system of ions in an axial ligand field, and the axial 

crystal field parameter D<O. In the following discussion, we shall 

neglect demagnetization effects since the saturation magnetization of 

the Fe(IU) dithiocarbamates, to which these results apply, is of the 

order of 65 gauss. 

1. Ferromagnetic Resonance in the Uniform Mod.e· 

First, we shall discuss the motion of a system of ferromagnetically-

coupled ions in an external field, H. The equation of motion for the 

magnetization M is 

dM 
~ =g~ M x H (Gl) .dt B__ 

The sOlution of this equation is discussed extensively by KitteL 54 The 

solutions consist of plane waves of wavevector.k in which the ionic spins 

precess about the direction of the external field with frequency v. For 

T=O, the deviation of the spin direction from the direction of the 

magnetic field H is small, and the frequency of the precession in the 

uniform (k=O) mode is given by 

v = g~ H o B (G2 ) 

A uniaxial anisotropy in the ionic envirOnment may be represented 

by the energy density 

-M-H .., -A (G3) 
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where we have approximated the effects of anisotropy for small spin 

deviations by the effect of an "anistropy fieldn~A' For such a system, 

the spinsp~ecess with a frequency 

at T=O and in the absence of an applied magnetic field. Ferromagnetic 

resonance absorption will be observed for incident radiation of this 

frequency. 

2. AnisotropY Fieldlfor Ions in an Axial Ligand. Field with D<O . 

. The axial part of the spin Hamiltonian of Eq. (2) for an ion in an 

axial field is 

where we have ignored the constant term. If D<O, the ionic spin at low 

temperatUres will tend to align along the z-direction. This will give 

rise to an anisotropy energy density 

where N is the number of ions per unit volume. In order to obtain the 

effective anisotropy field ~A such that 

we expand the anisotropy energy density Eq. (G6) in terms of the polar 

angle 8 between S and the +z-direction: 

where we observe that, at T=O, 8«1 so Eq. (G8) becomes 

2 
_NIDls2(1_% ) 2 

'" _NIDls2 (1_82 ) 

(G8 ) 
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We note that an additional classical approximatioIihas been made to 

obtain Eqs. (G8) and (G9 L We have neglected the quantization of the 

projection of S on g in Eq. (G8), and therefore bur result will be _ z 

exact only for large spin S (where this approximation is valid). 

We may obtain a more useful form of ilCl: 
. 2 . 

'JCl = -2NIDls2 (1_% ) + NIDls2, (GIO) 

where we have subtracted and added the constant NID IS2. A similar 

expansion of Eq. (G7) gives 

= -Ng~ SHI cos 8 B A 

82 
~ -Ng~ SHI(l-- ) 

B A 2 

where we have assumed that HI· = -HAg, and that S is nearly in the 
~A z -

(GIl) 

+z-direction, as in Eq. (G9). A comparison of the angle-dependent parts 

of Eqs.(GIO) and (GIl) shows that 

and that therefore 

HI = 21DIs 
A 

(GI2) 

Therefore, the effect of the axial ligand field for large Sand T=O may 

be approximated by that of the anisotropy field;Eq. (G12). As discussed· 

in the text, this classical equation may be corrected to the appropriate 

quantum expression by multiplying S by the factor 

(G13) 
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Therefor~, 

H' 
A 

= 21 D 1 sn = 21D I (S~) 
gllB gllB 

(G14) 

and the corresponding ferromagnetic resonance at T=O and H=O is, from 

Eq. (G4) 

(G15) 

3. Temperature Effects 

In most ferromagnets, the anisotropy in the spin environment is due 

to theniagnetic interactions of- the paramagnetic ion with neighboring ions~ 

and the spatial variation is due to the symmetry properties of the 

magnetic lattice. As the temperature increases, the disorder of the 

magnetic moments increases, and the ferromagnetic reSonance will broaden 

due to local variations in the effective anisotropy field, ~A' In 

addition, for such systems where the anisotropy field is due to exchange 

with neighboring spins, the average anisotropy field tends to zero as 

the temperature approaches the transition temperature Tc' since, at this 

temperature, the local spins are nearly completely disordered. 

However, the anisotropy due to an axial lj,gand field does not 

decrease-with temperature. As the temperature increases, the disorder 

in the spins will cause the semiclassical derivation of ~A to break 

down, and in addition there will be a growth with temperature of 

resonances corresponding to "paramagnetic" states where the neighboring 

spins are not aligned, but are coupled by the eXChange interaction. (As 

indicated in Appendix F, the paramagnetic resonance spectrum in zero 

field is broadened by the exchange interaction.) Thus, a smooth 

transitio~ from a sharp resonance at 2IDI(s~) to the broad paramagnetic 
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spectrum should occur as T increases, This situation is observed in our 

meas urement s on the ferromagnet ( C 2H5 ) 2NCS2 )2F: (III) Cl. 

4. Field Effects 

AtT=O, the application of an external magnetic field H t gives an 
, ' -ex 

effective field acting on the coupled spins 

H = H + H' -eff -ext -A 
(G16) 

for ions with an axial ligand field. If 6
H 

is' the, angle between ~ext 

and ~l,solution of Eq. (Gl) in the uniform mode gives the ferromagnetic 

resonance frequency 

(G17) 

where'the magnitude Heff is given by 

(G18) 

For !.!eff II Hl, the frequency is 

Vo = g~B(Hl + Hext) 

= 2IDI(s-~) + g~BHext 

However, the lineshape for a polycrystalline sample is not easy to 

calculate. This is because the anisotropy field Hl was calculated 

under the assumption that the deviation of the spin from the z-direction 

is smalL If Hext «Hl, this assumption will b~valid, since the effective 

field ~eff will be nearly parallel to the z-direction for any orientation 

of ~ext~ ,However, for (C2H5)NC82)2Fe(III)Cl, IDI = 1.93 cm-
l 

and 8=3/2, 

so 

H' = ~ =41.2 kOe 
A g~B 
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There·fore, in applied fields larger than a few kOe, the semi-classical 

derivation of HA breaks down, and a more rigorous' calculation must be 

made. The observed ferromagnetic resonance for this compound is 

consistent with Egs. (G17) and (G18) under the assumption that the 

magnet:ic torgue produces a sUbstantial alignment of the crystallites 

such thatH t II 2. This is very likely at the low temperature (T=l. 3°K) 
'-ex 

where the results shown in Fig. 17 were obtained. 
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Table I. Experimental values of the zero field splittings ~l and ~2 

and derived values of the spin Hamiltonian parameters for several heme 

compounds obtained from the far-infrared spectra at H=O for T=4.2 and 50oK. 

Compound 

Protopor.,.. 
phyrin IX 
Dimethyl 
Ester 
Fe (III) . 

Deuteropor­
phyrin IX 
Dimethyl 
Ester 
Fe( III) 

Ligand 

Fluoro 

Chloroa 

Azido 

Fluoroa 

Chloroa 

Bromoa 

Iodo 

Azido 

a 
Data from Ref. 27. 

D 1 
(cm- ) 

~1=13.9±'28 '6.95±.14 

~l =19. 5±. 30 

~2=36. O±. 75 

~1=11.1±.22 

l\l=32.8±.30 

~1=14.8±.10 

~2=29.2±.15 

9.10±.15 

5~55±.11 

8.95±.18 

lL8±.23 

.' 16.4±'15 

7·32±.05 

.085±.025 

~O 

-0 

.036±.015 
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Table II. Experimental values of the zero fields1?1i tting III and 

derived values of the spin Hamiltonian parameters for several Mn(III) 

deuterbporphyrins obtained from the far infrared spectra at T = 4.2°K. 

Compound 

Deuteropor- . 
phyrin IX 
DimetlJ;yl 
Ester 
Mn(Irr) 

Ligand 

Chloro 

Bromo 

Azido 

7~6 ± .05 ":2.53 ± .02 :S;.005 

~1.10 ± .10 

9.25 ± .15 .. -3.08 ± .10 :s; .04 
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Table III. Observed zero field spli ttings and derived values of D for 

ferrihemoglobin and ferrimyoglobin obtained from the far-infrared spectra 

at 4.2°K. Several in.direct values of D and the far~infrared results for 

fluoroprotoheme are included for comparison. 

Compound 

Ferrimyo­
globin 

Ferrihemo"': 
globin 

Protopor- . 
phyrin IX 
Dimethyl 
Ester 
Fe(III) 

a. Ref. 13 
b Ref. 42 
c Ref. 43 

~ef. 44 

Ligand D 

.( cm -1) 

Aquo > 16 9.5 ± 1. 5 

Fluoro 11. 88 ± .16 5.94 ± .08 

Fluoro 12.60 ± .24 ·6.30 ± .12 

Fluoro 10.0 ± .20 5.0 ± .10 

Indirect 
value 

D 
(cm- l ) 
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Table IV. Zero-field splittings 6 and derived values of the spin Hamiltonian parameters for bis 

(N,N dialkyl dithiocarbamato) Fe(III) halides [(R2NCS2 )2 Fe(III) X], obtained from the far-infrared 

spectra. The difference in the zero field splitting for compounds with the same dithiocarbamate 

ligand and different halogeno ligands,,6Br - 6Cl ' and the quadrupole splitting obtained from 

.. a ".' . 
Mossbauer data are •. alsoJ.neluded. 

Ligands 

R = CH 
3 

R = C2H
5 

R = (i-c H ) 
3 7 

NR =Pyrro-
2.lidyl 

~ef.49 

b Ref.48 

X=Br 

X=Cl 

X=Br 

X=Cl 

X=Cl 

X=Br 

X=Cl 

6 

(em-I) 

14.60 ± .20 

4.20 ± .04 

15.10 ± .20 

3.85 ± .02 

4.70 ± .06 

16.33±.20 

5.20 ±.09 

6Br-6Cl 

(em-I) 

18:80 

18.95 

11.13 . 

D 

-1) (em . 

+7.30 ±.10 

-2.10 ± .02 

+7.50± .10 

,..1.93 ± .01 

-2.35 ± .03 

+8.17 ±~;lO 

+2.60 ± .05 

A 

.067± .005 

' b 
.036 ± .003 

6E
Q 

(em/sec) 

.290 

.266 

.288 

.268 

.268 

.277 

.268 

I 
I-' 
w 
w 
I 

c::: 
Q 
::u 
t-t 
I 

I--' 
\0 
0'\ 
VI 
I--' 
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Table V. Frequencies of absorption maxima for the magnetic field-independ:-

ent absorptions observed in the far-infrared spectra of several compounds 

Compound 

Fluoro ferrimyogiobin 

Bromo deuteroporphyrin IX 
dimethyl ester Mn(III) 

Phenoxo deuteroporphyrin IX 
dimethyl ester Mn (III) 

Bromo bis (N,N diethyl dithiocarba­
mato) Fe(III) 

Chloro bis (di-isopropyl dithio­
carbamato) Fe (III) 

Chloro bis (N ,N diethyl dithiocarba­
mato) Fe(III) 

Bromo bis (pyrrolidyl dithiocarba­
mato) Fe(III) 

-1 
Absorption Maxima (cm ) 

8.9 

25.2, 34.0, 39.3, 46.0 

13.3, 3LD 

21.3, 31;5, 34.5, 42.9, 
44.1, 46.5, 52.8 

26.5 

33.0, 38.$, 43.6 

21.0, 29.8 



Fig. 1. 

Fig. 2,. 

Fig. 3. 
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FIGURE CAPTIONS 

Zero field eigenvalues in units of D as'a function of A = E/D 

for the spin Hamiltonian Eq. (2) withS = 3/2,2, and 5/2. The 

m values of the states for A= 0 are indicated at the left, and 
s 

doubly-degenerate eigenvalues are identified at the right. 

Eigenvalues in units of D as a function of H' = gllBH/D for the 

'spin Hamiltonian Eq. (2) with A= 0 and S = 3/2, 2, and 5/2. 

The dotted curves are for H" z, the 'solid curves for H 1 z. 

,The ms and,~ values of the states for large H' and D > 0 are 

indicated at the right. 

-The polycrystalline absorption coefficient ex calculated from 

"Eq. (5) for S = 3/2, D < 0, D/kT = 0.8,A = 0.036, and various 

values of H'. The contribution of each transition to the total 

lineshape is shown in the upper curve; the transition index n 

is identified in the inset diagram. The lower composite plot 

,indicates the variation of the totallineshape with H'. The 

scale of a. for H' = 0 has been reduced for clarity. 

Fig. 4., Raw data and ratios as obtained from the Fourier spectrometer 

, for ~ 200 mg of polycrystalline iodo deuteroporphyrin IX 

dimethyl ester Fe(III). 

Fig. 5. Absolute configuration of the ligands surrounding the Fe (III) 

ion in Ferrichrome A, after Zalkin, Forrester, and Templeton, 

Ref. 15. 

Fig. 6. Theoretical and experimental absorption coefficients for poly-

crystalline ferrichrome A at H = 52.2KOe and T = 4.2°K. The 

points are the average of three experimental lineshapes, and 
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the bars indicate plus or minus one standard deviation. The 

experimental points have been corrected for small linear 

variations of the background, due to instrumental effects, 

obtained from the value of the absorption coefficient at 

frequencies below and above the plotted' range. The solid curve 

is the theoretical bare absorption coefficient for g=2.0, 

D = -0.27 cm-
l 

andlAI = 0.25; the dotted curve was calculated 

-1 
for D = +0.27 cm and A = 0.333. The. frequencies of the 

absorption edges and maxima, defined in the text, are indicated 

for the solid curve. 

Fig. 7~" Probable molecular structure for Fe(III) {S2CNR2)3' after 

Ewald, Martin, Ross, and White, Ref. 19. R is an alkyl group. 

Fig. 8; . Data for polycrystalline tris (pyrrolid;y-l di thiocarbamato) 

Fe(III) at T=4.2oK, obtained from the far~infraredspectra. 

The points are the frequencies of the observed absorption 

maxima, and the bars show the approximate width of the absorp-

tions: Smooth curves have been drawn through the points. 

Fig. 9. Approximate structure of the porphyrin skeleton and local 

coordination of the iron atom in heme compounds . 

Fig. 10. Data for a sample of - 150 mg of polycrystalline fluoro 

.protoporphyrin IX dimethyl ester Fe(III) at T = 4.2°K. The 

points indicate the position of the experimental maxima, and 

the bars the approximate width of the observed absorptions. 

The curves are the transition frequencies predicted by the 

"'spin'Hamiltonian in Eq. (2) for D = +5~Ocm-l,A = 0, and 

H 1 z; the dotted portions indicate weaker absorption due to 

.,' 
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'the effects of the Boltzmann term P n (T=4.2°K). The approximate 

. spectral bandpass of the sample is indicated by the range of 

frequencies plotted. 

Fig. ll~ Data for a sample of - 100 mg of polycrystalline azido deutero­

porphyrin IX dimethyl ester Mn(III) atT:= 4.2°K. The format 

is the same as that used in previous figures. The curves are 

the predicted transition frequencies calcUlated from Eq. (2)· 

8 -1 A 

for D =. - 3.0 cm ,>.. = 0, and H 1 z .... 

Fig. 12. Data obtained from the far-infrared spectra of paste samples 

containing ~ 1 gm of the fluoro derivatives of ferrihemoglobin 

(HbF) and ferrimyoglobin (MbF) at 4.2°K. The points are the 

frequencies of the measured absorption maxima, and the bars 

indicate the approximate width of the observed absorptions . 

. The curves are the frequencies of stroqgtransitions calculated 

from Eq. (2) for>.. = 0, Hiz, and D=;6~30 cm-l (HbF), and 
. '1 . 
D = +5.94 cm- (MbF); the dotted portions indicate regions of 

weak absorption. The range of frequehcies plotted indicates 

. the approximate spectral bandpass of the <samples. 

Fig. 13,.. Data from the far-infrared spectra of :,,·1 gm of polycrystalline 

met-myoglobin at 4.2°K. The points are. the average values of 

the frequencies of the measured. absorption maxima for eight 

experimental runs. The curves are theealcUlated transition 

,frequencies using Eq. (2) with>" =0, Hi z , and the values _. 

of D indicated at the right. 

Fig. 14. Molecular structure of (R2NCS2 )2 Fe(III) X, after Hoskins, 

Martin, and White, Ref. 46. R is an alkyl group, and X is a 

halogeno ligand. 
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Fig. 15. D~ta obtained from the far-infrared spectra of - 100 fig of 

polycrystalline bis (di-isopropyl dithiocarbamato) Fe(III) 

chloride. The points are the frequencies of the observed 

. absorption maxima and the bars indicate the approximate width. 

The curves plot the principal maxima of the polycrystalline 

absorption coefficient, calculated using the program described 

in Section II-C for D =·-2.35 cm-l , A··= 0.036, and T = 4.2°K. 

The dotted portions indicate regions of weak absorption. 

Fig. 16 .. Data for the ordered sample of bis (N,N diethyl dithiocarbamato) 

Fe(III) bromide, described in the tex.t at 4.2°K. The points 

are the frequencies of the observed maxima and the bars indicate 

the approximate width. The curves are the transition frequencies 

-1 
calculated from Eq. (2) for 8H - 3rr/8, D.= +7.50 cm ,and 

A = 0.067. 

Fig. 17, Data obtained from the far-infrared spectra of a polycrystalline 

sample of bis (N,N diethyl di thiocarbamato) Fe (III) chloride in 

the ordered state at T = 1.3°K .. The points are the frequencies 

of the single sharp absorption maxima observed, and the bars 

indicate the experimental width. The line is v = 2jJBH + 3.85 
-1 cm 

Fig. 18. Far-infrared transmission spectrum of ',,- 50 mg of polycrystalline 

((C2H5)2NCS2)2 Fe(III) Br at T=4.2°KandH=0. The absorption 

-1 
due to the zero-field splitting is indicated at 6=15.1 cm 

and the transmission with no sample in place is. given by the 

dotted curve. 

Fig. Bl. Flow chart for the subroutine ABSRBNC, the main control 

subroutine of SHAZAM. 
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Fig. ca./Th~functioJ:lf(.i\), ,as, defined in Appenqf';)(, ~, for several 

values ,of ,.'5-,' == "IAJ. 

"Fig.E1.6hanges'in thelocalenvironmen-j; of Fe(.iir)fn 'bi~Fe(III) 
. " .", .. 

:dithiocarba.mate~ "for the ~ymmet!"Y:-;educti~nSer;i:es :d:t'scussed 
.'. . ":;'J.:-':", 

.:.' .... 

',;i'n. ApIlendix E." Th~FeCIII) ion lies at'the, or~gin of the 
, ' 

:;coordinate system ,in each case., 

Fig. E2 ',Schematic diag~ani of the ~ariation of'.ehe:~l represe~t~ilons , 
< :,", : 

.-',' """,:)" :. /,:~ 

"basisfUnc~i9ns,;ande~~rgy leve~s"for;;tli~, ~Yrrlln.e,try.,..recluqtion ' 
• • • J 

..... : J. 

,'<:seriesdfscussed in ApperidixE. 

:; . 

.,:., ' 

. "." , 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, ~pparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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