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IN THE DUAL RESONANCE MODELS—AND THE N-REGGEON ANPLITUDES. II. 

Loh-ping Yu 
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April 28, 1970 

ABSTRACT 

We present a compact way of carrying out repeated 

factorizations on the dual amplitude. Prescriptions are 

given for writing down the multiply factorized tree 

amplitudes. As an application of the prescriptions, we 

derive the N-reggeon amplitude. 
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I. INTRODUCTION 

In this paper, we use the fact that the projective transforma-

tion of cross-ratio is invariant under changing ofthe projective 

frames (duality) to generalize the multiple-factorization techfue 

developed ma previous paper. 1  We find a neat and compact way of 

carrying out the multiple factorizations on the dual amplitude. As a 

consequence of this, we obtain a set of prescriptions which enable us 

to write down directly the multiply-factorized tree amplitudes by,  

simply examining the corresponding tree diagrams. Applying the prescrip-

tions in a particular case, we obtain the formula for the N-reggeon 

amplitudes. 

In Sec. II we explicitly carry out the.third and the fourth 

factorizations and prove the factorization of the quadruply factorized 

tree into two triply factorized trees. We thus discuss the application 

of the quadruply factorized tree to the general double-loop calculation. 

In Sec. III we give the prescriptions for writing down an arbitrarily 

multiply factorized tree amplitude. And in Sec. IV we consider a 

particular case of multiply factorized tree to obtain the N-reggeon 

amplitude. In the conclusion we discuss the difficulties due to 

linear dependences. 

* 
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II. THE THIRD AND FOURTH FACTORIZATIONS 

It is convenient to follow the notations of Kikkawa and Sato. 

They define 
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in the Appendix we give all the identities used in this paper. We 

start with the double factorized tree of Eq. (17) of Ref. 1: 
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n 

(OI(a,b)> = 	dwl (WM) ( 	
±iw) 

X Bnm(>L] e[ 	
i 	

C;1.w1J 

(iL) 

+pi w 
2 

where 

In 

B(X) 	
i )() 

()In x , 	 (3) 

and w=, 	= 1, w1  = 0 (Fig. 1). In our new notations, 

we write the formula as follows: 

( aL ,  aM) = fwjWM 1  

e 	

{

(aLIP(wL,wLl,wL+l,wl)Ipl) + 

	

l (aMIP(wM,wl,wM_l,wl)lpl) 

(iL) 	 (iM) 

+ 

(14) 

wiere a'= a, aM lj, and 
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(w. - w )(w. -w) 

-w)(w3 - wJ 

In Eq. (n), we have omitted the coherent states Ix a 	I) 	and we 

will continue to do so throughout the paper if -noconfusiOfl arises.. We 

observe that the cross-rations P(wi,wj,wk,wi) appear ,  in a rather 

regular fashion, depending on the dot positions.of the excited legs. 

This turns out to be a very general feature as we go on to higher 

factoriztiofls. 	 . 

Let us now do the thirdfactorizatiofl. In Eq. (Lv) we change 

from the frame WM = , WM1 = 1, w1  = 0 to the frame w 

= 1, w = 0 (Fig. i), i.e., 

	

W. 	 .. 	 . 	 . 	. 	. 

then Eq. () becomes 

aR,a 	= fnw(w} 

	

X ej

i (a 	
+ 	

(a3IP(w,w+1,w_i,w)lP1) 

(i4R) 	 (iS) 	. 

± ( aS jp(W,w1,w 	
1aR) 

(6) 

Divide w 	into r., sil and t such that 
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R frame: rT= 	rTl = 1, r1  = 0; rT+. = r. , 

S frame: 
5T-1 = , ST 	1, s= 0; SM. = 

	
(7) 

Wt frame: wj = co, w = 1, wj4  = 0; w~ = 

Thus 

r 

1 	T. 
	 I = 1,2, ",T-1, 

1 

(8) 

w'. = r t s. , 

3 	2 	j j = T,T+1,",M 

We introduce the creation and the destruction harmonic oscillator 

operatores aT+,  aT to remove t and s, j = T,T±l,",M. As 

discussed in Ref. 1, we have from Eqs. (6), ('i),  (8), 

e 
 { IW

O[(aRI  
(iR)  

X P(rRrRlrR+lrI)IPI)] + (aR lP(rR ,rRl) rR+l ,rT )M 

X P(rRl ,rl ,rR,rT)p(rT,rl ,rTl ,rR )laT )I , 	 (9.a) 

e[ 

	(a P(w,w 1 ,w i w)I.)}ef 	{(a  SI 

(iS) 	 (iS) 

X P(r 5 r3+i r51 r 1 )IP1 )] + (aS lP( r ,ri , r ,r)M 

X P(rS±l ,rl ,rS ,rT)p(rT ,rl ,rTl,rS )taT) 	 (9.) 



and 

• 

= 

 

exp  

X jaR) . 	 (9.c) 

Substituting Eqs. (8) and (9) in Eq. (6), and defining 

= 	(TolG(R)(a , a ,a ) D(RT,S) G(aTjOT) 

we thus obtain the triply factorized tree (Fig. 2): 

~M ( aR 	= fri(RT }  

e{ 

	(aRIPR(1)lpl) 

+ 	

(a5 jP5 (i)jp 1 ) ~ 	(aT IPT (1)Ip l ) 

(iR) 	• 	 (iS) 	• • 	 • 	 (iT) 

+ .(ajP(S) M(R-1,S+1,R,S) _P5 (R)k5 ) 

• + (a5 jP(T) M_P(S+1,1,S,T) MP(S)ja) 

+(aT lPT (R) MP(1,R-1,T,R) MP(T)ja) 	,• 	 (10) 

where 

•p(S,S+1,S-1,i) , 

= P(T,1,T-1,i) , 
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and 

(rR - rR l)(rRl 
PR(i) = P(R,R-1,R+l,i) = 	-rRl)(rR - r.) 

(ii) 

It is clear that the new cross-ratios occur in the same manner as 

before. It is also interesting to observe, from the identities given 
+ 	R 

in the Appendix, that application of the twist operator, say ci (_pR,a ) 

on the r_1e, is simply equivalent to interchange of rR+l with 

rEl everywhere in Eq. (10). This insures that the cross-ratio 

PR(1) has .the.same form whatever the positions. of the dots. 

We now proceed to write down the fourth factorization; we shall 

then be able to infer the general prescriptions for an arbitrary 

number of factorizations on the dual amplitude. . Applying techniques 

identical to1  those used in Eqs. (6), (7),  (8), (9), and (10), we 

obtain the result for the quadruply factorized.tree (Fig. 3): 

f itdw i (WU) 

.e)11(4u) 

(aU lP(i)Ipj ) + 	(aPR(i)lpl) 

	

 . 	(iR) 

+ 	(aSIP(i)pi) + 	( j ) 

i=l 	 i=1 
(iS) 	. 	(iT) 	.. 

+ . (aPR(S) MP(R+1,S-1,R,S) 	PS(R)jaS ) 

+' (aS IPS (T) MP(S-1,T-1,S,T) M_PT(S)Ia) Equation. (12) Continued 

'.1 
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Equation (12) Continued. 

+ (aT lp(R) MP(T-1,R+l,T,R) MPR (T)I a ) 	. 

+ (aIP(U) M_P(R+1,l,R,U) _Pu(R)I) 

+ (aS IP(U) MP(S-1,l,S,U) iPU(S)jaU ) 

+ (aT IPT(U) MP(T-1,l,T,U) MPU(T)a)1 
	

, 	 (12) 

where w =co., w = 01 
. 
we_i = 1, and 

= P(U,l,U-1,i) 

By studying Eqs. (10) and (12) it is not hard to infer the general 

.presdriptions for the multiply factorized dual tree.. It is also not 

hard to write down the explicit form of the amplitude with an arbitrary 

number of excited legs. We will proceed to do so in the next section. 

Before leaving this, section we discuss the factorization property 

of Eq. (12). We first express Eq. (12) in the W' frame defined by 

w 	0 (Fig. 4), i.e., 

= 

We then introduce R, S frames as before. Using the inverse 

relations of Eq. (8), 
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r. 	-, 	 iKM-1 
1 	W.

, 
 

1 

w ,. 

	

S. = 4 , 	 j.> M 
M 

w$ 
t = 	M 

C 	 • 	 WM1 

and the identities in the Appendix, we can then .prove that the following 

factorized expression is identical to the right-hand side of Eq. (12), 

	

~+N ( aS ,aV,aM) D(aM_l aM ,t) 	(aM_1+,aR ,aT )0M) 

= 	KM0!ffi; e[ 	(aVip (i)1p) 

+ 	

(aSlp(i)1p) 

	

(iV) 	
• 	

(iS) 

+ 	1 

(aMIP (i)Ip:) + ( aVIP (M) MP(V+1,1,Y,M) 
_rM 

(iM) 	 • 	 • 

• .( aSIp (M) MPr(S_l1SM) MP (S)IaM) 

• ( aV IP (s) MPr(V+lS_lVS) 	P(V)Ia)] 

X D( aM_l aM, t) 

Equation (11 ) Continued 



•  fiSi(SUM) e 	
(aRIP (j) 	+ Y  (aTIP(i)lp) 

i=M-1 	 i=M-1 

+ 	 (aMhlPs 	
pi. 

i=M-i 	
M-1 

+ (aM 	I8 	(R) MP8 	 _ (U,R+l,M-1,R) 	PsR(M_1a 

+ (aMl I 	(T) M -P (u,T-1,M-1,T) 
i P (M_1)laT) 

5M-1 
	

- 

TIP5(R) MPs (T_1R~1TR) Ps (T)I Ra) 
+ (a 	 ]] tOM) 

where 	• r = co, rMl = 1, r1 	0, 

S1 = 00, SM = 1, s U = 0 

and 

Pr(1) = P(r,r +i,r_i , r1 ) 

Pr (V+11 VM) 	P(rV+l,rl,rV,rM) 

ST 	• 
= P.(S T , ST _l , ST+1)si) • 

P5 (,R+l,M_1,R). 	P(su,sR+l,sM_1,sR) , etc. 

and 

(114) 

(15.a) 

[anM,amM_1+ ] = 5nm' 	
aM IOM ) = 0, 	

(OMk 	
= 0 

• 	 (15.b) 

and all other commutators between a's vanish, also 
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pi = p. , 	 i = l,2, ... ,M-1 , 

	

P = P , 	 j M,",U , 	 (15.0 

= 

	

 j=M 	= - 	
= 

From Eq. (1 14) it is seen that Eq. (12) does factorize into the product 

of two triple-factorized trees which were given in Eq. (10). As a 

consequence of the factorizability of Eq. (12), we assert that if we 

join any pair of the excited legs we get the loop amplitudes. Namely, 

	

S 	 U 	 R 	 T 
if we join the a leg with the a leg and the a leg with the a leg, 

we get the nonplanar double-loop diagram (Fig. 5), of which the planar 

double-loop diagram3  is the special case when S = U+1 = 1, R+1 = T. 

And if we join the twisted aR  leg with the aU leg, the twisted 

aT leg with the aS  leg, we then obtain the overlapping double-loop 

diagram (Fig. 6). Thus Eq. (12) contains all possible perturbative 

unitarity diagrams with three-particle intermediate states, if we join 

the two pairs of the excited legs. 
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III. PRESCRIPTIONS OF THE MUlTIPLY FACTORIZED TREE ALITUDE 

Generalizing the result of the previous section, we now state 

explicitly the following set of rules in writing dom the multiply 

factorized tree amplitude by simply inspection of the tree diagrams. 

Rule 1. We assign to each leg (scalar or excited) one Koba-Nielsen 

variable w, i = 1,2,",M, and an incoming four-momentum p. 

Corresponding to each excited leg, we assign one destruction (creation) 

operator a R (aR+ ), where p. is space-time indices p. = 1,20,4; 
p., 

n is the excited harmonic oscillator mode in question, n = l,2,•..,00, 

and the superscript R coincides with the labeling of the Koba-Nielsen 

variables, R <M. 

Rule 2. The scalar part of the multiply factorized tree is the ordinary 

Koba-Nielsen representation 4  or the Donini-Sciuto rpresentation 5  of the 

M-point dual amplitude, namely fidw i (W M ) . 

Rule 3. All destruction (creation) operators aR (aR+) appear only 

in the exponents. The exponential.factors can be divided into two 

R 	p. 
classes. One class involves the scalar, product a 	p , the other 

class involves the scalar product of a R• aS; R,S M. The factors 

in the first class have the form 

(aR IPR (wi ) Ipi ) 	, 	 (16) 

RM 	(iR) 

andthose in the second class take the form 
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exp. 	 (aR IPR(S) MP(R±1,S±1,R,S) MP(R)Ia) 	, (17) 

(Rs) 

where 

P(wR,wRl,wR+l,wi), if the dot of WR leg lies 

• • 	 between WR  and WR+l 

	

PR(1) = 	 (18.a) 

P(wR,wR+l,wRl,wi), if the dot of WR  leg lies 

between WR and WE1, 

and 	• 

if the dot of WR leg lies 

between WR and WE;l, and 

the dot of w leg lies 

between w and 

	

P(R±l,s+l,R,$) = 	 (18 b) 

P(wR+l,wS;l,WR,WS), if the dot of WR  leg lies 

between WR  an wRT1 and 

the dot of w leglies 

betweenw and w S±1 

Rule li- 	When two excited legs, say WE and 	are adjacent to 

each other, i.e., there is no external scalar leg between them, then 

we must take appropriate limits of the relevant terms in Eq. (17). The 

limits are as follows: 	 • 
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Rule 1 a. When the WR dot lies between 	and WR and the WR1 

dot lies between VR and WR+l (Fig. 78), then 

(aR+1 IPR+l (R) MP(R+2,R+1,R+1,R) MPR (R)Ia) 

- >(a'IM P(R+2,1,R+1,R)IaR) . 	 (19.a) 

Rule Lb. When the w dot lies between WR1 and wRI and the 

dot lies between WR+l and WR+2 (g. 7b), then 

(aR+1 IPR+l (R) M P(R,R+1,R+1,R) _ PR(R+l)I) 

	

( a hIP(R+2,R_l,R+l,R)IaR ) 	 (19.b) 

Rule 4c. When the WR dot and the wR+l dot both lie between WR 

and WR+l (Fig. 70, t,hen 

( aR lP 1 (R) M P(R+2,R1,R+1,R) -. (kR) 

	

M P(R+2,R-1,R+1,R) 	IaR) . 	 (19.0 

However, in this case we need an asymmetrical propagator 1  for the wR 

leg (or WR+l leg), 

1 

	

D(RaR RaR+l wR+2 ; 	= 	
dt t 	

aR  x (i - 

\ RaR+l a(PR+l )  

I 	'-t 	 (20) 
- t• PR(w)) 	 ' 



F. 

A- 

11 
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where 

• 	RR+2 = P(wR,wR1,wR+1 , wR+2) 

In the cases of rules I-i-a and Li-b, we do not modify the propagator at all 

We note that rules Li-a and I-i-b are related to rule 4c by the 

twisting operations. 

Rule 5. The two amplitudes with the dot on the opposite sides of the 

excited leg, say the wR  leg, are related to each other by the twist 

operator 	 a1 ), or equivalently, by the interchange of WR+l 

with WR1 everywhere in Eqs. (16) and (17). The only additional 

complication to this rule is the case stated in rule li-c, where we need 

an asymmetrical propagator. 

• 	By using the above prescriptions and by directly inspecting 

the factorized tree diagram, we can write down the general formula for 

the multiply factorized tree amplitude 

(OG
(N) ( R ) 	 5-  J (W  a jall a) 	f it  dw i ( wM) (oe 	 (aR IPR (1)lp) 

LR4 (iR) 

+ 	(aP(S) M P(R±l,s+l,R,S) - 	(R)I) 	all .a)(21) 

R,SM 
(Rs) 

where M is the total number of excited legs plus the external scalar 

M+R 	R  
legs. Also, WM+• 	w, a 	a . We also give an alternative 

recursion formula for Eq. (21), which relates the integrand of the 
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Nth-factorized tree amplitude to the integrand of the . 

factorized, tree amplitude. (Fig.  

(OG(aall a) 	= f (aRIPR()Ipj) 

(iR) 

+ 	(aR IPR(S) M P(R+l,S±l,R,S) 	P(R)Ia) 

(sR) 

f .(N_l)(T TR)J all 	
) 	, 	

. 	 (22) 

wlere 91(aT;  T R) is the operator part of the (N-l)th-

factorizedtree integrand, and the index R is the Koba-Nielsen label 

of the first-factorized excited leg. Equation (22) is useful in 

obtaining:the N-reggeon amplitude. We will proceed to do so in the 

next section. 	. 	 . 
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IV. THE N-REGGEON AMPLITUDES 

As'we have discussed in Ref. 1, to get the pure N-reggeon 

amplitude: we should consider the case when M = N-i-i in Eq. (21) or 

Eq. (22). Then we have the tree amplitude with one external scalar 

leg (the w leg) together with N excited legs. For simplicity 

we choose the dot positions of the N excited legs as shown in Fig. 9. 

Corresponding to Fig. 9, we apply the prescriptions in Sec. III, •or 

use Eq. (22), to get the amplitude of N excited legs plus one external 

scalar leg (the WN  leg), 

G(a1,a2,.,aN1,aN+l) = f 	+Jdw i  (W  N+l 
iN 
N 
1 

)( f9 .I ( a1 a2 	aN_1 a 1 )} 

ft
(N-i) 1 2 	N-2 N-i-i 

dw i  (W  N+l 
)?I(W  (a ,a ,",a ,a 

N+l 

x •exp 	(aN_ PN j(i)pj ) 

N+i 

+[(aN PNl(R) M P(N-,R+1N-1,R) MPR(N_l)a I ' 
(RN,N-1) 	

(23) 

where P 1 (i) = P(N-1,N-2,N,i) and we choose the frame 

WN+l 	WN_i w1=0 
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Now analogously to Ref. 1, we consider the scalar w leg 

attached to the excited WN+l leg. In other words, we want to write 

Eq. (23) in the form W(aR) •D 	v(PN) and then to remove 

v(pN) = exp(a N+l1 )X ecp(aN+lp) by letting pN 	and modifying 

the spectrum of the relevant trajectories, as we did 6  in Ref. 1. 

Guided by the tricks used in Eqs. (33), (54), and () of Ref. 1, where 

we have taken down the common factor {(i - w3)/(l - W2 )]c (w3 )d 

from the exp C•.•) of Eq. (33) to the propagator D' of Eq. (35), 

we now observe, from the factors Pi(w) and PN+l(Wj) in Eq. (23), 

that we can bring down the similar common factor 

RN+l 

	

- w1)/(w - wN2)] 
a 	

.(wi) a 
	from the ecp (...) of 

Eq. (23) to the propagator D. it is this common factor that causes 

the factorization of WN2 and t to be unfeasible, and presumably it 

is closely connected with the linear dependence problem. 7  

After setting PN 	
N+l 	N 

- 	and redefining a 	= a , N+l = 

and reintroducing the KobaNielsen variables1 WN = 90, 	= 

= 0 in Eq. (23), we find the modified propagator 8  of the new wN 

leg: 

	

1 	-a(p )-l-1-R N 

D(aN,aNl ,pN) = To dt 	
N 	

a (1 - 

	

R 	.-a(p 	) 

x - P(wN,wl,wN_l,wN2 	

a 
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and the N-reggeon amplitude (Fig. 10) 

.W(a1,a2,,aN) 
= f 

Trdw i(WN) 

e{ 	 (aR IPR(i)jp.)+ 

• 	(RØ-1) (iR) 

N 

+ 	 [(a R  lm-P(R+1,R-2 R,R-l) Ia'_1 ) 

(RN-1,w) 

(aN_h IP(N_1,N_2,N,i)Ip j ) 

+ (a'IP(N,N-3,N-1,N-2)Ia2) + (aNIMP(1,N_2,N,N_1) 	laN_1)] 

+[(aR IPR (R_2) MP(R+1,R-1,R,R-2) 	PR2 (R)I R_2 ) 

+ ( aN _h IP(N_1,N_2,N,N_3)MP(N_2,N_2,N_1,N_3)_P(N_3,N_2,N_,N_1)jaN_3 ) 

* ( ah IP(1,2,N,N_1)MP(2,N_2,1,N_1)P(N_1,N_2,N,1)ta N_1 )] 

+ 

+[(aRIPR(R_K)MP(R+1,RK+1,RRK)PRK(R) aR_K) 

(RN-1,K-1) 

+ 

X 	P(N-K-1,N-K,N-K-2,N-1) 

Equation (25) Continued 
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X Ia') + 

+ 	... 	 - 

N. 

+ [12: 	2 	 N 
2 )  

(R#N-l ) -1) 

+ (: 	

a2 )}} (27) 

where a 	.= a , PR(S) a P(wR,wR +i,wRl,wS ), and we have assumed 

N = even integer. For N = odd integer, we then replace H by N - 1 

and drop the factor 	in the last two terms of Eq. (25). We now 

also can release the frame dependent constraint, since all terms in 

Eq. (25) are projectively invariant cross-ratios.. Hence our result of 

N-reggeon amplitude is manifestly dual. 9  

We can further obtain the completely symmetrical N-reggeon 

amplitude by applying the twist operator i± 	N-i (-p,a 	) to the right 

of Eq.. (25) times Eq. (24), and passing it to the left of
,  the_propagator 

D ( (aN,a,pN). Using the exact agruments given by Caneschi and 

Schwimmer,, we simply drop the factor 

R NlcNl) 

(l tPN,l,Nl,N2) 	 in Eq. (24), and apply the 

twist operator ci (-PN1,a - ) directly to Eq. (25). We finally get 

the completely symmetrical N-reggeon 	 ul): 
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W(a1,a2,0,aN) = fTrdw, (WV  e{ 	
• 	

(aRIPR(i)Ipj) 

i  
(iR) 

+ 

+ 	(aR IPR(R2)MP(R+l,R1,R,R_2)PR2 (R)IaR_2 ) 

PP 

+ 

+ 

+ (26) 

where aN 	aR; PR(S) 	P(R,R+1,R-1,S), etc.; and N = even integer. 

For N = odd integer, we replace 	by N - 1 and drop the factor 

the last term of Eq.(26). And the propagator of the w leg, 

(N) D 	(...), becomes the ordinary one. 11 

It isalso interesting to see that the symmetrical N-reggeon 

amplitude, Eq. (26), can be obtained directly by using the prescriptions 

of Sec. III and letting all the Koba-Nielsen variables associated with 
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with the external scalar legs vanish. One could also similarly use 

this illegal method to recover Eq. (25). Howevler, we then lose the 

asymmetrical behavior of the propagator in the w l, leg. This again 

indicates the complications raised by the problem of linear 

dependence. 12,13 
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V. CONCLUSION 

We see that the multiple factorizations on the dual amplitude 

can be carried out in a rather neat and compact way. We also see that 

• the N-reggeon amplitude takes a fairly simple form, which is manifestly 

dual. However, the intrusive problem of linear dependence still remains 

unsolved. In fact, it is clear that the N-reggeon aniplitude itself 

should be factorizable. But in directly proving the factorization of 

Eq. (25) or (26), we encounter the unequal-mass problem, for which we 

do not have the bootstrap condition a + bp. 2  = 0. Therefore the 

degeneracy of the spectrum of the trajectories appears to increase, 

though we know that it cannot do so. In order to decrease the degeneracy 

of the spectrum of the trajectories and at the same time prove the 

factorization of the N-reggeon amplitude, we shall have to take into 

account the existence of linear dependences among the excited states 

in the dual amplitude. Once we achieve the proof of factorization of 

14 
the N-reggeon amplitude, we may be able to construct Nambu's field 

theoretical-type dynamical equation of motion. 
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APPENDIX 

The notations in the following equations have been explained 

in Eq. (1). 	The 
B 	(x), 	m 	( n) 	-n'.. 

function 	
nm  	

( 	
)

(_l)mm x1 
(nm) 2 	i=O 	i 	-rn-i 

defined in Ref. 1 is- equal to 	[M(l 
- X)i;I.]nm. 	We further denote 

(XMYMZ) = 	Xnl (M) 	?(M)Zm 
, 	 (sum over 	i) 

then we have the following set of identities 

=  

MM 	= M 	, 	 -  

MM 	= M0 	 , 	 .-  

1 ± x M 	i -11/x  

MxM 	= (1 - x) M 	1 -1/x 
 

M~ (l - x) M(l - l/x) Mx  

- x)M 	= (i - 1/x) Mx 	= 	M(1 - x)Mx .  

The identities involving the twist operator are 

(aIM 	=. (I 	,  

• MIa) 	= ) 	 , 
 

(pta) 	= -(pl) (i) 
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(pjxa) = - ( I) + (p1(1 - x)l) 	 (k) 

= (T) 1  a Ta = 	e 	(ajMIa) 	 (2) 

The identities involving the cross-ratios are 

p(x,y,z,w) 	(x - w)y - zj ' 
	 (m) 

1 - p(x,y ) z,w) = P(x,z,y,w)  

P(x,y,z,w) = P(x,y,w, 
	 (o) 

	

z) 	,  

p(x,y,z ) w) = P(y,x,w,z)  

	

, 	 (p) 

	

p(x,y,z,w) P(x,y,u,z) = P(x,y,u,w) 	 (q) 

r 
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FIGURE CAPTIONS 

Fig.  The double-factorized tree. 	The 	w1 	refers to the frame 

defined by 	WM = 	, 00 	w 	0, 	WM1 = 1, 	and. refers to 

a new frame 	= 0, 	w 	=00, 	 = 1 	for the third 

factorization. 

Fig.  The triply factorized tree. 

Fig.  The quadruply factorized tree. 

Fig. Li. The factorization of quadruply factorized tree into two 

triply factorized trees. 	The 	r 	and 	s 	refer to two i 

new frames defined by 	r M 
= oo, 	rMl = 1, 	r 	= 0 and 

5M-1 	' 	
= 1, 	s U=O. 

Fig.  Nonpianar double-loop. 

Fig.  Overlapping double-loop. 

Fig.  The 	wR 	dot lies between 	wR 	and 	wRi, and the WR+1 dot 

lies between 	w 	and 	w R 	R+l 

Fig.  The 	w 	 dot lies between 	w 	 and 	wRl, and the WR+l dot 

lies between 	w 	and 	w 	. R+l 	R+2 

Fig.  The 	WR 	dot lies between 	WR 	and 	WR+1 	and the WR+l dot 

lies between 	WR+l 	and 	WR* 

Fig. 8 The Nth-ractorized tree. 

Fig.  The 	N 	excited legs plus one scalar leg. 

Fig.  Twisted 	WN1 	leg of , the N-reggeon amplitude. 

Fig.  The syitimetrical N-reggeon amplitude. 
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