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ABSTRACT

We seek specifications for second derivatives at initial and termi-
nal points which will minimize the third derivative discontinuities of a

cubic-spline fit passing through a given set of poihts;
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INTRODUCTION

'For:é'given set of data points, (Xia‘ti)3 i=1, n; n2z3 with the ty
'distinét:énd increasing the cubic spline fit, s(t) for.x<t) has the
followihéiPererties: .

(l)f. s(t5) = xi3 i-1, n

(2) s Gy [x, x,] |

'(3) s'" is constanton (ti, tig1)s i=1, n-1
The above:properties are nof suffiéient to determine a ﬁnique s. Two
addifiéné} independent cdndifions must be impaséd. 'Traditionally (1],
this;Waé ddne‘by'stipuléting:b

s =0 s"(tg) = O.
-However_[é], any numerical specification.of |

| '>S'(t1) or s“(tl) and s'(ty) or s"(ty)

will suffice. | R B

Wheh=the'imp05ed conditions are based on known fact about x(t), then
the'abové approach ié valid, and may in faét'be-necessary. Onrthe other
hand‘if;épecificatiohs are'made.simply to make.thé system determihate,'
this freedom ought to be employed.in some useful manher. We note'thét
property (3) enaﬁles-ﬁs-tovdefihe's;fk(ieft)vand s;' (right) at each
;interiéf" point, ti;,i=2,,h-l; Thé difference betweeh these two values

, » v ,

is the discontinuity of s at ti;

We now define an optimal.cubic sﬁline
fit to be that one for which these discontinuities are minimized in the
least square sense. For n=3 or n=lt the optimal épline is immediate since

.the data can be fitted exactly;by a parabola or cubic respectively.
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Smali n Optimization. Jackson Laslett [3] proposes that conditions
be impoSed‘ét ty and to which will effect this minimization. His procedure

has the attractive computational simplicity that the cubic spline fits

may be constructed by means of a recursion_formula wifhoutvrecourse to
the Sdiuﬁion of a linearvsystem. The method is p1agued by soﬁé difficulty
unlesé.ﬁ is restricted to relatively small valﬁes, "He'suggests n <10.

fhe difficulties for large n seem to be due to |

(1) ithe accumulation of error in successively applying the

recursion'formula

and |

(2) the attenuated response at'ti (for iarge i) to conditions

| v‘imposed at t7 and to.

For large n (n>10) it seems necessary to abandon the recuréion scheme
and’réturﬁ the former methods of imposing conditions atAti énd ty

General Optimization. We assume n=5 and define

e;= sg'(right) - s;'(left) ; i=2, n-1
and (somewhat) arbitrarily elect to impose conditions s"(t7) and s"(ty)
of such values as to minimize

n-1 '2

. | ‘ | .U = g ey
} ' | o As stated in [3], three "basic” spline fits are required to find the
4 - optimum fit. We elect (again somewhat arbitrarily):
) : s(o) froﬁ' s"(t1) =0 and s"(tp) =0
_s(l) fromi s"(t7) =1 'énd s"(tp) = O
‘ 5(2) | frbm rs"(tl) =0 and s"(tn) =1
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We now express our bptimal spline, s,.by e ' ' (1)
s ;'as(o) + bs(l) + cs(2)

We then-ﬁ&veé

(0)

B R S L O P

and by property (1)

X
1]

ax, + bx, + cx, § i=l,.n .
. i i

hence -

H
]

a+.b + c

1 -Db-c

or.. .. o a

By differentiating (1)

s} (rignt) = asgo)"' (right) + bsgl)"' (right);+-cs(2)""(right)' L .

st (left) = asgo)"' (1et) + bst P (lert) + os(@m (lert); iz2, n-1
: CdnSéQuentiy

ei_='(l-b;c) ego) +'bégl) +~ce§2)

;1 ' : : '
o= 3 L) o ve{D o el

To minimize o over (b,c) we must have

: Y
Lo §§1 (1m0 & 1 belD) L ol 1O, D) :g
ahd .
205 (o) o wne @) O B g
- ' 1t ey il e =0 G)
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1) (1) (0 () (2 (o)

‘Lét» _oEi =& & and  E; | = e -iuei
and 1e{ ,5'001 - eQO)'Egl? A | o -3 eg?) Ege)
Ty

: =Ze@)élf . g'_5;@)§é>

21 7 i i Coe2 T i i

Then from»(2) and (3)

e i bo.. +co. =0 - (b
(1-b-c) Opp + POy + Coyp = 0 | ()

“b- ‘ o o .
(1-b-c) Oop * PO, *+ €O, = O | . (5)

or .

- | » - y L= g 6
(000 = o9 P+ (o = 0p) e =0y (6)
| (o - olg) b + (002 - 022) C3%,002_ ' (7

02

Hav1ng computed the coefflclents and constant terms of Equatlons (6)
and (7) from the "basic" spllne flts we solve these equatlons for the
voptlmum choice of (b, c) |

Agaln by dlfferentlatlon of (l)

o : o v :bs" = as(o)" + bs(l)” + cs(e)”
‘i4 - » hence

s"(t1) =0 +b.+0

sf(ta) = O'+”O +c
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‘We therefore construct the optimum cubic spline

‘ ny W " . .
s from s (tl)'” b and s (tn) = C

CONCLUSION

If éil the data points (tq, xn)‘do_in fact iie on a cubic.over

v[ti, ﬁn],'ﬁhé resulting optimum cubic spiine'will be that cubic. A
computef>cpde, OPSPLY was written in Fortran to perfofm.fhe computation‘ -
described in the previdus section. ‘For variqus sets of data, there:wég,

in all cases, a siénificant redﬁction of the third deri&ative diécon-
tinuitieé.for s aé computed by the code with thdse.of the natural (or R .
clampéd) sp1ine s(0) (s”(tl) = d, s"(t,) = 0). Listing and descripﬁion

of the:COmputer code are available from the author.
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