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ABSTRACT 

A plasma configuration with cylindrical symmetry is studied, 

containing axial and azimuthal magnetic field and radial electric 

field, with arbitrary radial variation. The particle motion is 

parameterized by three exact action-invariants: radial action, canonical 

angular momentum, and canonical axial momentum; in the limit of small 

gyroradius they are eq.ui'valent to magnetic moment, radial guiding-center 

position, and parallel velocity. The perturbed Vlasov-Maxwell equations 

lead to a set of normal modes, which can interact resonantly with the 

particles. The quantum rate equations for this interaction, together 

with the laws for conservation of energy, angular momentum, and axial 

momentum, lead (in the classical limit) to a Fokker-Planck equation in 

action-space for the particles, and to an equation of evolution for mode 

energy. These coupled kinetic equations satisfy an H-theorem, which 

implies a monotonic approach to a canonical distribution: a rigid-rotor 

distribution for particles, and a generalized Rayleigh-Jeans distribution 

for the modes. This asymptotic state may however be unconfined. The 

quantum transition probability is deduced from a classical calculation 

of emissivity. Explicit expressions are obtained for the mode growth 
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rate and for the particle diffusion tensor. Finally, the Vlasovon-

ductivity kernel is deduced from the growth rates, by the use of the 

Krarners-Kronig relations. 



I. INTRODUCTION 

The study of resonant interactions between plasma waves and 

particles has been well developed for the case of a uniform system, and 

• 	for local interactions in a slightly nonuniform system.15  It is now 

of interest to extend these ideas to essentially nonuniform systems, 

where the particles may traverse an appreciable part of the system, and 

where the waves are normal modes (not necessarily describable by the WKB 

method), 

Since the difference between a uniform and a nonuniform euilibriuna 

configuration is the lack of translational invariance in the latter, it 

seems advisable to study first the case where this loss of invariance 

occurs only for one of the dimensions, while the other two dimensions 

retain .the invariance. Such systems are the plasma slab (variation 

in x, symmetry in y, z) and the plasma cylinder (variation in r, 

symmetry in (p, z). The latter system has been chosen for the study in 

this paper, since the slab can be obtained from the cylinder by appro-

priate changes. 

We consider thus an equilibrium configuration with vector potential 

A(r), A(r), to describe the magnetic field B 0 (r) = r d(rA)/dr, 

B°(r) = _dA/dr. In addition, there may be a scalar potential 0(r) 

to describe the ecluilibrium electric field Er°(r) = -dO/dr. There is 

no limitation on the magnitude of the electric field, nor on the shear 

of the magnetic field. The equilibrium particle distributions must be 

self-consistent with these fields, providing the appropriate charge and 

current densities. (The plasma.need not be quasi-neutral, and may be 

single-component.) 
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The particle motion may be taken as nonrelativistic or relativistic. 

Since p and z are ignorable coordinates in the }miltonian, their 

conjugate momenta, p  and  p,  are invariants of the unperturbed 

particle orbits. The radial motion is periodic, and is characterized 

by its action J. (We exclude the possibility of radially uritrapped 

particles, corresponding to an unconfined system.) In this description 

there is no requirement for small gyroradius; the radial motion may be 

over a small region, or over the whole system. 

It is helpful to keep in mind a special limiting case, to provide 

intuitive guidance, namely the case of uniform B,  with B° = Er° = 

and small gyrorad.ius. In that case the action J
r 
 is proportional to 

the magnetic moment, the canonical angular momentum p  is proportionalCP  

to the radial position (squared) of the guiding center, and the axial 

momentum p is proportional to the axial particle velocity vj, [see 

Eq. (5).]. If instead. B °  = 0, while B °  0, then p  representsCP  

azimuthal velocity .v , while p. represents radial guiding-center 

position. In the general case, the invariantsp and 	represent 

combinations of radial position and vj. 

Again because p and z are ignorable, the normal modes of the 

Maxwell equations have the form 

Ea(r) exp(imcp + ikz - it)  

where m is an integer and k is real. In this paper we restrict our 

study to systems whose instabilities arise only from first-order resonant 

interactions between the normal modes and the particles. In that case, 

we may take na  real, since its small imaginary part, representing 

resonant growth or decay, will appear as a slowly varying mode amplitude. 
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The condition for resonant interaction between a normal mode 

and a pai'ticle is found to be 

- m 	- k 	1w
r , 	 (2) 

where J is the azimuthal drift velocity (the average of cp over a 

radial bounce), Z is the axial drift velocity, U) is the radial 

bounce frequency, and is an integer. (For small gyroradius, w 

• 	is the particle's gyrofrequency.) As a result of this interaction, 

there are changes in the particle's action variables r ' Pcp 	z 

• 	These changes are represented by a (relatively) slow evolution of the 

particle distribution f(J, 	, p; t),which satisfies a Fokker- 

Planck equation (71) in the actLan space. The diffusion tensor (73) and 

the drnamic friction (72) are both simply expressed in terms of a mode-

particle coupling coefficient aa(Jr, p, p).  This coefficient is 

calculated (05) from the radial variation of the mode and the unperturbed 

particle orbit. 	 •. 

The diffusion tensor also involves the mode energies. These 

evolve according to a linear equation (65), which includes the 

spontaneous emission rate by discrete particles, and the linear Vlasov 

growth (or damping) rate. Both these quantities are expressed in terms 

of the coupling coefficient. 

The coupled. equations (to) and (6), for particles and mode 

energies, satisfy an H.theorern, Eq. (82),representing the monotonic 

increase of entropy, and approach to a stable thermal equilibrium, with 

the particle distribution (fOr species s): 



- 

cc exp(_) [ H5 (Jr,p , p ) 	w  p 1 	() z 	(pcp 

and with the mode energy 

W 	l[1 - 

The parameters 	and cn are determined by the conservation of energy 

and angular momentum. (We assume, in this introduction, that the axial 

momentum parameter vanishes.) 

In a single-species plasma, Ecj. (3) represents a confined system, 

if cD lies within a certain range. 7  Note that the generalized 

Rayleigh-Jeans law (4) allows for negative-energy modes )  (m W > M
-  

However, for an electron-ion plasma, w must be the same for both 

species (in order to satisfy the H-theorem), and this indicates that at 

least one of the species is unconfined, as will be shown in Sec. V. 

Hence the approach to stable equilibrium is to be interpreted in the two-

species case as a perpetual radial diffusion towards uniformity. 

The groundwork for the present study was laid in a previous paper, 

to be referred to as K1T. That paper proceeded, by purely classical means, 

to derive the coupled kinetic eq.uations for an inhomogeneous one-

dimensional plasma. In these equations each term was found to involve 

the same mode-particle coupling coefficient. It was then shown that 

the classical limit of the quantum rateequations led to equations 	
IF 

of the same form, with much less labor. The quantum equations involved 

a transition probability for the emission or absorption of a normal mode 

quantum by a particle. By comparison ofthe quantum and classical 

(L) 
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equations, the quantum transition probability was identified with the 

classical coupling coefficient. 

From the experience of that paper, it was felt justifiable to 

use the quantum approach9  in the present work. In this way, the 

emission rate, the linear growth rate, the dynamic friction, and the 

diffusion tensor are all expressed in terms of the coupling coefficient, 

which in turn is calculated classically by studying the emission rate, 

only one of these four quantities. The emission rate is found, from the 

test particle theorem10  applied to th Maxwell equations, whose Green 

function is expressed in terms of the normal modes. 11  

The Vlasov conductivity tensor can be determined indirectly, by 

applying the Iamers-Kronig relation to its hermitian part, which is 

deduced from the mode growth rate expression. The conductivity is 

expressed in terms of the.microcurrent correlation tensor, as a generali-

zation of the Kubo relation,.and is also expressed explicitly in terms 

of the particle orbits. 

In the final section, a critique is presented on the methods of 

this paper, on the limits of validity, and on the possibility of gener-

alizations in various directions. 

lb 
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II. THE PARTICLE INVAPJARTS 

In a static configuration with cylindrical symmetry, the 

canonical momenta for a relativistic rarticle are 

Pr
=  m0 7r, 

p 	= m y r2 	+ (e/c)r A(r) , 	 (5)
CP 

= m y 	+ (e/c) A(r) , 

where m0  is the rest mass and y =, ( i - 	 In the non- 

relativistic case, set y = 1. The relativistic Hamiltonian is 

H(prpprY = m02c + c2pr2  + [ cp - 	(r) 12  , 	 ,  

+ [(cp/r) - eA(r ) 21 1/2+ 

(6a) 

while -the norrrelativistic Hamiltonian is 

HrPcpPzI) = (2mo)_ltPr2 + 	- (e/c)A(r) ]2  

+ [(pr) - (e/c) A(r)] 2 	+ eØ(r). 	(6b) 

In either case, cp and z are ignorable, so p and p  are 

invariants of the motion. 

For given (p,p),  consider the phase-plane (r,pr).  Since 

H is even in pr  the curves of constant H are nested closed curves, 

symmetric under 	r' and represent the periodic radial motion. 

The area enclosed by a curve is its action 
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2Tc Jr(Hppz) 	 ' 

where p is the double-valued fimction obtained by, solving Eq. (6) for 

Pr 2 The limits of the radial motion are ri(H,p,p) and r2(H,p,p), 

obtained by setting pr 
 = 0 in Eq. (6) and solving for r. Although 

r is doubled-valued in r, the other velocity components cp and z 

are single-valued, as seen from Eq. (7). 

It is convenient to use J r 
 as a new canonical momentum, in 

place of p since it is an invariant of the unperturbed motion. The 

generating function for the canonical transformation is 

r 

G (r, Cp, 	r' V P z 	

1 	
dr' pr  (r 'r' 	

+ 	P + z P, 

where is obtained by solving (7) for H(Jrppz) 	to 

eliminate H 	from 	r 
(r, H, 	We .note first that the old momenta 

= 

	

= 	= Pq  

	

p = 
	= Pz 

are the same as the new momenta, for the cp, z variables. 

The new coordinates are, however, quite different. Conjugate to 

is the radial angle variable 

w = G/Jr =  fr 	'p(rtJr,P,Pz)/Jr  

1 
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Since w is ignorable in H(JPP) we have 

	

= -H/w = 0 , 	and 	= 

the angular bounce frequency w is also an invariant of the motion. 

In place of (8), it is then simpler to use 

	

w(r,) = 
	

dt = 	r(j)rl dr'/ (r',J), 	(10) 

where J denotes the set (j 
r 
,P 

 cp' z P ). We note that w runs from zero 

to Tr as r runs from r1  to r2 ; in a complete radial cycle, w 

changes by 2ic. 

The new azimuth conjugate to P is 

J = G/P = p + f dr'  

Its time-derivative, 

I = H(J)/P 	 (12) 

is also an invariant of the motion, and is the average of c(p,r) 

[see (5)] over a radial bounce period. It thus represents the guiding- 

center drift, in conventional language. In place of (11), it is simpler 

touse 

J =- 

 
 fr 

 



Analogously, the new coordinate conjugate to P is 

= 	G/PZ = z 	 dr t  3p(r',J)/P  

1 

Its time-derivative, 

Z = 	H(J)/P, 	 (17) 

is also invariant, and represents (p,r) averaged over a radial period; 

it is the axial drift velocity. 

In equilibrium, the phase-sce densities must be functions only 

of the invariants. Suppressing the species label, they have the form 

= 	r'p'z° Noting the invariance of the phase-space element 

d 	dr dcp dz dp dp dp = dw dJ dZ dJ dP CP  dP , we see that the 

number of particles per unit axial length is (2r)2JdJ  f(J). 

Thecbarge density is (with species summation implied) 

p(r) 	e 	(dP/d3r) f(J) 

(e/r) 	a3J (dw/dr) f(J) 

= (e/r) fd3J [wr'' f()  

The scalar potential must satisfy the quation 

rT1  d(r dØ/d.r)/dr = - -Irt p(r)  

thi is highlynonliear in 0(r), since p(i) is an implicit nonlinear 

functional of 0, as seen from Eq. (6). We shall not be concerned with 

explicit solutions of (17), nor of the analogous equation for the vector 

potential A . 
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III. NORMAL MODES 

The linearized Vlasov equation leads toa conductivity relation 

between the perturbed electric field E(t) and the perturbed current 

density j(,t): 

j(,t) = f dTfd3rt (r,r'; ).E(r',t - T), 	 (18a) 

or in terms of Fourier transforms: 

j(r,m) 
= J d r' (r,r'; cn)'E(r',w) , 	 (18b) 

where 

 dT e(r,r';i) . 	 (19) 

In (19), the imaginary part of w must be larger than the growbh rates 

of all instabilities. For the remainder of the w-plane, q is to be 

analytically continued from above. 

The hermitian part of 	is responsible for dissipation: 

[(r,r; w) + *(rt,r; w)] 	 (20) 

(for w restricted to the real axis). The antihermitian part a", 

given by j 	o' + i o' , is responsible for the reactive part of the 

response; We shall assume that 	' is, in some sense, small compared to 

alt, and that the eigenfrequencies of the normal modes are nearly real. 

When (18b) is inserted in the linearized Maxwell equations: 

X E(r,w) - (/c) B(r,cü) 	= a (21a) 

V X (r,u) + (un/c) (,w) = (ti.c/c) j(,u) , 	 (21b) 
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the result is 

V)( 	 = (w2/c2)fd3r 	(r,r'; w)(r',w) , 

(22) 

where the dielectric kernel is defined as 

€(r, r l ;  w) = ( r - rt) I + ( i/CD) (r,r'; w) 	 (23) 

It is convenient to write the field equation (22) in the concise 

form 

K)u) + E (r,(D) = 0 , 	 (24) 

where the operator KM is defined by 

K(w)E(r) 	-(c2/w2 ) 17 ) [ v >< 

+ (i/)fd3rT 	w).E(r) 

(27) 

For all complex •  w, we generalize Eq. (24) to the eigenvalue equation 

+ A(w) E"(E,) = 0 . 	 (26) 

The complex eigenfrequencies a for Eq. (24) are then the roots of the 

equation 

A(w) = 1 . 	 ( 27) 

We assume that all the eigenfrequencies of interest are nearly 

real: 

= w + iy , 	 (28) a 	a 	a 

with 2'a small. Expanding (27) to first order in 
7a  we obtain the 

equations 
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Re A(w) = 1 , 	 (2) 

= -Im An(wa)/(e  A/&1)) 
J 	

, 	 (2) 	
4 

for the d.eterrnination of w and 7a These equations require the study 

of (26) only on the real axis, where we express K(w) in terms of 

hermitian and anti-hermitian rarts: 

K(w) = K'(u) + i K"(c) , 	 ( 30) 

and. assume that K" (proportional to o ) is small. 

We therefore at first neglect KU,  and consider the hermitian 

equation 

Kt(aE0)(r(.o) + A(w) 	 = 0, 	(31) 

as the zero-order approximation to Eq. (26). The elgenvalues A (0) (u) 

of this equation are thus real, and are given by 

f d3r 	(0)*(rw).Kt(w).Efl(0)(rw) 

_________________________________ A (0) (w) = - 
	 2 	 . 	(32) 

f d3r JEn( 0 )(rw )I 

Treating  iK't(w) as a first-order perturbation, we find the perturbation 

in An  by standard means: 

fd3r En ( 0 (rw).KT(w ).En( 0 )( r ) 

A= -i 	 . 	(33) n, 	

Jd3r iEn(0)(rw)I 
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Since Kf
f (w) is itself a hermitian operator, A 	(w) is 

purely imaginary, and we may thus identify it with Im A(w) in (29b), 

to lowest order. Likewise, we identify 	 with Re A(w) in 

(2t). We must now require that the roots of 

= 1 	 (3k) 

are indeed all real. If complex roots of (34)  are found, they occur in 

complex conjugate pairs, and represent either nonresonant instabilities 

(whichare not covered by our treatment) or extraneous roots (beyond 

the range of validity of the perturbation expansion). 

For (29b), we differentiate (32) with respect to w , use (31), 

and find 

rd3r Ea()KT)Ea() 
- 	d3r Ea*()[K( )/] 
	Ea 	

(37) 
() 	

'  

where 

Ea() 	E,w) 	 (36) 

are the zero-order elgenfunctions, i.e., the solutions of 

	

+?(:) = 0 	 (37) 

The reality of j(r, t) and E(r, t) in (iSa) implies that 

(r,r'; -w) = 
	* ( t ;cn ) . 	 (38) 

It follows from the previous development that the eigenfrequencies a 

occur in pairs ± W
a 
 + 

1 a' - a + 7a so that we may limit our 

attention to positive n. The corresponding eigenfunctions are 

a (), 	*() 



The tIme-development of the energy in a nOrmal mode includes 

not only the Via soy growth rate 
7a'  but also the effect of spontaneous 

emission, to be studied below. We therefore introduce a slowly varying 

complex amplitude Aa(t) for each mode, and express the field as 

-iLDt 

) 	
[A(t) t'(r) e 	+ complex conjugate , 	(39) 

where the eigenfunctions are normalized below. The electric energy, 

averaged over several periods of the oscillations, is 

WE(t) = TJ dt jd3r [, t)]/8 

= 	IA(t)!J d3r 1 a 2 	 () 

The total wave energy is found by the ruethodof Landau and Lifshitz: 1  

W(t) = 	A (t) 2 ()l{3 JBa()12 

+ f d3rj d3r' 	(r'  -a 1W E ,  (Z"C ;a)) ]Ad -,a (r 

(l) 

•where Ba(r) = (c/itn)V X 	() ,. by (21a). In terms of the operator 
K , this is simply 

W(t) 	2... IA(t)1
2 
 (4)1 f,3r  Ea*'a 

( ) 2) 

The previous development has been independent of geometry. In 

the plasma cylinder, the eigenfunctions have the form 
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a 	a 
E (r) = 	(r) exp(imcp + ikz) , 	 (45) 

where the symbol a includes m, Ic, and the radial mode number. The 

operator K becomes 

K(w)-e(r) = exp(imcp + i) 1k()Ea() ; 	 (1) 

the new operator 	acts only on the radial dependence of the 
Pd 

normal mode. The wave energy (42) is then 

= L 	A(.t)12  fr 	Ea() 

a 	
() 

where a factor 2t arises from the azimuthal integration, and L is 

the axial length of the cylinder, with the limit L -* co implicit. 

It is now convenient to choose the normalization of Ea(r)  so 

as to simplify this form. Since the integral is real, we normalize 

according to 

(. 
jr dr ?*(r)wa 	

a' 

where aa  = ±1 is the sign of the integral. The wave energy than reads 

W(t) 	 Cra 	a(t)!2 	 (7) 

and we may interpret 

Wa(t) 	L a IAa (t)1 2 	 (43) 

as the energy of a normal mode. The sign of o represents the sign 

of the mode energy. 



The modes also have angular momentum and axial momentum; these 

include not only the field contributions, but also the canonical 

contributions of nonresonant perturbed particles. Their relation to 

mode energy is found from Lagrangian field theory 15  to be 

(14.9) 

pa, 	= k/w z a 	a 

kA 

I 
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IV. QUANTUM RATE EQUATIONS 

In the quantum picture, the energy of a normal mode is quantized: 

w (t) =N (t) 	, 	 (50) a 	a 	a 

where 
= c. a 	a a 	 (si)  

(Recall that 	> 0.) The particle invariants are also quantized: 

= 	'r'' 	 (52a) 

 

 

The quantum numbers N, r' 1' 	must all be integers. When a 

particle with action J". (J, P, P") makes a transition to state 

J' by emitting a single, normal mode quantum, the conservation laws for 

energy, angular momentum, and axial momentum require that 

= H(Jt) + 	
0a °a , 	 (53a) 

= P +jo m, 	 (5b) 

P 	= P' +cck. 	 (5c) 

The quantization of radial action (52a) implies further that 

(53d) 

where 2 can be any integer. 

In the classical limit, the relative change in action 

- 

is small, and we may Taylor-expand ' H: 



H(J)  

= 	
+ 	 + (AP)(H/P) 

WAJ +JL\P + zLP
Cp 

	

Using Eqs. (53) for A H, A J 	A PV  A P , we obtain the resonance 

condition: 

= 2 w( + mj(j) + k z(j)  

for the interaction of a particle with a normal mode. 

In terms of the Lbppler-shifted frequency seen by the guiding 

center: 

	

- mJ(J) 	k (j), 

the resonance condition reads 

= 	
r' 

i.e., the Doppler-shifted frequency must be an integral multiple of 

the radial bounce frequency. This result is a generalization of the 

condition found inthe one-dimensional model (KN). In Section VI, 

the resonance condition is, derived by a purely classical calculation. 

For a given mode (m, Ic, wa)  the resonance condition (55) 

defines a discrete set of nonintersecting surfaces in -space. Each 

surface corresponds to a particular value of £ . All the particles on 

these surfaces interact resonantly withthe same mode; we call this set 

of surfaces 'S a 
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When a resonant particle emits (or absorbs) a mode quantum, it 

moves in the direction 	(2, m, k) in action-space, byEq. (53). it is 

then no longer in resonance with m, baying moved off S. However, 

the normal modes themselves are a continuum, since k is a continuous 

parameter. Thus every point in action-space lies on a resonant surface 

of some mode ST. The particle then moves from one surface Sa to 

another 5, , always being in resonance with some mode. Since the sign 

of its velocity in action-space is random, this is a Brownian motion, 

describable by a Fokker-Rlanck equation. We now proceed to derive this 

equation, and the corresponding equation for the mode energy. 

Let p(J" 	J',a) denote the probability density (in action- 

space) for mode emission or absorption, per unit time. The rate equation 

for N (t) is a 

dN at = 	[(2)2 L]2  Jd31 T  fd3J?T p(jU 	J',a)[f(J")(N+l) - f(T)Na] 

x(H 	
a Pz 	°a 

while the equation of evolution for f(;t) is 

f(J,t)/t = (2)2 L I d3J' J d3J" 	p(j" 	J',a) 

) [f(J")(N + 1) - f(J')N] 

	

- 	 5z -hka 

, 	j) - 5(J" - )} . 	 (so) 

2  The factors (2t) L come from integration over (w, (p,  z). 
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In the square bracket, the first term represents induced and 

spontaneous emission, while the second represents absorption. Expanding 

the square bracket in tJ , we find [with the help of (53)] 

= 	± N L 

= f (j") + N 	r 	
+ p( f/P) + 

= f(J' t ) + (W/w) f, 	 (60) 

where 

2 	+ m(/P) + 	/) . 	 ( 61) 

On performing the integration over J 1 , and dropping the primes 

on J", we find for the mode equation (58) 

at = (2 	L2  fd3J P(i 	V,a) w1[f( +(Wa/W)f] 

(62) 

In using (50)  to eliminate N, let us ignore the possible slow variation 

in °a  due to adiabatic changes in the configuration. We then obtain 

the wave kinetic equation 

dW/dt = aa (2 2  L ldJ a(J)[f(J) + (W/w) f] , 	 ( 63) 

where 

aa(J) E (2r) LU)w1(J) pLJ—J',a) 	 (64) 

is the classical mode-particle coupling coefficient, to be evaluated 

in Section VI. The resonance condition (57) is contained in 

a (j), as we shall see there. a ' 
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In conventional notation, (63) may be written as 

dW/dt 	W 	+ 	2y 	W 	,  

where the rate of spontaneous emission by discrete particles, 

a(2)2 L fd3j  a 	f(J) ,  

is proportional to 	f ;.while thelinear Vlasov growth rate, 

(2 	L 	 a(j) 	c(j),  

is proportional to derivatives of 	f 

If the particle evolution can be ignored and if the mode considered 

is stable 	(y 	< 0), Eq. (65) can be solved for the quasi-steady state 

(dWa/dt = 0) 	wave energy 	W: 

WQS 	
= 	W/2 'a 

w 	f  d3j aa (J) f( 
= 	 .  

- Jd5J a 

This expression generalizes the result of Kent and Taylor, 5  who found the 

steady-state energy using WEB methods for the normal modes and small 

gyroradius for the particles. 

In the particle equation (59), we change variables to 

JO 	(J 	+ J") 	and 	L J, and expand the curly bracket in 

NJ ,-  j) - 6(J" 	j)) 	=A i. 	- 

We commute 	/J 	to the left, obtaining 
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f(;t) = (2)2 LJd3JO JdJ 	p(J0, 	,a) (10  - 

x [ ... ] 6, 	 (69) 

the three final 6 factors being those of (59). We integrate over L 

and J to obtain the classical particle kinetic equation: 

f(J,t)/t 
= 	

+ (W/W) 	f() a a 	] 	(70) 

This kinetic equation is manifestly of Fokker-Planck form: 

f(J;t)/t = [r 	r] [; f)/PJ- 

+ (/j) 	[() . 	(f/J)] 

(ii) 

The "&ynamic  friction" coefficients are given by 

r' cp' 	= 	- 	 aa(J)(, 	in, 	k), (72) 

and represent the radiation reaction from spontaneous emission. [The 

ratios of the three coefficients are understandable from Eq. 

The quasilinear diffusion tensor in action-space is 

/ 
/22 

\ 
Lk'\ £m 

) = 	 W 	IWI a 	( 	£m 	m2  () 
a 	

2k 	mk k2) 



We note that:it is positive definite [since a(J) is non-negative, by 

definition(6!.)]; i.e., for any real vector A A1  J + A2 	+ 

wwJ a(J)(A1  + A2m + A3k)2  

a 	
() 

Recalling the significance of J , we see that the kinetic 

equation describes radial diffusion and diffusion in v and in 

in the limit where a guiding-center description applies. 
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V. CONSERVATION LAWS AND H-THEOREM 

The coupled kinetic equations for normal modes (63) and particles 

(70) satisfy conservation laws for energy, angular momentum, and axial 

momentum, and in addition yield an H-theorem for entropy production. 

The conservation laws were of course built into the derivation, 

and so serve only as an algebraic check. For energy, we have 

u(t) = (2)2 L f d3J H(J) f(J;t) + 	w(t) 	() 

In its derivative, 

dU/dt = (2)2 L Jd3J H(J) (f/t) + 	(dW/dt) , 	( 6) 

the first term includes the energy change of only the resonant particles, 

while the second term includes the energy change of the nonresonant 

particles. (The effect of adiabatic variation of the "static' t  

potentials is consistently ignored here.) Substituting (70) and (63), 

we have 

dU/dt = (2)2 L 	afd3J 	w 1 + i) a 	+ (w/a)f] 

a 

For the operator in the curly brackets, we integrate by parts, using 

H 
= 	

r + ml, + k = U) 
	

(78) 

whereupon dU/dt = 0, as required. The proof for conservation of total 

angular momentum 

(2)2 L Jd3J P f(J;t) + L (m/w)W(t) 	 () 
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and of axial momentum 

(2)2 L f d3, P f(J,t) + 	a)Wa (t) 	 (80) 

is analogous. 

The entropy fora system of weakly 'interacting particles and 

modes is 

S(t) 	(2)2 LJd3J f(J;t) In r(t) + 	in IW(t)t 

a 	
(81) 

Its time derivative is, by (70) and (63), 

dS/dt = (2)2 L T ,a f d3J t a ' ( 2fl r) + W} aa 

)(' [f + (W/cn)' f] 

Integrating by parts, we obtain 

dS/dt = (2 	L 	
fd

3  J a (J)(f(J)Jw I) 	[r()+ (W/ui)f]2  

(82) 

This is manifestly non-negative, and implies a monotonic increase of 

entropy. 

When the wave energy is so large that the spontaneous emission 

terms are negligible on time-scales of interest, the kinetic equations 

(65) and (71) reduce to cjuasilinear equations: 

dW/dt= 2 
2' 
 W 
a 
	, 	 (83a) 

= (/j) [() 	(f/)I 	 (83b) 
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The conservation laws are still satisfied by these equations, but the 

H-theorem now pertains, to only the resonant-particle entropy: 

5R(t) 	
f 

-(2 -ir) L 	dj f(J;t) In f(J;t) . 	 (8) 

From (813b) and (74), we find 

dSR/dt. 	(2 	L Jd3J 

= 	2 -2  fd3J f 

' 	
wJ aa  (J ) W f)2  , 	(87) 

a  

which again is manifestly non-negative. 

The question now arises, whether an asymptotic stationary state 

exists. Such a state must cQrrespond to a maximum of the entropy. Let 

us first maximize the entropy of the particles of one species only. By 

standard methods, we find for the maximizing distribution the canonical 

form 

an 	ex( -5[H5(J) - 	S 	- V pfl 	 (86) 

where the parameters P , w, V 	 are to be adjusted to account for 

the appropriate energy, angular momentum, and axial momentum of this 

species. 

This form is a special case of the rigid rotor distribution 

= F5(H5 - w 5  p p) , 	 (87) 

which has been studied intensively by Davidson and Krafl 7  for the case 

of a single-species plasma. We notei6  the interesting property of (8), 



-27- 

that the radial dependence of the current density is indeed that of a 

rigid rotor: 

S 	 S 	S j(r) = p(r)cn 	rcp. 	 (88) 

Returning to the canonical form (86), we see that the derivative 

f is 

f5 	= 	S( 	_mwS_kVS)fS. , 	 (89) can 	a 	cp 	z 	can 

by (61) and (55). The Vlasov growth rate (67) is then 

7a = - 	(2) L(o 	m w - k VS) 
	S  f d3J a(J)f 5 (J) 

= - 1 S1 1  - ( 5 	k VS)/] a ' 	 ( 90) 

by (66). It thus bears a simple relation to the emissivity by discrete 

particles. The sign of y cannot be determined until one finds Wa 

and cY (to which a is proportional). 

In the single-species case, we may drop the species index from 

(86), and proceed to the maximization of the total entropy (81). We 

then find the generalized Rayleigh-Jeans, distribution 

W = WRJ 	(m w + k v 	' 	 (91) 

together with (86) This is then indeed a stationary state of the kinetic 

equations (6) and (70), since 

can + (W1/cD) 	
can = 0 . 	 ( 92) 

(However, it is not stationary for the quasilinear equations (83); by 

(6), all waves must be damped.) 
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To complete the proof that an asymptotic state exists, it is 

	

necessary to demonstrate that the sign of (91) is consistent with the 	
VJ 

sign of a a  and that (86) is a confined state. According to Davidson 

and Krall, electrostatic modes are stable for (86); it follows from 

(90) that the sign of (91)  is indeed consistent.. (However, no such 

proof for electromagnetic modes has yet been offered.) Also they have 

shown that the plasma is confined, only if w lies within certain 
CP 

limits, for the case B °  = 0. 
Cp 

In the two-species case, let us consider the canonical distribution 

(86) for a quasineutral equilibrium with B ° constant, 	= 0, 

E °  = 0, and small gyroradius. From (86) and (7), we see that the 

density has a Gaussian shape: 

s 	 1 	s 	s 	0 -1 2 
can 	exp( - e w B 	c 	r ) . 	 ( 93) 

This is conf!ned and quasineutral only if 

S 	 / 	s 	0 2 = - c, 	e B z I 	, 	 ( 94) 

for each species, where R 0  is the common radial plasma size; thus 

must have 4pposite sign for the two species. 

However, the maximization of entropy (81) leads to the requirement 

of the same w for each species. Further, one again finds (91) for the 

normal modes; clearly, this requires a common w if modes can resonate
CP  

simultaneously with particles of both species. In this limiting case at 

least, an asymptotic state cannot be a confined state f or a two-species 

plasma. It would be of great interest to determine the generality of this 

result. 

We conclude that resonant interactions drive the system toward a 

canonical distribution, which may be unconfined. 
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VI. EMISSIVITY AND COUPLING COEFFICIENT 

To obtain an explicit expression for the coupling coefficient 

a(J), which appears in (63), (66), (67),. (o), (72), (7), and (82), 

we. shall calculate the emissivity (66) classically, and identify aa(J) 

Since the ernissivity is the emission rate by discrete particles, we 

consider the linear plasma response to the current density of a single 

discrete particle, and then sum over particles. 

Treating the particle as an external current source je(rt) 

we replace (21b) by 

V )( B + (i'/c) E = (Li.it/c)[j + 	 () 

whence (24) becomes 

K(w)E(r,w) + E(,w) = -(!l.rti/Cn) je(r,w) . 	 (96) 

The solution of (96) can be written in terms of Gieen's tensor: 

	

,w) = -(i/w)Jd3r7 Q(E,'; w).j(r',w) , 	(97) 

where G satisfies 

(w).Q(,r'; CD) + Q(,'; CD) = 	b( 	- 	T) 
• 	 ( 98) 

To zero-order in K" [see (30)], the solution of (98) is found by 

standard techniques: 

- 	1 ) 
n 	

j-1 Efl(0)(rw)(0)*(rTw) 
G(r,r'; w) = 	) 	l - A 	()I 

n 	f d3r" IE O/ (r tt  w) 1 2  
() 

in terms of the eigenvalues and eigenmodes of Eq. (31). 
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The total transfer of energy to the plasma from the test particle 

is 	

= - J 	dtJd3r je(r,t)  E(,t) 

00 

( 
/ &D' 

d 3 j r e (,w) 	E(r,o) 

= 2i i '  (&U/w)fd3rfa3rT e*(ra) G(rr'i) je(rr) 

where the w-integral is in the upper baif plane, above all singularities. 

In the perturbation limit 	"-' 0, we use (99): 

3 .e 	n(0) 	2 d r j (r,w)E 	(r,w) 

W. = 2i 	 [i -  

f d3r' 	O)(rTw)2 

whence the singularities of the integrand are on the real axis, at the 

elgenfrequencies [see (34)]. 

Depressing the contour of integration to the real axis, the semi-

circles about these poles yield 

w = - 	S 	-1 rA (0)/ ]  -1 

	f 3
d r .e*  

a 	n ''u a 	

f

2 
3 	aa 
	
drJE (r?)I 

(A factor of 2 comes from the poles at
0a 	There is no pole at u = 0, 

since je(r) vanishes there. The principal value part of the integral 

vanishes, since the integrand is odd in cn .) Evaluating 

from (32): 
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jE( = 	d3r Ea)(Kv/)a() 
j 

we obtain. 

=. wa)fr je(rw).Ea*(r) 

X [ J ]. 	. 	( 100) 

We now use (43) and the normalization (46) in (ioo), obtaining 

. 	2 
LW = L 1 	Cr 	lr dr je(rmk. W ).Ea (r) 	, 	 ( ioi) a 	J 	. - 	 a 

a 

where 

	

j(r,m,k; t) 	f dp 	imcp 
 / dz e_1 	j(r,t) 	 (i) 

For the external current density, we now use the incoherent sum 

of the contributions of all the particles: 

AW = C1 	a 	dr f(J) [r dr j(r,m,k; Wa ; r ) . Ea* (r)I, 
a 	 - 	 (103) 

where j(r,t; r) is the current density of a single particle, whose 

p-point is at F at some reference time t = 0, while j(r,m,k; w; F) 

is its cp-z-t Fourier transform. We shall see later that the integrand 

is independent of the angle variables. Hence (103) becomes 

= (2)2 T 1 	afd3J f(j) 	 Wa F).
Ea* ( r ) 2  , 

(lou-) 
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where T is the (formally infinite) time used in the Fotüier transforms. 

Comparing (iOl.i.) with (66), we identify the coupling coefficient: 

= (LT) 	J r dr j(r,m,k; °a F).Ea*.(r) f . 	(105) 

To evaluate a' we transform 

j(r,t; F) 	ev(t;F) b[r -R(t;F)] , 	 (106) 

and find (after a bit of algebra) 

, F) = e r 	Jr(r,j)I 	v±(r,j) exp[± 1 a(J) t(r,J)] 

>( 	
- 	

x exp[-iw - im - ikZ] 

(107) 

+ 
Here v is the double-valued velocity at r for a particle with actions 

J; r(r;J) is the transit time for the particle to reach r from its 

inner turning point; and (w;J z) are the angle variables at t = 0. 

We substitute (io) into (105), express [ in terms of momenta 

via (3), and find 

a 	= 2 it L 1  w(J) fdr i Ea*(r) sin w'(J) T(r;J) 

+ r' 	
E:*( r)[(pr) - (e/c)A(r)] 

-(e/c )A (r ) ])cos wT )t(r;Ji[ 2 &(J)/w(J)} 

(io8) 

1 
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The methods of KN can be used to simplify this expression in certain 

limiting cases. In general, numerical methods are needed for the explicit 

evaluation of (108). 
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VII. CONDUCTIVITY 

We have obtained two expressions, (35) and (67), for the growth 

rate 7a  of a normal mode. Equating these expressions, we have [with 

the normalization (46)1, 

f r dr ?* (r ). tt (a)a ).a( r ) = (2)2 L )a 2f d3J a 
On the left side of this equation, we use [see (25)] 

K() E(r) 	(4Tr/w 	r ar  f a t (r,r, co) E(r) 

on the right side, we use (ios) for aa(J).  We then deduce that 

' (r;r'; w). = - u 	Tf d31 6f(J) j(r,m,k; cn; F) j*(rt,m,k; w; F) ;  

(109) 

here we have used (55) to eliminate £ from f (61): 

'f(J) 	uf/H) + m(f/P) + k(f/P) , 	(ho) 

with (H, P, P) as the new variables of differentiation. 

The Kramers-Kronig relation now enables us to determine Cy' 

from ' , and thus the total a 	After some algebra, we find 

(r,r'; w) 

	

dT eTJd3J 	() 

x j(r,m,k; t; j) j*(r?,m,k;  t-'r; J) 

tJ 

(iii) 
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(Alternatively, we may more easily guess the form (iii), and verify the 

reduction to (109) by the Wiener-Khinchin theorem.) 

This result is a generalization to nonéquilibrium f(J) of the 

12  
Kubo expression for a. When .f isa canonical distribution (86), 

it reduces to 

(r,r', w) = 271 	 dT eDT l - (o + kv)fcD ] 

fd3J f(J) j(r,m,kj t; j) j(r',m,k; t-T; j) (112) 
In the special case w = 0, V = 0, we can find, the response kernel 

in the standard Kubo form: .. . 

(r,r'; T) = 2Tc 	fd3J f(J) j(r,m,k; t; ) 	(r',m,k; t-; ) 

(113) 

The explicit evaluation of. (in) entails considerable straight-

forward algebra, involving (107) and the identity 

+00 

(y - LY' e1tP 	(csc y) exp iy[(mod 2) - 

(n!) 

The result is. 	 . 

£(r,r', w) = 162 e2 i(rrtw)_1f 	 f() C5CW(J) T(J) 

x 

 

	

[ r̂ sin w?(J) T>(J) + i Ŝ cos 	sin 	+ i S ,  cos w'T] , 

where 
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• 	 . 
s 	Ir(r,)I 	lr cp(r,J)cp + z(r,J)z ] , 	 ( 116) 

• 	is the same with r replaced by r' , t(J) is the particle transit 

time (one-way) between radial turning points, r>(J)  is the transit 

time from the greater of (r,r') to the outer turning point, and 

is that from the lesser to the inner turning point. 

In contrast to the usual approach, we have obtained the Vlasov 

conductivity as a by-product of the calculation, instead of solving 

the linearized Vlasov equation directly. 
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VIII. CONCLUSIONS 

This study has concentrated on the lowest-order resonant Inter-

actions between particles and normal modes, in a system with two degrees 

of symmetry. In further work, we plan to extend the theory to include 

higher-order effects, including departures from exact resonance, resulting 

In finite-width functions17  to replace the delta-functions of the present 

theory. We also plan to study systems with less symmetry, in which 

adiabatic invariants replace the exact invariants of the present theory. 

The primary flaw in this study is the limitation to resonant 

instabilities. Inasmuch as nonresonant Instabilities are of considerable 

Importance, they should be included; however, a satisfactory theory for 

diffusion due to them does not yet exist even for the uniform case. 

The methods used here are a judicious selection of quantum and 

classical ideas, with little regard for the demands of rigor. It would 

be intellectually more satisfying, perhaps, but much more fatiguing, to 

develop a purely classical theory, along the lines of KN. What is needed 

to justify the quantum approach is a classical theory which develops 

analogously to the quantum theory. (Alternatively, a rigorous quantum 

theory needs to be formulated.) Progress along these lines is in evidence 

for a fluid system, 1  and needs to be extended to the kinetic regime. 

The basic validity criterion for our theory concerns the existence 

of two time scales: a fast one for the mode eigenfrequencies and the 

particle radial motion, and a slow one for the evolutionary development 

•described by the kinetic equations. The existence of such a clean 

separation certainly depends upon the details of the configuration under 
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consideration. In such a case, the Markov assumption may be invoked to 

decouple the slow irreversible evolution from the fast reversible 

dynamics. Some estimates of the several time scales may be found in 
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