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ABSTRACT

The production of high energy (multi-GeV) proton beams by an
electron ring accelerator is considered. Both the final energy
and intensity of the proton team depend'on the choice of parameters
for the electron ring. Possible sets of parameters, consistent
with all the known requirements of ring stability, and which
optimize the energy and (or) the intensity of the protoa beam,

are presented.
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The scheme of the ERA considered is the following (fig. 1). The
transition {rom the initial state, labeled 1, just after injection,
to the final state, 5, which is the proton beam at maximum energy, is

assumed to occur in four different stages.

From state 1 to state 2, the ring is compressed in a varying mag-
netic field. I¥rom state 2 to state 3 the ring is further compressed by
synchrotron radiation to the final compressed state.

Subsequently, the ring is loaded with protons and accelerated by
means of an electric field, in a column of length Le , to reach a state
called 4. The final state, 5, is obtained through magnetic expansion

in a solenoid of length Lm'

All the formulas used to put restraints on the ring parameters in

order to obtain a stable ring are collected in section 2.

Since, for a given length of the electric and magnetic accelerating
column, the final ion energy and intensity depend essentially on the
ring parameters in the compressed state, we have first optimized the ring

parameters in state 3 (section 3).

Afterwards, we have studied what type of compressor is needed to form

the ring (section 4). In section 5 we discuss the numerical results

obta ined.

2. Conditions for Ring Stability

To evaluate what kind of performance can be expected from an ERA
we requirelthat a number of conditions be satisfied by the ring parameters,
which are the number of electrons Ne’ the ring radius R, the ring radial
and axial radii a and b, and the ion loading f, which is the ratio
of ion to electron numbers. The conditions are essentially stability
conditions for the ring during the whole process of ring formation and
acceleration.

The first condition we use is that the square of the axial betatron
freguency vi (measured in units of revolution frequency), must always be
positive. Tﬂis is normally satisfied during ring compression, but could
be violated near the end of compression and in the acceleration column,

where the field index, n, is equal to zero. For n = O the condition
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v > 0 can be written as3
€ c
m (l_f) e
E:E—H—R—v—(f-l)—(l—f)%}z+u[ - =—| >0, (2-1)
bla+b) 7 (s -1) (s -1)
m e
where
Ne re
Ho= exRy, ’ (2.2)
P =2 4n [16R/(a+D)], (2.3)

Ee, %n are the electrostatic and magnetostatic image field coefficients,

Se and Sm are the ratio of the radius of the cylinder for electrical

or magnetic images to the ring major radius, r, is the classical electron
radius, and 71 the ratio of total energy to rest mass energy for the

electrons in the reference frame where the ring is at rest. Ineq. (2.1)
the term proportional to sz/b(a+b) describes the ion focusing effectu

and the term proportional to l/zi describes the electron space-charge

forces. This last term is corrected for ﬁhe effect of curvature of the
electron beam by the term proportional to P.

The condition that vg > 0 can be written as in (2.1) only under the
assumption that during the acceleration process the ions stay in the
ring. In fact, to write ed. (2.1) we assume that both electrons and ions
are uniformly distributed inside the same elliptical ring cross section.

"It is clear that this can be true only when the external accelerating
force 1s zero. In the presence of an external accelerating force the
electron and ion distributions will be modified and a polarization will
appear. We will assume that, to a first approximation and for the cases
when ions are not lost from the ring, eq. (2.1)holds when the ring 1is
accelerated. A consistent solution to the problem of the polarized
ring is not at hand, but some simplified modelsh’5 give estimates
of the maximum acceleration the ring can undergo without losing the

ions. Under such circumstances the effective holding pover eé% is
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smaller than the maximum holding power, e& max.’ calculated for totally
s .

overlapping uniform distribution of ions and electrons, by a factor 1/y

2 Nére mc2
o =

1 1
T e, TN e (2:4)
1 smaX. M gz (a+b) R

The requirement that the radial betatron frequency, ?r’ be
positive is usually always satisfied and introduces no real limitations.
But near the end of the compressicn cycle or when the ring is moved into
the accelerating column, Vr can cross the value 1. As has been dis-
cussed by Pellegrini and Sessler, the crossing of the integral resonance
can give rise to an increase in the minor ring dimensions. In order to
maintain this increase within tolerable limits, one reguires that the
ratio of frequency spread in the ring, AN, to the frequency shift due to

the ions, be much less than one. This can be written as

AQz <<l+;1R2f+ uprf

2 ala+b) 2
w

o

or

2 2NrRT 1 b
2 o Z e (1yg(ap) ag)P> (2:3)
o2 w a(ath)y, R

o

where (Q = g and Wy is the revolution frequency. Usually this con-
dition is well satisfied when we are below the threshold for the re-

sistive wall instability (see Egn. (2.6)).

For the resistive wall instability we can estimate the threshold, N, assuming
that the Landau damping is the stabilizing mechanism. In this case the
threshold is determined roughly by the condition that the frequency

spread A0, is of the same order as the coherent frequency shift due to space-

charge forces
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- , ; 7
AQ, 2, r R 1, b(a+b) 1 b(atb)
T ~ T) 5 + € > *——~2 -4 g *'? - P . (2 .6 )
7 a+b ' T
wo 7_1_ 7y 7_L h R

For the negative mass case, when neglecting the effect of coherent

radiation negative mass instability is neglected 7, the threshold is

given by
N :.T_t._R_Zi__l (@)2 (27)
m Eregl—n jo) ’
where %? is the electron total momentum spread and
1 2h h 2 .
- on 2 2.8
g 2(l+2£nﬂa +(H:R if h << R , (2.8)
7L
or
g=—-—l—§(l+2£n§—§ if R << h, (2.9)
an

where h 1is the distance from the ring to the walls, which are now as
sumed to be planes orthogonal to the axis of the ring. Ne must also
be below the limit Nc for incoherent space-charge effect. This

limit can be written as

T VvAy Y -1
v €
e L { N +—31 , (2.10)
e S b(a+b)xL“ h™J
or
T VAV Y -1
€
N T r—L{ 1 +-_-} , (2.11)
c r R 2 2
e a(atb)y, h

where € is an image field coefficient, usually € < 0.2, h 1is the
distance from the ring to the conducting wall, and A LI is the allowed
2

frequency shift. In (2.10), (2.11) we assumed no ion present in the

ring.

(See Page 5A)
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Other limitations on the ring parameters can be due to the
instabilities associated with the ion-electron interactions.
These interactions seem to be dangerous when the ion oscillates
in the potential well created by the electrons, with a freguency
near to the electron cyclotron frequency. In this paper we will
not consider these possible limitations, although in the range of
ring parameters that will result from the numerical computation
the ion oscillation frequency is of the same order of magnitude
of the electron cyclotron frequency, thus leading to a potentially

dangerous situation.
(&3
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3. Optimum Ring

Optimum means giving rise to a maximum number of ions Ni accelerated

to a top energy E5’ together with the following restrictions:

(i) v, must be greater than 0, produced by ion focusing without image
focusing during the electric acceleration, but with image focusing
in the magnetic expansion,

(ii) the holding power eéi must be larger than the rate of energy

)

gain g§~of the ions for them to keep within the ring during
electric and magnetic acceleration,
(iii) the number of electrons Ne must be below the thresholds for
space charge, negative mass,and resistive wall instabilities,
"the last being by far the most severe restriction in the com-

pressed state.

We now list a series of assumptions and formulae that will form a

closed set of relations for the fairly large number of parameters involved.
The optimum is not a strong function of the ring minor radii ratio

a/b, therefore we can assume that the injection procedure will lead to

equal betatron amplitudes in the radial and axial planes,

aB =D, ' (3.1)
Let us introduce a parameter k for the ratio of the amplitudes assoc-
iated with the energy spread to the betatron oscillation amplitudes,
k = as/aB , (3.2)
It has been shown that the rms value of the transverse beam distribution is
of primary significance for the maximum field9 (giving rise to the holding
power). Since betatron and energy spread amplitudes are uncorrelated,

we shall further make use of a radial beam size given by

} i
o= (aBZ +a ) (3.3)

Axial focusing

In the electric acceleration there will be no image focusing because of
the large aperture of the cavities necessary to reduce the ring radiative

energy loss. 1In order to keep a reasonable focusing we ask for
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2 2 - 1) blai
v, 1R (f, ~£§>, so that from (Z.L) one obtains
b(a+b) 7,
1 bla+b
£ s (B)P/ (3-4)
7.3 Ly

On the other hand, during magnetic expansion a conical vacuum chamber
may be designed so that the image wall effect is important (of the
order of uP). We therefore assume that the magnetic expansion may be per-

formed until the Coulomb defocusing Jjust equals the ion focusing, i.e.,

7l5=l/_f% : (3.5)

Instability thresholds

The resistive wall threshold proves to be the more restrictive con-
straint in the compressed stage. Since n = 0, the frequency spread is
esentially due to Ap/p. We express A@/p in terms of the synchrotron
amplitude so that from (2.6) we obtain

2
N - 2y, agb(ashb) [y €(a+b)b 1 b(atd) , -1
w o T 7 2zt 2z * z :
e R 7L h fl R

In this formula we neglect the image term,which is very small in the
electric column,and we use edg. (3-4) to substitute for the third
term in the bracket,so that

b(a+b) -1 -
by P 1]
f+—“‘§ j (3.6)

4

w T 27y

e R 71
t is clear that we should not allow the number of electrons Ne to
be > Nw. On the other hand values of Ne< Nw might give rise to dif-
ferent families of rings presenting some interesting properties. We

shall describe these families with the parameter p > 1 such that

' N, = N /u- (3.7)
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Ring acceleration

The holding power we have already discussed in section 2 (eq. 2.4):

2N r mc2
e e

el = — = (3.8)
H
w 1{a+b) R
In the electric acceleration we assume ne = U3 in the magnetic
expansion we use nm‘: 2 because image focusing there adds to the
holding power.
The energy gained by the ions in the electric acceleration is
dE,
i M 1-f
= e £ (1~ Ne), (3-9)

dz ~ my l+g =~ Tx
XL g

where g = f E?L-, and the bracket accounts for the cavity radiation.
L _
The problem of the cavity radiation is not yet completely solved,

10 .
especially the dependence of the energy loss on 7 . We have used numerical

values of O computed by Keil;

radius,'which must then be made large enough compared with the ring major radius.

‘From egs. (3.8) and (3.9) one obtains the requirement for holding
power: -

2N r mc2
e’ e

M 1-f
.1t ne(a+b)R - my, 148 © C;(l-aNe) ’ (3.10)

In the axial magnetic field B, R, and 7, are approximately related by
the cyclotron equation

e
BR= <p, =cB 7 m (3.11)

so that all our variables a, a_, aS, b, N , Ne, R, 7i’ and T are now

B W
related by the set of eas. (3.1) through (3.4), (3.6), (3.7), (3.10), and

(3-11); only one of them is a free parameter (we chose the loading fraction f)-

The ion energy Er at the end of electric acceleration is just given

by integrating eq. (3.9) over the length L,:

z 1-F
E, = Mc 4 —— i— ¢ 5?(l~a N

M
myl i}{ )L‘ M (3.12)

e e

[

Then during the magnetic expansion, the canonical angular momentum conser-

@ proved to be very sensitive to the cavity bore

T e Lt v e vt kv e ne e v
- B,
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vation in the moving frame and the conservation of the total energy lead

to the relation (see Appendix A)

Y5 14
. g -
T = 3.13
T 7as/70,ve (3:13)
which gives the final ion energy
Eg = I'F) . (3.14)

An interesting point to makelzis that this final energy depends only upon

the effective accelerating voltage Vo pe™ é%(l—a Ne)Le and the final

transverse energy of the electrons 7i5’ when f << 1 and Mc2 << Eh

are neglgcted. Using the final transverse energy given by eq. (3.5),
one has

E5 ~ 1M/m eV
1/f2 + £ M/m

eff’ (3-15)

which reaches a maximum for f = (m/ZM)Z/3 ~ 0.00k.

The length Lm needed for magnetic expansion is (see Appendix A)

2n M1+8)y
= [ Ly ) w an (], as)

n g K2 (g2 )(g+l) g+ k2

where 1 is the derating of the holding power (nmz 2 is used in the

mmerical calcwlation), A = xt R (ay+ by )M/(k Nm r_ ), and

R () o
by At "

since BLS = th.

For 0 <z <L eq.(3.16) also gives an implicit function
B, < B(z) < 135, which must be satisfied by the solenoid field.
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For the numerical results that follow, we considered two different
limitations on the expansion: 1) the expansion is limited by the axial
focusing (eq. 3.5) and L 1is given by eq. (3.16) (in some cases with
large XLA this will result in unreasonably large values of Lm),(ii) on

top of the focusing condition we put Lm <1, where I has been chosen

for a given accelerator. In both cases we assume that the optimum function

B(z) may be achieved in the expansion solenoid. Note that the image focus-

ing produced by the conical vacuum chamber in the expansion column will

not be optimum for different ring radii Rh'

4. Compression process

We want now to determine the parameters of the ring at injection as
a function of the compressed (final) ring parameters (state 3) such that
the number of electrons always stays below the thresholds Nw’ Nm’ and
N,

The transformation that leads from the initial to the final state
is assumed to consist of a magnetic compression from an initial value
Bl to an intermediate value B2 of the magnetic field, followed by a
synchrotron radiation compression.l3 The synchrotron radiation occurs
in a constant. gradient magnetic field, characterized by a field index n3.
We also allow for the possibility that during the magnetic compression
the magnetic flux linked with the ring and the value of the magnetic
field on the ring orbit can be changed in an independent way.

The transformation leading from the initial state, labeled by the
gsubscript 1, to the intermediate state, 2, and to the final compressed

state, 3, can be characterized by three parameters,

Pz = Bp/B » ' . (+.1)
g,

f =14 2T d (4.2)
27 By R,

WaIN

— T s (%.3)
37e 1 -n 2
3 R,

( 2 3ng-d 7_L23 Q- 3ng)

where ¢i is the magnetic flux linked with the ring in the state i,
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and 0 describes the effect of synchrotron radiation. The casec

corresponds to a static compressorlu , in which the electron enerpy is

constant, and the case
012/521) G:l

corresponds to the case of a betatron, in which the ring major radiuc is
constant. The relation between the initial and final parameters of the

electron ring are derived in Appendix B, and are summarized here:

P12\2
Rl = T) o R3 3 ()4-.,4-)
-1 1- n3
-n
-1
Bl = Py of 3 B3 5 (4.6)
1 n /2
. 5 .3
aBl p122 o a63 s (%.7)
l-—n3 1 2—3113
aSl = l_nl (gplz)z g as3 ) (1#.8)
Ap 1-3n Ap
R D P (&.9)
P,/ P 3

where aB, as are the betatron and synchrotron amplitudes and AQL/QL

is the momentum spread.
Using egs. (4.4), +-- , (4.9) one can evaluate the ring parameters

during the whole transformation leading from state 3 to state 1, and alsc

evaluate, using egs. (4.10),--- , (4.16), the thresholds N, N and N_.

It is thus possible to study the stability of the ring during the com-
rression process.

It is interesting to show that, for any sel of compressed ring param-
eters, there exists a range of parameters Py £, 0 such that the

stability conditions are all satisfied. To simplify the calculations
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we assume that for NW and Nc’ the most restricting conditions are those
referring to the axial direction (this is justified by the fact that b < a),
i.e., eqs. (3.6) and (2.10). We also assume that for N~ we can use

eq. (2.7) with g defined by (2.8). We will also neglect, wherever possible,

the terms deriving from curvature or image effects. These thresholds can

then be written as

2 2
(A0 " fw 7
B z /o 3 . b(a+b)
N, =~ 7, R > , (k.10)
e R
3
% R 7, 2
N = (2R) (4.11)
m - 7 Zh p 4
2r (1-n)(1+2 Zn ==
e na
T v Av
Né - rz Z Zl3 R bga;b} . (4.12)
e R
AQ 2
Assuming also VQZUZ > -—~%— , we canneglect (4.12),which is less
oW
o

restrictive than (4.10).

The thresholds Nw and N& can now be written as a function of the
1

ring parameters in state 3 and of Pypo £, o
2, 2
. n 80" fo 3. a2 o1 -1 cr2—2n3
w er 71353 Ry P12
Py
2/ 17h3 4—7n3 2
1a 1 ef( x ’ (4.13)
l-n
1
2
o ¥m 3(3’_3_ 2
m - r /l‘,-) n @'\ 37—1-3 R,)
< \ o 7(3,/ )
2
,1-n 6-9n
{ 3> -1 3 L1l
\1l-n Pi2 ° (4.1%)
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The number of electrons in the ring can be obtained from (3.6), and
(2.7),s0 that the condition for stability is equivalent to satisfying the

two inequalities

2  2-2n. 2

>
<
Q
[ON
—
-+
'_J
N
I
[§¥]
/\
o
o
o
N’
ure
Q
('S}
(v

8 3K+ (1K%Y g, (%.15)
il 2
3 14y5f

2 6-9n 1
(1-n,) (l’n3> Kk O 3>§E§ 1+ (1 +k2)§ (4.16)
2h \ 1-n 0 —p R 2 . ’
1+ 2in — 1 12 3 1+ 713 f
Assuming
2
AQZ
—Z-—on.l,
w
o]
2h
l+2£n-]—{£~3,
n3z0,
n o~ L
12
k =2

1+ 73°€~5,

we obtain approximately from (4.16) and (4.15) respectively

6 b
g 13 N
Prp MRy (420
2 . b
O 1. (1+16k0h)E > L3 (4.18)
P28 B R3
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These conditions are satisfied during the synchrotron radiation com-

pression (from state 2 to state 3), i.e. for ¢ =1, P1p= L, 02 1.

During the transformation from state 1 to state 3 we must satisfy the in-

equalities which follow from (4.17) and (4.18),

. 6, , ‘ \
pp S OH/ T2 (4.19)
3
@ 1 o
e <= 3 —E (4.20)
P b ’
52 -3 12 13 23
Ry 12 Ry
. . _ B .
where ¢ 1is a function of Pro = E;;—w1th Bl <B< B3 .

In order to make more explicit these conditions on &, let us intro-

duce for 010 a scaled variable

(k.21)

I
1 1 o 1
£ < ~5"2—<§+T§;2—> ’ ‘(4-23)
and fig. 2 represents the available domain for g(x).

Tuning of the compressor to meet various machine performances

For an existing machine some of the parameters are fixed: +the in-

Jjectlon radius Rl into the compressor, maybe also the injection energy

and therefore Bl’ and also the compressed radius R3 = Ru if the magnetic

acceleration reguires imagebfocusing.
Furthermore, the ratio §§ is not a function of B3 nor of p, as one
3

can check on fig. 3 and L. When the machine is driven to the optimum
performance the loading fraction is rather close to f = 1% (see fig. 7).

We shall then assume in the following analytical approach that
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== 1is fixed. BB; Hs; and ¢ will remain the free parameters, large B, and small

3
p  giving rise Lo the maximum energy T, whereas small B. and high ¢ pro-
2 ’

duce the largest intensity, pguation (B.6) is applied to substitute £y, into

eq. (4.19), which becomes

6 B b3
Mo > 5o > (14-.?,)4)
- By
and using also eq. (4.4) one gets for eq. (4.20)
b R, B\ ° b 6 B
333 < —‘i—(—j— PN (4.25)
R3 Rl 1 ~ 52 R3 13 B3

When a choice of values is made for u and 0, which satisfies both

eq. (4.24%) and (4.25), ¢ is determined by eq. (%.4) and (4.6) so that

R3 2 B3 o N

g=<_§_> =Rt (4.26)
1 1

Here again ¢ as a function of Pqp nust satisfy the inequality (4.20)

during the compression. The betatron amplitude at injection is given

by eq. (4.7) so that
1

= 2 .2
by = (py5)® by - (&.27)
The requirements (4.24) and (4.25) are most difficult to meet when By =
B3 max For lower values of B3 there is more flexibility, & 1ncreases
which is favorable but bl decreases. B3 is bounded towards small values

by the space-charge limit.

5. HNumerical Results

a. Optimum ring
The set of equations expressed in sect. 3 can be solved for different
values of the parameter £, by use of numerical iteration. Some parameters

have been given fixed values:
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kK =2

n, =4,
N, =2

&, =5 wmi/n
a=1/6".

Different values of k have been tried; k = 2 was definitely better
than k = 1, but larger values did not improve the performances significantly
and resulted in too small betatron amplitude. The n values have been discussed
in Section 3. The external accelerating field é;x has been suggested by
the present ERA development at Berkeley. There is some chance that this
value can be increased by future development,l5 resulting in improved machine
performances. For the radiation of the ring passing through the cavities we
took the best numerical estimate presently available}lcorresponding to cavity
base radius of 19 cm and ring radius R =1 to 3 cm.

Some other parameters are variable in the following range:

0:'2% < £ <hy
H =1or 2.5,
B =15, 20, 30 kG.

The curves on fig. 3 and 4 show Ny B3, and b3/R3 as functions of the load-
ing fraction f, for p = 1 and u = 2.5 respectively.

With all the constraints used in the optimization, a solution exists only

over a certain range of values for f. Too low f-values clearly do not pro-
vide enough ion focusing; at the other extreme too large values of £ do

not allow one t i i i
0 meet all the requ1rements.$ Ni will be discussed when dis.-

nlaved oo S o ;
played as a function of +the top energy Es in fig. 7

For any value of 1, B, and f the major radius R3 of the optimum ring

lies between 1 and 3 em. It is nevertheless a rather strong function

of £ since a factor kL up in f requires a factor 2 down in

=d

3

The axi . I . .
1¢ axial minor radius b3 of the ring is only a few rer cent of the

major radius R

3
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We shall now show an example of accelerating column which we worked
out Tor a "conceptual study" at Berkeley. The total length at our dis-
posal was I = 70 m, but some of the results that are presented below

v
for this example can be scaled with the length of the accelerator. We
optimized the performances versus cost, considering that 1 m of eisctric
acceleration column was three times as expensive as 1 m of magnetic expan-
. 16 . . i
sion column, and arrived at Le = 320 m.

In figs. 5 and 6 the total acceleration length I the maximum energy

13
E5’ and the ratio of total to electric acceleration I' are plotted for
the same range of the variable parameter. Solid lines represent perform-
ances that can be achieved with Lm < 150 m, dashed lines correspond to
longer machines. Without any constraint on Ih’ the maximum of E5 would
be reached in the region of £ = 0.004, as foreseen in the simplified
analysis of section 3.

The performances of the accelerator are shown on fig. 7 in an intensity-
energy diagram. Solid lines represent the range of optimum performance
for a given y and different B values. The dashed curves represent rings
with different loading fractions f (f = 1% is marked by a black dot).
b. Case of fixed initial and final ring radius

In the foregoing discussion of the optimum ring all the initial and
final ring parameters were determined only by the ring stability conditions.
In particular, the geometrical characteristics, such as the ring radius at
injection and in the electric and magnetic accelerating columns, change
with the final energy and intensity. For a given compressor and a given
electric column and expansion solenoid, it is convenient to keep Rl and
RM fixed, still satisfying the stability conditions. The performance of
such a machine is illustrated in figs. 8 and 9, for the case Rl = 50 cm,
R2 = 2 cm.

In fig. 8 we give the final energy, E5, and number of ions, Ni’ as
a function of the magnetic field, B3, in the electric accelerating column,
for t - 1 and 2.%. The time needed for radiation compression ic piven

for some of the poinls on the curves. Injection cnergy, | current,

s
I, and betatron amplitude, b, are given in fig. 9. The injection current
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is evaluated with a single-turn injection process assumed; this value might be
considerably reduced by the use of spiral injection.l7 We have also
assumed that the compression barameter £ is fixed and equal to O.1.

To evaluate the ring parameters at injection, we used (2.6), (2.7),
(2.8),and (2.10),;assuming the betatroa frequency spread and shift to he

given by 5
A QZ

s

w
(6]

~ 0.1, v_ Av =~ 0.l.
Z Z

The value of & has been adjusted for each case in the interval
2.5 cm < h < 8 cm so as to optimize the thresholds.

It is interesting to notice that to obtain high energies, we need
high magnetic fields and small betatron amplitude at injection. However,
in this case the injection energy increases and the injection current
decreases, so that the needed brightness of injected beam tends to remain

constant over the considered range of B

3

c, Pulse to pulse fluctuations

The compressed electron ring will not be perfectly reproducible from
pulse to pulse with the consequence that the performances of the machine
will fluctuate around mean values. Pulse-to-pulse fluctuations of the in-
tensity is well known for synchrotrons and is of no harm as long as it
amounts to only a few per cent. For the ERA this means that the loading
fraction f must be stable within such a limit. But, the most striking
fact with the ®RA is that the maximum energy E5 is not only a function of
the external fields but also of the ring properties. How strong is this
dependence has been established by numerical differentiation for the
machine treated on fig. 9, with p = 2.5. fThe order of magnitude of

these coefficients is as Ffollows:

B
Parameters (par) Ry E, N, 5 ¢ t £
1
e JA o 11 i 112
Eg  A(par) 1 2 2 5 3 715 3

This shows that energy fluctuations of the order of 10'2 will be ob-

served,which is in the range of the intrinsic encrgy spread.
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APPEFID X

A. Magnetic Expansion

Before mapnetic expansion, the ring is in state 4 with a transverse

momentum B ¥ me and an axial velocity 8”4 c.

BTN

In the frame moving with the ring, the conservation of the canonical

angular momentum may therefore be expressed gs

(r, 51)2
I =2 ey, (A1)
(1)

where nonsubscripted variables are functions of 2z during the expansion.
Through a Lorentz transformation the total energy of an electron in the

lab system is seen to be
7=, 7, . (a-2)
Thus, the energy conservation for the whole ring reads
'%i(7¢ﬁé m~+NiDD = yuu(yiHNé m+N; M), (A-3)

which leads to

7y

= S s (AJ’L)
THE G fy )t

where g = N, M/(Ng my ).

Using (A-1) and (A-I),we get

y . = I Ll . (A-5)
Tih R (b /e, e

T

According to eq. (3.8) the accelerating force that might be applied to the
ions is given by

dl. 2N m ch

i e e

dz % n RK(a+b)

(n-6)
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In the expansion solenold ons may assume that wne macnebic £ield 1s uni-

o8

form in r although it varies very slowly with 2z. The transformation

laws for R, a, and b are then given by eq. (b.AY, (L.7), and (%.8) with
tE =g =1, ny =ng = 0, and Ppp = %y 80 that
I
dx Mo ™ %o Mcy MeCx )
dz 2 on N7 (a-7)
m

7 T]mp\l(< a.u.’!‘ bzlf )M

vhere A = 1 Ru(au+ b4> M/ (4 N, oo ore).

Equating the acceleration of the lons to

gives
dyH 1 d¥),
3 K. (
O A-8)
dz Mcz dz gﬂmk
The derivative of (A-5) is
f_’_’_n 1 7||A(l+g) P 4/ B,L ax (o
iz =% [ E. 23 @ (4-9)
Yo 2 /i 2l <
("{' BJ_M/LS D) LS
which expression, combined with (A-8),gives
B )/ 8 ZI 2
dk b/ P 3/ X
il (k2 g /BY) - (A-10)

T]m?\ (1+ g) ')’“u

1
[ This expression is similar to eg. (I14) of Lewis, E;which was derived in

the case in which y ; = 1.1

. Equation (A-10) may now be integrated to give a relationship between
z and K,

anx (l+g)7nu

Z =

RIRY BV

K2 \(h+1)(hix?)

ghz

_‘
g ognf ) . (A-11)

where h = g[}L/BiA.
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Equation (A-11) gives an explicit solutlion for the length I of
the expansion column when K is fived, and may be used, in turn, Tor fix-

ing the values of B(z) in the solenoid.
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B. Magnetic Compression

For an electron in an axially symmetric magnetic field the generalized
azimuthal momentum,
P .= my,rv.-—rA, (B-1)
6 1778 ¢ 8’ N
is conserved. We further have a relationship between the radius of the

trajectory, the field,and the momentum, namely

pc=eBr. (B-2)

Using (B-1), (B-2),and the relation between the vector potential and the
flux,
¢ = 4(B) :fg-g_dS=fA-ds=2:rrAe, (B-3)
]

we obtain

2
Br - -2%- = const , (B-4)

which may also be written

RZ=gr?% X < 1+

w

4 b
ZﬂRZB

2 1 E‘

) ’ (B-5)

or, defining & and P12 as

o &y

E =1+
ZnR?B
(B-6)
Pi2 © B, /By
’l)_
= R, (o“ﬁ (B-7)

For relativistic particles, the momentum transformation
law follows immediately from (B-2), i.e.,

1
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To obtain the transformation law for betatron amplitudes we use the
<
adiabatic invariant p‘/R v aﬁb = constant, from which it follows, for the

radial and vertical betatron amplitudes,

1
- 4

1 1 nl
- = 2 e -
“pz T %p1 Piz (l—n2> ’ (-9)
1
- nl 4

In section 4, ed- (4.7), we have neglected the small changes in
betatron amplitude due to the change in n between states 1 and 2, so that
we can use only one formula for the transformation law of radial and verti-
cal betatron amplitudes. To obtain the transformation law for the synchro-
tron amplitude we use the invariant (B-4). For a particle having an

energy p, + Ap; and radius R + AR, we have,from (B-2),

cAp, = (1-n) eB AR, (B-11)
and from (B-4)
2RBAR + RZAB - é—\iz = constant. (B-12)

But, for a field B which near the orbit changes like B R, we have

AB = -n BR AR (B-13)
and

5r = RBLR . (B-14)
From {(B-11),---, (B-14), it follows that

RAp_L =- constant,

or

Ry 0pjq = R, Opjp - _ (B-15)
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Inserting in (B-15) the transformation laws for R and P (B-7),

and (B-8), we finally obtain

Op Ap
L, 42 (B-16)
PLl PLZ

The total transformation from state 1 to 3 is cobtained by considering
the synchrotron radiation effect between states 2 and 3. The formulas
describing the change in the ring parameters under the effect of radi-
ation are derived in reference (13), to which we refer the reader for

details.
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Figure Captions

Schematic layout of an electron ring accelerator.

During compression the variation of the flux linkage £ mnucst

stay below a certain limit in order to avold ring instabilities

Optimum compressed ring parameters. The number of protons Ny,
major radius R3,and minor radius 'b3 are plotted as functions
of the loading fraction f, for different values of the magnetic
field B. The number of electrons in the ring is Jjust at the

threshold for instabilities (u = 1).

Optimum compressed ring parameters, ' The number of protons Ny,

major radius R3,and minor radius b, are plotted as functions of

3
the loading fraction £, for different values of the magnetic field
B. The number of electrons in the ring is below the threshold

for instabilities by a factor pu = 2.5.

Optimum ring. Final proton energy E5, total machine length Lt,

and ratio of total to electric acceleration I' are
plotted as functiong of the loading fraction f, for different values

of the magnetic field B. The number of electrons in the ring is

just at the threshold for instabilities (p = 1).

Optimum ring. Final proton energy E 5 total machine length L,

and ratio of total to electric acceleratlon I' are

plotted as functions of the loading fraction T, for different values

of the magnetic field B. The number of electrons in the ring is

below the threshold for instabililties by a factor p = 2.5.

Optimum performance of an ERA with 320 m of electric acceleratiocn
and 150 m of magnetic acceleration. The aumber of protons in the
ring Ni is plotted versus their final energy ES’ Tfor different
values of the magnetic field B. The number of electrons in the
ring is below the threshold for instabilities by a factor o = 1 and
2.5. Black circles correspond to f = 1% and arrows show the

direction of iancreasing loading.
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Performance of an ERA with fixed ring radius at injection,

R; = 0.5 m, and in compressed state, R3 = 2 cm. Number of
protons Ny and their final energy E5 arc plotted versus the
magnetic field level B, for differeat electroa-threshold-to-
intensity ratiop =1 to 2.5. Some of the compression is cb-

tained by radiation.

Injected beam quality. Eaergy E intensity I, and betatron

l}
amplitude b, of the injected beam are plotted versus B, magnetic
1 p , Mag

field in the accelerating column for an ERA with fixed ring

radii R; = 0.5 m and R, = 2 em. Two different values are con-

3

sidered for the electron-threshold-to-intensity ratio (p = 1
and 2.5).
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