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ABSTRACT 

The totalcross section for the multiperipheral 

model is obtained by solving a Bethe-Salpeter equation. 

We show that the N-particle production cross sections 

are given directly in terms of the eigenvalues and eigen-

functions of this Bethe-Salpeter equation, and hence are 

directly related to the Regge pole parameters. In 

simple models of Regge poles based on the multiperipheral 

model the production cross sections are completely 

determined. Results are given for several simple cases 

including the Chew and Snider model of the Pomeranchuk. 
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I. INTRODUCTION 

It has been proposed by Fubini and co-workers1  that a multiperiph-

eral model of high-energy scattering will provide a dynamical description 

of Regge poles and hence .a dynamical model of the low-mass particles 

that lie on these trajectories. The basic form of this model 

is a ladder structure of the type shown in Fig. 1, where the multipar-

tide production contribution to the total .cross section is constructed 

by the -iteration of an elastic cross section. In our previous 

2 3 
i work and n the work. of Chew, Rogers, and Snider the ladder graphs 

were summed by means of the Bethe-Salpeter equation. While the values 

of the various Regge pole parameters were obtained in the neighborhood 

of t = 0 little was said about the N-particle production 

cross sections which are the quantities most directly predicted by the 

model and are also directlyy measurable experimentally. 

In this paper we would like to approach the same problem but 

beginning with a different point of view. We will assume that both 

the total cross section and the elastic cross section are known from 

experiment or theory and use the multiperipher1 model to predict the 

N-particle production cross sectjons. It is hoped that this will allow 

the direct comparison of experimental data to check the validity of this 

model-without depending on a specific calculation, and at the same time 

clarify the effect of certain assumptions made in previous calculations 

in regard to the parameterization of the elastic cross section and the 

assumed off-mass-shell dependence of the scattering amplitude. 
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Our starting point will be the assumption that the total cross 

section has a ladder structure of the type shown in Fig. 1 and that it 

can be calculated from a Bethe -Salpeter -type equation in which the 

inhomogeneous term and the kernel are related to the elastic cross 

section. It is further assumed that this equation is partially 

diagonalized when one invokes either 0(4) or ON  symmetry. 

In the following section we will obtain a formal expression for the 

N-particle production cross sections in terms of the elastic and total cross 

sections. in Sec. 3 we investigate several applications to simple 

models, and we obtain the production cross sections as a function of 

energy and, the number of pairs produced. 
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II. FORMULATION OF THE MULTIPERIPI-tERAL MODEL 

The basic equation of the multiperipheral model can be written 

as the following Bethe-Salpeter equation: 

•T = To + T6  GT, 	 (2.1) 

which corresponds formally to the diagram in Fig. 2. The kernel T 0 , 

when evaluated on the mass shell, is related to the elastic cross 

section by 

(s) = {s(s 
- 	 2 )] _ 

Cr t 	 Im T0 (s,t = a) . 	 (2.2) 

The solution T(s,t). bares the same relation to the total cross 

section, and G is the two-particle propagator. 

If we now expand both T and T 0  in partial waves appropriate 

to whichever symmetry is assumed, i.e., O(Ii.) at t = 0 and ON 

elsewhere, the Eq. (2.1) is diagonal with respect to this quantum 

number 2.. The continuation of these quantities into the complex ? 

plane is accomplished in the standard manner. For simplicity we will 

assume that T0  has only a branch cut for positive s and hence no 

signature need be introduced. The resulting continuation is 

00 

T(t) 
= f4~t 2 

ds s 	Im T(s,t) , 
(2.3) 

where 7 stands for either £ or n and we have used the asymptotic 

form of or f to simplify the discussion. The inverse of this 

relation is: 



- 2ti  

where c is the usual contour to the right of 

all singularities of T.  The solution of the partial-wave Bethe-

Salpeter equation can be - expressed in terms of the eigenfunctions and 

eigenvalue of the homogeneous form of the equation: 

= E T0  G (2. 5) 

Then T)  and T02  have the following expansions 

• 	 r 	1, 
L'I1 	t)J 

.T(t) = 	. 	 ( 2.6) 

1 
E 1(t)-1 
X 

and 

(2.7) 
E 

	

i•x 	- 

Note here that the off-mass shell dependence is contained in the 

functions - 1. It is clear from Eq. (2.6) that x-plane poles of the 

amplitude; T?(t) - arise from the denominator vanishing and hence the 

Regge trajectories a(t) and residues 	(t) are determined by 

the following equations: 

Ei(t) = 1, 

1 

1(t) =*CX (t) 	
] 	

. 	 (2.8) 
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In order to determine the cross section for production of 

N-partic1e pairs we define the amplitude TN  such that the imaginary 

part of •TN  when evaluated on the mass shell is proportional to 

It is clear that the TN'S  satisfy the following recursion relation: 

TNi = T0  G TN 	 (2.9) 

We can now define a generating function for the TN's  as follows: 

00 

Th = 	hN TN , 	 (210) 

which will be the solution of the Bethe-Salpeter equation 

T = T +hT GT h 	o 	o 	h 
(2.11) 

and the production cross section can be extracted from Th  by projecting 

out the coefficient of hN.  The projection Th 	has the same type of 

continuation into the . plane as T7  and T0 and hence satisfy the 

same partial-wave Bethe-Salpeter equation. The solution to Eq. (2.11) 

can again be expressed in terms of the eigenfunction solutions of the 

homogeneous Bethe-Salpeter equation: 

Th, 	= 	 (2.12) 

Since this expression is readily expandable in powers of h we 

obtain the following result for TN: 
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N+l 

TN,x = 	(J) 	(I(1)2 , 	 (2 115) 

which, when evaluated on the mass shell and substituted into Eq (2 Ii), 

yields the N-particle production cross section 	 I  

aN(s) 
=j dx 

5x 
TN,x 	

(2.14) 

The average multiplicity for the production process can easily be 

expressed directly in terms of Th: 

(N) = 	(N + 1) aN/aT = 1 + 	Im Th  1(s,O)/Im  Thl(s,O) 
:j  

Finally, we note that if the sum in Eq (2.12) is well 

represented by the first term, i e , the eigenvalues are widely 

separated, aN  can be expressed directly in terms of integrals over 

a 	anda as follows: e2 	

aN(s) =£ dx 
5x-1 

Tx 	
_TpxN 	

(2.16) 

where 

CO 

Tx = 

fs Ib  
ds 5x 

aT(s) 

and 
CO 

Tx = fs 
ds s 	a2(s) (2.17) 
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III. SPECIFIC MODELS 

To illustrate the method presented in the previous sections, we 

will consider several specific examples. Our general procedure will 

be to assume certain types of x-plane singularities and determine the 

resulting relation between the elastic, total, and production cross 

sections together with the multiplicity implied by these singularities. 

Since these relations are determined by the imaginary part of the 

amplitude at t = 0 we will simply parameterize the amplitude at this 

point, but the reader should keep in mind that in general all of the 

parameters introduced in the following discussion are functions of t. 

We study examples where a single term 'in the expansion given in 

Eq. (2.12) dominates the amplitude. 

A. Single Pole 

The simplest case we can consider is that T  has only a 

simple pole at ?.=a0 . Then E isa linear function of X: 

= 1 + (. _ a)/r 	 (3.1) 

and the asymptotic form of aT  is 

a -1 
aT(s) = 	s 	, 	 (3.2) 

where 	is the residue of the pole. The aNS  have the following 

Poisson distribution: 

N a-f-i 
a - 	(2ns) 	0 5 



-8- 	 UCRL-19816 

The average multiplicity for pairs is then the following: 

(N) = 1 + f £n s . 	 (3.) 

B. TwoPo1es 

The simplest generalization of the single-pole model is to 

consider an eigenvalue which is a quadratic function of X with the 

resulting amplitude containing two poles at cc and a with residues 

r+ and. r_, respectively. If we assume 

= (x - a)(x - a)/f + 1 
, 	 (3 5) 

	

.the amplitude T 	is 
h,x 

r(X-a)+r(-a) 

	

Th , 	f 
( - a)(x- a)+ f(1 - h) • 	 ( 

6) 

Here f is a parameter which will be related to the average multiplicity. 

The Mellin transform of Eq. (3.6) is: 

	

Im Th(s) 	 ~ = fs 	[(r + r_) cosh(R in s) + a,(r+  - 
r_) sinh(R in S )J 

(3.7) 

where aR = (a+  + a)/2, c = (a - a)/2, and R 
= [2 + f(h - 1)12.aD 

By differentiation with respect to h we obtain the cross 

section for producing N pairs of particles aN: 

J 



-9- 	 UCRL-19816 

aN(s) = f sR(r + r_) 1N1(R in s) + CXD
(r - r_) 1N(R  in 

£ns 	in 	, 	( 3.8) 
N' (TR 

where iN(z) = 	i 1 (z) and R is evaluated at h = 0. Note that 

this is. not a Poisson distribution except for large R in s where the 

asymptotic behavior of i is independent of N. The average multipli-

city of pairs in this limit is 

(N) = 1 + 2R(h= 1) in s . 	. 	 (•) 

If the poles are.a complex conjugate pair the iN
• Bessel functions go 

into j's which are oscillating functions and aN  is not positive 

definite. Therefore the complex poles must either be the nonleading sin-

gularities or must be an approximation to a cut of the type suggested 

by Ball, Marchesini, and Zachariasen which is valid only over a 

limited eiiergy region. 

C. Approximate Solutions to the Multiperipheral Bootstrap 

In our previous work on a realistic treatment of the multiperiph-

eral model the Bethe-Salpeter equation was solved numerically. From 

these calculations we obtain a reasonable Pomeranchuk and p Regge 

poles. What this calculation predicts for aN is di .rectly relevant to 

experiment, however, the fact that the eigenvalues were obtained 

numerically makes the required integration in Eq. (2.14) difficult. 

Recently, Chew and Snider, 5  investigating the same type of model, have 

employed a factorable kernel and have obtained results quite similar to 
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our earlier result. Because of their approximation they have only one 

eigenvalue with the explicit 	. dependence known. It is of interest 

to obtain the o predicted by their model, and one would expect these 

results to be similar to those predicted by a realistic model. In their 

model the eigenvalue and eigenfunction are the following: 

(--) 
E 	

)(x 
p 	

(.lo) 
g + R ) 

2, 
and IJ? =(x - 	), where in the interest of simplicity we have set 

the internal and external couplings of the CS model equal. Here 13 

is the position of the effective singularity due to the high-energy-

component. of the kernel and 	is the position of the singularity 

associated with the pion propagator. The parameters g and 

control the strength of the high-energy and resonance components of 

the kernel, respectively. 

Using Eq. (2.14), we obtain 

aN(s) = 2i 

 

f d 	(_1 
)N 	+ gN+l 	

II) 

The evaluation of these integrals is straightforward but lengthy. 

In Fig. 3 are shown the total cross section and some typical production 

cross sections, for the value of the parameters determined by Chew and 

Snider5  which are the following: g = 1.0,, g = 0.0, 	= -0.3,
JT  

and j3 P = 0.9. In Fig. 4 we compare the N dependence of production 

cross sections with the Poisson distribution for several values of the 
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energy. The average multiplicity predicted by this model is shown in 

Fig. 7 together with two straight lines which agree with this curve in 

the accelerator energy region and in the asymptotic region. Note that 

the effective coefficient of in s changes from 2 to 0.,67 at ultrahigh 

energy. This effect is similar to that we suggested in our previous 

paper, 2  in which the low-energy multiplicity is controlled by an 

"effective" Regge-polethat is actually the contribution of a cut, 

while at sufficiently high energy the "true" Pomeranchuk pole dominates 

and produces a much smaller average multiplicity. 
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CONCLUSION 

The multiperipheral model provides a mathematical framework in 

which to study dynamical Regge trajectories and their associated cuts. 

In application of this model, previous work has general1y concentrated 

on the elastic cross section which is directly related to the kernel 

of the integral equation and the total cross section which allows one 

to identify various Regge poles. These calculations also contain 

implicitly all the production cross sections which are also experi-

mentally measured quantities. We have computed the production cross 

sections for a few simple models including the approximate multi-

peripheralmodel of Chew and Snider, 5  where the assumption of factor-

izability, of the kernel leads to very simple predictions. While the 

production cross sections in this model deviate from a Poisson 

distribution, this deviation is not in disagreement with current 

experimental data. 
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FIGURE CAFflONS 

Fig. 10 Diagram representing the multiperipheral contribution to the 

total cross section. 

Fig. 2. Diagram representing the multiperipheral Bethe-Salpeter 

equation. 

Fig. 3. Production cross section as function of energy from CS model. 

2 
Energy units: 1 GeV  

Fig. 4. Production cross section from CS model as function of number 

of pair (solid curves) and corresponding Poisson distribution 

(dashed curves) for several energies. 

Fig. 7. Multiplicity of particles as function of energy from CS model. 
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