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ABSTRACT 

UCRL-19882. 

Motivated by a simplified multiperipheral model, we formulate 

a general qualitative description of the momentum spectrum of secondaries, 

resulting from a collision of two hadrons at high energies. Arguing 

from two fundamental multiperipheral concepts, (a) that transverse 

momenta are limited and (b) that distant particles on the multiperipheral 

chain are uncorrelated, we predict that at sufficiently high incident 

energies, the momentum spectrum of particle X in the reaction 

a + b ~ X + anything, vlhen presented in the variables P.i. and 

-1 2 2 1.. 
Y = sinh [PII /(p~ + ~ )2J, develops a central plateau in the y 

dependence, which elongates and flattens to a value that is normalized 

by the total cross section as the incident energy increases. Moreover, 

it is shown that the resultant particle dens:lty distribution is consis-

tent with the hypothesis of limiting fragmentation. We contrast this 

description with the predictions of the two-fireball model, the isobar-

pionization model, and the statistical thermodynamical model. 
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I. INTRODUCTION 

Interest in multiperipheral models for particle production has 

revived recently in theoretical efforts to incorporate multiparticle 

unitarity into a bootstrap programl -5 and in phenomenological work in 

fitting production data at accelerator energies. 6 They are attractive 

models for studying particle production at high energies, since boot-

strap constraints can provide a measure of uniqueness in the construc-

tion of the models, and they are ideally suited for extrapolating 

phenomenological studies to higher energies. 

The variety of multiperipheral models in current use is consider

able. The pion-exchange model of ABFST7 is still of great theoretical 

interest. 4,5 A version of the Bethe-Salpeter model has been applied to 

multiparticle production. 8 The multi-Regge exchange modei9 has enjoyed 

considerable success in the study of reactions with three-body final 

10 6 states and the etA model has performed remarkably well in fitting 

. 6 11 
production data. ' 

These models have the following common features: (a) The 

distribution in transverse momentum is limited,. (iJ) They describe 

particle production in terms of a linear chain of repeating links 

(with incident particles attached to the ends)', along which only 

"neighboring" particle momenta are correlated. For present purposes 

we shall say two particles are neighbo~ing, if their invariant mass--

more specifically, the Lorentz boost parameter that relates their rest 

frames-.-is less than a prescribed constant value. Alternatively, one 

could define a neighboring particle in terms of the number of intervening 
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particles on the chain. In most models both definitions are closely 

related, and both can serve as a basis for constructing a Fredholm 

equation for summing multiparticle contributions to unitarity equations. 

However, there is an advantage for us in the first definition in that 

it relates more directly to the momentum spectrum. Furthermore, as a 

hypothesis it has the advantage of experimental verifiability, since it 

does not require that observed particles be ranked according to an 

arbitrary sequence on a chain. Bya lack of correlation between two 

particles we simply mean that the functional dependence of the 

production cross section upon the momenta. and other quantum numbers of 

the particles be factorizable. In particular a power behavior in the 

subenergy 
. 2 

Sij = (Pi + Pj ) is factorizablein the momenta, provided 

that s ... greatly exceeds the squared transverse momenta and masses of lJ 

the particles. This follows from the result, when . p II j » p \I i (see 

the Appendix), that 

= (1.1) 

Since thesubenergy factors in its momentum dependence, any amplitude 

which incorporates simple power behavior at large adja.cent-particle 

subenergies (Regge behavior, elementary particle exchange) with a 

factored coefficient provides for a dynamical decoupling of particle 

momenta at high invariant masses. If the particles are not adjacent on 

the chain, the large number of intervening particles (with direct 

factorization at lowsubenergies as, for example, in the AFS model) or 

factorization at large subenergies (or both), results in decoupling at large 

! ; 

r, 

1 ~ 
.. , 
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invariant masses in most models. We shall demonstrate with a simple 

model that there is rea.son to expect that dynamical decoupling survives 

kinematical constraints, provided transverse momenta are small, and 

carries over into the production cross section i t·self. At the end of 

Sec. III we show that the cross section for producing two particles in 

conjunction with anything else should have the same power behavior at 

large subenergies a.s does the total cross section in the total energy 

(and therefore decouples). Therefore, for the present discussion, we 

shall adopt the above two conditions as the defining criteria of 

multiperipheralism. 

We shall 'be~.prinia.rily concerned here with general quali ta ti ve 

features within multiperipheral models of the spectrum d2a/dPl dP11 

for the momentum of particle X in the process a + b ~X + anything. 

In particular we shall study the evolution of the spectrum with 

irtcreasiQg energy, as contrasted with the predictions of the two-fireball 

model and the isobar-pionization model. Of course, a detailed predic

tion of the spectrum requires a careful study within a particular model. 

Caneschi and Pignotti12 obtained a quite satisfactory fit to data for 

the reactions pp ~p + anything and pp ~rr± + anything within the 

context of the multi-Regge model. Using a similar model, Silverman 

and Tan13 fitted data for the low-energy part of the missing mass 

spectrum in rr-p ~p + MM. 

However, a comprehensive analySis of the common features of 

spectra predicted by multiperipheral models has yet tc be accomplished. 

This work is a contribution to such an effort. We shall motivate our 
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discussion of the secondary momentum spectrum with a simplified multi-

peripheral model. Nevertheless, we shall deal with the deficiencies 

of this model, and in so doing, shall avoid adopting a specific model; 

rather, we shall attempt to identify the broad features of the spectrum, 

which any multiperipheral model should produce. 

In Sec. II we introduce a particularly useful set of variables 

in which to represent the momentum spectrum. They are the transverse 

momentum p~ and a longitudinal boost variable14,15 
, .!. 

. h-l [ , "/( 2 2)2] W fit th Ch' "tt" y ::: Sl.n Pillal),' P.L + m • e re ormu a e e eW-Pl.gno l. 

multi-Regge model in terms of these vaf'1ables in Sec. III and produce 

a simplified spectrum with the model. Following a critique of the 

assumptions of the Chew-Pignotti model we discuss in Sec. IV modifica-

tions that would bring the model more nearly in accordance with reality, 

and estimate the attendant modifications to the simplified spectra. 

The reader may, if he wishes, omit Secs. III and IV, since the concluding 

sections are self-contained. In Sec. V we argue on the basis of our 

general criterion for multiperipheral models that at sufficiently high 

energies, the particle density (the production spectrum divided by the 

total cross section) for particle X in the process a + b ~X + anything 

should approach the form 

~(PJ..'Y) for Y < 6., 

( tot)-l d2 X/d ~ _ 
crab crab P.l y - fX(P~) for 6.<y<Y - 6, 

BX(P.l'Y - y) for Y - 6. < y, (1.2) 

'," 
!, 

" i 
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where 
y 

for large and Ax depends only upon particles s = ma~e s 

a and X and Ex, only upon b and x. The constant 6. is chosen 

to be appropriately large and is rela.ted, roughly speaking, to the correla-

tion distance in the Lorentz boost parameter y. The fUnctionfx is 

universal,depending only upon the particle X. 

Finally, in Sec. VI we contrast the predictions of the multi

peripheral model with those of the two-fireball model, the isobar

pionization model) and the statistical thermodynamical model. 
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II. KINEMATICAL VARIABLES 

To simplify the discussion of the momentum spectrum of 

secondaries, we have found a useful set of kinematical variables, which 

emphasize the different roles of the longitudinal and transverse 

directions. 

We view the process (Fig. 1) 

a + b -? ° + 1 + ••• + n + (n + 1) (2.1) 

in the laboratory system, in which particle a is at rest and 

particle b moves along the positive z axis. We may write 

Pa = (m , 0, 0,0), a 

Pb = (~ cosh Y, 0, 0, ~ sinh Y), (2.2) 

P. = (Wi cosh Yi' Pix' Piy' w. sinh Yi ), 
]. ]. 

where 

We call the variable Yi the longitudinal boost. It specifies the 

z boost that relates the rest frame of particle a to the frame in 

which particle i moves in a direction perpendicular to the beam. 

The phase space in terms of these variables is simply 

,": 
I,;· 

I 
,l". I 

1:. 

i 
t' 

!.: 

r·· 
i 

" 
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The latter two 5 functions are obtained by rewriting the conventional 

constraints on the energy and z components of the momenta in the 

form 

In the Appendix we relate these variables to the familiar invariants, 
. .. 2 

s. . 1 t., etc. In particular, for large s == (Pa + Pb ), s 
~,~+, l. 

(therefore the beam momentum) is exponentially related to Y: 

There are several advantages to presenting distributions in the 

longitudinal boost variables y and PL rather than in a Peyrou 

plot (PII vs p J.? : (a) All longitudinally moving frames are put on 

equal footing, since a linear scale change in y. connects them all. 

There is complete symmetry between the rest frame of the projectile 

and the lab frame in the plot. (b) We will argue below that the 
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distribution in the variable y is constant for the.part of the spectrum 

that arises from positions of the multiperipheral chain that are 

sufficiently distant from the ends. Henc~ on the average, particles 

will be uniformly spaced in the variable y for 6 < Y < Y - 6, where 

6 is suitably chosen" Cc) The sub energy of a particle pair depends 

upon the relative spacing of points in y. The decay spectrum of a 

resonance has the same shape anywhere in the plot for any total energy, 

provided the transverse momentum of the resonance is the same. Thus 

the variable y would be a natural choice for studying models that 

emphasize the role of final state resonances at arbitrary longitudinal 

momenta. (d) For Pillab» P..L »m, y = .en(2/tan 91ab ), thereby 

providing a simple connection with the Lindern plot (da/d log tan 9).16 

In particular, a measurement of the production spectrum at fixed angle 

and large momentum corresponds to a measurement at fixed y and 

large P.1." 

Figure 2 illustrates the correspondence between lab momenta, 

center-of-mass momenta, and the longitudinal boost variable for 

pp ~ 11 + anything a t25 06 GeV / c (corre.sponding to a value of Y = 4) • 

The absolute kinematical limits on the longitudinal boosts may be 

deduced from the last two B functions in (2.3). These are 

(2.6) 

shown as bold lines in Fig. 2. Note that the c.m. Peyrou plot and the 

lab-frame plot concentrate a large part of the spectrum in y into a 

small region about PII = 0 (as is expected from the Jacobian 

, 

: "~ 

i: 
~ -

j"" 
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dy = dp II /E}. Also shown in Fig. 2 is the loca tiori in this plot of 

pions that would result from the process pp ~~(1236) 6(1236) for 

small Note the energy-dependent elongation of the spectrum in 

the momentum-space plot. 2 Although the spectrum da/dydp.1 is easily 

related to the spectrum 2 
d a/dPII dPJ! the spectrum da/dy, obtained 

by integrating with y fixed, obviously gives a quite different 

representation of the production mechanismfrom the spectrum da/dP Il , 

obtained by integrating with PI! fixed. 

Another currently popular variable, x = p II /p.., was cm apm 

introduced by Feynman.15 This variable has the attractive feature 

that the spectrum lies within the fixed limits -1 & x $ 1 as the 

energy increases. For finite x and sufficiently large energies, the 

variables x and yare logarithmically related: 

x = 

Henc~ a distribution that is limiting in x for 

x>x. ° 
0, ml.n is limiting in y for y < y ° a,ml.n 

x <.: -x ° and a,ml.n 

and y >Y - Yb,min 

for the corresponding Y Y In .el.°ther. variable the existence 
. 0 .' b, ml.°n°· .. a,ml.n 

of a limiting distribution can be checked by superposing the appropriate 

part of the distribution at various energies without a scale change. 

From the standpoint of most models with limiting fragmentation 

that predict divergent multiplicities, the variable x suffers from 

the property. that the predicted spectrum d2d/dxdP.L develops a sharp 
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peak at or near x = 0, which becomes sharper with increasing energy. This 

difficul ty can be circumvented by using- the technique' of Bali et al., l-~~, 

writing the cross section as 

2 I . d a dp II dp 1. = f(pJ.; x, s) IE, (2.8) 

where E is the energy of the observed particle, and studying the 

behavior of f as s is increased. However, it would be sensible 

to take advantage of the high statistics at "wee,,15 x and present 

the data on an expanded scale. For this purpose Feynrnan suggested an 

alternative variable equivalent to the variable y. For the reasons 

outlined above, we therefore propose that.this variable be used for 

the entire spectrum. 

1.,-

.~. 
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III. SIMPLE MODELS 

'.A. Chew-Pignotti Model 

To .establish a heuristic foundation for the discussion, we 

shall calculate the secondary momentum spectrum in a simplified 

multiperipheral model. We consider first a model equivalent to that 

of Chew and Pignottil in simplicity. The model assumes that subenergies 

are all very large ("strong-ordering limit") and that the cross section 

for producing n particles is 

a eX! 
n J ff

+l 
-y 2n 2a 

e . g (s. . 1) dtl). 
1,1+ n 

. i~l . 

In the strong-ordering limit,18. 

E. »w., 
1 1 

and the last two 5 functions in the phase space (2.3) may be approxi
\ 

mated by 

where 

In this same limit the subenergies become (see the Appendix) 

where 

s. 1 . 
1- ,1 

- . (P. + P .. 1)2 
1 1-



-12- UCRL-19882 

= 

Changing variables and integrating y, we obtain a vastly simplified 
o 

phase space analogous to that of Chew and Pignotti: 

d~n ~ e-Y/(2ma~{(jd2ElJ 5{~ E~ TId"i 5t- ~ z~ , 
where 

x = Y - xa - ~, 

and the lower bound on z. is, roughly speaking, 
~ 

z. > _:(x. + x. 1)' where. x. = .en{w./m.). 
~ 1. 1. - 1.1. 1. 

(3.6) 

The strong ordering approximation is not realistic for the large 

bulk of production events. One obvious drawback is that as far as the 

process a + b ~O + (n + 1). is concerned it describes onlyapproxi-

mately elastic.sqattering, because the produced particles 1,2,· •• ,n 

carry off a vanishing fraction of the total energy. Nevertheless, the 

enormous simplification obtained permits us to draw some useful 

conclusions. We shall later estimate the modifications necessary for 

a more rigorous treatment. 

There are two important simplifying features of the strong 

ordering approximation. (a) The longitudinal momentum and cluster 

energy sOi:= ct P
j
) 2 are related to the variables in a simple way: 

o 

sOi 2ma p II i :::,,: ma wi exp y i . 
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(b) The phase space can be cast in a recursive form, making it a 

suitable basis for constructing an integral equation; We shall not 

demonstrate the last statement, but shall draw upon the results of the 

completely analogous treatment with the conventional invariants sOi 

and t .• 2,19 
1 

We make the further kinematical simplification that transverse 

momenta may be ignored. Then w.·;:::,; m. and the lower bound on z. is 
111 

about O. If for notational convenience we put 

we obtain for 

.0-
n cc 

0- the expression 
n 

, n+l 

-Y 2n Y(20:-1)ffrd e g e . z. . . 1 

i=l 

2n Y(20:-2) _Jl/ " g e Y. n. , 

and the total cross section is simply 

00 

= 0-
n 

2 
4! exp [y (20: - 2 + g )]. 

and In. - m 
D -n+l' 

Chew and Pignotti put 2 20: - 1 + g = 1 to obtain a constant total cross 

section. For the remainder of this section we shall assume that the 

total cross section is asymptotically constant. 

The distribution in tn(PII. /m.) ~ y. for the. n-particle 
111 

Y production cross section at the energy e may be obtained by fixing 
i 

y. = L zJ. in the phase space integration above. Thus 
1 ·1 .. 
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(3.11 ) 

dan i.(y,Y)/dy. = eY(20:-2) g2n yi-l/(i _ 1)1 • (Y _ y)n-i/(n - i)1 , 

This distribution is illustrated in Fig. 3 for n = 6 and 11 and has 

the following interesting properties: (8.) The maxima occur at regular 

intervals in y at y/Y = (i - l)/n. (b) The distributions for the 

central part of the chain are approximately equivalent under 

translation. This effect impI'oves as n is increased. (c) The 

distributions are well confined in y .• Since the invariant mass of 
~ 

particles 0 through i is related exponentially to Yi through 

Eq. (3.8), Fig. 3 can also be regarded as a distribution in the log of 

the invariant mass of groups of particles. The distributions give the 

appearance of diffuse resonances whose masses grow exponentially with 

multiplicity.20 If we lump together the distribution for all particles 

produced along the chain, we obtain the spectrum for producing one 

particle in conjunction with n - 1 others. It is a flat distribution 

in y, 

do /dy 
n 

n 

= dO' .(Y,y)/dy 
n,~ 

. (3.12) 

The "inclusive,,15 spectrum is obtained by summing over n, and is also 

constant in y. The average multiplicity is obtained from the Poisson 

distribution (3.9) and is 

,., 

": I 

• 
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(n) = 

The average spacing of the particles in y is therefore constant, 

independent of the total energy: 

= y/(n) 2 
= lis, (3.14) 

since the spacing is uniform along the chain. These results are all 

well-known consequences of the multiperipheral model. 7 

Suppose a model of particle production allowed a particle of 

type X to appear only at every other position on the chain. The 

spectrum for particle X would no longer be a constant as indicated in 

21 Eq. (3.12) but would oscillate. The central part of the spectrum 

would have a period of Y/(n!2). If we sum (3.12) over all multiplici-

ties, we obviously obtain a flat distribution. However, if we omitted 

every other particle in the sum, the resultant distribution would be 

neither constant nor periodic, but could be rather lumpy. In an average 

sense, however, it would be a constant in y. The amplitude of oscilla-

tion depends on the sharpness of the localization of particles from a 

given position on the chain. The more localized they are, the more 

pronounced the oscillation. In the critique of the strong-ordering 

approximation in Sec. TV, we will conclude that in a more realistic 

model overlapping of longitudinal momenta is rather common. Hence the 

contribution from a given position on the chain is probably rather 

less concentrated in re.ality than Fig •. 3 would suggest, and the net 

single-particle spectrum obtained by selecting every other particle in 

the model above is smoother than might be expected. 
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One of our criteria of multiperipheralism is that distant 

particles on the multiperipheral chain decouple. Although dynamical 

decoupling is easily achieved in practice by requiring that the amplitude 

factor in its momentum dependence, it is interesting to ask whether the 

kinematical constraint of energy and mOmentum conservation would permit 

a real decoupling of the momenta of produced particles. 

Such kinematical correlations could conceivably be strong when 

the energies of particles are of comparable magnitude. However, it is 

a surprising consequence of the strong-ordering assumption that a 

kinematical de coupling takes place: To demonstrate this effect with the 

cross section (3.1), we have calculated. a quantity, which we call the 

"oorrelation fraction," which gives a measure of the degree to which 

the longitudinal momenta of two particles on the chain, particles i 

and j, are correlated. We first calculate the joint distribution 

2 d cr .. /dy.dy. from Eq. (3.9)T 
n;1,J 1 J 

2 
d cr .' j / dy . dyj n,1, ]. = 

x (y. - y. )j-i-l/(j 
J 1 

for .j > i 

_ i - 1): • (y - y.)n- j /(n - j)~ 
J 

and Y > y. > y. > O • 
. J 1 

For y. < y. 
J 1 

the distribution vanishes. If the momenta are uncorrelated, 

then 

2 (l/a )(d cr 'j/dy.dy.) . n n;1 1 J = (1/cr 2 )(dcr ./dy.)(dcr ./dy.). . n n,1 1 n,J J 
(3. 16) 



t' 
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If we compare Eq. (3.15) with Eq. (3.11), it is obvious that this 

condition is not satisfied exactly. However, the relation is approxi-

mately correct. Let Lij and 

and right sides of Eq. (3.16). 

Rij denote, respectively, the left 

As a measure of their equality we 

calculate the fraction 

= 

From the Cauchy-Schwartz triangle inequality, it can be shown that 

° . < F. j < 1. 
1· 

everywhere, F .. = 0, and the dependence on y. and y. 
1J l. J 

is not correlated. When Fij ::::: 1, the dependence is strongly correlated. 

In Table I we give the values of F ij for n = 6 and 11. Note that 

more distant particles are indeed less strongly correlated. Because 

of the localization of the spectra of Fig. 3,a decoupling of particles 

widely separated in rank on the chain is equivalent to a decoupling of 

pairs of particles with large invariant masses . 

. B. Model with Nonconstant Total Cross Section 

We now consider a somewhat more sophisticated model, which 

admits a general energy dependence for the total cross sectiolh, while 

keeping the strong-ordering approximation and theapproximation of 

ignoring transverse momenta. We take as a model for th~ square of 

the production amplitude, the factorized expression 
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where K{z) may be thought of as the square of a propagator and 2 
g , 

the square of a vertex. They can be matrices in the channel indices. 

With such a model, one may determine the total cross section 

rJ '= ab 

by means of an integral'equation. This procedure has been discussed 

in considerable detai1. 2 For our model, we have the following vastly 

simplified equations: 

JBa (y)g2 K{z) o(y - y - z) dy dz + Ga K(Y), 

rJab (Y) = e -Y Ba (Y) ~. 

It is easy to verify by iterating (3.20) that 

with the simplified phase space of (3.9). 

rJ is given by (3.19) ab 

We want to derive an expression for the spectrum in 

£n (p II 1m) ~ y for the production of one particle in conjunction with 

anything else. As before, the distribution drJab/dy is obtained by 

undoing the integration in the variable y in the total cross section. 

Keeping in mind that the cross section for producing n particles 

n rJab must be weighted by n in the inclusive spectrum, we see that 

we obtain drJab/dy by removing the integration over y in the 

expression 

\~ 
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where (n) is the average multiplicity of the observed produced 

particle per event and O'ab is the production cross section. Equation 

(3.21) may be written formally as 

Since 

+ ••• , 

we see that 

More explicitly, 

Undoing the integration over y, we get, finally,22,23 

(Note that the total area is (n)O'ab as it should be.) 

In general (n) should be replaced by the multiplicity of the 

observed particle type, and g2 on the right should correspond to that 

vertex, which emits the type of particle in question • 

. ' The simplified Chew-Pignotti model o·f Sec. III (A) generated a 

constant total cross sec~ion from a kernel K(z) = exp[(2a -l)zJ, with 

for y';::: o. 
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The production spectrum was rectangular with constant height and with 

a base of length Y: 

for 

As the energy increased, the rectangle lengthened at a,rate consistent 

with a logarithmic increase in multiplicity (Y ~ log s). 

If we suppose, ho~ever, that the model reproduces a more 

reasonable total cross section, the distribution is modified. At 

both ends of the distribution. a resonance region occurs, which extends 

a finite distance towards the middle. At sufficiently high total 

energies a plateau develops in the middle. The plateau shrinks in 

height to a constant limit as the energy increases. For purposes of 

illustration let us-suppose in the spirit of duality24 that the 

resonance region is represented on the average by an extrapolation of 

two Reggepole terms; i.e., 

so that from (3.20), 

= 

The distribution (3.26) is then of the form 

= G 2 G [1 + 2 (a-l)Y" (Y-y)(a-l) a g b c e ., +-ce + c 

This distribution is illustrated in Fig. 4 for c = 1, 

and a = 0.5. The first term represents the constant limit of the 
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plateau, the second, the shrinking component of the plateau, and 

the third and fourth cause the ends of the plateau to turn up. This 

distribution is evidently consistent with the hypothesis of limiting 

fragmentation. 25 The dis.tribution is symmetric under y ~ Y - y. 

This result is a consequence of t~e simplicity of the model. In 

general the spectrum at the ends of the distribution differs 

depending on the incident particle at the end. The upward slopes at 

the ends can be made less prominent by decreasing the value of c. 

A further consequence of this model is that the average multi-

plicity is no longer linear in log s. The slope in log s decreases 

as log s increases, and the curve approaches a straight line asymp-

totically. This result Seems to be a general consequence of the two-

power form for the total cross section, and was first discovered in the 

. 5 26 
model of Chew and Snider.' The average multiplicity is obtained 

from (3.25) by integrating the distribution (3.31) over y and 

dividing by the total cross section (3.30). We find that 

(n) = 2 __ + 2 2c {l - exp[ (a ~ l)Y] } 
g~. g 1 a2 . • 

- 1 + c exp[(a - l)Y] 

For large Y ~ log s, the slope has the usual ABFST form. For small 

log s the slope is related to the sum of the coefficients of the two 

powers in the total cross section, and for large log s, to the 

coefficient of the higher power, 

(n) ~ 
for Y ~ 0, 

for Y ~ 00. 
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The characteristic energy at which the multiplicity reverts to its 

asymptotic form may be found by equating the two expressions in (3.33). 

This yields Y = 2/(1 - a). If a = 1/2, this would imply that 

4 s ~ ma~ e , a rather low energy. Present experimental evidence for 

pp cOllisions27 indicates an unchanging slope in log s ·from 

accelerator energies up to cosmic ray energies. Since the model of 

this section would, through its overly simplified factorization 

property, also make the prominently resonant :rrp cross section 

proportional to the obscurely resonant pp cross section, we are not 

particularly concerned with the difficulties in reproducing the experi-

mental multiplicities with this model. 

The presence of an upward slope at the ends of the spectrum 

implies a greater concentration of particles in this region. This 

would seem to contradict the expectation that the distribution in the 

subenergies, hence the interval between particles, should be the same 

anywhere in the chain in the strong-ordering limit. The paradox is 

resolved when one realizes that the particle at the end of the chain is 

rigidly fixed at the elastic position in the strong-ordering limit. 

The position in the spectrum of a given particle depends upon the 

accumulated intervals between particles up to the ends of the chain. 

If the dis.tribution in subenergies has a suitable form (e.g., it has a 

two-power form) the average position of particles will not be uniform 

even if the average spacing is. We discuss below (See. IV) the 

consequences of incorporating a realistic elasticity. 
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C. Distribu tion. of Final Baryons 

The techniques of Sec .. 111. B can be applied to a study of the 

spectrum of recoiling ba;ryons. In the discussion so far, we have 

ignored distinctions between types of particles. The foregoing descrip-

tion applies best to meson-meson scattering, since most of the produced 

particles are observed to be mesons. It would also be applicable to 

the spectrum of produced particles in baryon-baryon scattering if we 

ignored those multiperipheral diagrams in wh~ch the baryons emerge at 

positions other than the ends of the. chain. Caneschi and Pignotti have 

emphasized, however, that in a multi-Regge model baryon exchange must 

occur for an average distance of a couple of links from the ends in 

order to reproduce the observed proton spectra at accelerator energies.12 

Following the model.,ofT:Lng;28 they obtained a fit to the data assuming 

that the baryon-antibaryon ladders build a trajectory with intercept 

CiA(O) = 0.5. The spectrum of recoiling protons may then be deduced from 

Eq. (3.26), if we stipulate that Ba be constructed strictly from 

baryon-antibaryon ladders. The function Bb sho.uld be the same as 

before, however. We then have 

CiA(O)y 
"" G" e . a 

The target recoil distribution is illustrated in Fig. 5 for CiA(O) = 0.5 

and with other parameters the same as in Fig. 4. Note that the distribu-

tion is concentrated at low values of y, as expected. 

To obtain the spectrum for pp ~p + anything, one must, of 

course, add to the recoil spectrum in Fig. 5 the beam-scattering 
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spectrum with y ~y - y. In practice, the distribution should not shrink 

to zero in the middle, because of the small, finite production of pp 

pairs. If we incorporated pp pair production into the model,the 

central part would gradua;J:ly/approa.cht;he spectrumfo:r:pp "'"tP ,+ anything, 

which in this simplified model conforms with Fig. 4. 

D: Two-Particle Spectrum 

Using arguments similar to those which led to Eq. (3.26) it is 

possible to show that the two-particle spectrum is simply 

for y' ~ y, where, formally, 

C = 

isa ladder without "ends." The function C is simply related to Ba 

through the expression 

The double integral over the spectrum (3.35) yields (n(n - 1)/2) 0ab' 

Combining this with the ~ntegral for y' ~ y, we obtain a net integral 

of {n(n - l»)oab' the expected result, since each contribution to the 

spectrum must be weighted by the number of ways two particles can be 

chosen from a multiplicity of n. 

If C shows resonant structure, this is re'fl.ected in the 

correlation between particle momenta in the usual way. 

Measuring two-particle correlations is a particularly valuable 
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technique for studying the kernel K. Note also that through (3.20) and 

(3.37) C has the same. behavior at large Y as the total cross 

section,except for kinematic factors. 
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IV. REFINEMENTS 

In the foregoing section we derived the secondary momentum 

distribution using a simplified model, in which transverse momenta 

were compl~tely ignored and the particles were assumed to be strongly 

ordered. Among the features of these simplified distributions were 

(a) a plateau for the central part at high energies, (b) an upward 

slope away from the center at the ends, (c) a sharp cutoff at the ends 

and ao-function spike for the left-most and right-most particles on 

.22 the chaln. In this section we estimate the modifications to 

these conclusions, which result from bringing the model more in 

accordance with reality. 

It is not hard to ,show that the strong-ordering assumption for 

individual particles is poorly justified. Data27 for the average 

multiplicity of secondaries per inelastic event in pp collisions at 

energies ~p to 800 GeV / c fit the expression (n) == a tn s + b for 

a == 1.10. In the model the distribution is of length Y "'" log s. The 
; 

particles are spaced uniformly in the center, so that an increase in 

Y of ~ == l/a increases the average multiplicity by one. Therefore, 

the average spacing of particles in the center of the distribution in 

the variable y is ~ ~ 1. If this spacing occurred as a rule, the 

strong-ordering assumption would be marginally correct. However, there 

is reason to expect a SUbstantial spread in ~,permitting "crossing" 

or negative values of two In a comparison of the etA multiperipheral 

model with experimental data, Ajduk et a1. 29 have shown that particles 

do tend to cross. It is easy to understand why, since they find that 

'. 

.. ' 
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To estimate the 

spread inl4Yl, we consider the decay of a· p meson, traveling ,along 

the z direction. The resultant distribution of pions in the space 

P...l,Y is illustrated in Fig. 6. Note that 14Y1 ranges from 0 to 

about 3. The lower (negative) bound on 4Y may be estimated from the 

peripheral constraint on the momentum transfers. Since [see Eg. (A.9)] 

the more negative 4Y, the larger the absolute value of t. 
1 

(4.1) 

for a given 

set of transverse momenta. If the amplitude has an exponential cutoff 

for larget., and if 
1 

Wi ~ PJLi »mn' a variation in that doubled 

the magnitude of the first term would not reduce the amplitude severely. 

A value as low as -1 for 4Y is not unexpected. Therefore, crossing 

between adjacent particles is rather common. The stronger the cutoff 

in t., the more rigorous the constraint from Eq.(4.1) becomes. The 
1 

sharpest cutoff in typically occurs for large values of s .. l' 1,1+ 

i.e., large (positive) values of 4Yi, where this constraint does not 

operate. However, at moderate subenergies, we estimate there is 

frequent crossing in y. Of course, if the constraint imposed by 

(4.1) with an attenuation at large t. 
1 

is not sufficient, the particles 

can cross into a region of phase space where the amplitude for the new 

arrangement is large. If this overlap effect is important, it would 

appear to contradict the multiperipheralconceptof a linear chain. 

Many of these difficulties can be resolved if we follow the 

ABFST approach? and construct the chain from larger units. Suppose the 
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units consist of two particles each. The analysis above is readily 

adapted to this model, if we treat pairs of particles formally as 

single decaying resonances. It is necessary to provide for variable 

masses, but the resultant distributions of di-particles is essentially 

the same as described in Sec. III. The average f:::3 between di-particles 

is then twice the average spacing between single particles, or f:::3 ~ 2, 

and the effective lower bound on f:::3 from (4.1) is correspondingly 

higher for a given distribution in ti' since Wi increases with the 

mass of the emitted "di-particle." Hence the ordering improves as the 

number of particles in the repeating unit is increased, thereby 

vindicating the concept of a linear chain. 

One of the consequences of the strong-orde:ring assumption was 

that the end particles on the chain are produced as though the collision 
, , 

were elastic. Let us see how a model based on one-particle and two-

particle units agrees with this hypothesis, given the empirical result 

that f:::3 ~ 1 per particle. 

From (A.ll) it is possible to estimate the average elasticity, 

if we assume that the transverse momenta are equal on the average: 

-1 ... ] = 1 - lie (4.2) 

Because of the considerable range of multiplicities (and the corre~ 

spondingly large spread:in f:::3 r the distYibut-ion in'. Tlb is broad. 

However, the average elasticity in a di-particle model (defiried as the 

fraction of the beam energy imparted to the most energetic di-particle) 

is considerably greater. Using the same methods,we find that with an 

average spacing f:::3 ~ 2 

'. 



'. 

.. 

-29- UCRL-19882 

2 
~2 ~ 1 - lie ~ 85%· 

Although we have assumed in keeping :with experimental results. that 

the distribution in transverse momentum is ,'confined and small, it is 

interesting to speculate on the dynamical origins of this phenomenon. 

One factor which could constrain the value of the transverse momentum 

is a peripheral limitation on the momentum transfer. 

Referring again to Eq. (4.1), we see that if the distribution in 

is governed by an exponential exp(bt), the distribution in 2 
P.1 

be, roughly speaking, 2 
exp(bp..L)' if the ~j were uncorrelated. 

However, other constraints could operate as well; for example, the 

,presence of strong low-energy resonances (such as the p) help to 

t. 
1 

would 

confine the transverse momentum distribution. The p decays at rest 

into twO pions with momentum 350 MeV I c. If the decay were isotropic, 

the average transverse momentum of the pions would be consistent with the 

observed average of about 400 MeV/c, if the average transverse momentum 

of the p were about 500 Mevlc, .quite a reasonable value. The 

distribution in the transverse momentum reacts upon the distributions in 

the subenergies through kinematical constraints of the following type, 

which may be derived in the strong-ordering limit (see the Appendix): 

s 
222 

(s s ···s )/(w w "'w ). 01 12 n,n+l 1 2 n 
(4.4) 

Generally speaking, the smaller the transverse momenta, the smaller the 

subenergies. Unfortunately, the subtleties of many-:-body kinematics 

prevent a more precise definition of the constraints upon the transverse 

momenta within the confines of a simple argument. We believe, however, 
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that insofar as the transvers'e momenta are small compared with the masses 

of the particles, the results of the previous section are not substan

tially altered with the introduction of a finite transverse momentum. 

In particular, in a di-particle model, the masses exceed the typical 

transverse momenta. 

If we suppose that the results of Sec. III are correct for a 

di-particle model, we can discover the sorts of features that a more 

realistic single-particle distribution should have, simply by convoluting 

the simplified distributions of Sec. III with the mass and decay 

spectrum of the di-particles. The resulting single-particle distribu

tions will have the following general features: (a) a limiting form at 

high energies, (b) a flat distribution in y for the central part at 

high energies, (c) a smooth drop to zero at the ends over a typical 

range for a decaying resonance of & ~ I to 2. (Only the genuinely 

elastic events will contribute to the elastic spike.) It is possible, 

however, that the upward slope away from the center of the distribution 

of Eq.(3.31) will be washed. out. 

.' 

". 
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v. GENERAL DESCRIPTION OF THE SPECTRUM 

AND EXPERIMENTAL CONSEQUENCES 

We are now in a position to formulate a general description of 

the single-particle production spectrum based on two assumptions: 

(a) that transverse momenta are limited and (b) that short-range order 

prevails along the multiperipheral chain. 

We will argue that the "particle density" (atot)-l d2ajdy d~ 

is limiting in the sense of yang and cOllaborators,25 i.e., as the energy 

is increased,the low-lab-momentum part of the particle density approaches 

a constant function of P..L and y, which depends only on the target 

and the observed particle, and the high-lab-momentum part of the 

particle density approaches a constant function of PJL and Y - y, 

which depends only on the beam and the observed particle. Moreover, 

in the central part of the spectrum, a region 6 < Y < Y - 6 for some 

fixed 6, the particle density is constant in y, depending only upon 

the observed particle. These conditions may be summarized by asserting 

that as the energy is increased, the spectrum of particle X in the 

process a + b ~ X + anything approaches the form 

~(PJ!Y) for Y <- 6, 

(a!~trl d
2 

aabXjdPJ..dy = fX(P 1) for 6<y<Y - 6, (5. 1 ) 

Bx(Pl.' y - y) for ,Y <6 <' y, 

for some fixed 6. 

We argue first that the particle density is limiting. Since 

particles that are distant in the sense of relative velocity are 

assumed to be uncorrelated, particles produced with small transverse 
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momenta and y < 6 for some fixed 6 are correlated only with 

particles produced for a finite distance in y. In particular at 

asymptotic energies the spectrum at y < 6 depends neither upon the 

chain length nor upon the beam particle, except by way of a normalization 

factor. The particle density in the variables y and P..L is itself 

uncorrelated with the chain length and the beam particle, since the 

particle spacing in y and PJL is determined by local correlations. 

Therefore the spectrum.· divided by the total cross section approaches 

a constant function of y and Pl.. for y < 6 as the energy is 

increased, and this function depends only upon the target particle and 

the observed particle. An analogous argument holds for the other end 

of the spectrum with y ~ Y - y. 

Finally, we argue that for the central region of the spectrum 

(6 <, y < Y - 6) the particle density is constant in y, independent 

of the beam and target. More precisely, given an €, there isa YO 

and a 6 (which may depend on X) , such that for Y > YO and 

6< y < Y - 6 the particle density is within a fraction € of f(PJ.!" 

The result depends on the homogeneity of the central part of the multi-

peripheral chain, which can be viewed as a consequence of short-range 

order. Because any portion of the central region of the spectrum is 

generated by particles that decouple from remote parts of the multi- • 
peripheral chain, the spectrum in the central region must be independent 

of both beam and target, except for overall normalization. Moreover, 

any two points at different values of y in the central region are 

equivalent with regard to factors that determine the spectra at these 
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points. The particle spacings in PJL and y depend only upon local 

correlations; and, insofar as any two points in the central region are 

equivalent in these correlations, the particle density is constant in 

y throughout the central region. 30 

It is tempting to identify the regi~n 6. < Y < Y - 6. with the 

pionization component and the;rest of the spectrum with the components 

of beam and target fragmentation in the' language of Yang and collabora

tors, although the components merge with one another in.a continuous 

fashion. If pionization in this sense were absent, then fX(pJJ == 0, 

and the production of particle X would be connected in some way with 

the particular choice of beam or target. It is possible to construct 

a multiperipheral model for which this would occur. Imagine a model 

for pp ~p + anything that did not include the possibility of producing 

pp pairs. The observed protons would then correspond to the persisting 

baryons at the ends of the chain. In practical models, it may even be 

desirable to ignore smallprqducti(i)n .. rates of this sort. However, in 

principle, it is plausible to expect that the 'production of an 

arbitrary number of pairs XX occurs whenever sufficient energy is 

available. In terms of the multiperipheral model this possibility is 

realized by allowing the production of any pair XX in the repeating 

portiono.f the chain. Assuming this indefinite proliferation of 

particles, it follows that fX is nonvanishing and that the average 

multiplicity of particle X is linear in log s at asymptotic energies. 

The coefficient of log s is given by 
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and the relative probability for producing various particles is given by 

the relative values of gX. A recent experiment at cosmic ray energies27 

gives g ± ~ 2/3, a value which Bali et al. 17 find to be in quite good 
n: 

agreement with the central part of the particle density for pions in 

present experiments (see below). This is strong evidence for the 

presence ofpionization. 

A model with limiting fragmentation, but without pionization 

would develop a zero in the center of the distribution. The fragmentatio~ 

components would approach zero at large distances in y from the 

respective ends. Under these conditions, the average multiplicity 

would necessarily grow less rapidly than log s. 

is nonvanishing, and if for asymptotic Y, 

G C'L' eCi':l 
a~b 

(the latter follows from all known multiperipheralmodels), one can 

recast (5.1) in a language strongly reminiscent of Feynman's: 

(5. 4) 

where A' is related to the probability for finding a parton in 

particle a with coordinates P.-l. and y and B' is the analogous 

probability for particle b. Moreover, both AX(IJ.!y) and :SX(Pl.'Y) 

have the power behavior ea:y for asymptotic y. Putting ex o gives 

Feynman's result that the production cross section is limiting and that 

the central part is constant in y. 

-;' 
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There are several simple but important consequences of the 

result (5.1) which should be emphasized here. 

1. In all longitudinally moving frames, in which particles with 

PII """ 0 come from the central portion of the chain, there will be a 

peak in the distribution of the form dP.ldp II /E at PII = O. The 

experimental results of the Wisconsin group reported by Erwin31 show a 

peak in = 0 in several longitudinally moving frames. 

2. The distribution dcr/dy obtained by integrating over ~ at 

fixed y develops a constant plateau in y which elongates with energy. 

However, the shape of the peak at p II = 0 in the distribution dcr /dPII 

obtained by integrating over PJL at fixed PII depends upon the form 

of the distribution in transverse momentum. In Fig. 7 we show the 

distribution dcr/dPII obtained when 

2 2 2 -1 2/, 2 2 
d cr/dPJ.. dPII (E(Pl») exp(-p.l/PL») for various choices of (P..l)' 

'3. The angular distribution in any longitudinally moving frame, 

dcr/d cos g, has a forward and backward peak, whenever particles from 

the central part of the chain can move in these directions. The exact 

shape depends, of course, on the distribution in transverse momentum 

and the spectrum from the ends of the chain. This follows from the 

approximate identification y """ £n(2/tan g) 

dy """ d cos g/sin2 
9 for Isingl« 1. 

for Hence 

'4. The Duller-Walker plot32 (the logarithm of the ratio of the 

forward to backward fraction vs log tan,g) shows a "break" at the 

center, which has been used33 as partial evidence for the two-fireball 

model. The forward/backward fraction F/(l - F) is simply y/(Y - y) 
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for the fiat part of the distribution. The resulting Duller-Walker 

plot is shown in Fig. 8. 

5· 
1 Bali et ale 7 relate the height of the distribution in the 

center to the coefficient of log s in the expression for the average 

multiplicity. With the distribution (5.1), this is simply expressed 

as follows: If the total cross section is constant, and the distribu-

tion has reached its limiting form,then (~) 'V gxlog s + const.,where 

(nx) is the average multiplicity of particle X per event. The 

constant is given by (5.2) and is independent of beam or target. 

There remain several questions, which can not be answered except 

within the context of a specific model. Some of these questions are 

(a) At what energy does the plateau in dd/dy begin to develop? 

(b) Does the plateau slope upwards from the center at either end of 

the distribution, i.e., is the plateau in a valley? (c) Given that the 

total cross section approaches a constant, how rapidly is the limiting 

distribution reached? (d) What is the limiting_shape of the 

distribution? 

To stimulate experimental interest in these questions, we will 

venture a guess at the answer to the first one. In a sense, the answer 

depends on the assumed effective correlation length and the density of 

particles at the ends of the distribution. Let us assume that it is 

permissible to neglect correlations that involve more than two. 

particles, though it is important to represent the two-particle 

resonance region correctly, and furthermore, that the strong-ordering 

approximation is marginally acceptable for pairs of particles. Because 
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the p resonance is prominent in the nn cross section and the 6 

in the irp cross section, we would then expect that as the total energy 

was increased,a plateau would begin to develop in the pion spectrum from 

np ~n + anything after the process np ~p6 represented a significant 

fraction of the inelastic cross section. At what energies does this 

+ /\ ++ 0 occur? Experimentally, it is observed that the process n p ~u p 

accounts for 1/4 to 1/3 of the events n~ ~ pn+n+n- at energies in 

the range· 
. 4 

3-8 Gev/c. 3 The four-body process represents 

a significant fraction of the inelastic cross section up to about 10 

GeV/c. 35 This would suggest that one should look for the plateau above 

10 GeV/c. For pp ~n + anything the characteristic process would be 

pp ~66. The cross section for pp ~6++60 peaks strongly in the 

region 5-7 Gev/c. 36 This gives one indication of the energy beyond 

which one' should look for the plateau. We obtain another estimate by 

comparing the np reaction with the pp reaction. Fora comparable-

sized plateau, the spacing in the y variable between the p and 6 

should be the same as between the 6 and 6. Since 4f s "'" mL:n6e , pp 

the spacing is the same.) if s "'" mpm6e4f • Hence for Plab,n = 10 GeV/c, 
np 

Pl b .~ 15 GeV/c. Combining our estimates, we suggest that for n beam 
a ,P 

momenta above about 5-10 GeV/c and p beam momenta above about 7-15 

GeV/c one should begin tQ expect a plateau. 

In Fig. 9 we present freehand sketches of the evolution with 

energy of the spectra da/dy for the following reactions exhibiting the 

general features which we have identified in the analysis above: 
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(a) rrp ~ rr + anything, 

(b) pp ~ rr + anything, 

(c) pp ~ p + anything. 

What is the experimental evidence for this description? In the 

past few months considerable evidence has accumulated in support of 

limiting fragmentation. In addition to evidence presented by Yang and 

collaborators25 and Smi th37 the re.cent work of Vander Velde38 and Bali 

et al. ,17 examining experimental data for pp ~ rr± + anything and 

pp ~p + anything, also indicates that a significant part of the 

spectrum approaches a limit at accelerator energies. Bali et ale . 

studied the spectra in the variables 

rr± at 12.2 GeV/c,39 40 
19.2 GeV/c, 

x and PJL. They fitted data for 

and 30 Gev/c
41 

to the expression 

2 . 
dO/dP-L dPII = (rr/E) F(P..L) G(x) 

and found agreement among individual points within factors of 1.5 or 

better. We translated their fitted expression at 30 GeV/c into the 

variables P..L and y and present in Fig. 10 the resultant spectrum 

dO/dy, obtained by integrating over Pi.. at fixed y. Strictly 

speaking, only three points on this curve are determined by the 

experiment of Anderson et ale at 30 GeV/c, since the experiment was 

carried out at three laboratory angles,which correspond essentially 

to three values of y through the relation y - Y ~ £n(tan 9/2). These 

points are indicated in Fig. 10. However, the curve is qualitatively 

similar to those obtained at lower energies. In general, therefore, 
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there seems to be some evidence that limiting fragmentation occurs at 

accelerator energies, and that there is a tendency for the spectrum to 

level off as y increases. If we accept the evidence for limiting 

fragmentation, then the observation that the average multiplicity is 

linear in log s27 implies that the central part of the spectrum is 

constant. Bali et aL noted that at 30 GeV Ic the height of the spectrum 

at x =0 (y = 2.1) is within 10% of what would be expected from the 

rate of increase of (n) with log s at cosmic ray energies. This 

would suggest that the spectrum has attained the height of the plateau 

in Fig. 10 and that this height should prevail between the points 

y ~ 2 andy ~ Y - 2 as the energy is increased. 

We join Bali et ale in urging that experiments be carried out 

for a larger range of laboratory angles to test limiting fragmentation, 

and in particular near Pllcm = 0 to investigate the development of 

the plateau. 
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VI. COMPARISON WITH OTHER MODELS 

A. Two-fireball Model 

Although there is presumably considerable leeway for modifying 
, 

the two-fireball model, inasmuch as it is basically phenomenological, 

we will use the model as proposed by Cocconi33 for the purposes of 

comparison. In this model a collision between two hadrons, viewed in 

the center of mass, is supposed to result in two persisting hadrons 

with momenta reduced by a fraction, which is fixed on the average, and 

two fireballs, which decay after separating relatively slowly from the 

point of collision along the incident directions. The decay is thought 

to be isotropic in the center of mass of the fireball with secondary 

energies fixed on the average, so that the transverse momentum does not 

increase with the total energyo 

With such a model, it is impossible to obtain a nontrivial 

limiting distribution for the contribution to the momentum spectrum 

from the fireballs and still have increasing multiPlicities. 42 Suppose 

that in the center of mass, the fireball associated with the target 

particle moves with velocity ~F,cm. Then the energy of the fireball 

in the center of mass is 

E = F,cm = = K: EO ' ,cm (6.1) 

where MF is the fireball mass, E the fixed average energy of the 

decay products, ~ the average multiplicity of the decay, K: the 

inelasticity, and 

center of mass. 

E O,cm the energy of the target particle in the 

Since EO = y m , where ,cm cm a m a is the mass of the 
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target, we conclude that 

(6.2) 

since Y ~ 2YF Y
F 

1 b' (In terms of the longitudinal boost cm ,cm ,a 

variables,YF,lab = cosh YF') Equation (6.2) shows that, if the 

average multiplicity increases, the velocity of the fireball in the lab-

oratory frame also increases. The center of the decay spectrum of the 

fireball must then shift to the right in y. Since the energy E is 

fixed, the spectrum in y will not increase in width as it shifts, 

only in height. The spectrum in will also shift to higher 

values of the momentum; hence, the distribution is clearly not limiting 

except in a trivial sense. This behavior is sketched in Fig. 11. 

Another quite obvious feature of the momentum spectrum in the 

fireball model is the presence of a distinct dip in the center of the 

spectrum in y, reflecting the distinguished role of the center-of-

mass frame. 

Actually, the multiperipheral model does permit individual events 

to have fireball-like features. In collaboration with Dale snider,26 

the author has studied various multiperipheral mechanisms, which could 

produce gaps in the spectrum for individual events. It was found that 

substantial gaps could occur; but, because they could occur at any 

point in the spectrum, the average spectrum had no gaps or pronounced 

dips. 

.,".-:. 
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B. Isobar-Fionization Model 

The isobar plus pionization model, in its purest form43 is 

orthogonal to the two-fireball model in that it predicts not a dip, 

but a peak in the center of the spectrum dcr/dy, which comes from the 

pionizationcomponent. Nevertheless, there is practically a continuous 

gradation of models between this model and the two-fireball model.
44 

The model was originally proposed by Pal and Peters to explain the 

unexpectedly large momenta of some secondaries •. Viewed in the center 

of mass, the collision of two hadrons is thought to result in excited 

states of the hadrons (isobars), moving along the incident directions, 

which carry off a substantial fraction of the energy, and a cloud of 

mesons. The meson cloud decays according to a fixed isotropic distribu-

tion (perhaps with some anisotropy favoring the forward-backward 

directions) in the center of mass, the secondaries. carrying a fixed 

. 43 
energy on the average. 

The decay of the isobars could be brought into accordance with 

the hypothesis of limiting fragmentation, since the model is flexible 

on this point. The pionization component is not limiting as long as 

its decay distribution remains fixed in the center of mass. It 

contributes a peak in dcr/dy which shifts to the right with increasing 

energy, as shown in the sketch in Fig. 12. 

If distinct dips are seen in the experimental spectrum between 

the "isobar" and "pionization" contribution, then the isobar-pionization 

model would definitely be confirmed. Otherwise, a prominent central 

hump in the distribution, which persisted to high energies, would be 
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strongly supportive. Some recently proposed models with extreme forward-

backward anisotropy in the center of mass actually predict a central 

diP,45 however, and it is conceivable that with clever manipulation, it 

shoul'd be possible to imitate the predictions of the multiperipheral 

model for a finite range of total energies. 

One of the applications of the isobar-pionization model has been 

an attempt to understand the propagation of the high energy component of 

cosmic ray sec~mdaries through the atmosphere, since the selection of 

certain prominent isobars implies a definite population of energetic 

decay products. 43 In particular the model could explain the observed 

excess of posi ti ve to negative high -energy muons in cosmic ray showers. 

Koshiba has applied the model with great zeal to a study of the population 

ratio of low-energy pions to kaons in cosmic ray events observed in 

. 44 emulSlons. (These would come from the decay of the recoiling target 

isobar.) 

Limiting fragmentation alone could provide a valuable tool for 

clarifying these questions. Rather than assuming, ad hoc, that certain 

isobars are present one could simply extend the observed ratios of 

+/ -
II II and ll/K at accelerator energies to cosmic ray energies for 

the corresponding part of the secondary spectrum. Except for the 

parameter that marks the separation between the limited and nonlimited 

part of the spectrum, the extrapolation would be parameter free and the 

predictions would provide a test of limiting fragmentation. 
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C. statistical Thermodynamical Model 
46 . 

The model of Hagedorn and Ranft describes the single particle 

spectrum in terms of a local statistical distribution 

feE' ,T) oc d3p'/[exp(E' /kT) ± lJ, 

where 
2 2 1. 

E' = [(p') + m J2, and a function which specifies the collective 

longitudinal motion of the hadronic "fluid," F(A.), where 

y - 1 
± y - 1 o 

= + cosh(Y -Y/2} - 1 
cosh Y/2 - 1 

(6.4) 

The parameter A. defines a longitudinal boost (y - Y/2), which relates 

the center'-of:-mass frame to the local rest frame in which a portion of 

the fluid decays according to the distribution (6.3). The sign of A 

specifies the direction of the boost. The spectrum for producing one , 

particle X in conjunction with anything else is then obtained by 

convoluting the distribution (6.3) with a longitudinal Lorentz transfor-

mation L(A) according to the weight functionF(A.), 

dOX/dp II dP.l = «X(EO) L 1 

dA FX(A) L(A) f[ EJ[, T(A) J, 

where EO is the beam energy. Depending upon the particle type, 

different expressions appear in place of F(A.), according to the 

specifications of the model. The expressions all have in common an 

energy independence, and the form of F is determined phenomenologically. 

The normalization Q depends upon the particle type and is in principle 

determined by the model, but in current practice from the data. It is 
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allowed to vary with energy. The varia -hon usually amounts to factors 

of 1.5 to 2. This is partly a consequence of systematic errors in the 

data. The temperature T is a function of A, but for most of the 

range of A, varies slowly around a value of 0.8 TO,where ~O = 160 MeV. 

Since the distributionf(E,T) is peaked for small local 

momenta, the longitudinal momentum distribution is, toughly speaking, 

described by F(A): 

For eXPly - Y/21 »1 and exp(Y/2»> 1, 

A = (m /w)x = a { _
- exp(y - Y), 

exp(y) 

(6.6) 

where x is the Feynman parameter [sj2e (2.7) ] . Therefore, for _fixed x 

(or fixed y or Y - y) and sufficiently large energies, the distribution 

is a fixed function of' x(ory orY - y), provided Q approaches a 

constant. Hence, the distribution is limiting,47· if Q is constant. 

Is it possible to choose a form for F(A) so that the central 

48 part of the distribution is invariant under longitudinal boosts? To 

obtain an invariant distribution we require that 

T(A) = const, 

(6.8) 

for IAI < AO 

for some constant AO• From Eq. (6.3) this implies that 
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which depends on Y as well as 1-.. Thus it is impossible for a fixed 

function of I-. to give an invariant distribution in the same sense as 

the multiperipheral model. If we choose 

(6.10) 

as suggested by Ranft and Ranft,48 the distribution is eventually 

1 Y/2 -1 
invariant for (S)2/2m = e »1-., for any fixed nonzero 1-., 

whereas one would expect a much more uniformly limiting distribution 

in the multiperipheral model. 

As in the case of the Feynman variable x, the difficulty lies 

in the choice of variable. If a closer correspondence between the 

multiperipheral model and the statistical thermodynamical model were 

desired, one might use the variable y in place of I-. so that Eg. 

(6.5) would read 

j[Y dy F{Y,y) L{Y) ~(E',T). 

For not too small 1-., the change in variable is trivial, 

F(Y,y) = for 
1 

= 2ms-2 , 

(6.11) 

(6.12) 

with I-. given by (6.7). The present fits .to experimental data can be 

used to construct the function F(Y,y). Since these were obtained with 

pp collisions up to 30 GeV/c, the lower bound on II-.I in (6;12) is 

at least 0.25. This function should be comparable to the distribution 

dO"ab/dy in (3.26) and is limiting in the same sense, i.e., it may be 

written as 
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F(Y,y) = A(y) B(Y - y), (6.13) 

where both A and B have a constant limit in y as' y ~OO. The 

condition (6.13) replaces the requirement that F be independent of 

energy. ,If A oc B, then F is symmetric under y ~ Y - y. We have 

taken the fUnction F(~), given by Ranft and Ranft 

with a = 5.13 and constructed the function F(Y,y) for 0:::: y .s 2, 

which corresponds roughly to -l.s ~ .s -0.15. The result is plotted 

in Fig. 13. Evidently it exhibits some of the qualitative features of 

Fig. 10, even though the function's are indirectly related through Eq. 

(6.11). The function F(Y,y) rises over a region in y of 6Y ~ 2 

and begins to level off. It is tempting to take this as evidence for 

the onset of a plateau (or a downward slope to a flat valley), but in 

view of the aforementioned complications in interpreting distributions 

at small values of ~,and because of limitations in the data, we cannot 

draw a definite conclusion from this result. 

In summary, the statistical thermodynamical model in its 

present form is not entirely compatible with the IDultiperipheral model, 

but with a slight modification (6.11) can be brought into accordance 

with it. Its chief distinctive feature is a characteristic distribution 

in transverse momentum, given by f(E,T). The success of the fits of 

Hagedorn and Ranft46,49 toa broad collection of single-particle produc-

tion spectra can be understood largely as a demonstration that limiting 
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fragmentation is valid at accelerator energies to within normalization 

factors of 1.5 to 2. It seems that the predominant experimental 

support for the model amounts to little more than this. In any case 

proponents of limiting fragmentation will undoubtedly find the phenom-

enological expressions of Hagedorn and Ranft to bea useful summ~ry of 

the data. 

D. Conclusion 

In their description of the si~gle-particle distribution, 

three current models of multiparticle production, the multiperipheral 

model with a constant total cross section, the Feynman parton model, and the 

liquid droplet model (as understood by Cheng and wu50) are in agreement. 

This poses some interesting theoretical questions about the similarities 

among the models. The perturbation diagrams which Cheng and Wuhave 

studied to support their intuitive conclusions50 do seem to satisfy our 

criteria of a multiperipheral model--namely, factorization (short-range 

order) and small transverse momenta. However, it is difficult to 

determine from its published form16 whether the parton model fulfills 

these criteria. 

Experimenters who enjoy resolving intense theoretical controversy 

will doubtless find such unanimity rather disappointing. Nevertheless 

(even though they are outnumbered),the isobar-pionization and two

fireball models do give rather different predictions. If limiting 

fragmentation continues to hold true, the two-fireball model is in 

trouble, and if a central plateau in the distribution da/dy is 

observed, the multiperipheral model, the parton model, and the liquid-

droplet model would be strongly supported. 

.. 



-49- UCRL-19882 

ACKNOWLEDGMENTS 

I am indebted to Dale Snider and Dennis B. Smith for many 

stimulating conversations. I am deeply grateful to Geoffrey Chew 

for his continuing inspiration and guidance throughout my graduate 

career. 



-so- UCRL-19882 

APPENDIX 

We derive here the relationship between the conventional Lorentz 

invariants and the longitudinal boost variables, and obtain some 

expressions required in the text. 

Let us define the subenergy, 

= (A.l) 

the cluster energy, 

(A.2) 

and the momentum transfer, 

If we write the Lorentz scalar product consistently as 

= (A.4) 

and use the definitions (2.2), we easily obtain the following 

expressions: 

2w.w. 1 cosh(Yi - Yi +l ) 
2 2 

- 2Ji:1i si,i+l = + m. + mi +l ~+l 1. 1.+ 1. 

So . = [t w. exp(yj ) ][ t w. exp(-Yj1- (± Elj j (A.S) ,1. J J 
J=O J=O 

Lt mJLt Ki ~2 t. = w. exp(y
j

) - w. exp( -Yj ) - ma ?: ~j 1. J J 
0=0 
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If we use the conservation constraint given by the second 8 

function in (2.3) we can rewrite the last expression: 

t. 
1 

become 

:=: 

-(t l'lj V (A.6) 
J=O ') 

In the strong';'orderirtg limit y. «y. 1 the expressions then 
. 1 1+ 

s. ·+1 ~ w.w·+1 exp(y. 1 - y.), 1,1 1 1 1+ 1 (A.?) 

(A.8) 

If particle n + 1 is the persisting counterpart of particle b, the 

elasticity is defined to be 

(A.10) 

From (2.2) and the first conservation constraint in (2.3) we obtain 

(A.ll) 

In the strong-ordering limit, energy-momentum conservation is 

expressed by the 5 function in (3.6). In terms of the definitions· 

(3.4), and (3.5) and the relation (2.5) we have 



or 

tn(_s ) mm, , a I:) 

Therefore 

an expression analogous to one given by Chew and Pignotti. 
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(A.12) 

.. ' 

+ .••• 

(A.14) 
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Table Ia. Correlation fraction F .. , giving a measure of the 
1J 

correlation in the Chew-Pignotti model between produced 

particles i and j on the multiperipheral chain when 

six particles are produced. 

j 

i 1 2 ,;- 3 4 5 6 .. 
1 0.124 0.030 0.013 0.006 0.002 

2 0.164 0.043 0.016 0.006 

.. 

3 0.176 0.043 0.013 

4 0.164 0.030 

5 0.124 

6 



Table lb. Correlation fraction F .. for the production of eleven particles. 
J.J 

j 

i 1 2 3 .4 5 6 7 8 9 10 11 

.1 0.156 0.041 0.021 0.013 0.009 0.006 0.004 0.003 0.002 0.001. 

2 0.199 0.063 0.033 0.020 0.012 0.008 0.005 0.003 0.002 

3 0.230 0.080 0.042 0. 025 0. 015 0.009 0.005 0.003 

4 0.247 0.089 0.046 0.026 0.015 0.008 0.004 

I 
0'\ 

5 
-. 

0.255 0.092 0.046 0.025 0.012 0.006 0 - I 

6 0.255 0.089 0.042 0.020 0.009 

7 0.247 0.080 0.033 0.013 

8 0.230 0.063 0.021 

9 0.199 0.041 

10 0.156 c:: 
Q 

~ 
t:-t 
I 

11 I-' 
\0 
()) 
()) 
1\) . 

,. .. 
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FIGURE CAPI'IONS 

Fig. 1. Diagram for the production of 'n particles, showing the 

definition of the sube~ergies and momentum transfers. 

Fig. 2. A comparison of the longitudinal boost plot (a) with the Peyrou 

plot in the center-of-mass frame (b) and lab frame (c). The 

phase space boundary is indicated with a heavy line for the 

process pp ~~ + anything with beam momentum 25.6 GeV/c 

(m sinh4). The shaded band denotes the position of pions 
p 

that result from the process pp ~~236~236 in the near 

forward direction. The band corresponds to a mass width of 

120 MeV. 

Fig. 3. Distribution in longitudinal momentum of the lth produced 

particle in a simplified Chew-Pignotti model; da·/dy 
~ 

for 

the lth particle is given in arbitrary units and y/Y is 

proportional to log PI! (see the text). Distributions are 

shown for (a) six and (b) eleven produced particles. 

Fig. 4. Distribution in longitudinal momentum of produced secondaries 

in a simplif'iedtwo-power model for Y = 1,3,5, corresponding 
I 

to proton beam energies 1.5, 9.3, 69.6 GeV respectively; 

da/dy has arbitrary units. 

Fig. 5. -Longitudinal momentum distribution of recoil protbn in a 

simplified two-power model for Y = 1,3,5, corresponding to 

proton beam energies 1.5, 9.3, 69.6 GeV respectively; da/dy 

has arbitrary units .. 
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Fig. 6. Location of pions in the longitudinal boost plot,resulting 

from the decay of a p meson at y =0, P.L =0. The band 

(!orresponds to a mass width of 125 MeV. 

Fig. 7. The distribution dO/dPIl for pions obtained by integrating 

2· . 2 .-1 22 . 
dO/dPJ.dPIl = (E(P.i))· exp(-pJ../(Pr) at fixed PH for 

2 I. .. 

(top to bottom) (P1-1 · = 0.05, 0.10, 0~15, 0.20, and 0.25 

··(Gev/c)2. 

Fig. 8. Duller-Walker plot for the longitudinally invariant distribu-

tion, log[F/l -FJ vs Y/Y, where y is linearly related to 

log tan 9. 

Fig. 9.· Sketch of the longitudinal momentum distribution dO/dy of 

Fig. 10. 

secondaries predicted in the multiperipheral model, showing 

the evolution with increasing energy, Y = 1, 3, 5. The 

spikes represent the elastic scattering events. 

(a) rrp ~rr + anything; (b) pp ~ rr + anything; 

(c) pp ~p + anything. 

The low y portion of the spectrum dO/dy for 

pp ~rr± + anything at 30 GeV/c derived from the fitted 

formula of Bali et al. (Ref. 16). Shown are the three 

points in y where the data of Anderson et ale (Ref. 41) 

are concentrated. 

Fig. 11. Sketch of the longitudinal momentum distribution dO/dy 

of secondaries predicted in the two-fireball model,showing 

evolution with increasing energy a, b, c. 
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Fig. 12. Sk~tch of the longitudinal momentum distribution dO/dy 

of secondaries predicted in the isobar-pionization ,model 

with a limiting distribution for the isobar component~ 

Fig. 13. The low y portion of the Lorentz -boost weight function 

F(y,Y) in the statistical thermodynamical model. The 

vertical scale is in arbitrary units. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with, the Commission, or his employment with such contractor. 
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