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INTRODUCTION 

For a given set of data points, (x 1 , t 1 ), i=l, n, na3 with the ti 

distintand increasing the cubic spline fit, s(t) for x(t) has the 

following Properties 

(i) 	s(t1) = x; i=1, n 

s C2  1x1 , x] 
tic 

s 	is constanton (t1, t +1); i=l, n-i 

The above properties are not sufficient to determine a unique s. Two 

additional independent conditions must be imposed. Traditionally [1], 

this was done by stipulating: 

sTi(t1) = 0 	 s."(t) = a. 

However [2],  any numerical specification of 

s'(t1) or s"(t1) 	and 	s'(t) or s"(t) 

will suffice. 	 - 

When the imposed conditions are based on known fact about x(t), then 

the above approach is valid, and may in fact be necessary. On the other 

hand if specifications are made simply to make the system determinate, 

this freedom ought to be employed in some useful manner. We note that 

property (3) enables us to define s1
Pi t 

 (left) and s
it
1

t 
 (right) at each 

interior" point, t 1 ; i=2, n-I. The difference between these two values 

I: 
is the discontinuity of s at t. We now define an optimal cubic spline 

fit to be that one for which these discontinuities are minimized, in the 

least square sense. For n=3 or n=4 the optimal spline is immediate since 

the data can be fitted exactly by a parabola or cubic respectively. 
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Sinalin Optimization. Jackson Lasiett [3] proposes that conditions 

be imposedat t1 and t2 which will effect thisminimization. His procedure 

has the attractive computational simplicity that the cubic spline fits 

may be constructed by means of a recursion formula without recourse to 

the solution of a linear system. The method is plagued by some difficulty 

unless n is restricted to relatively small values. He suggests n 1O. 

The difficulties for large n seem to be due to 

the accumulation of error in successively applying the 

recursion formula 

and 

the attenuated response at t 1  (for large i) to conditions 

imposed at t1 and t2. 

For large n (n>1O) it seems necessary to abandon the recursion scheme 

and return the former methods of imposing conditions at t 1  and t 

General Optimization. We assume n5 and define 

Ut 	 Ut 
e1s (right) - s (left) ; i=2, n-i 

and (somewhat) arbitrarily elect to impose conditions s"(t1) and s"(tn) 

of such values as to minimize 

n-1 2 
11 	e. 
2 1 

As stated in [3], three tbasictt 

optimum fit. We elect (again somewhat 

from 	s11(t1) = 0 

from 	s?T(t1) 	1 

(2) 	from 	s 11 (t1 ) = 0 

pline fits are required to find the 

arbitrarily): 

and 	s"(t) = 0 

and 	s?t(tn) = 0 

and 	s"(tn) =1 
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We now express our optimal spline, s, by 	 (i) 

s 	as (0) + b S ( 1) + 	( 2 ) 

We then have 

s(t;) = as(t.) + bs(t) + cs(2)(tj); 1=1, n 

and by property (1) 

x. = ax. + bx. + cx. 
1 

; 1=1, n 

	

1 	1  

hence 

l=a+b+c 

or. a=l -b -c 

By differentiating (1) 

s' (right) = asc°'' (right) + bs 	 (right) 	.(2) 	(right) 

s' (left) = asc °)itt  (left) + bs(1)uht (left) 	 (left); 1=2, n-1 

Consequently 

e. = (1-b-c) ec °  + bec 	+ ce 

n1 	.' 	1 	2 
a = 	[(1-b-c) e ( 0)  + beY + ce 2 ] 

2 

To minimize a over (b,c) we must have 

	

2 	[(1-b-c) (0) + bec 	+ cec2)j [-e° + e ' ] = 0 	(2) 

and 

	

2 	{(1-b-c) e ° 	+ 	+ ce2)i [-e° + e2)] = 0. 	() 
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(1) 	(i) 	(0) (2) (2) (o) 
Let 	E. 	= e. 	- e. and 	E. 	= e 	-.. e. 

and let 	Cr= > e ° 	E' 01  a02  = l e ( 0 ) E( 2 ) 

(i) (i) (2) 
. 	= a 	e 	E 
11 	 1 

. 	= a 
12 

e 
ii 

E 

(1) (2) (2) 
a 	= Z e 	E 
21 	1 	1 

• . 	a 
22 

e 
1 

E. 
1 

Then from (2) and (3) 

(1-b-c) a01  + ba11  +ca21 = 0 () 

(1-b-c) a + ba+ ca = 0 (5) 

or . 	 .. 	 . 	. 	. 	 . . 

(a01  - a11 ) b + (a01  - a 1 ) c = a0  (6) 

(a02  - a12 ) b + (a 	- 	a22 ) 	C. = a02  (7) 

Having computed the coefficients and constant terms of Equations (6) 

and (7) from the "basic" spline fits we solve these equations for the 

optimum choice of (b, c). 

Again by differentiation of (1) 

s" 	= as(0)tT 	+ bs(1)TT 	+ 

hence 	 . . ... . 

.s"(t1 ) 	= 0 + b.+ 0 

s"(t) = 0 + .0 + c 
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We therefore construct the optimum cubic spline 

s from stt(t1) = b 	and 	s"(t) = c 

CONCLUSION 

If all the data points (t 1 , ç)  do in fact lie on a cubic over 

[t1, ta], the resulting optimum cubic spline will be that cubic. A 

computer code, OPSPLY was written in Fortran to perform the computation 

described in the previous section. For various sets of data, there was, 

in all cases, a significant reduction of the third derivative d1scon-

tinuities for s as computed by the code with those of the natural (or 

clamped) spline (0)  (s"(t1) = 01 s"(tn) = o). Listing and description 

of the computer code are available from the author. 
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