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TIlE DARWIN MODEL AS A TOOL FOR ELECTROMAGNETIC 

* • 	
PLASMA SBv1tJLATION 

Allan N. Kaufman and Peter LS. Rostler 

Department of Physics and Lawrence Radiation Laboratory 
University of California 
Berkeley, California 9I720 

Sept. iS, 1970: 

ABSTRACT 

The Darwin model of electromagnetic interaction is presented as 

a self-consistent theory, and is shown to be an excellent approxima-

tion to the Maxwell theory for slow electromagnetic waves. Since 

the fast waves Of the Maxwell theory are absent, it is convenient 

for use in the computer simulation of the electromagnetic dynamics • 

of nonrelativistic plasma. 
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Simulation studies of plasma behavior have usually been based 

either on the Coulomb model of particle interaction or on the full 

Maxwell theory. For the consideition of electrognetic effects, it 

is not.necessary to use the Maxwell theory, which includes the propa-

gation of fast waves (whose group velocities are of the order of c), 

and which thus has the disadvantage of requiring a small time step. 

Indeed, the many plasma phenomena invhich fast vayes are unimportant 

are well described by the Darwin model1  of electrodynamics. 

The Darwin model, in which there is no retardation, has been used 

in the past to study electromagnetic interactions in microscopic 

systems, 2 and for the statistical mechanics of many-body systems, 

both neutral3  and plasma. While for nonequilibrium plasma the Darwin 

model has been little used in analytic theoretical work, it seems most 

:. suitable for simulation studies, as pointed out by Hasagawa and Okuda., 5  

who rediscovered it in simulating one dimensional plasma dynamics 

In this paper we investigate the analytic properties of the Darwin 

model. The model is usually treated as a second order (in v/c) approxi-

mation to the relativistic Maxwell theory. 6  We present it here as a 

self consistert theory arising from a particle Lagrangian: 

L = E m1v12  - C + M, where the kinetic energy is nonrelativistic, 

while the Coulomb energy, C 	E e1Ø1  + E e10ex(r,t),  and the magnetic 

energy M 	E e1 (v1/c).A' + E e1(vj/c).A(r,t),  include both pair 

interactions and interactions with external potentials.. The internal 

potentials are defined as 

Ø1 (r1 Cr)) 	i 	/rij 	 . 	 (la) 
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ej  T(r1 .)(v./c). 	 (ib) 

j(Li) 

The magnetic Interaction tensor is T(r) 	(I + 4)/r. The internal 

potential (ib) is solenoidal because (/r)T(r) = 0. We therefOre 

choose the transverse or Coulomb gauge also for the external potential: 

VAex 0. 

The canonical momentum of a particle 

=+ (e1/e)[A1 + Aex(rj,t)] 	(2) 

is a function of the velocities of all the particles through A 1 . The 

Lagrangian equation = L/r1  is the standard Newton-Lorentz equa-

tion of motion, when the electromagnetic field is expressed in terms 

of the potentials. 

When the external potentials are static, the invariance of L 

under time-translation Implies conservation of energy dH/dt = 0, where 

the Hamiltonian H E 	- L has a simple form H = E m1v12  + C + M 

In terms of velocities (but not in terms of momenta"). When the 

external field vanishes, the invariance of L under space-translation 

Implies conservation of total canonical momentum: (d/dt)E .(t) = 0. 

If the set of discrete particles Is approx:Lmated by a àontinuum 

with charge and current densities p(r,t) and j(r,t), the internal 

potentials (Ø1,A')  become fields Ø1 (r,t), A 111(r,t) satify1ng 

(3a) 

- 	= 	/c , 	•. v.= 0.. 	 (3b) 
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The source of A' is the transverse (or solenoidal) part of j, defined 

most simply in terms of spatial Fourier transforms: 

( - 	 Note that the retardationless elliptic 

equation (3b)  has the same forni.asthe Poisson equation (3a), whose, 

solution is standard in simulation studies. 

Of the four Darwin equations for the internal electromagnetic 

field, only one: 

cV x B 	 =4
7rj+ 
	

( ii.) 

differs from Maxwell's; the others are the same. Here EL 
- 
VØ is 

the longitudinal (or irrotational) part of the electric field. 	The 

longitudinal part of (4),  0 = 47rjL + 	 expresses charge con- 

servation in agreement with (3a). The transverse part of (4), 

CV x B = II71F, differs from Maxwell theory in omitting 

and leads to the Biot-Savart law: .BIT1(r,t) = cfd3r'(vI3Z - r11 1) x 

The differential conservation laws dIffer from those of the 

1v.xwe1l theory. If we require the external field also to satisfy the 

Darwin field equations, the energy equation is 

E.ex = (/t)[(IELJ2+ B2 )/8'IT + E5fd3v in vf ] + V.[(c/ 14.ir)E x 

+ 	 + Z fd3v 2 in v2vf ] ' 

where f(r,v,t) is the :carticle  distribution function, satisfying the 

standard Vlasov equation. The momentum equation is, in the absence 

of external fields, (/t)(cpA + E5fd3v .mvf) '=''-, V.P, where the 

momentum flux density is P E Jd3v m5vvf + I(B2 + 112 
+ ZL ,.. 
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- 

[~B  
 + 	+ c(L + 	

(Here  

To see how the Darwin model modifies the plasma dynamics, we con-

s.der linear oscillations of a uniform plasma. With  

and the Darwin field equations, we obtain 

[() 	
(2 

+ 1)AT 	= 0, 	 (5) 

AA 
iere C 	+ Tiü, n2  k2c2/w2, ZT 	

- kk, and a must be derived 

ftom the linearized kinetic equation. The dispersion equation cü(k' 

rsults from the vanishing of the determinant of (5). The Maxwell 

etluations, on the other hand, yield . 

[€(k) 	n2 ].E(k) = 0. 	 (6) 

For a cold plasma in a static magnetic field,E is independent of 

1. Then a simple relation 

2 	 2 
D 

(),O) 
= 'M 

(,e) - 1 (7) 

exists between the Darwin and Maxwell refractive indices n and nM. 

(e is the angle between k and Bex.) Curves of nM2(D), for 9 = 0, 

7r/2, and 0 < e <w/2, may be found, e.g., in Refs. 7 and 8. From 

these diagrams (and from the associated analysis), we see that for 

frequencies less than the highest resonant (n 2  = co) frequency, 

is generally large compared to one, i.e., the phase velocity is much 

less than c. The exceptions are the small frequency intervals near 

the cutoffs (n2  = 0), where Jn21 < 1. We conclude that, except near 

the cutoffs,, the Darwin model agrees well with the Maxwell results. 

For frequencies above the highest resonance, nM  < 1 and therefore 
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<0. The supraluminous waves of the Maxwell theory, which are 

troublesoi-iie in plasma simulation, are replaced by evanescent waves in 

the Darwin model. In terms of an w vs k diagram, the fast branch 

(u -' ke as k - w) simply disappears. 

For a hot plasma, where € depends also on k, no simple relation 

like (7) can be found. However, comrison of (6) with (5) again leads 

us to conclude that the Darwin model is reliable for slow waves (n >> 1) 

and unreliable for fast waves (n < 1). 

F:Lnally, for an irihomogeneous plasma, the new modes (drift waves) 

have still lower frequencies and phase velocities, and hence the Dar.iin 

model should be valid here as well. 

We conclude that, in plasma simulation work, it is not necessary 

to choose between a Coulomb model and the full Maxwell theory; the 

Darwin model presents a third intermediate possibility. It describes 

electric and magnetic forces, includes induced fields as well as static 

fields, and yet retains much of the simple structure of the Coulomb 

model. Since the electrodynamics of a nonrelativistic plasma usually 

deals with slow waves, it is seen that the Darwin model has a wide 

range of applicability. 

In this discussion, we have made no attempt to deal with the 

formulation of differencing schemes, nor to face the difficulties 

pointed out by Hasegawa and Okuda concerning boundary conditions. 5  

We have benefitted greatly from the advice of C. K. Birdsall, 

J. Byers, A. Hasegawa, J. Killeen,. and A. B. Langdon. 
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