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I. INTRODUCTION 

There has long been a strong feeling in physics that theories 

should involve as few unmeasurable quantities as possible. In recent 

years this principle has been applied to the question of whether it 

might be possible to write theories of spinor fields (which cannot be 

measured•directly) wholly in terms of vector and tensor currents (whose 

matrix elements are measurable) which are either constructed from the 

fermion fields, or whose properties (commutation relations, etc.) are 

specified by some theory of their own. 1 ' 2  The problem then is whether 

the underlying fermion field can be reconstructed from the bosonic 

operators. 

In this paper we wish to present some work we have done on the 

construction of spinor fields from vector fields (in isospin, 

3-dimensional Euclidean, and Lorentz spaces) throughout space but at 

a fixed time, and mention the difficulties involved in extending our 

approach to the case of dynamically evolving fie1ds Our work provides 

then a simple kinematical precursor to the dynamical reconstruction 

procedures considered already in the literature. 37  

K 



II. SPINORS OUT OF VECTORS IN A 3-DI1vNSIONAL EUCLIDEAW SPACE 

In this and the next section we cbnstruct several spinor 

fields from vector 'fieids 	These cbnstrutions are all kinemëticl 

(or geometrical); they have no dynamical content as we are considering 

the construction of the fields pbint by point in space, considering no 

relations that mightexist among the fields at different points in 

time0 

The first case that we shall consider is the constructionof 

spinors from 3-vectors. The vectors in this case can be considered to 

be in either isospin space or ordinary 3-dimensiona1 Euclidean space, 

with the resulting .spinors in the appropriate space. 

The procedure used here is just the usual Qay]ey-Klein 

formalism8  which we regularly use to move from representations of 0(3) 

to those of su(2). Since this procedure amOunts to dete:rmining the 

parameters specifying the rotation of a coordinate system we must use 

two linearly independent vectors (since a single vector does not determine 

a coordinate system), which we consider as having rotated from a 

reference set of vectors. These we take to be onevector along the 

x-axis and another in the xy-plañe at the appropriate angle (the 

lengths of the vectors and the angle between them are invariant under 

rotation, so this reference 'system is determined uniquely). We then 
	 91 

calculate the Cayley-Klein parameters for this rotatión and the' two 

columns of the 2 X 2 Cayley-Klein matrix provide us with - two 2-spinors 

(which are not independent--each contains 411 the information specified 

by the rotation). 
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We take our two vectors to be V= (v1,  v1 , v1 	and 

= (v ,v ,v ) 	Our reference set of vectors is then 2 	2x 2y  2z 

=2 	

and 	= (a,b,O) where a2 	b2  =v22:nd
I 

vl2)7, 0)0] 

a(v.1 ) = v1 _ v2 	his imples a =2 	
and b = V2 	2 It  (vi ) 

Then we must solve for the Cayley-Klein parameters: 
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r!2 = 1 
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We find: 

2 	1 	v1 (a + ib 
a = - 	

( vi2) 	
) 	

() 2ib (2- 

1 1 v1  (a + 

=- 	(2)  
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Then 	and., 3 may be found from Eq. (3). We have thus 

constructed our two 2-pinors, namely 

Xl
= 	r 	 X2 

=) 	
(6) 

We are guaranteed that these objects transfOrm as spinos by 

the nature of, the Cayley-Klein formalism. In particulax the double-

valuedness characteristic of spinors is apparent from the functional 

forms for, a and y (they are square.rdots of the vector directions 

involved). . . 

To illustrate how these spinors contain at least some of the 

information given by the original vectors welookat the special case 

where the vectors are orthogonal. Then we find that 

v 
Re 	= Re(4 X ) = 

	l A 

	 • 	. 	= 0 	() 
(vi ) 

t 

I 

-* 

Im 	= Im(4 x) 
= 	 , 	

• 	= 0 . 	( 8) 
(v2 ) 

We : see that it is impOssible to recover the lengths of the 

vectors as we are in effect determining the angles ofa rotation, which 

does not depend on the legnths of the vectors involved. 

This procedure can be used to construct fields b repeating the 

construction at each point. One simply writes our vectors and spinors 
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as functions of position x . Thus, for example )  starting with 

we.  construct exactly as above: 

x1() = 

a2(x 	 1 	v ( 	
v((a( + ib( x)) 

• 	• 	• 	2ib(i) 	- 	[(vl()) 

and similarly for 
)'(), 

x2 (), etc. 

However, the independence of length of the result is a serious 

drawback if we are considering applying our method to a realistic case 

of quantum fields. That is to say, these spinors can only be used to 

donstruct unit vectors. • 

To see how we might get around thisdifficulty we consider 

forming.vectors from quartics in the. spinors. In. particular we 

consider two iovectors concocted by Bardakci and Halpern9 ' 1°  in 

connection with their work on the Sugawara model. These vectors are: 

0  a a  = i(u i-  v - v T u) = - 2 Im(u±' T v) 	 (11) 

a .  = [(u TV + v r u) + h.c.][u•T  v + h..c.] 	. 	. 	(12) 

Here i. = 
1 	

€ 13 . . 0 
3  . where € 13 . 	is•  the 2-dimensional. 	 antisymmetric symbol 

and h.c. stands for hermitian conjugate. It is evident that .Øa and 



(iL') 
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do indeed transform as isovectors if u and v transform as 

Ja 
isospinors; also 	and S 	are real and independent'(there Is no 

relation among the invariants 0 
2 S

2, and ''. . We may then solve 

for u and v to obtain spinors depending. on, all six degrees of 

freedom of the vectors. The solution in complete generality is rather 

formidable; we shall perform the inversion in one particular coordinate 

system to show the important features. We may then rotate to a general 

coordinate system to obtain the complete solution 

We.define new spinors @] G2  by:  

U 
= 212 	 (13) 

V = 

and go to the frame in which 

We shall then solve for 

(a 

0 -t 	) 	, 
b 

We find that 

1 	' 	 1 
a = (i - 	± i(Ø - Ibi ) (17) 

V 
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b = 

	

± (1- 	

22 	

- 02 (s2  

± i()[(Ø. s) -0 (S - 	. 	(18) 

This demonstrates clearly the dependence of the spinors on the 

vector invariants in contrast to the first case we considered. However, 

the result is somehat awkward, to say the least, and its physical 

meaningunclear. Moreover, we still have not completely solved our 

problem because though not unit vectors, the vectors are still bounded, 

since the spinors are. 	 . 

The boundedness problem is easily removed by introducing 

unbounded vectors defined in terms of the origin1 vectors by: 

= 
0 	

. .. 	 (19) 

s 	= 	. 	. 	. 	. 	 ( 20) 
S 

or equivalently: 

0aL 	 (21) 

• 	 0' 

• 	sa=S
ig  

. 	 : 	 • 	 (22) 

3 ?  

• Thus we have a scheme involving vectors of arbitrary length,. 

and spinors, with their mutual functional dependence evident at least 

in principle, 



III DIRAC SPINORS. OUT OF u-VECTORS 

We now leave our discussion of 2-spinors to shOw how a  similar 

construction can be performed in Lorentz space (and by analogy in other 

higher dimensional spaces). The problem in this case is to start with 

three linearly independent (with respect to the Lorentz metric) 

4-vectors (three vectors being needed to determine.a coordinate system 

in 14-space) and use these to determine Dirac spinors by a method 

analogous to the Cayley-Klein formalism appropriate to Lorentz space. 

The required technique is in fact described in the first chapter of 

Streater and Wightman) 2  The relvant equations are (not.ation slightly 

altered),Eqs. (23)-(28): 

+xf 	x - 	 (x 	.  xf 

xt  
\xj + ilk 	x 	x ,,J 	 xt. 

= AxAt 

(a 	(X + x3 	x1  - ix 	
( 

* .c 	
(23) 

	

d)dJ . .x1  + ix2  c0  - x3) 	* d 

=0 :)(:: 	) 

det A = ad - bc = 1. 	. 	 (24) 

rAO (A.O 
s'(A) 	= 	 ) 	.= 	( 	 - (25) 

OBJ 	 . 	. 	.. 
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/ol 
(26) 

-1 0 

CCJJ) 	(the complex conjugate of. A) 	(27) 
d 

S(A) = v s'(A) v = 	
( 	)(   :) 

(28) 

1 (AB AB" + 	\ 

= 2AB A+B) 

• 	 Equations (23) and (24) determine the matrix A characterizing 

• 	 the Lorentz transformation taking a reference coordinate system into 

the coordinate system determined by our three 4-vectors. Equations (25), 

(26), and (27) determine the matrix S whose columns are spinors, and 

Eq. (28) transforms to the more familiar representation of the Dirac 

algebra (given in Bjorken and Drell13 ). The columns of S(A) then 

form the usual four Dirac spinors that we are accustomed to dealing 

with. 	• 

Calling our three 4-vectors fl, p, and a, requiring them to 

be perpendicular, of unit spacelike interval, and taking them to be 

transformations of 2, 	, and Ẑ respectively, we obtain the 

equations: 
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110 = 	.( a *b +c *d +ab* +cd*) 

Ti = 	( bc * +a*d+ad* +b *c ) 

11 (bc+ a *d - ad* ± b*c ) 
 

• = 	(ab - c *d +ab* - cd*) 

p0  = 	(ab + c *d.  - ab* - cd*) 

• 	 p1  = 	(bc 	+ a *d - ad* - b*) 

 
= 	(_b c * +a*d +ad*_b*c ) 

p3 = 	( a _ c *d_ ab* +cd*) 

(aa 	+cc -bb 
* 
-dd) 

* 

a1  = 	( ac * ± a*c - bd* - b*d) 

 
• 	a2  =' 	( ac*+ a*c  + bd* - b*d) 

a • 	( aa * - cc 	- bb* + dd*) 

These twelve equations (six of which are independent), together with 

Eq. 	(21 ), determine the matrix A 	(to an overall sign). 	Their actual 

solution is prohibitively difficult and we have not attempted it. 

I) 

(i 
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• 	Similar equations could also be written down for more general choices 

of the three li--vectors, but here as in our first example, the result 

is independent of the invariants 

• 	 The spinors determined by our -t-vector could also be obtained 

by finding the Lorentz transformation in the So(,l) representation 

• 	[as opposed to the SL(2,C) representation], decomposing into a 

product of boost and rotation matrices., and subjecting the matrix 

- S determined by the boOst (as given in Bjorken and Drell) to a 

similarity transformation with the rotation matrix so determined. This 

is the analogue of doing our first case by determining the Euler angles 

of the rOtation and writing the Cayley-Klein parameters in terms of 

them. This method of finding the spinors is unfortunately even messier 

than the one we have presented. 

• 	Now that we know how to construct spinors from vectors by the 

above methods we may extend the results to fields by performing the 

construction point by point, as mentioned earlier, or perhaps specifying 

some dependence of the spinors on position (such as a plane wave). 
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IV. SIJIVIMARY 

We have seen how to form various classical spinor fields from 

classical vector fi.elds,. working at fixed time. When we try to extend 

our solution to dynamical fields (classical or quantum), we encounter 

the problem of satisfying the constraints imposed by the commutation 

relations (or Poisson brackets), and the equations of motion on the 

fields involved. In fact, these constraints are quite restrictive and 

to the best of our knowledge there have been only three cases in which 

spinors have been constructed from vectors in the context of a dynamical 

theory; these are the cases considered by Coleman, Gross, and Jackiw, 3  

by Prugovcki, and more formally by Halpern. 5  
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