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ABSTRACT

A plasma configuration with cylindrical symmetry is studied,
containing éxiai'and'azimuthal magnetié field and fadial electric
field, with arbitrary radial variation. The particle motion is
péraméféfiied‘by three exact actionfinvariants: radial action, canonical
ahgular momentum, and canonicél‘axial momentuﬁ; in.the 1limit of small
gyroradius they are equivalent to magnetié moment, radial guiding-ceﬁtér
position, and paraliel velocity. The perturbed Vlasov—Maxwell equations
lead to a set of normal modes, which cah interact resonantly with the
particles. The quantﬁm rate eqpations for this interaction, togethef
with the laws for conservation of energy, angular momentum, and axial
momentuﬁ,-lead (in the classical limit) to a Fokkef-Plgnck equation in
action-space for the particles; and to an equation of evolution for mode
energy.‘.These coupled kinetic equations satisfy an H-theorem, which
implies a monotonic approach to a canonical distribution: a rigid-rotor
distribution for particles, and a éeneralized Rayleigh~-Jeans distribution
for the modes. This asymptotic state may however be unconfined. The
quantum transition>probability is deduced from a classical calculation

of emissivity. Explicit expressions are obtained for the mode growth
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raﬁe and fér the particle diffusion.tensor. Finally, the Vlasov con-
’ dugtivity‘kerﬁel is deduced from the growth rates, by the'use of thé»

Kramers-Kronig relations.



I. INTRODUCTION
:fhé sﬁudy of reéonant interactions betweén plasma waves and
particles has been well developed for the case of akuniform system, and
for local’interacfions inAa‘élightly:ndnuniform syst(»am.l.5 It is now
of interest to exﬁend théée ideas to.essentiaily nonﬁniform systens,
where therparticles may tfaverse an-appreciable part of the.system, and
where thébwaveslare normal modes.(ﬁbf_necéssarily describable By the WKB
method),' |
Since the difference between é uniform and a nonuniform equilibrium
configuration is the léck ofztranslational invariance in the latter, it
seéms advisable to study first the case where this loss of invariance
occurs only for one of the dimensions, while'the other two dimensions
retain_thé.invariahce. 'Suchtsystémsé are the plasma sléb (variation
in x,i symmetry.in. v,z) and the ﬁlaéma cylinder (variation -in r,
symmetfy in @,z).. The iattef.system has been“choseﬁ for the study in
this paper,'since the slab caﬁ be obtained from the cylinder by appro-
priaté changes. | -
| We consider thus an equilibrium configuration with vector potential
A(P(r), Az(r), to describe the magnetic field Bzo(r) — d(rA(p)/dr,
Bwo(r) = —dAz/dr. In addition, there may be a scalar potehtigl‘ H(r)
to describe the equilibrium electric field Ero(r) = -af/dr. There is
no limitation on the magnitude of the electric field, nof on the shear
of the magnetic field. The equilibrium partidle disﬁfibutions must Be
self-consistent with these fields, providing the appropriate charge and

current densities. (The Pplasma need not be quasi-neutral, and may be

 single-component. )
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The particle motion may 5e taken as nbnrelati&istic or relativistic.

Since x@»:and z are ignorable coordinates in the Hamiltonian, their
conjugaté.momenﬁa, pw and pz, are invariants ofvthe.unperturbed
particlé orbits. The radial motion is periodic, and is characterized
by its acfion Jr' (We éxclude the possibility of radially untrapped
particles, corresponding to an unconfined system.) In this descfiﬁtion
there is no requirement for small gyrorédius; the radial motion may be
. over a small region, or over the whole system. |

- It is helpful to keep in mind a special limiting case, to provide
intuitive‘guidance, namely the case of uniform Bz’ with B@O = ErO = 0,
and small gyroradius. In that case the action Jr “is proéortional to
" the magnetic moment, the canonical anghiar momentum pw is proportional
“to the_fédial position (squared) of the guiding center, and the axial
momentum p, is proportional to the axial particlg velocity Wi [see
Eq. (5).].v If instead BzO = 0, while B@O % 0, then p@ represents
azimuthal velocity Yy s while P, represents radial guiding-center
position. In the general case, the invapiants: p¢ and P, represent
combinafions of radial position and .Wl'

Again because ¢ and 2z are ignbrable; the normal modes of the

Maxwell equations have the form

E@) exp(imp + ikz - i t) , (1)
where - m 1is an integer and k is real. 1In this paper we restrict our
study to systems whose instabilities arisé only from first-order resonant
interactions between the normal modes and the particles. In that case,
we may take o real, since its small imaginary part, representing

resonant growth or decay, will appear as a slowly varying mode amplitude.
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The condition for resonant interaction between a normal mode

and a particle is found to be

@, - “nrj? - k Z = & S o . (2)
where _Zr is the azimuthal drlft veloc1ty (the average of & over a
radial bounce), Z is the axial drift veloc1ty, wr is phe radlal
bouhce freéuency, and %r is an 1nteger. (For small gyroradius, w,

is the particle'e gyrofrequency.) As a result of this interaction;
ﬁhere are changes in the‘pérticle's acfion variables Jr ’-»p@’ p,-
TheeeIChanges are repreeenped by e'(relatively) slow evolution of the
partiole_distribution f(Jr,.ApQ; P,; t),"which‘sefisfies a -Fokker-
Elahek equation (7l)in ﬁxaacﬁnnAspaee, The diffusion tensor (73) and
the dynemic friction (72) are both eimply eXpressed in terms of a mode-

partlcle coupling coeff1c1ent a (J B pm, p, ). This coefficient is

'calculated (lO5) from the radlal varlatlon of the mode and the unperturbed

particle orbit.

The diffusion tensor'also inﬁolves the mode energies. These
evolve according to a linear'equation (65), which includes the
spontaneous emission rate by diecrete particles, and the linear Vlasov
growth (or damping)-rateq Both these quaptities are expressed in terms
of the eoupling coefficient.

The coupled eqnatlons (70) and (65), for particles and mode
energies, satlsfy an H-theorem, Eq. (82), representing the monotonic

increase of entropy, and. approach to a stable thermal equilibrium, with

. the partlcle dlstrlbutlon (for species s):
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.,p_z) - pq)] - (3)

.'fs(Jr,p(p, p,) o exp(-a)[HS(JI,,.I_J\P o

and with the mode energy

Wy o= BT - mlefe . om
The parameters B and ww are determined by the conservation of energy
and anguier momentumn. (We assume, in'this:introdﬁction, that the axial
:mOmentum parameter vanishes;)

In a single-speeies plasma, Eq. (3) represents a confined system,
if -db  lies within a certain range.7 Note that the generalized

Rayleigh-Jeans law (4) allows for negative-energy modes (m @, > wa).

. )
However; for an electron-ion plasma, w@ must Be the same for both
speciee (1ﬂ‘ordef to setisfy'ﬁhe H-theoreﬁ), and this indicates that at
least oﬁe:of the'speeies is uncbnfined, as will be shown in Sec. V.
Hence the approach.to stable eéﬁiliﬁrium is to be'interpreted in the'fwo—
species’case es a perpetual radiai diffueioﬁvtowards uniformity.

The groundwork for the present study was laid in a previous paper,
to be referred to as KN. That paper>proceeded, by purely classical means,
to derive the coupled kinetic eQuations for an inhomogeneous one-
dimensional plasma. In these equations each term was fognd to involve
the same mode-particle coupling coefficient., It.was then shown that_
the classical limit of the quartum rate equations led to eqﬁations
of therseme form, with much lees labor. The quantum equations involved

a transition probability for the emission or absorption of a normal mode

- quantum by a particle.- By comparison of.the quantum and classical

L
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equations, the quantum traﬁsition probability was identified with the
classical coupling coefficient.
From the experience of that paper, it was felt justifiable to

9

use the quantum approach” in the présent work. 1In this way, the
emission rate, the 1inear groﬁth rate; the dynamic'friction, and the
diffusion tensor are alibexpreSSed in terms éf_fhe éoupling coefficient,
which in tu&h is calculated éiaSSically oy studying the emission rate,
only one of these four quaﬁtities.. The eﬁission rate is found from the
test particle theorem® appliea to the;Manéll’eQuations, whose Green
function is expféséed in terms of the norma;_modes.ll

The-Vlasov conducti&ity tensor can be determined ihdirectly; by -
applying the Kramers-Kronig relafion to its hermitian part, which is
deduced from the mode growfh rate expression.v The cohductivity is
expressed in terms of the-microcurrent correlation tensor, as a generali-
zation of the Kubo rélation,lg-and is also expressed explicitly in terms
of the particle ofbits.

In the final section, a critique is presented on the methods of
this paper, on the limits Qf validity, aﬁd on the possibility of gener-

alizations in various directions.
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II. THE PARTICLE INVARIANTS
In a static configuration with_cylindrical symmetry, the ) -

canonical momenta for a relativistic particle are

' _ . ., ) N 2 b . . | : . .
P, = my 7T P + (e/c)r A@(r) , - (3)
p = mo 7 é‘ +‘ (e/C) Az(r) s

where m. is the rest mass and y = (1 -;ve/cg)-l/e. In the non-

0

relativistic case, set 7 = 1. The relativistic Hamiltonian is

H(Pr,P¢,pz,r) = <;m02cuv+ cepr2 + [cpZ - eA (r)]2

Z
o 1/2 '
+ {(pr/r)_f eh ()17 ef(xr) ,
’ : (6a)
while the nanelativistic Hamiltonian is
H(p, 2y 2,,T) = <emo>'1-{;32 +[p, - (e/e)a ()1°

+ [(p/x) - (efe) A¢<r)1? + ef(r).  (6b)

In either case, ¢ énd z are ignorable, so p$ and p, are
invariants of the motion.

:‘ For given (P¢9PZ)’ qonsider the phése-p;ane (r,pr)._ Since
H is even in pr; thé curves of constant H are nested closed curves,
vsy?metric under (pr *A;pr), and represent the periodic radial motion.

'The area enclosed by a curve is its action
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‘ET‘TI_J-I(HJ‘P(P:PZ); = ' vPrV(r:H:p(PJPZ )dr P) o (7
where p_ 1s the double-valued function obtained by solving Eq. (6) for

pr2_ The.limitg of the radial motion are. rl(H,pw,pZ) and »rg(H,pw,pZ),
obtained'by_setting p. = 0 in Eq. (6) and solving for r. Although
r is douﬁléd-valuéd in r, the other velocity components P and ‘é
are single-valued, as seen from Eg. (5).
: It is.convenient to use Jr as a new canonical momentum, in -

place of pr,-since it is an invariant of the unperturbed motion. The

genefating function for the canonical ‘transformation is

] T ‘
e " = | ' !
- G(r, 9,23 Jr;P¢,P£) A “L ar pr(r ’Jr’IEYE;) + @ PCP +z P,

1

where pr(r,Jr,pw,p%) is obtained by solving (7) for H(Jr,p@,pi) to

eliminate H from pr(r,H,p@;pZ). We note first that the old momenta

'pr = defor = pr(r’Jr’}hfI;)
Py = BG/BwV'= Pb
p. = ‘ag/aé = B

Z
are the same as the new momeﬁta, for the @,z variables.

‘The new coordinates.are;'hpwever, quite different. Conjugate to

J. 1is the radial angle veriable
r

w o= aq/aJr - ar! Bpr(r',Jr,P@,PZ)/EJr . (8)
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Since w is ignorable in H(Jr,P ,P;), we have

¢

. . \;-)‘4
J. = -OH/dw = 0, - end W= BH/BJr = wr(Jr’I%?I;) H - (9) W,
the angular bounce frequency wr. is also an invariant of the motion.
In place of (8), it is then simpler to use

. | -
w(r,g) = | w oat = cur(g)j; ar'/r (', J) , (10)
1

where J denotes the set (Jr,IhfI;). We note that w runs from zero
tob 7 Aasj r runs from rl to r2; in a completeAradial cycle; W
changes by 2x.

" The new azimuth conjugate to -Pb is

. | B

B = aG/aP(p_": o + , ,d.r;'_apr(r',g)/aPcp. | (11).

Ty ‘

Its time-derivative,

£ - am@fer,,  (12)
is also an invariant of the'motion, and is the average of @(pw,r)
[see (5)] over a radial bounce period. It thus represents the guiding-
center drift, in conventional language. In place of (ll), it is simpler
to use a .

: r - ' o . .
’ O—l . "
5 =0 - ar' (e, Do, r) - Fla)) . (13)
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o

Analogously, the new éobrdinate conjugate to P; is

. , -r _ o
7 = 3G3B, = z + o ar Bpr(r',g)/aféﬂ. ; c (1)
1
Tts time-derivative,
7 = SH()/3E, , B v ” - (15)

is also.invariant, ahd reﬁfesents é(pz,r) averaged over a radial period;
it is tﬁe axial drift veloeity. |

In'equilibrium, the phase-space densities must be functibns only
of fhe invariants. Suppressing the species label, they‘have the form
£(J) = £(J ,P@,P ). Noting:the invariance of the phase-space element
al' = ar a9 dz dp dp, dp = aw af az as ap, ap ,  we see that the
number of particles per unit ax1al length is En) a3 f(J)

The charge density is (with spec1es summation implied)

n

o) = e | (@/edr) £(g)

(ef=) | @3 (awfar) £()

(o/2) [ @5 1o, @/ DN @) - o)
The scaiar potenfial must satisfy the quation

Yl dsé/,dr')/dr e o) - an
this is highly'nonliheér in p(r), sinée o(r) is an implicit nonlinear:
functional of f, as seen frmeq. (6). We shall not be concerned with |

explicit solutions of (17), nor of the analqgous equation for the vector

potential A .
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ITI. NORMAL MODES
' 1
The linearized Vlasov equation leads to'a conductivity relation 5
between the perturbed electric field E(x,t) and the perturbed current
density Jj(r,t):
i(r,t) = ar | adr glr,r's ©)E(g't - 1), (18a)

or in terms of Fourier transforms:
iz, ) = 'j &Fr' g(r,x's o) Elxho), (16b)

where ' _

glpxte) = j av ¥ g . (9)
In (lé);uthe iﬁégihafyvpart-of ® must be larger than the growth rates
of all:iﬁstabilitiés. For the remainder of thé éfplane, gi is to be
analytically continued from above.

The hermitian part of g is responsible for dissipation:

UQV(E:z's w) = %‘ [qu(E;ﬁ's w) + ciu(g',z;‘w)] ' ' (20)

(for o restricted to the real axis). The antihermitian part - g

given by g =¢' + 1 g" , is responsible for the reactive part of the

~

2a

response. We shall assume that g' is, in some sense, small compared to
g", and that the eigenfrequencies of the normal modes are nearly real.

When (18b) is inserted in the linearized Maxwell equations:

0 (21a)

| v'x-g@,w) - (iw/e) B(x,o)

V X Blgo) + (w/e) E(gw) = (/e) j(gw) , (21b)

P 2d
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the result is

VX1V X EEe)) = (/) [ Pt enr's ) BEhoe) ,
(e2)
where the dielectric kernel is defined as
glrr's o) = 8(z - ') p +  (bri/w) glrr'; ©) . (23)

It is convenient to write the field equation (22) in the concise

form

k() E(g o) + Ego) - o, (2k)

where the operétor g(w) is defined by
. _ 2, 2 '
K@BE) = (/)7 x 1V x B()]

+ (brifo) | a’r' glg,z's o) Elc').
' (25)
For all complex 'a%_we generalize Eq. (24) to the eigenvalue equation

K@) E(po) + A () Bge) = o. (26)

The complex eigenfrequencies Qa for Eq. (24) are then the roots of the

eqpatidn'

Aoy = 1. (27)
n .
" We assume that all the eigenfrequenéies of interest are nearly
real:
e = @ + iy, 5 (28)

with 7y = small. Expanding (27) to first order in 7,> We obtain the

equations



Re A (w) = 1, - | B (2%)

Vo = -ImA (o) (aRe A faw)] (29)
. .a L
for the'determination of u% and 7a' These equations require the study

of (26) bﬁly on the real axis, where we express K(w) in terms of

hermitian and anti-hermitian parts:
K@) = K'(®) + 1iK"(), - (30)

and assume that = X" (proportional to g' ) is small.
We therefore at first neglect K", and consider the hermitian
equation

£ Vo) + 290 2O - o, (51)

as the zero-order approximation to Eq. (26). The eigenvalues An(O)(w)
of this‘equation are thus real, and are given byv
x .
d5r ED(O) (’]\::,(D)"I\{" ((D).En(O)(’E,w)

A Oy o -2 — — . (2)
| Or [0 (z,0)]

Treating iK"(w) as a first-order perturbation, we find the perturbation
in An.vby standard means:

d3r ,I:::In(O)*_(,I\:J(D) _gxr(w).gn.(O)(g)w)

n Dy - i L - . (33)
&r O]
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Sincé ‘g”(w) is itself a hermitian operator, An(l)(w) is
purely imaginary, and we may thus identify it with Im An(“), in (29),
to lowest ofder. Likewise, we identify An(o)(w) with Re An(w)‘ in

(29a).' We must now require that the roots of
(0) ) |
An (wa) = 1 o : o (34)

are ‘indeed all real. If complex roots of (34) are found, they occur in
complex conjugate pairs, and represent either nonresonant instabilities
(which are not covered by our treatment) or extraneous roots (beyond
the ranée of velidity of the perturbation expansion).

For (29), we differentiate (32) with respect to o , use (31),

and find

f @r B () K"(0,) B (x)

~

7, = _-J. p (35)
[ 3 o =) '
| j ar E () [9K" (w)/aw]  “E*(g)
~ a
where _
Fi) = %) 68
. are the iero-order eigenfunctions, i.e., the solutions of
k'(o ) () + Bk = 0. - (37)

The reality of j(r,t) and E(r,t) .in (18a) implies that

(Lx's ©) = g (grse). - (38)

il

2]

It follows from the previousidevelopment that the eigenfrequencies Qa
occur in pairs + w, + iya,s o+ i?a, so that we may limit our
attention to positive (%a' The corresponding eigenfunctions are

~
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The tlme—development of the energy in a normal mode 1ncludes

not only the Vlasov growth rate vy a’ but also the effect of spontaneous o
emission, to be studied below. We therefore intrOduce a slowly varying (.

complex amplitude- Aa(t) for each mode, and express the field as

E(x,t) = ; {Aa(t) f(z) e % 4 complex conjugate |, (39)
_M...,é,. . ‘ .
where the eigenfunctions are normalized below.  The electric energy,

averaged over several periods of the oscillations, is

J dtf r [E(zr,t)] /81r

S L«mfj lE(r)l/lmo.~ )

WL (t)

[

The. total wave energy is found by the method of ILandau and Lif-shitz:lu

W) = > la_(6) PP (b)H{ d 5 (r)|2 |

| 3 { 3 L

+ j a rj a’r! Ea (r’) oflw e'(;g,;g ,a))]/ow '~ )f,
| " (ul)

where -Ba(r)‘ c/lw)V . Ea(r) > by (21a). 1In terms of the operator

K 3 th:Ls 1s simply

< ~i * | '
w<t_> - ) ()P ()t | & £ @)e, % @), F) -

(h2)

The previous development has been independent of geometry. In

the plasma cylinder, . the eigenfunctions have the form
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I

‘ga(g) Ea(r) exp(imp +'ikz)‘; ' | : (43)

where the symbol a 1includes m;.k, and the radial modé_number. The

operator X becomes

K@) EE) = exlimg + ika) £) B r) ; (1)

the new operator s (w) acts only on the radial dependence of the

normal mode. The wave energy (4) is then

wit) = L ya ,|Aa(f)lg % r dr g""*(r)-‘wa a%-,mk(w)/éwlw (),
. A a
& ' (45)

where a factor 2n arises from the azimuthal integration, and L is

" the axial length of the cylinder, with the limit I - co implicit..

It is now convenient to choose the normalization of Ea(r) S0
as to simplify this form. Since the integral is reai, we normalize

according to

™

rar B (o), ™)/l FE) - o, (46)

) a :

where .Ga = ¥1 is the sign of the integral. The wave energy than reads

=

w(t) = L > o, JAa<t)l2{ | (47)

g

and we may interpret
W(t) = Lo la(6)P | (8
a : a "a ' :

as the energy of a normal mode. Thé sign of o, represents the sign

of the mode energy.
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The modes also have. angular momentum and axial momentum; these
include not only the field contributions, but aléo the canonical

contributions'of nonresonant perturbed'particles{f:Their relation to .

15

mode energy'is found from Lagrangian field theory ~to be

o’ "a

P = m/o_
| (49)

- a
P/, = o .
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IV. QUANTUM RATE EQUATIONS

In the qpantum‘picture, the.enérgy of a normal mode is quantized:

W (6) =w(Ae , - 0)
where ) »
Qa AR o , (51)

(Recall that ma > 0.) The particle invariants are also quantized:

. = %r_/h/,' | (52a)
P = 6) A, (52b)
o T U™
A S
B _62/6 o . (52¢)
. . gD
The quantum numbers Kg; Z}iJ qu (jz must all be integers. When a
iy
particle with action J" = (J;, P$, Pg) makes a transition to state

g' by emitting a single normal mode quantum, the conservation laws for

energy, angular momentum, and axial momentum require that

BE") = H(Z') + do o, - (53a)
By = By + Ao, m, , (53b) -
PP = P!+ o, k . | o o (53¢)

The quantization of radial action (52a) implies further that

noo_ Ty ' : ' . :
J.o= dl 4+ .ﬁoaz, | . '(53d)
where £ can be any integer.

In the classical limit, the relative change in action

Ag = gll ) . J'

~

is small, and we may Taylor-expand A H:
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]

AE = HQ@") - HQG')

(83,)(8/33,) + (AR )(H/ER) + (4 7)(H/,)

il

®, AT +,_§—APCP + Z AP, (54)

T
Using Eqs. (53) for AH, Aer, A 3$, Axf; s weiobtain the resonance

condition:

o = te (I)+ mﬁ(g) +k 2(g) , | (55)
for the interaction of a partlcle with a normal mode.

. In terms of the Dupler shlfted frequency seen by the guldlng

center:

0 @) = e - mb@) - k2@, . (56)

thevreSOnance condition reads

T

Col@) = L) , | (57)

iQe.; thevDopplerfshifted frequency must be\anlintegral multiple of
the radial bounce frequency. - This result is a generaliZaticn of the
conditicn_foundvin'the one-dimensional model (KN); Iu Section VI,
the resonance condition isAderived-byva purely classical calcuiation.
For a given mode (uy k, a>), the resonance condition (55)
deflnes a dlscrete set of nonlntersectlng surfaces in J- -space. ﬁach:
surface corresponds to a particular value of £ ; All the particles on
these surfaces interact resonantly with the same mode; we call this set

of surfaces 'Sa.
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When a'resonant particle emits (or absorbs) dlmode quantum, it
moves in the direction *(¢, ﬁ, k) in éction-space, by.Eq. (53). It is

then no longer in resonance with @, having moved off Sa' However,
4

thé normal modes themselves are a éontinuum, since k 'is a continuous
parameter.b Thus every point in:action-space lies'Qn a resonant surface
of some mode S _,. The particle then moves from éng surface §_ to
anotheri Sa' , always beiﬁg in résonance with some mode. Since the sign
of its velocity in action-space is random,'thié is é.Brownian motion,
describable.by a Fokker-flanck equation. We now'proceed to derive this
equatioh, énd-thé corresponding equation for the'mode energy.

Let p(J" <> J',a) denote the probability density (in action-

space) for mode emission or abéorption, per unit time. The rate equation

for Na(t) is

an /at = [(ex)® T)° fd5J' jd5J" p(3" = gl £(gM) (N 1) - 2(Z_]
X 8(AH -ma) s(a P(p —'nrﬁoa)k 5(a P, - ﬁkoa) ,
| | (58)

while the equation of evolution for f(g;t) is -

dr(Jst)/ot = (2 )° Lfd3J’jd5J" } p(d" > J',a)
: , ’ N _

a

X Le(g")(m, +1) - £(g"n]
XB(AT - 0, (A - ais ) 8(4 B, - Hko )
X {8(J" ;'g) - 85" -3 . o - (59)

The factors (21r)2 L " come from integration over (w, @, z).
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ih the square brdcket, the first term repreéents induced and
spontaneous emission, while the second represents-absorption. Expanding

the square bracket in A J , we find [with the help of (53)]

[eee] = f(g”) T+ Né'A‘g . af/ag.:
- (g o+ v1.\:]a[A Jr(af/aJr) + AP#)(&f/BPq) + A PZ(Bf/BPZ)]
S oe@ v (e Be, . (60)

where

ax
it

2 (1) + m/or) + K@fE) . (61)

On performing the integration over J', and dropping the primes

on J", we find for the mode equation (58)

dNa/dt = (en)" 17 [aT p(g — g'a) o (D) + (wa/@a)b’f] ;
| T T (&)

In using (50) td'eliminate' Né’ let us ignore the possible slow variation

in wa ‘due to adiabatic chénges in the configuration. We then obtain

the wave kinetic equation

_ éwa/dt‘ = ca(En)e L )[ d5J'aa(g)[f(g) + (W_/w) 3l , (65)
where
o @ = @ LHe o TTQ) eg —ghe) (64)

is the classical mode-particle coupling coefficient, to be evaluated

in Section VI. The resonance condition (55) is contained -in

aa(g), as we shall see there.
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In conventional notation, (63) may be written as

dwa/dt = W+ e W, (65)
&4

where theirate of spontaneous emission by discrete particles,
o= o (2)° 1 [a07 o (3) £(J) (66)

is proportional to f ; while the liﬂear Vlasov growth rate,

= bePuat [o o, @8, (67)

is proportional to derivatives of f .
‘ If the particle evolution can be ignored and if the mode considered
is stable (7a < 0), Eq. (65) can be solved for the quasi-steady state

(dWa/dt,='O) wave energy Wéng

AN VA
o [ &5 0, (3) £(2) = .
- - : | (&)
- ]d3J o (2) & £(7)

This expression generalizes the result of Kent andfTaylor,5 who found the
steady-state energy. using WKB methods for the normal modes and small
gyroradius for the pérticles.

‘iIn the particle eqpation'(59); we change wvariables to

1]
1]
PO

Q'%y)am ALame@wdmewnmemtm AJ e

W

(53" - 2) - (3" = 1)) = ag - s - D)oy .

We commute a/ag to the left, obtaining



—— = (2,1) L f a’Aag p(J, AJ a) S(J - J)

% [-+-] x 855 , (69)
the three final & factors being those of (59). We integrate over A J
and QO, to obtain the classical particle kinetic equation:

R

pe(g:e)fot = Y S o (e + (1 fe) & £(@)] . (70)

!
AN Y
a,

_This kinetic eqpatioﬁ is manifestly of Fokker-Planck form:
Se(zs0)/o% - ‘;[a(j eyor )Pk )/ )-facs ey |
> o M r r! 0] 0] L z oz

(/) @) - (e

(1)
The "dyﬁamic fricfidn” coefficients are given by |
_(Jr, PCP,'PZ) = - Z*\ 9 aa(g)(z, m, k), (72)

a,

and represent the radiation reaction from spontanecus emission. [The
ratios of the three coefficients are understandable from Eq. (53) ]
-The qu35111near dlffu31on tensor in actlon space is

o
/ £ im 2

@) = Zvvwf Mle@ [ m o w ). ()

& - \zk mk ke/

QY



-23-

We note that it is positive definite [since Oé<£)- is non-negative, by

definition (64)]; i.e., for any real vector A EvAlrﬁr + A, P¢,+ %%

Sy _ D v ’ 2 5
ADI)A = 214 ) VIwgl o (I)(a2 + Am tAK) 2 0.

(74)

Recalling the significance of J , we see that the kinetic

eQuation3de3cribes‘radial diffusion and diffusion in v, and in v, ,

in the 1limit where a guiding-center description applies.

2
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V. CONSERVATION LAWS AND H-THEOREM
Tﬂé coupled'kinetic'equationé for normal modes (63) dﬁd particles
(70) satiSfy conservation laws for energy, apguléf momentum, and axial
ﬁdmentum, an& in addition yield an H;theorem for entropy production.
Thg gonservation léﬁs were pf course buiit.into the derivation,
ana so'sérve only as aﬁ algebraic check. .Fofuenefg&, we have

) = L deJ H(g) £(git) + ;ﬁ W (%) . (75)

In its derivative,

‘avjas = L [au) Gefn) + Y (@ifa),  (16)
. _

N

the first term inclﬁdeé tﬁe energy éhahge Qf'only'the resonant particles,
while the second term includes the energy chénge'of-the nonresdnaﬁt
parti-crlesb. (The effect of adiabatic vé.riation of the "static"’
po‘be.nt.j.a;l.s. is consistently ignored here.) Sibstituting (70) and (63),

we have

av/at = (2x)° T Z oadeJ[H(g)wa"l ¥+ 1) oza(g)[f(g)} (w;/wa)a/ £l .
o = | )

For thevoperator in the curly brackets, weAintegrate by parts, using
FH = b, + @§i+ K2 = o, - . ;',v.“ - (78)
whereupon dU/dt = 0, as réquired. The proof for conservation of total

angular momentum

N e
(2#)2 L jd3J Py £(J;t) + L (m/wa‘)wa(t) o (79)
: a
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and of axial momentum o
(en)” L f @’ B £(g5t) + (Ko W (£) (80)
a-' -. . .
is analogous.
'The_entropy for a system of weaklyvintefacting particles and
modes ‘is - »

s(6) = -(ex) L[a% £(336) tn 2(358) + >‘ o I (6)] .
| | R (81)

Its time derivative is, by (70) and (63),

_ asfat = ‘(én)e L. Xda deJ (-wa‘l(.‘m f) %’_+ wa‘l} aa(g)

> [f + (wa/wa)Ef f]

Integrating by parts, we obtain

: 2. N\ L ' : - N . 2

asfat = (en)" L }j fdaJ o (@E@ W D™ 1) + (0 fo ¥ £]
Ja~ ~7 g a’'a
a
(82)

This is manifestly non-negative, and implies a monotonic increase of
entropy.

When the wave energy is so large that the spontaneous emission

terms are negligible on time-scales of 1nterest the kinetic equations

(65) and (71) reduce to quasilinear equatlons

ai fat = 2 7 W | _, | (83a.)

af(g;t)/at = (3/32)-1p(3) . (3t/3g)1 . - i. | (83b)
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The consefvation_lawsvare still satisfied by these eQuations,vbut the

H-theorem now pertains. to only the resonant-particle entropy:
, SR(t) = -(2n)" L [a°T £(J;t) £n £(J5t) .. (84)

From (83b) and (74), we find

|

dsR/dt  (Qn) I } &1 71 (38/33)- D(Z)- af/aJ)

ity

o _ | < : _
(en)? L’j’d3J f"l_d} ag-g !wal aa(g)65 f)2 , - (85)

I

a

Which again ié maniféstiy non-negative. ‘

The questlon now arlses, whether an asymptot1c>statlonary state

»exists. Such a state must correspond to a maximum of the entropy Let

us first-maximize the entropy of the particles of one species only. By

Stgndard:ﬁethods, we find for the maximizing Qistribution'the canonical
orm v R o .
22,0 ~ el BH) -0 R - vERD), (86)

$s’

the appropriaté energy, angular momentum, and axial momentum of this

where the parameters Bs, w Vés are to be adjusted to account for

species. -

N

This form is a special case of the rigid rotor distribution

ARG VAP e

7

which has been studied intensively by Davidson and Krall ' for the case

of a single-species plasma. We note16 the interesting propertylof (87),

i

o
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that the radial dependence of-thevcurrent density is indeed that of a
rigid rotor:’

£ = FfE e, (68)

Returning to the canonical form (86), we see that the derivative
3f is

B - 8% cmw®-xvE) S, (89)

“can a » 7z can

by (61) and (55). The Vlasov growth rate (67) is then

X
il

- 5 @ Lo, - nof - x7,°) . BsdeJ o (3):°%(Z)
- %—Bs[l - (ot +x .Vz_s)/ﬁua] W .; -  (90)

by (66). It thus bears a simple relation to the emissiviﬁy by discrete
particles.  The sigh of 7a cannot be determined until one finds @,
and o, .(to which W ; is proportional).

v In the single- spec1es case, we may drop'tﬂe species index from
(86), and proceed to the maximization of the total entropy (81). We

then find the generalized Raylelgh—Jeans,dlstrlbutlon

RI _ _-1 ' -1
Wy = Wy = 8- oy +x7,)/0]™, (91)

together with (86). This is then 1ndeed a stationary state of the klnetlc_

equatlons (63) and (70), 51nce

wRJ/wwf - 0. (%)

can a a can

(However, it is not stationary for the quasilinear equations (83); vy

(65), all waves must be'damped.)
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To complete the proof that ‘an asymptotic "sta*'cle‘ exisfs, it is
necessary to demonstrate that the sign of (91) is consistent with the
signbef Ga , and that (86)‘is a confined state. According to Davidson
and Krall,? electrostatic modes are stable for (86); it follows from
(90) that the sign of (91) is 1ndeed consistent. (However, no such
proof for electromagnetlc modes has yet been offered ) Also they have
shown tha?ﬁthe Plasma is confined, only if w@ lies within certain
limits, for the case B(po = O'_,

In the two spe01es case, let us con51der the canonical distribution

(86) for a qpa51neutral equlllbrlum w1th B, 0 constant, Bmo = 0,
ErO = O, and small gyroradlus. From (86) and (5), we see that the
dens1ty has a Gaussian shape
5 - 1. s .0 1.2, -
o () exp( B e @, B, e ). (93)
This is confined and quasineutral only if
- s _0_2 _ .
oy = - c/B e Bz Ry | (94)

-for eachvspeeies,.where‘ ﬁo  is_the common fgdialnplasma size; thus
w¢sr must have opposite sign for the two species. |

| However, the maximization of entropy (81) leads to the requirement
of the §§ﬁe. @ 'fOr each species. Further, one again finds (91) for the
normal modes;vclearly, this requires a common @b if modes can resonate
simu;taneously with particles of both species. Iﬁ this limiting case at
least, an asymptotic state cannof be.a confined state for a two-species
Plasma. It would be of great inferest to determine the‘generality of thie
resuit.

We conclude that resonant interéctions drive the system toward é'

canonical distribution, which may be unconfined.

~l
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VI. EMISSIVITY AND COUPLING COEFFICIENT - .

To obtain an explicit expression for the coupling coefficient
a,(d), which appears in (63), (66), (67), (70), (72), (1), ana (B2),
we. shall calculate the em1351v1ty (66) class1cally, and identify o )
Since the em1531v1ty is the emission rate by dlscrete particles, we
consmder the linear plasma response to the current dens1ty of a single
discrete partlcle, and then sum over particles

Treating the particle as an external current source ge(g,t),

we replace (21b) by

VxR o+ (/e)E = (/o) + 3%, (95)

whence (24) becomes

K@) E@pe) + Epe) = -(mifo) 2(go) . (96)

The solution of (96) can be written in terms of'Green's.tensor:
— > 3 1 \i -€ 1
E(py0) = -(lml/w)fd-r Slpx's )i (gho) , (97)

where G satisfies
~

') . (98)

K@) g(r,x's ) + glgr's o) = I8 -

To zero-order in K" [see (30)], the solution of (98) is found by

standard techniques:

B - (Oj "1 En(Q)(E)w) En(o)*(x?,w)
5(5’315 w) = j; Ll - An (aﬂ} v )
v : . ~?;. , ‘]-djr" 'En(O)(En;w)lg

(99)

in terms of the eigenvalues and eigenmodes of Eq. (31).
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The total trahsfer\of energy to the plasma from the test particle

is L .
. 4D .

AW = - - ’dt/ &r 1°%(z,t) - Blx,t)
<00 ) i

_. /, s@_r &

(r,0) « Elr,0)

21 f (dw/w)J[der‘/(dBr'je (r,w)og(g,z';m)'je(g',w);

where the w= 1ntegral is in the upper half plane, above all s1ngular1t1es

no
=
N
o
\N
H
¢

In the perturbatlon limit K" O, we use (99):

{ * | 2
l};d% ¥ (2,0 50 ()

~

AW. = 2i (da)/w) 3 [1 - /\n(o)(w)]'l s
— 2
| E e 0]

whence the singularities of the integrand are on the real axis, at the

éigenfreQuencies [see (34)].
- Depressing the contour of integration to the real axis, the semi -

circles about these poles yield

AW = -k >_) w, [dA (O)/dw]
a o : ]'dBr IE (' )!

']dr,] (r,w)E(r)’

(A factor of 2 comes from the poles at -ag'. There is no pole at w = O,
since je(x,w) vanishes there. The principal value part of the integral
vanishes, since the integrand is odd in o .) Evaluating dAn(O)/dw

from'(32):

Y
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L L 2 5
e Ol | P Pl - [ O E ) Qg /) )

we obtain .

| 2
AW = 4 ?;“ w T r iS(r,w )'Ea*(r)
. “.‘___ a ~ ~ & ~
. a
x | j’dBr ga(x)-(ag'/aw)fga(g)l— . . (100)

We now use (43) and the normalization (46) in (100), obtaining

... 1 5 1 e, . * 2
AW = LT o, r dr j (r,m,k; wa),ga (r)] , - (101)
. h a ! . . .
where  . , .
JEmk; £) = | ap e ; az e §(z,1) . (102)

For the external current density, we now use the incoherent sum
of the contributions of all the particles:

- 2
- *
AW =ﬁLl> o, al’ £(J) r&uﬂnmk;%}Pfﬁth),

“a | _ | (103)
where g(g,t; I') is the current density of a single particle, whose

pPhese-point is at I' at some feference time t = 0, while j(r,m,k; w; T')

- is its 'wfz-t Fourier transforﬁ. We shall see later that the integrand

is independent of the angle variables. Hence (103) becomes

a
. - E j _ { * 2
W o= (2n)2 T l_ ca//tdBJ £(J) j:r dr j(r,m,k;'aa; P)-Ea (r)|”,
a . '

(104)
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where T is the (formally infinite) time used in the Fourier transforms.
Comparing (104) with (66), we identify the coupling coefficient: _

’ 2 ! K

(105)

i ) ) . . *
r dr j(r)m)k3 wa:' F)'Ea (I‘) l

/

e

o (J) = (LT)"l‘
a ~ . .
To evaluate da(g ), we transform

(106)

e X(t;P) 5[~r - B(t,;P)] ’

J (E}ti_ F)

and find (after a bit of algebra) -
ti wé(’g) (r;J)]

| | L . .
Jmk; w5 T) = e r™ |i(r;g) ™t zgj v (r;J) expl
+

5[4 - wé,(g)/a)r(g)] x expl-igw - inf - ikz] .
-'(107)

~is the double-valued velocity at r for a particle with actions

Here v
A

inner turning point; and (w, _ﬁ, Z) are the angle variables at t = O.
+

Jds T(r;g) - is the transit time for the particle to reach r -from its
We substitute (107) into (105), express v in terms of momenta

via (3), and find :
ox~t 7t @ (J) -/;r ﬂ} E}a*(r) sin w!(J) 7(r;J)

a (J) =
)T B ) /) - (e/edn ()]
+ Eza (r)[pz - (e/c)Az(r)]}cos a);(g)f(r;giﬁi2\[z-wa"(g')/a>r(g)] .
A
* (108)
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The methods of XN can be used to simplify this expression in certain

limitingfcases. In general, numerical methods are needed for the explicit

~evaluation of (108).
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VII., CONDUCTIVITY
We have obtained two expressions, (35) and (67), for the growth - b
rate 7av of a normal mode._ Equating these expressions, we have [with g#»

the normalization (46)1,

v ) 0, B ) - e 1o, P | 1 @) s L

On the left side of this equation, we use [see (25)]

!

(@) ) = (/o) [ vt art g e o) BG) 5

on the right side, we use (105) for 'dé(g). We then deduce that

g et o) = wo™ Tl [ Br8e) jrmis e D) 5 (e mk; w; D)
(109)
here we have used (55) to eliminate £ from Bf (61):
Br(3) = w@e/o3H) + m(Bf/BPb) + k(3£/3R)) , (110)

with (H, Py P ) as the new variables of differentiation.

The Kramers-Kronig relation now enables us to determine g"’

from- g' , and thus the total g . After some algebra, we find

~

. ) . -

gmk(r,r'; w) = -(EnAw} dr eﬂDTj d5J 57(3)

X j(r)m;k§ t; ,‘I,) J (r’,m,k; t-1; }I) -

(111)
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(Alternatlvely, we may more easily guess the form (111), and verify the
reduction to (109) by the Wiener-Khinchin theorem. )

Thls result is a generalization to nonequlllbriuﬁ £(J) of the
Kubo eipression,l2 for ¢ . When f is a canonical distribution (86),

it reduces to

(vt @) = 2np at " [1 - (o, + &V, Yoo ]
- : : , - :
:,5 R * : ] - } .
a’J £(J) J(rymk; t5 J) § (r',mk; t-1; J) . (112)
In the special case w@ = 0, Vé = 0, we can find the response kernel

in the staﬁdard Kubo form:

cmk(r,r'; T) - o B d?J f(g).g(r,m,k; t; Q)'g*(r',m,k; t-t; J) .
A . . | (113)
The expliciﬁ e§aiuation of.(Ill) entails-considerable straight-
fbrward algebra, involving (107) and the identity

400

. (y - i)-l ej"g(P = n(csc ny) exp iylo(mod 2n) - ]
== | | (11k)
The result is
(e 0) = 167 & 1(ere)t | &5 o (Z) B2(Z) eselw' () ©(I)]

X [F sin w'(J) T>(g) + 1§ cos w'T>][? sin 't _ + 1 S' cos w'T<] ,

(115)

where
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IET S R PR YOS DR TCO Dot N o (us)

S'  is the same with r repbaged'by r', 1(J) ié the particle transit
time (one-way) between fadial turning points, %>(g) isbthe transit
time from the greater of (r,r') tb the outer turhing point, and
T<(£) 'is'fﬁat from the lesser to the inner tﬁrniné point;

_ Ih contrast to the usual approach, we have obtained the Vlasov
‘conductivity as a by-product of the calculation, instead of solving -

the linearized Vlasov equation directly.
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VIII. CONCLUSIONS
This.study has concentrated en the lowest;order resonant‘inter—
actions between particles and normal modes,”in a eystemlwith two degrees
of symmetry, In further'werk,.we plan to extend thevtheoryito include
higher-erder.effeéts, inclnding departures from exact reeonance, resulting'

17

in finite-width functions™ | to replace the delta-functions of the present

‘theory. We also plan to study systems with less symmetry, in which

adiabatic invariants replace the exact ngariants of the present theory.
'dThe'primary flaw in this etudy isvthe limitation to resonant
instabilitiee.. Inasnuch as“nonresonant instabilities are of considerable
importance, they should be included; however, a satisfactory theory for
diffusion due to them does not yet exist evenvfor‘the uniform case.

The methods ueed here are a judicious selection of quantum and
class1cal 1deas, Wlth llttle regard for the demands of rigor. It would
be 1ntellectually more satlsfylng, perhaps, but much more fatlgulng, to
develop a purely class1cal theory, along the lines of KN. What is needed
to Justlfy the quantum approach is a classical theory which develops
analogously to the quantum theory. (Alternatively, a rigorous quantum
theory needs to be formulated. ) Pregress along'these lines is in evidence
for a fluid system,18 and needs to be extended to the kinetic regime.

 The basic validity criterion for our theory concerns the existence
of two time scales: a faet one for the mode eigenfrequencies and the = -

partlcle radial motlon, and a slow one for the evolutlonary development

described by the kinetic equations. The existence of such a clean

separation certainly depends upon the details of the configuration under
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consideration. In such a case, the Markov assumption may be invoked to
decouple the slow irreversible evolution from the fast reversible
dynamics. Some estimates of the several time scales may be found in Y

m.
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