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ABSTRACT
A new ermulation of'quasilineaf;£heory is'pfesented,
‘{wﬁich allows for only resonant diffusi;ﬁ; caused by both
j'épéﬁing‘and damped waves. Nanesonant}tefﬁs do.not appear
‘-in:the diffusion equation, but contribﬁﬁe:to wave
.méméntum and energy,'and_ensure céﬁserﬁdéipn of total
momentum and'energy. Analyticify is no{}réQuired, since

- #hejcomplex pléne is not used.

This work was Sﬁpported by the U. S. Atomié.Energy Commission and

by NASA.
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I. INTRODUCTION
_-ﬁsers.of quasiliﬁear theoryl have often e#pressed uneasiness
about itsiepplicabiiity to damped waves,2 because the standard expressibn
of the diffﬁsivity is then negative. Attempts3’“ftd establish a
quaSilinear theory uniformly valid for grow1ng and decaying waves have

been based on the K’limontovich5 picture, rather than on a Vlasov

analy51s,ﬁand have further requlred analytlc continuation_into the

coﬁplex-wave-number,and velocity planes.  As pointed out by Weit-zner,6

analytic continuation may impose unrealistic continuity requirements

‘on physical distributions.

’fThe present paper is devoted to a fresh loek at quasilinear
theorj, with a treatment of growing aﬂd decaying waves on an equal
footing. The complex plane is completely avoided,.even for frequency,
and Lahdauis analysis of the linear Vlasov problem is replaced by a
differeﬁt technique. The nonlinear Vlasov equation is manipulated to
a form exhibiting only resonant diffusion, w1thout the need for the
limit Y - O+. The term previously denoted nonfresonant, adiabatic,
or "fake",diffusionl no longer appears ex@licitly; it eontributes to
wave momentum and energy, and ensures the censervation of total
mdmeﬁtuﬁ énd energy.

| vNo attempt is ‘made here to maintain mathematical rigor. The
ordering of terms is made heuristlcally, without the explic1t 1ntroduc-‘
tlon of multiple time techniques. |
»To keep things as simple as possible, only the uniform one-
dimensional Coulomb plasma is treated here. The generalization to more

dimenSions,7 and to a nonuniform8 M:axwell9 system is straightforward;
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Ii. LINEAR ANALYSIS

'When the Vlasov equatlon

Of(x,v; t) or - S | Y
bffiféze_-l ¢ vS o+ SRS =0 @)
is linéariiéd about a uniform state fd(v; t) which is slowly varying

in timé,ftﬁé first-order solution, obtained by integration along

characteriétics, is
,'fl(x,v; t) = -(e/m) fé(v; t) Jﬂ drE(x - vr, t - 7). . (2)

Here the prime denotes velocity-differentiation; The time-integratioh
is on the fast time-scale; accordingly 1 (v, t - 1) has been replaced
by £ (v, t) and taken outside the 1ntegral

E.We'look for solutlons of the form:

,ﬁ(x,t)_ E, (t) exp(ikx - iayt),

(3)

Il

fl(x__:V; t) fk(V; t) exp(ikx - ia)kt))
where k and w, are both real, and the amplitudes have a slow time

dependence representing wave growth or decay. But we note that the

variation of Ek(t), which is of order 7Y,, is not as slow as that of -

k

fo(v; t), which is of order Ekz. (Our ordering thus breaks down when

Ek2 and"Yk are of comparable size,.in appropriate units.) o _ .

-
A

Insertion of (3) into (2) yields

£, (v3 t) = -(e/m) fé(v;_t)j;w at B (t - 7) exp 1(ay - kv)T. (1)
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The Poissoﬁ:equation then reads

ikEk‘_(_.f);’-': - (le®/m) f av £5(v; t) j; T ar B (5 - 1) ex i - k),

(5)
where a{éﬁmlgver speciés,“if needed, is_implicitgib»
TAﬁpéaling'to the slow variation of Ek(f); we expand
B(t - T) = E(6) - 7B (8) + oo (6)
and keep only the two terms shown. We then use
r~. . . o 1
‘/. deexp'i(wk -kv)T = g a(dk - kv) +1i P(dk - kv)
0 :
| , | (7)
= T 5+((,L)k - kv).
- and
f_ dr T exp i(wk -kv)r = -i a[n5+((nk - kv’).]/dcuk, (8)
to obtain. )

ikEk(t) 1= '(hneg/m)[Ek(t)‘jrdv fé(v; t) x 6+(@k - kv)
+ i.ﬁk(t)(a/awk)-['dv fé(v; £) 5+(mK - xv)]. (9)

. *
We now multiply (9) by Ek(t), and multiply the complex

conjugate of (9) by' Ek(t). Adding and subtracting the resulting

equations, we find equations for the growth rate and for the eigen-

frequency @ . The subtraction yields

1 = -(hﬂeg/mk)fdv f(')(v; t) P(mk - kv)'l , (10)"
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plus terms of relative order E /B ), which is the standard dispersion
k/ "k

equation for:the real eigenfrequency “k(t)° ‘The addition yields

R D L R O

_ (11)
S _ (3/%,) fdv fc')(v;_t) P(a, - kv) ™t

(plus terms of relative order Ek/E )s vhich is ‘the ‘standard equation

for the growth (or decay) rate 2 Yk(t)' The slow time-dependence of
wk(t), 1mp11ed by (10), is of order’ Eg, and therefore is not included

in (11), which is zero-order in E".

q“\
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I7I. QUASILINEAR ANALYSIS
In expanding the nonlinear Vlasov equation (1) to second order
in the wave amplitudes, we shall distinguish betwéen f2(v;‘t), the
secondQOfdér perturbation in f (averaged over - x and over oscillation

period), whose size is proportional to E2, and fo(v;'t), the part of

f independent of E, whose evolution is proportional to 'Eg.

Inserting (2) into the space-time average Qf (1), we thus

obtain .
df. Of, : of (v t) k
‘8?2 + 3{2 = (%)2 g; [I(V)t) v ] ER : (12)
where
I(v,t) = fm ar (B,t) B(x - vr, t - 7)) (13)
o 0 . '

(the angular bracket denotes spatial and'fast-time:averaging), and
where afo(v;t)/ét represents the slow evolution of .fO ~due to
diffusion, while Bfg(v; t)/ot represents the slow variation of £,
due to wave growth and decay. On the right side of (12), we have
dropped éfg/av, but have retained afo/aﬁ; we justify this below.

| In expression (13), we generalize (3) to iﬁclude all k, and
severai branches Z:

E(x,t) = kz; B () exp(ikx - i’ t), = (1b)

. : £ L% 2 £ .
with E_ (t) = Ey (t), an@ @, = -w; we then obtain
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I(V‘,t')-__:‘_' k; L ar E (t) Ey (t -v T) exp l(a’k - kv)'r (15)

Again wé ﬁsé‘Eqs.‘(6), (7), and (8), and find
I(v,t) = 2 B 7 (8) ] 2x 8( - kv)
R = k e

2

We 1nsert (16) in (12), assoc1at1ng the flrst term of (16)

with af /at and the second term of (16) with “of, /bt. We then obtain

for fo the resonant d1ffus1on equatlon
s = D(V,t) 5—— (17)
with
D(v,t) = (e/m)? > 8.(8)1? 2x 8(0 " - wv), (18)
- k>0, 4 _ o o

while the- equation for f2 can be.explicitly ihtegrated to yield

g0 0 = -2 Ll v Z In (17 3%(a, 't

(19)

The dlffu81on equatlon (17) includes the effects of all waves
in the dlfqulVlty (18), whether grow1ng or damped. The second-order

perturbation f, appears singular, but is actually quite smooth for a

2
continﬁdus spectrum of waves. Replacing §:k by V dk/Eﬁ, and

defining the spectral density

- (a|5,*|%/at) oP(w” - iw)“‘i/amk‘}. (16)

[
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g:"?(k;_f)’ E,_\J;iﬁin|Ekz(t_)|2, | | o)
we havé{ fL>
b - @ ne o

Pt : - | ok -1 : .
xjc-)’-..:}(:dk/eﬁ.)_; P - k) gk_[Sz(k; t)<_a_§liﬁ__> ] e

':Estimaﬁingithé,fatio-of fé to £Y, we find it to be of order
(wk TD)f; (ﬁhere' ™ Vis the diffusion fime fofx.fé), and therefore
~§ery smali;  Hence ﬁevaré Jjustified iﬁ keeping only 'fé on the right

side of (12) and (17). |

.The'moments of~ f2 yield.the particle épntribution to the wave

energy and momentum. The second moment, which is the wave kinetic

energy density, is

E I
Kg(t): = [dv smv fg(v; t)

(3)2,. e E(t)|2 O favm & £.(v; t) P( L kv)_l
m K\ amkz 0 S
K>0,

(eg/m) Z I}Ek%(t)l2 i—?[ (u)kﬂ/k) dv f(')_(v;t)P(mkﬂ- kv) 1.
= R (22)

When we. add this to the wave electric energy dénsity

(66 [2/80)

OO

k>0, £

Wy (t)
' (23)
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we obtainlfhe total wave energy dehSity:

. ¢
,VW(t)-:.:-,_ WE(t) + Kg(t)'- |
IR £,.012 3 L, 4 , |
c= ()T |2, " ($)17 —5 [0 e(k,m. 5 t)], (2ha)
: : k 4 Tk v
= k>0, £ oy T T .
where
' : 11  R . 2 ol A -1 » .
e(k, "3 t) = 1+ (bne"/mk) [ dv fi(v; t) P(q " - kv) (25)
is the real part of the dielectric function. We note that Eq. (10) is
equivalent to e(k,akz; t) = 0, whence (2hka) may be written
IR 1 E NI oy
W) = (ba) | B, (6) |7 @ de/ow’ s S (2w)
x>0, 4 o T S
The first moment of f2 is the wave momentuﬁ density:
Pz(t),'é eryvm'v fg(v; t) | _
- (Fm ) B 2 [av gy 0) Bt -t
‘ ik \® ) tolVs ®) e v
| k0,4 " Lo L
-1 L,.y12 NN )
= (bn) E B, (6)]° k ek, ")/ " - (e8)

: k>0,4 : _
'Compafing.(26) with (24b),vwe see that wave.mémentum and wave energy =,
satisfy the standard relation )

oy L
()
2’k k
' 7 7 - : ' : (27) .
W .

kK P .
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- The standard conservatlon laws follow from ‘these equatlons, if we
ignore the time-dependence of wk and €. From (Ehb) and (11), we

have

aw/dt = (e2/m.) Z IEkz| /k)fdv fo(v, t) 25 5(u)k - kv).

k>0,3 ) (28)

The zero*order kinetic energy density
K (t) = v = mve £ (v; t) N (29)
0 T 2 o’ ‘ .

evolves aé@ording to (17) and (18):

dKO/atv }

"

-fdv m v D(v,t) £

-(ez/m) Z -|Elf|2 /k)fdv f! (v, t) 25 a(mk - kv).
k>0, £ ' _ (30)

Comparing (28) and (30), we see that the total energy density
u(t) = W(t) + Ky(t) (31)

is indeed conserved.

' The total momentum-density

B(t) = By(t) + Po(t) o (32)

is proved constant in the same way, using

Py (t) = fdv m v f,(v; t) L (33)

" and Eq. (26), with Eqs. (17), (18), and’ (11) for their evolution.
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