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ABSTRACT 

A new formulation of quasilinear theory is presented, 

which allows for only resonant diffusion, caused by both 

growing and damped waves. Nonresonant terms do not appear 

in the diffusion equation, but contribute to wave 

momentum and energy, and ensure conservation of total 

momentum and energy. Analyticity is not required, since 

the complex plane is not used. 

This work was supported by the U. S. Atomic Energy Commission and 

by NASA. 
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I. INTRODUCTION 	I: 

•Users of quasilinear theory1  have often expressed uneasiness 

about its applicability to damped waves, 2  because the standard expression 

of the diffusivity is then negative. Attempts' to establish a 

quasilinear theory uniformly valid for growing and decaying waves have 

been based on the Klimontovich 5  picture, rather than on a Vlasov 

analysis, and have further required analytic cOntinuation into the 

complex wave-number, and velocity planes. As pointed out by Weitzner, 6  

analytic continuation may impose unrealistic continuity requirements 

on physical distributions. 

The present paper is devoted to a fresh look at quasilinear 

theory, with a treatment of growing and decaying waves on an equal 

footing. The complex plane is completely avoided, even for frequency, 

and Landau's analysis of the linear Vlasov problem is replaced by a 

different technique. The nonlinear Vlasov equation is manipulated to 

a form ethibiting only resonant diffusion, without the need for the 

limit I - 0+. The term previously denoted non-resonant, adiabatic, 

or "fake" diffusion1  no longer appears explicitly; it contributes to 

wave momentum and energy, and ensu±es the conservation of total 

momentum and energy. 

No attempt is made here to maintain mathematical rigor. The 

ordering of terms is made heuristically, without the explicit introduc-

tion of multiple-time techniques. 

To keep things as simple as possible, only the uniform one-

dimensional Coulomb plasma is treated here. The generalization to more 

7 	 8  dimensions, and to a nonuniform Maxwell9  system is straightforward. 



is linearized about a uniform state f0 (v; t) which is slowly varying 

in time,: the first-order solution; obtained by integration along 

characteristics, is 

	

f1 (x,v, t) = -(e/m) f(v, t) fo dT E(x - VT, t - T) 	(2) 

Here the prime denotes velocity-differentiation. The time-integration 

is on the fast time-scale, accordingly f(v, t - r) has been replaced 

by f(v; t) and taken outside the integral. 

We look for solutions of the form: 

E(x,t) = Ek(t) exp(ikx - i(at), 

(3) 
f1 (x,v, t) = fk(v, t) exp(ikx - 

where k and cok  are both real, and the amplitudes have a slow time 

dependence representing wave growth or decay. But we note that the 

variation of Ek(t), which is of order rk, is not as slow as that of 
f0 (v; t), which is of order Ek2. (our ordering thus breaks down when 

E k 2 and Tk  are of comparable size, in appropriate units.) 
	

4 

Insertion of (3) into (2) yields 

	

fk(v; t) = -(e/m) f(v; t)J dT Ek(t - T) exp i(u - kv)T. 	() 
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The Poisson equation then reads 

ik(t) = _(4ne2/m)f dv f(v, t)J dT Ek(t - 7) exp 	- kv)T, 

where a sum over species, if needed, is implicit. 

Appealing to the slow variation of Ek(t),  we expand 

Ek(t - 'r) = Ek(t) - T Ek(t) + 	 (6) 

and keep only the two terms shown. We then use 

f
00 

dT expi(u - kv)T 	 - kv) + i P(u - kv) 

(7) 

and 

J 
00 

d 	exp i(u - kv)T = -i 	- k).]/u, 	 (8) 

to obtain. 

ikEk(t) = _(4ire2/m)[Ek(t)fdv f(v; t) IT  b(u) -  kv) 

+ 	
k(t) 

/ ) f dv f(v; t) 	- kv)]. (9) 

We now multiply (9) by Ek(t),  and multiply the complex 

conjugate of (9) by Ek(t).  Adding and subtracting the resulting 

equations, we find equations for the growth rate and for the eigen-

frequency u. The subtraction yields 

1 =  (4e2/mk)f dv f(v; t) p( 	- kv) 	 (10) 
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(plus terms of relative order 	which is the standard dispersion 

equation for the real eigenfrequency u.(t). The addition yields 

d in IEk(t)12 - 
	2fdv f(v; t) 	(u) -  kv) 

dt 	 (/)Jdv f(v; t) P(u - kv) 

(plus terms of relative order 	which is the standard equation 

for the growth (or decay) rate 2 Tk(t).  The slow time-dependence of 

w.(t), implied by (10), is of order E 2, and therefore is not included 

2  in (11), which is zero-order in E. 	• 
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• : 	 iii. QUASILINEAB ANALYSIS 

In expanding the nonlinear Vlasov equation (1) to second order 

in the wave amplitudes, we shall distinguish between f2 (v; t), the 

second-order perturbation in f (averaged over • x and over oscillation 

period), whose size is proportional to E 2, and f0(v; t), the part of 

f independent of E, whose evolution is proportional to E2  

Inserting (2) into the space-time average of (1), we thus 

obtain 

af o 	2 	e 2li(v,t) f0(v; t)i + 	= () 	- 	v 	j 	
(12) 

where 

00 

I(vt) 	fo d (E(x,t) E(x - VT t - T)) 	 (13) 

(the angular bracket denotes spatial and fast-time• averaging), and 

where f0 (v;t)/t represents the slow evolution of f0  due to 

diffusion, while 6f2 (v; t)/t represents the slow variation of 

due to wave growth and decay. On the right side of (12), we have 

dropped 6f2/v, but have retained fb/ov;  we justify this below. 

In expression (13), we generalize (3)• to include all k, and 

several branches 2: 

E(x,t) = 	Ek2 (t) exp(ikx - 	t), 	• 	 (i) 
k, £ 

with Ek2 (t) = Ek2(t), and 	= -uç; we then obtain 
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00 

I(v,t) = 	
fo 

d Ek2*(t) Ekt(t - T) exp i( 	- kv)T 	(17) 

Again we u s e Eqs (6), (7),  and (8), and find 

	

(IE2(t)12 2 	(u 	- kv) 
k>O,2 

- 	 2I2/dt) ôP(u 	- kv)/dciç) 	 (16) (dIEk   

We insert (16) in (12), associating the first term of (16) 

with f0/t, and the second term of (16) withf2/t. We then obtain 

for f0  the resonant diffusion equation: 

f0(v;t) 	
[D(vIt) àf 

1 = 	
j , 
	 (17) 

with 

D(v,t) 	(e/m)2 ) 
	IEk(t)I2 

2 	(o 	- kv), 	 (18) 

while the equation for f2  can be explicitly integrated to yield 

f2(v, t) = 
	()2 	

If ZV_ 	
(v t) 	IEk (t)I 2  p( 	- kv)h/2] 

(19) 

The diffusion equation (17) includes the effects of all waves 

in the diffusivity (18), whether growing or damped. The second-order 

perturbation f2  appears singular, but is actually quite smooth for a 

	

continuous spectrum of waves. Replacing 	by Vfdk/21T, and 

defining the spectral density 

1) 

U 

C' 
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e 2 (k, t) 	lini VIEk2(t)12, 	 (20) 

we have 

f2 (v, t) = (e)2 
	

ff(v t) 

xf CO  (dk/2) 	 - kv 1 	e2(k, t)(1} 	
(21) 

Estimating the ratio of fl to f, we find it to be of order 

• 	(w, TD) 	(where TD  is the diffusion time for f0 ), and therefore 

very small.. Hence we are justified in keeping only f on the right 

side of (12) and (17). 

The moments of f2  yield the particle contribution to the wave 

energy and momentum. The second moment, which is the wave kinetic 

energy density, is 	• 

K2 (t) 	fdv m v2  f2 (v; t) 

	

(!)2IEktH2 	£ Pv m v f(v, t) p(t - kv1 m 7 
k>0,t 

= (e2/m) 	IEk2 (t)1 2 	t[(/k)f f(v;t)P(u 2 - kv 1 ]. 

 

C) 	 • 

When we:add this to the wave electric energy dnsity 

WE(t) = 	 /8jt 

 

= (4)1 > : JEk2(t)12, 
k>0, £ 
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we obtain the total wave energy density: 

W(t) 
	WE(t) + K2 (t) 

= ()l 	
IEk2(t)12 	£ [u 	€(k,u; t)], 	

(2a) 

k>0,2 

where 

1 + (4te2/mk)jdv f(v t) p(ç - ky) 1 	(27) 

is the real part of the dielectric function. We note that Eq. (10) is 

equivalent to €(k,w; t) = 0, whence (2Ia) may be written 

	

w(t)= ()l 	
IEk(t)I2 u6E 	 (24b) 

k)0,2 

The first moment of f2  is the wave momentum density: 

p2(t) 	f dv m v f2 (v; t) 
= (e2/m) T, 1E2(t)12 a £ fdv f(v; t) p(u - kv 1  

	

= ()_1 > 	IEk2(t)12 k 6€(k,
2 )1a 2 . 	 (26) 

k)'0,2 

Comparing (26) with (24b), we see that wave momentum and wave energy 

satisfy the standard relation 

(p) 2  

£ 	- 	£ 	
7 

Wk 	k 
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The standard conservation laws follow from these equations, if we 

ignore the time-dependence of 	and E. From (211-b) and (II), we 

have 

dW/dt = (e2/m) 	' lEk2l2 (aç/k)Jdv f6(v, t) 2, 	- kv) 

(28) 

The zero order kinetic energy density 

K0(t) 
	f dv m V2  f0 (v; t) 	 (29) 

evolves according to (17) and (18): 

dX0/dt = _fdv m v D(v,t) f 

= -(e2/m) 	IEI2 (u/k)fdv f(v; t) 2 	- kv). 

k>0,2 	 (30) 

Comparing (28) and (30), we see that the total energy density 

U(t) E w(t) + K0 (t) 	 (31) 

is indeed conserved. 

The total momentum density 

P(t) 	p2(t) + p0 (t) 	 (32) 

is proved constant in the same way, using 

p0 (t) 5 fdv m v f0(v; t) 	 (33) 

and Eq. (26), with Eqs. (17), (18), and (11) for their evolution. 
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