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ABSTRACT 

Recent work on dual Reggeized resonance models for vector 

currents is discussed. The properties vector current amplitudes in 

such models are expected to possess are first described in some detail; 

i.e., (i) factorization, (ii) divergence conditions, and (iii) god 

large-q2  behavior. Presently existing models fall into two classes: 

factorizable models that emphasize (i) and (ii) at the expense of (iii) ,  

and phenomenological models that emphasize (ii) at the expense of (i) 

and (ii). These models are discussed and a new phenomenological model 

is proposed that incorporates exponentially falling form factors, a 

property we believe dual resonance models should possess. We find the 

partial successes described here a source of optimism for an eventual 

complete solution of the problem. 

It 
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I. INTRODUCTION 

The recently developed Reggeized dual resonance model (DEN) 

for the strong interactions promises to be a very useful theoretical 
V 

tool, if not also a good phenomenological model, since it exhibits a 

large number of properties that physical scattering amplitudes are 

believed to possess. Clearly it would be desirable to extend this 

model to include the electromagnetic and weak interactions of the hadrons 

(see Sec. ii). Here we discuss recent attempts to construct a DRM 

for the vector currents. 

In- any attempt to construct a model for vector currents three 

important types of physical properties should be kept in mind (see 

Sec. III): (i) Bootstrap consistency conditions (factorization)--the 

spectrum of resonances occurring as poles in energy variables and in 

current "masses" (q2 ) should be consistent with the spectrum of the 

purely hadronic amplitudes. (ii) Divergence conditions implied by 

current conservation and, if desire&, current algebra should be 

satisfied. (iii) The large q behavior should be "good," i.e., 

as suggested by experiment and theoretical considerations. In a complete 

bootstrap theory, we texpect that condition (i) will completely determine 

the currents and thus the divergence conditions (ii) and the large-

q2  behavior (iii). However, here we put aside the question of 

uniqueness and investigate only the existence of currents with accept- 

able properties (i)  

Presently existing models emphasize one or more of the above 

properties at the expense of the others. One class of models attempts 
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to satisfy factorization (i) and the divergence conditions (ii) but 

has bad large-q behavior (iii) (see Sec. Iv). If the infinite set 

of universally coupled vector mesons are included as poles in q2 , 

amplitudes satisfying current algebra and factorizing on the M 

highest trajectories can be constructed for a form factor falling like 

(q2)_M However, it is found that complete factorization cannot be 

obtained if the current couples only to the universal vectbr mesons. 

The other class of present models attempts to obtain good 

1arge-q behavior (iii) and sometimes (ii), but has bad factorization 

(i) properties (see Sec. v). It is possible to generalize previously 

proposed models in order to obtain amplitudes with form factors that 

fall faster than any power, which we believe should be the case in the 

DRIvI. These amplitudes have all the good large-q 2  behaviors discussed 

in Sec. 1110 

Although none of the present models satisfies all the expected 

properties, we find the partial successes outlined above reason for opti-

mism about obtaining a full solution to the problem. In the concluding 

section we suggest what we believe may be fruitful directions for 

future work on obtaining such a solution. 
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II. DUAL RESONANCE MODELS 

The prominent hadronic resonances generally have rather narrow 

widths, appear to lie on fairly linear Regge trajectories, and account 

for most of the observed scattering cross sections'. These empirical 

facts and theoretical considerations on composite particles led Mandel-

stam to propose a dynamical model for the strong interactions in which 

scattering amplitudes are dominated by zero-width resonances lying on 

linearly rising Regge trajectories. 1 ' 2  Such a model is dual in the sense 

that any amplitude can be expressed, using unsubtracted dispersion 

relations (uSDR), equivalently as a sum over resonance poles in any 

given channel or in its crossed channels. The, requirement of consistency 

between these equivalent expressions is hoped to determine the resonance 

masses and couplings, neglecting unitarity corrections. 

The dominance of the hadronic amplitudes'by narrow resonances 

leads one to expect that the "singu1aritis in q 2  in current amplitudes 

are also dominated by narrow resonances. 3  Conversely, the rigorous 

validity of resonance domination in q 2  requires resonance domination 

in energy variables, since otherwise dispersion relations in q 2,  have 

contributions from cuts whose discontinuities are not determined by 

resonance amplitudes. Since, furthermore, electromagnetic form factors 

are experimentally observed, and theoretically expected, 1  to decrease 

rapidly for large negative q2  and presumably satisfy USDR, it is 

natural to extend the DRM to amplitudes involving the electromagnetic 

and weak currents by assuming that they can be expressed as a sum over 

resonance -poles in q2  as well ,as in energy variables. 	In such a 
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bootstrap theory of currents, 7  the couplings of the resonances to the 

currents are presumably determined by crossing symmetry and consistency 

with the hadronic amplitudes. 

Work on the hadronic problem received considerable impetus by 

Veneziano s proposal of a simple function as a prototype dual amplitude. 
6 

Veneziano's model and its generalizations 7  assume a particular type of 

duality called planar duality. The N-body scattering amplitude is 	 - 

decomposed into a sum of terms, one for each permutation of the external 

momenta (p.). Each term has resonance poles in subenergies correspon- 

ding to adjacent momenta [e.g., the term for the permutation 

has poles in s ij =(p1  + 	+ • o. +)2] and also 

Regge behavior in these subenergies; it is therefore dual in the sense 

described above. We shall assume that the current amplitudes also have 

such a dual decomposition. At present there is no fundamental reason 

for assuming planar duality; the only justification we offer is 

simplicity. 8  

The simplest present hadronic model for the meson bootstrap, and 

the one we shall demand our currents be consistent with here, takes for 

each term in the dual decomposition the product of an "orbital factor" 

B(pi,p2,.,p) (N-point beta function9 ), and an "internal symmetry 

factor,•" ' 	- Tr(TlT2.TN). Mandelstam has proposed a model 

which has in addition a "spin factor."
11  This model has a better 

particle spectrum and includes the baryons as well as the mesons. 

Perhaps the most serious difficulty with these and other models for 

N-body amplitudes is that amplitudes involving pions do not vanish as 
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the pion momenta go to zero. This means that we cannot obtain 

physically reasonable partially conserved axial-vector currents 

consistent with these hadronic models. We therefore restrict our 

IV 

	

	

considerations to vector currents in this paper. We thus make the 

tacit assumption that the zero-width limit can be assumed independently 

of the su(2) 	su(2) symmetric limit; there seems to be no reason 

why this should not be possible. 

All existing hadronic models are rather conjectural at the 

moment, of course, and it may be possible that only models other, than 

the simple one considered here will admit consistent vector currents. 

Furthermore at present it is by no means clear to what extent the 

hadronic and current amplitudes are uniquely bootstrapped in the zero-

width approximation. Supplementary assumptions like requiring a 

minimal number of states may be necessary in order to specify a unique 

solution. In fact one should keep in mind the possibility that the 

existence of physically acceptable current amplitudes might be a 

necessary condition for determining the hadronic amplitudes, although 

such a situation is contrary to the bootstrap philosophy discussed 

above. 
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III. PROPERTIES OF VECTOR CURRENT AIvIPLITUDES 

In this section we discuss the basic properties that vector 

current amplitudes in dual resonance models should have. Some of these 

properties follow directly from the zero-width approximation, duality, 

and the conserved vector current hrpothesis (CvC); 12  for example, the 

divergence conditions on the full amplitude are shown to give conditions 

on each separate term in the dual decomposition. Other properties are 

suggested by experiment and field theory models; for example, the 

relations1'ip of the compoiteness'of the hadrons to the absence of 

certain fixed poles and the asymptotic behavior of form factors, the 

behavior of electroproduction structure functions, etc. We stress 

that it should be kept in mind that most of the, field theory results 

can only be regarded as suggestive since many are derived by considering 

only a subset of Feynman diagrams and treat crossed channels in an 

unsyimnetric manner. For simplicity we discuss the amplitudes for 

N spinless hadrons and one current [V(q)] or two currents 

[V( q,q ) •  

(i) Bootstrap Consistency Conditions (Factorization) 

Strong restrictions are imposed on the current amplitudes by 

the requirement that the spectrum of resonances occurring as poles 

in q2  and in energy variables be the same as the spectrum of the 

purely hadronic amplitudes. These consistency conditions, shown 

diagrammatically in Figs. 1 and 2, include generalized vector-meson 

dominance [Figs. 1(a) and 2(a)1 and factorization in the various 

several particle channels [Figs. 1(b), 2(b), and 2(c)]. According to 
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the bootstrap philosophy, 5 ' 12  the current amplitudes are believed to 

be completely determined by these conditions. Quadratic factorization 

[Fig. 2(c)] is expected to play the crucial role, since the single-

current amplitudes must be restricted so as to yield acceptable two- 

current amplitudes. 13  We emphasize that due to quadratic factorization 

and USIJR, the two-current amplitudes are completely determined by the 

single-current amplitudes; this fact will be heavily exploited in 

Sec. IV. 

(ii) Divergence Conditions and High-Energy Behavior 

12 
We first consider the implications of current conservation for 

the single-current amplitudes and two-current amplitudes. We then 

discuss the consequences of current algebra and the possibility of 

non-Regge terms in the asymptotic behavior. 

Each isospin invariant amplitude of v(q) has a dual 

decomposition as described in Sec. II and is divergenceless. Each 

term in the decomposition has poles in a different set of variables, 

and therefore there is no possibility of cancellation between them in 

the divergence. Since duality rules out terms without singularities 

in the full set of variables, each term must itself be divergenceless 1  

(see Fig. 3), 

q V , '(q) = 0 
	

(3.1) 

Here P specifies the permutation P of the hadron momenta and i 

specifies that the current is to the left of P p( i ) . From now on we 

consider only the hadron ordering p l'"•'N and drop the subscript P. 



Current conservation has particularly interesting consequences 

for q -O. In this limit the dominant contributions to the amplitude 
1 

come from the soft pole terms or external line insertions (ELI)--see 

Fig. 4.  First, we remark that in ourgeneralized vector-meson dominance 

model nonzero ELI are most naturally obtained through the existence of 

at least one vector, meson which couples universally to' the hadrons. 

If a single vector meson dominates, it must couple universally to 

provide nonzero ELI. If the hadronic spectrum does not include such 

universally coupled mesons, physically reasonable consistent vector 

currents will bedifficult to obtain. Second, we note that V± has 
1 

only twoELI, i.e., those corresponding to p11  and p at 

2 	2. 
(q+ p.1) = rn. i 	and (q + p.) = m. . Since for q -40 these 

are the only possible contributions to (3.1), the reidues of these 

poles must be equal and opposite, 

q + 2p. 1  ' 	 q + 2p. 
v (q) 	 2 	2 	

(q 
- 	2 	2 Ahadronic 

+ p.) - 

(3.2) 

From now on the V 	will always be understood to have their ELI 

poles normalized as in (3.2). 

Let us discuss further the structure of V 11  as q 11  -O and 

its internal symmetry properties before restricting ourselves to the 

case of no exotic resonances. It is particularly convenient to 

represent the isospin state of each hadron, p, as a direct product 

of isospin one-half spinors--"quarks" or "antiquarks," i.e. lower 

indices ai,aj,..o,a1 ( 	and upper indices 	 (one 
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may require some symmetry and tracelessness conditions but we may 

ignore this inessential complication). The number of upper and lower 

indices of an amplitude can always be made equal by using the raising 

and lowering matrix Ca 	Since 8 	 is the only invariant tensor 

in Su(2), an amplitude can always be expanded as a sum of terms, each 

consisting of a product of 	's and an isospin invariant amplitude. 11  

Each such term has a natural diagrammatic representation--see Fig. 5(a) 

for an example of a purely hadronic amplitude. Each term in a dual 

decomposition has a similar expansion. For these it is convenient to 

draw the lines around the periphery of the diagram--compare Figs. 5(a) 

and 5(b). 

Now consider for simplicity an isovector current (currents with 

other isospins can be easily treated in a similar manner) with spinor 

indices a and 	where the isospin one part is obtained by using the 

projectionoperator 	(T). The ELI's for V are then given 

by 
(2) 

q + 2p. 	 (m) 	•• 	(2) 

Ya 	

alaN 	

()2 m.2 I(T a (m) Aa:. 	m)aN(k) 

••.— (n) 	(2) 	(n) 

- 	Al1(k) 	N (T)_} 

One can easily verify that the vanishing of the divergence for q —O 

is assured by the isospin invariance of A: 
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(m) 	• 	( e) 

	

L (T)1() A1 	(m) 	(k) 
CN 

- 	

(n) 

A 11 N 

i, 	

(T 	 0 )() 

n 	

=  

Now consider a particular isospin invariant amplitude. For
Ok  

definiteness suppose it corresponds to 8...b 5c •••' where 
j 

only the 	's involving currents have been explicitly shown and cx 

and 	are any indices for p. and p k' respectively. Each term in 

the dual decomposition of this isospin invariant amplitude of course 

satisfies (3.1). This condition and the requirement that the full ELI 

contribution be given by (3.3) can easily be shown to imply that the 

amplitude has the form 

	

°';li=j+l
> 	

v.()] . 	 (3.) 

In terms of diagrams, this means that in V 	the current couples 

(by Ta)  to each "quark line" passing betweenp i _l and p.-  -see 

Fig. 6. We therefore see that current conservation, duality, and 

isospin invariance require the amplitude to have a very particular 

form as q -0 with the current in a sense probing the quark-like 

isospin structure of the amplitude. It should be emphasized that (3.4) 

only specifies the ELI structure; an arbitrary contribution containing 

no soft poles can always be added. 
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The isospin analysis for the two-current amplitudes proceeds in 

a very similar manner but there is an important new feature which has 

to do with the ELI and the terms in the dual decomposition with adjacent 

currents. Let us denote by M'(q1 ,q2 ) the term in the dual 

decomposition corresponding to the permutation p1 ,..., p 1 , q1 , 

q) j'"'N (or similarly for i > j). For adjacent 

currents, i = j, we let M denote the term with q1  to the leftii  

of q2  and M. denote the term for q 1  to the right of q 2 . The 

terms with nonadjacent currents have two ELI's for each current and 

thus maybe taken to be individually divergenceless, at least for 

However, the adjacent current terms have only one ELI each: 

both M..'(q1 ,q2) and M 	, (qq) are needed to supply the usual 

two ELI on p 1  and p.,.  The existence of only one ELI means that 

these amplitudes cannot be divergenceless as q 1  --*0; specifically, 

we find 

( T ) X  

q1   

l" N 
X VibV 	- 	(k)1l + q2 ) 

a•..a 
1 	x 

l" 	
'• (2) 

- La Vi;bV 
a 	

(k) N 
	(q1  + q2)(T) 	, 	( 3.) 

1aN 	 y 

where the sums are over all quark lines between 	and p. 
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The important result that M.JV has a fixed singularity in 

addition to the usual Regge poles in the two-current channel (t channel) 

follows from Eq. (3.), current conservation, and quadratic factoriza-

tion. To see this, consider any channel s. [see Fig. 2(c)]. Current 

conservation and quadratic factorization imply that q1V  has no 

poles in this channel and so it must behave like a polynomial in s. 

Since the right-hand side of (3.5) is nonvanishing, we conclude that the 

constant term is nonvanishing at least for q 12  = 0 and q22  = t in 

those amplitudesnot multiplied by q 1 '. This implies that M.. 	also 

has fixed power behavior as s 	co and thus some fixed singularities 

15 	
i in the t channel. 	This result s stronger than that which obtains 

without duality, since it applies to M. 	occurring in the duaL 

decomposition of isospin symmetric amplitudes (e.g., for physical 

photons) as well as isospin antisymmetric amplitudes (where the usual 

current algebra fixed pole occurs). In particular it implies the 

existence of wrong-signature fixed poles in the isospin symmetric 

2 	 2 	16 amplitudes at least at the special point q1  = 0 and q2  = t. 

For the remainder of this paper we assume the absence of exotic 

(I > 1) resonances. Then, by a trivial generalization of the results 

of Chan and Paton, 10  we must have the dual decompositions, 

v(q) = 	Tr[T(1)...T(. 
l) 	

T)Tp ( j )••Tp 	]Vp(q) 

(3.6) 

and 
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Mab ItVf 

= 	 Tr[T(1)...T(. 1) 	
T )T(.)o..T 

(i) 	Tb)Tp(.)..Tp(N)J 
AI .ij,P 

• Mt 	(q1,q2) 
ij,P 

+ 	Tr[T1 	Tp(±l)( Ta )( Tb)TP(i)' 

Tr[T. . . TP(il)( Tb)( Ta )Tp(i) •  

(3.7) 

We note. that the absence of exotic resonances and Bose statistics for the 

currents have been used to replace M! ' (q1 ,q2 ) by M..'(q2 ,q 1 ). The 

divergence conditions (3.5). on the two-current amplitudes now become 

simply (see Fig. 7), 

q 1 M p(q1 ,q2 ) = 	 (i / j) 	 (3.8) 

and 

=V. + q2 ) 

(3.9) 
=v1pV(.q1 + q2 ) ' 

and similarly for q2 . These hold exactly for q 1  -O and to within 

terms which vanish as q1  —*0 for all q1  with q = 0 and q2  = t. 
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If we further assume the Gell-Mann current algebra, (3.8) 

and (3.9) hold  for all q1  and q2 . Of course, according to the 

bootstrap.philosophy, the bootstrap conditions are believed to determine 

completely the current amplitudes and therefore the current algebra. 

Since we are unable to fully implement these conditions here, we shall 

often assume CVC and current algebra as additional requirements. 

Several comments on the divergence conditions for the two-current 

amplitudes are in order. Firstly, there is no necessary contradiction 

between current algebra and duality, i.e., (3.8) and (.9) do not 

require that any invariant amplitude not satisfy TJSDR. 17  

Secondly, in order to dispel possible confusion, we should 

remark on the relationship of our program to the theorems proving 

that physically acceptable solutions of current algebra without states 

18  of spacelike momenta do not exist. 	Of course, there is the possibility 

that the solution to the bootstrap conditions does not correspond to 

19  any current algebra; 	i there s then obviously no contradiction with 

the theorems. Even if the currents do satisfy current algebra, it has 

recently been shown that the theorems can be circumvented with a particle 

spectrum similar to that considered here either through the presence 

of Schwinger terms in the time-time commutators or through the existence 

of ghost states of negative norm. 20  Both of these possibilities are 

possible in our model, in fact it is well known that the N-point beta 

function has ghosts. 21  

Finally, it should be noted that the presence of the fixed 

poles required by (3.9) implies that certain sums must converge 
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nonuniformly: (a) Since the purely hadronic vector-meson amplitudes 

do not (and cannot) have fixed power behavior as s —oo, the sum over 

vector mesons [Fig. 2(a)] must converge nonuniformly in, s 	so that 

the limit s. —co cannot be taken inside. (b) The sum rule for the 

fixed pole residue is of the form, assuming current algebra, 

fds. ImM(s,t; q12 ; q 2 ) 	R(t,q 2,q22 ) = F(t) . (3.10) 

Since Rn is proportional to the product of form factors, we expect 

it to decrease rapidly as q. 2  —co. Thus the sum (3.10) must converge 

nonuniformly in q. . These nonuniformities are exhibited by the 

functions discussed in Sec. V. 

We have seen that the divergence conditions (3.14)  require the 

existence of fixed singularities in the t-channel angular momentum 

plane of the two-current amplitude. However, we do not expect fixed 

singularities in any other channel or in any other amplitude, if the 

DRM does indeed correspond to infinitely composite particles as one 

suspects. This expectation is based on the results of certain field 

theory and potential theory model caicuiations. 22 ' 2  For example, 

Rubenstein et al. 	show that [see Fig. 8(a)], if particle X is a 

composite of two particles, the highest fixed pole possible in the 

s channel is absent. If X is a composite of more particles, lower 

fixed poles are also absent. Similarly, we might expect fixed poles 

in the s channel of the two-current amplitude to be absent, if the 

hadron is composite [see Fig. 8(b)]. Thus there are two suggested ways 
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in which the compositeness of the hadrons manifests itself in the 

nonstrong interactions: (a) the absence of fixed poles except in the 

two-current channel and (b) the rapid decrease of form factors (see 

Ref. 1 and the following subsection). The functions discussed in 

Secs. IV and V illustrate the close connection between these two 

features: the faster the form factors fall, the lower the extra fixed 

poles --in the limit of exponential form factors (Sec. v) only the 

t-channel fixed pole remains. 

(iii) Large-q2  Behavior 

Here we discuss some features of the behavior of current 

amplitudes for large q2  which are suggested by theory (usually field 

theory) and experiment. From the explicit examples given in Sec. V, it 

appears that the DRM is 'capable of incorporating all of them. 

Mandeistam has suggested that in a theory with infinitely 

rising Regge trajectories form factors should fall faster than any 

- 

power as 
- 2 

q -4 . 1  Further support for exponential form factors comes 

from Harte's bootstrap model for infinitely composite particles. 2  He 

,. 	2,T 
finds that form factors must behave like 	1 , o < y < 1 , to 

2 i within powers of q , n order to satisfy his bootstrap equations. 

Field theory models for composite particles also give rapidly decreasing 

form factors.26 We thus expect that in the DRM form factors should 

fall faster than any power. The results of Secs. 'IV and V give some 

support to this belief. 

The field theory models also make an interesting prediction 

about the asymptotic spin dependence of form factors.26 They predict 
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that the form factor faIls faster the larger the spins J1  and J2  

of the particles involved, 

- 	 -i 
F5 (q2) 	(L) 

J +J 1 2 	
F(q2 ) , 	 (3.11) 

12 	q 

where i labels the various amplitudes [see Eq. (5.15) for a precise 

definition]. In these calculations, F(q 2 ) has an asymptotic power 

behavior that depends on the specific model. Roughly speaking, this 

behavior can be understood as a manifestation of the behavior of the 

bound-state wave function at the origin. 

We now turn to the two-current amplitudes. The Ejorken limit 2  

gives an interesting connection between the large q 2  behavior and the 

current commutation relations, if such exist. Defining q = .(q 1  - q2 ) 

- and Q (.q1  + q2 ) and taking the limit q0 - 	with q, Q , and 

the hadronic momenta fixed, we have 

M b V 	- 	f d3x  eX (aI[va(O, 	, vb V (o, 	]I 
0 

d3 	

iq.x (  I - - xe f 	 vb(O,-2]I) 
q0  

+ ••• + polynomial in q0  , 	 (3.12) 

where a and 	represent hadronic states. We note that in this 

limit that s± - 	also whereas 	
= 	

is fixed. Equation (3.12) 

is very useful for determining what current commutation relations 

amplitudes correspond to. To avoid possible confusion about the 



application of (3.12), we note that, since MPV has Regge behavior 

a(t) 	 28 (s 1 ) 	, in general one can only expect to be able to carry the 

exparsion. (3.12) to as many terms as correspond to fixed poles above 

a(t). 	If anattempt is made to carry it further, the remainder 

term will diverge. Any given term can, of course, be obtained by 

choosing.. t sufficiently negative, since a(t) is infinitely falling 

in our model, (or, in general, by subtracting out the divergence). 

Recent experiments on deeply inelastic electron scattering have 

generated much interest in the behavior of the two-current amplitude 

with two hadrons in the limit q2  - - oo with p 	
- 	- - 

29,30 	
2q 	q 

and. t(.o) fixed. Experiment and theory ' 	suggest that t.ypial 

invariant amplitudes behave like 

____ 	' M. 	>(-q
2 

 ) 	f.(p,t) , 	 (3.13) 
2 	 1. 

q -400 

p,tfixed. 

where k. is a small negative integer. In Regge behaved models one 

also expects 39  

a(t)-n. 
mi f1(p,t) 	> p 

p-4 00 

(3.l!) 

It should be emphasized that so far experiment only suggests the 

behaviors (3.13) and (3.14) for the diffractive (Pomeranchon) contribu-

tion with a(a) = 1. 	It could well be, as conjectured by Harari, 

that the contribution of the other (dual) trajectories vanishes very 

rapidly as. 2  
q 	and only the Pomeranchon has the weak q 2  

dependence (3.13). We remark that the amplitudes discussed in Sec. V 
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have the above behaviors for all trajectories just as do the field 

theory models. 30  

The behavior of f1 (p,t) at threshold seems to be related to 

the asymptotic behavior of the elastic form factors. Drell and Yan 

have pointed out that, in their field theory model, if the elastic form 

factor has the asymptotic power behavior 

F(q.) 	'. (q2 ),. 	 (3.15a) 
2 q-400 

one has the threshold behavior 

If(p,O) .i (p _1)_.21 	 (3.17b) 

p-4 • l 

fora specific amplitude (vW2 ). The existence of relationships of 

this form is probably quite model independent. 

This concludes our discussion of the properties we should like 

vector current amplitudes to satisfy. In the next two sections we 

discuss dual resonance models which attempt to satisfy them. Although 

there does not yet exist a model having all the above properties, there 

is no indication that any of them are inconsistent with the DRM. 



IV. FACTORIZABLE MODELS 

In this section we discuss models which attempt to satisfy 

the. factorization conditions, in particular, consistency with the 

simple N-point beta function hadronic model described in Sec. II, and 

the divergence conditions. The discussion is a summary of the 

work of Brower and Weis. 32 ' 33  

As noted above,a physically acceptable vector-meson dominated 

conserved:, current suggests the existence of at least one universally 

coupled vector meson. Fortunately, such vector mesons are in fact 

present •in the hadronic spectrum;323 there is one at each mas 

rn2 2 	rn + 1 + £ (2 = ). 35  Since the low-lying trajectories 

in the DRIvI have a large degeneracy, 4' these vector mesons are only a 

small fraction of the total, but they play a particularly. vital role 

in models for currents. 	. 

Applying vector-meson dominance for the universally coupled 

mesons, we give below one-' and .two-current'amplitudes that (i) obey 

current algebra, (ii) factorize on the M highest trajectories, and 

have form factors that fall like (q2M On the other hand, if 

only leading trajectory factorization is' required, the current algebra 

condition can be satisfied for arbitrary form factors--see Appendix B 

• of Ref. 53. • We feel that these results give a godd indication of the 

power of factorization in determining the structure of currents and 

suggest that in a full solution to the problem form factors will fall 

exponentially. 	 • 
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However, the limit M —oo of these amplitudes does not lead to 

a full solution. Indeed, the requirements of complete factorization 

and USDR in q2  for the single current amplitudes do imply exponential 

form factors, but the two-current amplitudes constructed from the single-

current amplitudes using complete quadratic factorization are found to 

possess unphysical singularities which violate linear factorization. 

Therefore full factorization cannot be obtained if only the universally 

coupled vector mesons are included; approximate solutions are the most 

that can be obtained with this restriction. However, a completely 

factorizable solution may be obtainable if some or all of the other 

vector mesons are included. The major difficulty with this lies in the 

tremendous number of existing parameters, f, which are apparently 

quite arbitrary if only single-current amplitudes are considered, but 

are in fact severely. cons'trained in a nonobvious manner by the connection 

of these amplitudes to the two-current amplitudes through quadratic 

factorization. 

Before delving into the details of this model, we make a 

general comment on the method used to obtain conserved currents. 

Consider the amplitude coupling a current to N spinless particles of 

lowest mass ("scalars"). Current conservation (3.1) is equivalent 

to the statement that the divergence of the current does not couple 

to N scalars, i.e., it is either a "spurious state" 34  or identically 

zero. The problem of finding conserved currents is thus closely 

related to the problem of finding spurious states. For example, in 

our model this amplitude is given by (see Fig. 9), 
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v(q) = F(q 2  (0 CT2 a() + q)Ip) 	 (•') 

with 

= v(p1 ), D(R,s1) v(p2)•*ov(PN1)I0) 

where we have used the operator notation of Fubini, Gordon, and 

36 	 2 Veneziano. 	The form factor F(q ) gives poles at m + 1 + £ and 

the residues are proportional to amplitudes for universally coupled 

vector mesons. The divergence of V 1  isproportional to 

(O(q. a(l) + q2 ) = (Os(q) 	(o sl 

which is the first spurious state generated by the spurious state 

operator, 37  s(q)., and thus by definition does not couple to the 

N-scalar state Jp), i.e., (op )= 0. 

In order to exhibit the absence of spurious intermediate 

states, 	in (.i) we should replace V(p) by V(p) 3  which has 

no couplings to spurious states 

S(P) = 	(p)Ix5 	= 0 , 	 (.2) 

This has no effect in the all scalar amplitude ( )-i-.i) but is necessary 

to assure that the current has a conserved coupling to an arbitrary 

excited state 

q,  [F (q') (0 1 ( -F2 	 + q) ()k)J = 0 • 	 () 
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One observes from (1.2)  and  (I.3)  that there is a one-to-one correspon-. 

dence between current conservation and the elimination of spurious 

intermediate states. Roughly speaking this is because the divergence 

has its coupling proportional to a spurious state and thus can only 

couple to other spurious states. 39  If such states are eliminated, so 

is the divergence.. 

In the partially factorizable current-algebra parameterization, 

we use a thodified vertex, VM,  obtained by terminating the expansion 

for V after M terms, 

M 	
(l)2 	(-k) - m2 	 k + p) -M) 

VM(P) = 	

C-M 2  l 	
) 

V(P)  

£-  

and the specific form factor, 

F(q2) = 

	:- m2 	+ £) 	
f2 [l - q2/(m2  + 1 + 

( 2 ) M q 	
(.5) 

2 q --- *00 

The amplitude for a single current, N - 1 scalars, and one excited 

state is then 41  

v(q) = F( 2)(OI(a(1)  ± q)  VM D(R,s1) v(p2) ... v(pNl)Ix). 

(i.6) 

It is conserved for states ?, lying on trajectories displaced less 

than M units below the leading one and also factorizes for such 
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intermediate states but not for lower trajectories. For future use we 

note that the coupling of the current to a scalar and an excited state 

on a trajectory k units below the leading one in general behaves like 

• 	F (q2)(q 	
,_.i (q2)M+k • 	 (1.7) 
2 

q —co 

This behavior is clearly quite different from the field theory suggestion 

(3.11) in that the asymptotic behavior depends on the trajectory a 

particle lies on and not its spin. In general it appears very diffi-

cult to obtain behavior like (3.11) when form factors are introduced 

in the multiplicative way (4.6). Such simple multiplicative form 

factors are also responsible for bad large-q2  behavior of the two-current 

amplitudes. 

We now discuss the two-current amplitudes. Amplitudes for two 

nonadjacent universal vector mesons are automatically conserved 32  and 

thus amplitudes satisfying (3.8) are constructed by just multiplying 

by the form factors as in ()-i-.l). Thus the nonadjacent terms need not 

be considered further. Amplitudes for adjacent currents satisfying 

(3.9) are constructed by a generalization of the work of Brower and 

Halpern. 	We write 

,j lV(qq
) = 'i"(q,q) + 

	PN(q,q) + i(q1,q2 ) , 	( 14.8) 

where and MC V  are purely Regge behaved, M, 	contains all 

the vector-meson poles and MCIIV  cancels its unwanted Regge behaved 

divergence. The exact current algebra divergence comes from I V, .IV 

which has fixed singularities in 



- 25 - 

The "hadronic amplitude", MH',  is constructed using VM; 

, LV (q,q ) = _F(q22)(O1(a(1)V + q2V)V(p1) D(R,s1) 

D(R,sNl) 	 a() + q1 ) O)F(q12 ) 

	

+ (m2 
+ 

1) 	(m2  + M)(uM)V 	
i) 

+ 2g(uM + 

(1.9) 

where 	 H 

= q2 + 2p1V + 2p2 Vu1  + 	+ 2PNV(U1 UN_i) 

the u are the usual integration variables 9  [u 	(u1u2 ...u 1 )J, 

and the.bracketts 	)) represent an integral,. f du 
'R' 

 over the 

usual integrand for the R-point function. 9  This term factorizes 

(without spurious states) on trajectories displaced by less than M 

units below the leading one, since 
VM 

assures this for the first term 

and the second term contributes only to lower trajectories due to the 

factor 

The other two terms are given by 

	

• M(q1 , 2 ) 	 • 

M-1 	2 — f(m +i+) 

= 
L -  1 - 2 	

([1)V + (qV + 2q1V)u][1) + (qV+ 2q2V)u] 

X(l - u)2)N+2 	(4.10) 

and 
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M-1 	2 
f(m +i+).. 

V( q,q

) 

+ (q2V + 2q1V)u]{) + (q1V + 2q2V)uJ(l - u) t ) T+o  

+ F(t) gV(1) 

where the f2  are determined by (L.7).  The divergences have the 

properties described above, since 

q 	IvilV(q,q) 	-q 	M(q1,q2 ) 

= Cm2 	) .(rn2  + M) (M 	+ (q2V + 2q1V)uM+2 

and 

q1 	(q1,q2) = P(t)1)V(q1 + q)) 	= vV(q1 	q) 

The sum McMV + 	 has poles in s. determined by 

f2 (m + 1 	£ [1(1-u) 	3(1-u) 

which due to 	is proportional to u m and so contributes only to 

trajectories displaced by at least M units. Therefore, since linear 

factorization is always trivially satisfied, the two-current amplitude 

factorizes on all trajectories displaced less than M units below the 

leading one as asserted. 
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We have seen the MC IIV  + 	contributes.only to trajectories 

displaced by at least M units--this cofltribution is nonfactorizable. 

Furthermore, since this piece has no poles in q 2 , it corresponds to 

subtractions in q2  dispersion relations contrary to our requirements. 

This fact along with (4.7.) means that the current algebra sum rule (3.10) 

is satisfied uniformly in q 2  and .is saturated for large q2  by the 

low-lying nonfactorized poles. This unphysical feature [see Sec. III 

(ii)] gives a hint of the source of the failure of this parameterization 

as M -. In fact in this limit MC V  + 	would have no poles in 

s• Since it is Regge behaved for S i - - and nonzero, it must have 

nonpower behavior for s - +0°. 

Let us pointout several other features of the amplitudes (4.9) 

to (4.11). First, the only fixed power behavior in addition to that 

associated with the current algebra fixed pole is tM  as t —c 

and comes from 	The faster the form factor falls the lower this 

power behavior.24 Secondly, these amplitudes, particularly the nonadja-

cent current terms, have very bad behavior for deeply inelastic electron 

scattering as one can readily verify (see Ref. 46 below). As noted above, 

this can be traced to the simple multiplicative nature of the form 

factors. 

We believe that more general parameterizations with the M 

highest trajectories factorizing can be constructed with only the condi-

tion that F(q2 ) decrease at least as rapidly as (q2)_M This connec- 

tion between the asymptotic behavior of form factors and factorization is 

very suggestive--but only suggestive,, due to the nonexistence proof 

mentioned above which we now discuss. 
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•A likely candidate for the completely factorized single-current 

amplitude is 
Li 

v(q) 	F(q 2)(0I1a(l) + q ) V(p1)  D(R,sl) •v(PN1)lx) 
(.12)  

since V eliminates spurious states and makes. V 	exactly conserved. 

Indeed,. assuming unsubtracted dispersion relations in q 2  and requiring 

the absence of spurious states 	on-mass-shell (p 2  = m2  + 

[or, alternatively, current conservation on-mass-shell 	= m + 

we find (4.12) is the required amplitude pr.ovided F(q 2 ) falls faster 

than any power, i.e., 

00 

f2 (m2  + 1 + 2)fl = 0 , 	n = l,2,3," . 	(.13) 

Some examples of form factors satisfying 	.115) are given in Appendix A. 

The two current amplitudes are determined from (4.12) through 

quadratic factorization and USDR. It should not be surprising that the 

result is [compare with (4.9)1, 

jlV(qq) = F(q12) 	iV(q,q) F(q22) 
	

(L.114) 

where 

LV(qq) 
= - (0 I(a(1) '  ,+ 	 q1 )I0).21 

The structure of this amplitude is most easily studied using 

its integral representation which is readily obtained using the explicit 

3  form for V. 	We find 



- 

V(q,q) = 
 

where 

#J_tv 	

V 

	

= [(qv 
+ 2 q2 

	

2 U 	
+ 2 q1 

	

2 ' 
m +1-q 	 m+1-q 

+ 2u gIv] 2F1 (m2  + 1 - q12 , rn2  + 1 - q22 ; m2  +1 1; u' )J = 

We examine the singularities in the two-current (t) channel. 

They arise from divergences of the integrand as u -el [i.e., 
-a-i 

'N+2 	(1 - u) 	] where the hypergeornetrici function has the 

behavior 

2 	2 	2 	!2 	2 2F1(m+1_q1 ,m+1_q2 ;m+i;u 

2 	2 	22 r(m + 1) r(q1  + q2 	rn- 1) 

r(q1 2 ) r(q2 2 ) 

X 2F1 (m + 1 - q1 2 2 ,m + 1 - q2 2 ; rn 2 + 2 - q1 2 - q2 2 ; 1 - u) 

2 22 
2 	2 	2 	2 q1  +q2  -m -lr(rn + i) r(rn + 1 - 	- q2 ) 

+ (1-u) 	
2 	2 	2 

r(rn + 1 - q1 ) r(rn + 1 - 

' 2F11  ,q2 2 q 1 2 + q 2- rn ; 1 - u) . 	 ( 4.16) 

The first term yields the usual poles on the trajectory at and its 

daughters. The second term, however, gives poles at 
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at  - q1• - q 2 2 + m2  + 1 = 2q1 . q2  + 1 = 0.,1 1 2,". Such singularities 

are clearly unphysical since their positions depend on the current 

?tmassesH q 	 The presence of these anomalous singularities in place 

of the desired fixed pole can be undçrstood, if we notice that our 

amplitude i-.i)i-) has vanishing divergence, q 1 B 	0. As we argued 

in Sec. III, the absence of an unphysical J = 1 intermediate state at 

t =q 	 implies a nonvanishing divergence q MtV _VV for q1  -.-o 

which, when combined with quadratic factorization, implies a fixed pole. 

Our anomalous singularity violates the conditions of this theorem by 

providing just such an unphysical state. 2 

The origin of the vanishing divergence of our M 11v  can be seen 

clearly in (4.12). While, if the invariant aiplitudes are evaluated 

2 
on-massshell at s. =m + J, the infinite series for V terminates 

and the basic equation, q V(q) oc (p 	- m2), holds, it is clear 

that (4.12) as it stands represents a certain off-shell continuation 

which is divergenceless everywhere. Since in our case the two-current 

amplitude can be rewritten in terms of this off-shell continuation, 

1  = 	I vxv (ID(R,s 	v i )J 	, 
XX I  

it is obvious that M 11v  has vanishing divergence. We note that this 

off-shell continuation is never needed in our derivation of M", since 

it obeys USDR in s 1 , but unhappily it provides an equivalent formula-

tion. This appears to be the origin of the difficulty with the 

universally coupled vector meson approximation. 
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V. P}NONOLOGICAL MODELS 

The form of dual resonance-dominated amplitudes for currents is 

certainlyextremely nonunique if factorization and consistency with the 

hadronic amplitudes are not required. Nevertheless, it may be useful.to 

temporarily set aside these requirements and study the general structure 

of dual resonance dominated functions having good large-q 2  behavior and, 

if possible, satisfying the requirements of current conservation and 

current algebra. Perhaps the most important outcome of such a study 

could be an improved understanding of the role of high mass vector 

mesons which could then help solve the factorization problem, but such 

functions are also interesting and useful from a strictly phenomenologi-

cal point of view. 

A number of such phenomenological functions hav& peviously 

-48  been proposed by various authors. 	We feel that their chief virtue 

is better iarge-q2  behavior than the functions discussed in the 

preceding section, since in most cases 6 ' 48  current conservation and 

current algebra have been enforced in a very ad hoc manner if at all 

and their factorization properties are very bad. These functions will 

be discussed further at the end of the section. 

All the above functions have power behaved form f-actors whereas 

we have already remarked several times that one expects exponentially 

decreasing form factors in models with linear trajectories. Here we 

propose a new class of functions which have such exponential form 

factors. It is very intriguing that these functions also exhibit all 

the properties suggested by field theory discussed in Sec. III (iii). 
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We therefore believe that they are particularly interesting functions 

although no attempt is made to satisfy the divergence óonditions. 

In order to motivate our proposal for current amplitudes we 

recall the basic features of the N-point beta function 9  

B(pl,",PN) 	flflf1  

	

where a. j  = (p.. + p +1  + 	+ p.) 2  - m2  and J is an appropriate. 

Jacobian factor depending on the choice of the N - 3 independent u 

from the full set of LLI-112  dependent u. .. The u. . are con- 2 	 . 	ij 

strained so that, if u -1, the u. jt  for at least one overlapping 

trajectory must vanish. Thus the behavior for a -  —co, which is 

determined by the behavior for u.. 1, depends upon the a i j, for 

some overlapping trajectory, 

B 	 (a. 

	

a. .——o 	JJ 
J-J 

i.e., Regge behavior. 

These functions can be modified to yield functions appropriate 

for currents by introducing two ficticious '1epton' t  lines for each 

current (see Fig. 10). There are then a number of ficticious tra.iec-

tories corresponding to one lepton line and several hadron lines 

etc. in Fig. 10) that have no physical meaning. The ficticious 

trajectories were taken to be -1 in Refs. 44 and 47 and the expression 

(.i) itself was used. As discussed above we expect terms in the 

asymptotic behavior of a given variable corresponding to the various 
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overlapping tTtrajectories 	thus, if the ficticious trajectories are 

set equal to constants, we obtain fixed powers as well as Regge powers 

in the energy variables, e.g., a 	
a2 

12 , a23  , etc. as well as a12 , 

a232  for the amplitude of Fig. 10. Further we see that the form 

factors are power behaved, since as q 2  - - we have (a2) '  (a 2 ) q 	q t  

etc. We note that the power behavior of the form factors is correlated 

with the presence of fixed powers in the subenergies just as is suggested 

by field theory [see Sec. III (ii)]; in fact one can verify that the 

connection is between precisely the same form factors and subenergies 

as is the case in field theory (i.e., fixed poles are absent in channels 

consisting of a current and a hadron with an exponential form factor--

see, e.g., Fig. 8). 

In general the factors in (5.1) corresponding to ficticious 

trajectories, u, can be replaced by an arbitrary function, 

g(u..). The asymptotic behavior of form factors and high energy behavior 

are determined by the behavior of g(u..) as u —0. Ecponential
ij  

form factors obtain g(u.) vanishes faster than. any power, for 

example, 

g(u..) 	exp I (u.)] 	P > 0. 
To obtain, form factors that satisfy USDR we must further restrict P 

to 0 < p <. 1 (see Appendix A). This behavior will also guarantee 

the absence of the undesired fixed poles. We can rigorously prove the 

existence of only the desired Regge powers for subenergies approaching 

infinity in their left-half plane (Re a..< 0). The behavior in the 
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right-half plane (Re a.. > 0) is much more difficult to determine 

as it involves the analytic continuation of (5.1). through contour 

deformations; we conjecture that the same Regge behavior obtains at 

least for P . 1. 49  

In the case of amplitudes involving several currents there is 

another trpe of variable u ij 

lepton lines of two different 

cent we make the same replacei 

h(u. .) 	 where k 1J  U. .—O ij ij 
to adjacent "lepton' T  lines of 

where i and j correspond to the 

currents. °  If the cii1rrents are nonadja- 

sent as above. If they are adjacent we use 

is an integer and i and j correspond 

the two different currents. These 

replacements thus give amplitudes with exponential form factors and 

fixed poLes only in the two-curient (t) channel,, 

We now investigate the properties of such amplitudes in more 

detail by studying some simple examples. Actually, we shall use a 

somewhat different prescription from the above in order to obtain simpler 

functions. For each current, we take all u. . 
J- 	in the set S corres- . 

ponding to one of its thlepton lines and any nonzero number of adjacent 

hadron momenta or any nonzero number of adjacent hadron momenta and a 

single lepton line of another. (necessarily nonadjacent) current and 

insert a factor 

ei[- i/(u..)] , 	0 <p < 1 	 (5.2) 

in (5.1). For variables corresponding to adjacent 1eptont? lines of 

adjacent currents we simply set a. j  —k, an integer. One can readily 

convince himself that this gives a behavior of the integrand for 
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u.. -O similar to the above yielding the same general properties 

for the amplitudes. 

Let us study as an example a typical invariant amplitude for 

two adjacent currents and two hadrons, 

1 	 1 1 

M = 

	

du u S(l - u)t 	f du1du2  u1  f 	J 	1 (l - u1 ) 

X u2 2  (i - u2 ) 	(1: - uu1 ) 	( - uu2 ) 

P] • 	 -k+2-a 	[ ( - uu1u 	I 	- uu1u2  
(1 -uuiu2) 	exp 	

- 	
} exp 	

- u2 ,1 

OFl, 

which reduces to the amplitude (5.1) shown in Fig 11 for P = 0. In 

= 	- m - 1, and 1, 6, k are arbitrary negative parameters. 

The elastic form factor obtained from the residue of the pole at as = 

is clearly exponential (see also Appendix A), 51  

F(q2) = 

	

l du u(l - u ) 1  exp - 	1 fo (l-u) 

i-P 

l) 	 e[(P+l))]. 
	(5.) 

One may readily verify that the only fixed power high energy 

behavior is (a5)k_n  .(n = 0,1,2,...), at least for a,a 	as 

discussed above. This is most conveniently done using the uVeneziano 
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transform, 
jt52

a  Mellin-like transform particularly suited to functions 

of the form (7.1) and (5.). 	We write 

—E+ioo 

A(a,x) = 	f 	do A(a,x) B(o,) , 	(0 < 	E 	i) 

(a,x) =da 	A(a,x) B(a + 1, 	+1), 

—1— oo 

(0<flKl) 

where x 	represents all the other variables in A. 	If 	A 	has the 

form'. 

1 

A(a5,x) 

= fo 	du 
usq  (u,x) 

then . 

du(l - u ) ° a(u,x ) (5 5) 
Jo' 

In our case, 	A will generally be given by a sum of poles 

A(cr,x) 
r.(x) 	. 

II a -o.(x) 

and thus 

A(a5 .,x) = 	r.(x) B[_a(x), 	] 

'—' rE-a0 	

a 
(x)] r(x)  (-a) (x) , 	 (. 6) 

5 
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where a0  is the pole furthest to the right. The advantage of this 

method is that it is rather easy to find the poles in  
•  

We thus find for (5.3) the Regge powers (-a 
at

) 	and 

(-) 
S as a,a 

t -  - and in addition the leading fixed power 

behavior 

M a -; (a)k r(-k) fo

l  To  
- 

-a +2ö-k -1-1 	--4-k-1 	 t. X x2 	(1 - x1 ) 	(1 - x1x2 ) 

f 1 - x1x2 	I r 	x1x 
• X 

 

exp~ 
 E2 T x1Jj 

j e 1tx1(1 
- 71 

E 
()k1 

fo1 
12 Rk(xl,x2; t) 	 Rk(t) 	, 

corresponding to a fixed pole in the two-current channel. The residue 

ofthis fixed pole is not equal to the elastic form factor (5.4) as is 

the case in current aglebra although it is independent of q12  and 

q 2 2 and exponentially behaved as a - -. The absence of poles in 

is a manifestation of the fact that the single current amplitudes 

obtained by taking the residue of a pole in a. or as of (5.) are 

consistent with the prescription (5.2) and indeed have no fixed poles. 

Since it appears that 	can be written entirely in terms of its 

poles in a, this means that the sum over vector mesons converges 

nonuniformly as discussed in Sec. 111. 53  Also, if there is indeed 
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power behavior for as —-4-oo the sum rule for the fixed pole (5.7) 

53 converges nonuniformly in q2  as discussed in Sec. III. 

We now discuss the behavior of (5.) for deeply inelastic 

- 

electron scattering: q1 2 = q2 2 
	2 

q -- 	= - s 2 u fixed and 
2q 

t 
t fixed. Since as = q 

2 
 (1 - p) - 	q 

2  (1 - p) becomes infinite in 

46 
this limit, formally this corresponds to a Regge-like limit in the 

leftmost link of a ' Tmultiperipheral' t  diagram like Fig. 11 when the 

"leptons" of the second current are taken as the incoming lines. The 

corresponding "momentum transfer" trajectory is k so we expect a 

behavior 
(q2)k  as given in (3.13). Indeed the asymptotic limit is 

easily calculated by changing variables to those appropriate to this 

"multiperipheral" configuration, 

• = 

flf l fl 
dv1dv2dv3  v 1 (l - V1 ) 1  v(l - 

	

-a -1 	 -a +a +i • 	+1-Fa 

x 3
l(1 - v3 ) 	(i - v1v2 ) 	(1 - v2v3 ) 

v1v2P 1 	1 x (1 - v1v2v3 ) 	 e 
{ 

- 
	) 

j e[ 
() 

fo
1 l 	

r xx2
(_q2)k 

	fo  
12 [(1 - x )(l - x )Rk(xl,x2; t) 

q-4-03 	 1 
  p fixed 	 . 	 • - 

where a further change of variables has been made to obtain the final 

expression. We note that the Bjorken limit (3.12) corresponds to 

p —O and that in this limit there is near identity of (.8) to the 
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fixed pole in t (5.7). In general we see that the assignment of the 

power k to the channel containing one lepton from each of two adjacent 

currents is the mechanism which produces both the desired fixed poles 

and the good electroproduction limit (5.8); there is thus a strong 

correlation between these two behaviors in this model. 

As noted above our prescription yields amplitudes for nonadja-

cent currents with no fixed poles. They also vanish exponentially in 

the q2  —4 —co electroproduction limit. Thus in our model the only 

nontrivial scaling contribution comes from the adjacent current terms. 

We see that both the adjacent and nonadjacent terms exhibit a close 

connection between asymptotic power behavior and the electroproduction 

limit. 
54 

Let us examine the behavior of (5.8) in more detail in the case 

k = -1. This.choice would be appropriate for the amplitude M1  which 

contains the óurrent algebra fixed poleand gives the dominant 
2 

contribution in electroproduction experiments (W 2  = m  Im 

The scaling function, i.e., the coefficient of (-q ) , becomes, 

after some changes of variables, 

00 	 , 	(w-l) 

f(p,t) = 	
dw 	 + - 

'jyl ( - v -dv 

r-E,-fa 

	

+ +
t 	- + i) 	

t 

exp[C

2w ( 2w 
- w-v-l) exp w+v-l) j 
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This expression exhibits clearly the physical cut in p for 1 K  p ' 

This cut is, of course, only an asymptotic approximation since M 

itself has only poles and no cuts. For large p we obtain the 

conjectured behavior (3,14), since then large w dominates in (.9) 

and we obtain 

a 
Imf(p,t) 	Pt. 	

dzL 	,) 

x exp 1 -  G 	
)Pj 

ex{(i _ z )P ] 

Re f(p,t) 	(p) 1  R 1 (t) 

The threshold behavior of f(p,t) is 51  

fl(P - 1)1 21_if dz(1 - 

P 

- (Tp - 1(1 - z) P 

11  
(P+l) [( P - i) } 
	

2 exp -  
(P_i) J .  

Comparing (.ii) and (5.) for P = 0 we see that the relationship of 

Drell and Yan31  (3.15) is exactly satisfied. For exponential form 

factors the two behaviors are related through the parameter P: 
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p 
2P+1 

F(q2.) 	
-a(-q) 

q-4—co 

Im f(p,t) 	e )  

Finally, we discuss the spin dependence of the asymptotic 

behavior of form factors. [see (3.11)]. Form factors for one scalar 

particle and one particle with arbitrary spir can be extracted from 

(5.) by taking the residues at poles as = N. However, we wouldlike 

to discuss the general case of form factors for two resonances of 

arbitrary spin. These form factors can be obtained by considering, for 

example, the amplitude for one current and four scalars (Fig. 12), 

M =du u(1 - u)alff du1du2 u l2 (l - 

-a -1 	 -a 	--a  
x u2 	(1 - u2 ) 	(i - uu1) 	

+y 
 (i - uu2) 13 

uu1u2)23132 	exp 	[ u(1 	
u 	2  uu2)  

When (5.13) is factorized at poles a12  = N1, a3  = N2  the overlapping 

energy variables correspond to 

a23 	l q, 	
E 
1 2' 	

q 

a21  o €1 .q, 

a13 
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where E. are the polarization vectors of the resonances. Thus a 

particle of spin Jj requires J1  factors of €1 
 in the residue 

and thus . J1  powers of a23  or a2 . Further one finds that there 

are extra powers of the integration variables associated with these 

a.., thus (5.13) always contains the combinations 

a23uu1u2 ; a24uu1 , a13uu2 	 (5.iL) 

Note that the powers of 'u 1  and u2  in (.14) assure that a particles 

of spin J only occurs if the appropriate a is greater than J. 

The factors of u are very interesting because they cause the corre-

sponding form factors to fall more rapidly for 1q21 -. Thus one 

easily sees that if the form factor is expanded as (see Amati, et al., 

Ref. 26) 

min(J1,J2 ) 

=1 	
T?..ij;v1...vj 

F(1)(q2)  

where 

T?..j;v1 
... 

vJ 	
= 	11 

then 

F(1)(q2) = fdu u(1 - U) 2) e (1)P f(u)  

For P = 0 and power behaved form factors, (5.16) yields 
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(• 	2 	
2 -(J1+J2-i) 	2 

F1 ' (q 	(q) 	F(q,) 	 (5.17) 
1 2 

which is precisely the result of Amati et al., 26(3,11) simplified to 

scalar currents. For exponential form factors the spin dependence of 

(5.17) is weakened by a fraction ( -) as one sees from 

The .preceding.discussion has shown that functions of the form 

proposed above (those of Refs. 44--47 are special cases of these) have 

the large-q2  behavior expected on the basis of other theoretical 

consideration. 6  We have not attempted to satisfy the divergence 

conditions for conserved currents or current algebra. In Refs. 4, 46, 

and 48 this was attempted, but the methods do not seem to give much 

promise of leading to a complete solution for general current amplitudes. 

We note however that the "hybrid" amplitudes given in Ref. 46 do satisfy 

CVC and current algebra and have all the good large-q 2  behaviors 

discussed here for a power-behaved form factor 

F(q2 ) = [1 - q2/(m2  + l)] 	Freedman has combined the divergence 

identity techniques used in Sec. IV with amplitudes of the form proposed 

in Refs. 44 and 45 to obtain an elegant model for current algebra with 

one vector current and one scalar current. In Appendix B we present a 

generalization of this model to exponential formfactors. However, 

only the scalar current has nontrivial structure like that discussed in 

this section; the vector current has trivial multiplicative form factors 

like those considered in Sec. IV and therefore bad large-q 2  behavior. 

Therefore, as yet the vector nature of the current has not been 

successfully combined with a current structure sufficiently complicated 

to give good large-q 2  behavior. 
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We have also not attempted to satisfy the factorization condi-

tions (Figs. 1 and 2) for these amplitudes. It can easily be seen 

that the contribution of the leading trajectories in models of the type 

suggested here is factorizable (i.e., nondegenerate) for the same 

reason as for the N-point beta function (5.1). 	However, as discussed 

by Freedman for the case of power behaved form factors, the lower 

trajectories will have a much greater degeneracy than (5.1). This in 

itself wouldnot be a fatal flaw because there exists the possibility 

of modifying the hadronic amplitudes, since these are not yet firmly 

established. However, the spectrum of such current amplitudes is 

internally inconsistent: it is different in different channels. 
47 

Even leaving aside the problem of factorization, we believe 

further development of models of the form proposed here would be very 

useful. It could give important suggestions on the role of high mass 

vector mesons in giving good large-q 2  behavior and satisfying the 

divergence conditions. Furthermore, functions of this form could be 

useful for phenomenological applications. 
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VI. CONCLUSION 

Although there are a very large number of physical properties 

that dual resonance amplitudes for vector currents should satisfy, 

we feel that the partial successes discussed above give a good deal 

of hope for the discovery of a full solution to the problem. The two 

different partial approaches to the problem discussed in Secs. IV and 

V both point up the important role that must be played by the high mass 

vector mesons. The vast number of vector mesons existing in the DRM 

is at once a source of optimism, since the great freedom it allows may 

be a crucial factor in being able to obtain a solution, and a source 

of difficulty, due to the great complexity it introduces. Clearly some 

guide to selecting the appropriate current is needed. We mention two 

approaches that may yield this guide. 

First, one could attempt to formulate the problem in a more 

algebraic manner, 	The fundamental object in a zero-width model for 

currents is the vertex for a current and two arbitrary resonances. The 

current algebra divergence conditions have a natural algebraic expres-

sion in terms of this vertex, but, at the present, the conditions that 

duality imposes are not well-understood. Generally, one would like 

to be able to see directly how the singularities in dual channels 

(e.g., s and t) are related. This would help circumvent diffi-

culties like those encountered in Ref. 33 (see Sec. Iv) where a 

solution of factorization in one channel 	was found to give 

unfactorizable singularities in the dual channel (t). We anticipate 

that a deeper understanding of duality will allow a concise vertex 
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formulation of the conditions on currents and thus give insight into 

their vector-meson structure. 

A second approach is to temporarily ignore the factorization 

2  constraints and explore in more detail dual models, having good large-q 

behavior such as those discussed in Sec. V. If a model with these 

properties could be found which also satisfied the divergence conditions 

and factorizes on just the leading trajectories, much could probably 

be learned about the role of the high mass vector mesons. 
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• 	APPENDIX A. EXPONENTIAL FORM FACTORS 

In this appendix we give some simple examples of narrow-

resonance-dominated form factors which satisfy dispersion relations 

and decrease faster than any power for. 	-, e.g., ! ecponentialu 

fOrm factors. 	 . 

Form factors with these properties can easily be constructed 

from elementary functions. For example, consider the class of 

functions 	 •: 	 . 	
. ... .. . 

F(q2 ) 	G(q2 )/G(0) , . . 	(n > 2 and even) 

where 	. 

G.(q ) 	•• 	 . 	 . 	(A.l) 

cos 	(a e2 ). 	.. 

and 

2 	2 
a = q -ni-i . 	. 

One can easily verify that the only singularities of F(q 2 ) are 

simple poles at positive integral values of a [the apparent cuts are 

Tr absent since the product is invariant under a _ae2h],  that it 

decreases exponentially 

F(q2) 	exp[a(q2)n1  

q -oo , . 	 . 

and that it satisfies an USDR. We note if we were to take n = 2, 

G2(q2) = cos 
	a2' 	 '. 	 . 
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F2 (q2 ) would not satisfy USDR since it does not decrease for 

Re q2 - --o, Im q2  fixed. 

• 	it is very convenient to represent form factors by an integral 

representation of the form considered in Sec. V, 

1 

• F(q2) = 
	

du u 	f(u) . 	 (A.2) fo 
The poles in q 2  &re then determined by the tehavior of f(u) near 

u= 0. whereas the asymptotic behavior for q in the left-half plane 

is determined by the behavior of f(u) near u = 1. We remark that 

(A.2) can easily be cast in the form of a Laplace transform 

fo 

dz eaz (z) 

where F(z) = f(eZ). This expression may be useful for studying the 

conditions on f(u) necessary to assure a given behavior of F(q 2 ), 

since .the known properties of.Laplace transforms can be used. 

A simple example of an exponential form factor in the form 

(A.2) is 

1 	 -1 

F(q2) 	f du 	e (l-u) 

One finds using standard techniques 



F(q2) ,';.'—I 
(3t '7)2 

 

(P+2) 	 P 

e_ie)2+1) exp[_(p + i) e)] 

e 1 	- 

	

(P+2) 	 p 

ae e;52)exp [-( + l)()] 
- 	

-iTra 	ijra 

	

e 	-e 

2 
Therefore, for 0 < P K l F(q ) is exponentially fafling in the 

diole complex q plane and satisfies USDR. 

Exponential form factors satisfy an infinite set of super-

convergence relations. If 

00 

F(q) = 

m +l+ 

then 

00 

f2 (m2  + 1 + 	= 0 , 	N = 1,2,3,... (A.5) 

These relations are easily proved by noting that (q 2 ) 1  F(q2 ) also 

satisfies an unsubtracted dispersion relation. The great wealth of 

such form factors is illustrated by the theorem of Atkinson and 

Halpern: 8  Given one exponential form factor, e.g., a solution to 

(A.7), an infinite number of other solutions to (A.5) can be 
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constructed. 
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APPENDIX B • MODEL FOR ONE VECTOR AND ONE SCALAB CURRENTS 

Freednians's model for one vector current and one scalar 

7. current satisfying current algebra is generalized to exponential 

(or arbitrary) form factors. In this model the vector current (q2 ) 

is introduced using the divergence identity techniques discussed 

in Sec. IV and the scalar current (q 1 ) is introduced using the 

techniques of Sec. V. Thus only the scalar current has good large-q2  

behavior. 

Freedman's model was constructed from amplitudes of the form 

shown in Fig. 13(a) and (b)with 	= -1. Changing variables to those 

corresponding.to the multiperipheral configuration of Fig. 13(c), 

ltting k be arbitrary, and using the current algebra identity of 

Ref. 29, we obtain 

0 
 f

1 

o 

dv1 . . . dv 	N~3 v1  (1 - v1 )] 

(B.1) 

= f dvl...dvN[_k(l - v1) + q
JV v]i. 

where 	 is defined following Eq. (.9) with the change of 

variables to the V1. Letting k -40 picks.out the residue of the 

lowest pole in the first term of (B.1). This N + 2 point function 

is precisely the amplitude for a single scalar current [Fig. 13(b)]. 

Therefore, changing back to the variables of Fig. 13(a) we obtain 
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fo
du1 d 	 I 	 du 	du 12 , 	(B 2)14+3  fo l  

or 

MV(q1,q2) 	- (q1  + q2 ) 

where the integrands now have the choice of trajectories shown in 

Fig. 13(a) and (b). Equation (B.2) is the analogue of (.9) for the 

current commutation relation. 

[Va° (t) 	btfl = 	abc 	
3( - 

We note that the identity (B.],), did not depend the variables 

v2,o.,vN and thus any function of these variables can be inserted 

without spoiling the result. In particular exponential form factors 

and the'absence of all fixed poles beside those in the two-current. 

channel can be achieved following the prescription of Sec. V and 

inserting the factor 

1/1 
exp l-( I \Y2OVN '\. 

This gives in MV the factor 

e[( ui..j] 	
, 	 ( B.3.) 

 

*UN 

uN 

and in 	the factor 

exp 	
uN 

)P1 
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As it stands (B.2) has a trivial constant form factor for the 

vector current. Arbitrary form factors can be introduced through the 

simple expedient of multiplying MV  by 

CO 

/ 	q22 	

(9v  = 	
m + i) 	- m + I + 2) (B.) 

since 

qV  A(q) = qVY 
 

the current algebra identity (B.2) still holds. Note that the vector-

meson amplitudes implied by this generalization will have the same 

fixed poles as the vector current amplitudes, a manifestation of the 

simple multiplicative nature of the form factors (B.4). 
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• 	 FIGURE CAPTIONS 

Fig. 1. Constraints on the single-current amplitude. (a) Vector-

meson dominance. (b) Factorization. The amplitude must be 

expressible as a sum over the poles shown by the heavy lines 

and these poles must correspond to states in the hadronic 

spectrum. 

Fig. 2. Constraints on the two-current amplitude. (a) Vector-meson 

dominance. (b) Linear factorization. (c) Quadratic factori-

zation. The amplitude must be expressible as a sum over the 

pOles shown by the heavy lines and these poles must correspond 

to states in the hadronic spectrum. 

Fig. 3. Divergence condition for single current amplitude. 

Fig. i-. An external line insertion (ELI) for the particle x. 

6 
Fig. 5. (a) Diagram for hadronic isospin factor 6a 	a 	8a' 1 	3 	3 

x 	2 Each line represents a 3. (b) Modified 

	

l 	
2 

diagram. Each cusp represents a sum, e.g., 	8 
x1 	1 

Fig. 6. Diagram for coupling of isovector current in v1 (q). 

Fig. 7. Divergence conditions for two-current amplitudes. (a) Nonad- 

jacent currents. (b) Adjacent currents. 

	

• 	Fig. 8. Field theory models illustrating the relationship between 

compositeness and the absence of fixed poles. 

	

• 	Fig. 9. Factorized single current amplitude (k1  = s i ). 

	

• 	Fig. 10. Construction for current amplitudes. 
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Fig. 11. Choice of variables in 6-point beta function corresponding 

to Eq. (5.3) for P= 0. 

Fig. 12. Single-current amplitude with four hadrons [Eq. (5.13)1. 

Fig. 13. Vector-scala" current algebra amplitudes. (a) Two-current 

amplitude, Mt) ( q1 , q2 ). (b) singie-scalar current amplitude, 

+ q2 ) 	(c) Choice of variables for Eq (B i) 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any in formation pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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