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A SET OF GENERALIZED HEISENBERG RELATIONS
: AND A NEW FORM OF QUANTIZATION#* -
E. A. Rauscher
Lawrence Radiation Laboratory‘f__

University of California
Berkeley, California 94720 .

ABSTRACT

_ A prescriptian is made for "geometrizing"ifhe space-—
time maﬁifold as an extension of Wheeler's *Qé:mhole"
thédry. In the méthod presented, a set of physical
' vgriablés, termed quantal uni£s, are uniquélyléXpressed A
in terms of universal constants. By use of.the quantal
unit interpretation, a set of Generalized Hgiégnberg
Un@ertainty Relationé are developed, as a genéralized
set of canonical1y conjugate variables obeying commutation
relations expressible in terms of universal ééﬁstants.
qujprdcédures of quantization termed primarf and secon-
da;y afe defined ahd ;pplicatiqns are made.tovatomic and
nuéiear systems, The-quantal uﬁits ére interpreted as ar
.representation of the geometrical structure of thg space~
time'manifold and are manifest in ndclgar énd.cosmoiogica;

physics,
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I.. INTRODUCTION

J,‘Ariﬁheelerl attenpted'tofgeometriae thebspace—time manifold in
terms of a "quantum of length " termed the Wheeler .wormhole," £ =
(Gh/c 3)1/2 . Wheeler pictures the metric of his space as fluctuations
in a multiple—connected foamlike structure in which the microcurvature
has a scaleh"size' of % characteristic of his topology The micro-
curvature sets a lower limit omn the meaningful 1ntervals of length and
time. 'Hemalso discusses a quantum of mass, m = (cﬁ/G)l/ and a quantum
of densitv;fp =.c5/GZﬁ.'

Earlier, M. Planck2 derived dinensioned quantities in terms of the
fundamental universal constants 4 (Planck's constant), G (universal
gravitational constant), c (velocity of light). :The quantlties Planck

1ntroducedeere:

-_"".2:___ IV s x10% e, N (1a)
?t = (ah/cH? - 5.36 x 1074 sec, ; (1b)
©ome /2 = 282 x 100 gm, - (1)

for lenéth, time, and nass,-respeCtively. lThe:values of the universal
constants used_in_evaluating the Planck quantitiesnare: c = 2‘998 X
101% cn/sec, £ = 1.055 x 1072/ erg-sec, and G = 6.673 x 107° cn’
gm-sec

These values are taken from the recent work of B N. Taylor W. H. Parker,
and D. N. Langenberg3 on the theoretical and experlmental 1mp11cat10ns
of the universal constants. .

Planck discussed the universality of the expressions in (1a), (1b),
(1e), which comes about through their unique expression in terms of the

universal constants. The quantities in (1a), (1b), (lc), and all physical

variables), can be uniquely expressed in terms of}universal constants and,-
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iﬁ thisvferm, are here tetmed~"euantal unitst‘ Table I contains the set
of quantal units and their numerical values relevaet to the calculations
in this paper.

E. R. Harrieon4 discusses some aspects of_what.he terms ''quantum
cosmology*:ih terms of the Planck quantitiee or qﬁaﬁtal units and their
1imiting>ve1ues in the epace—time manifold.

P. A.iﬁ; Dirac® aed-more recently R. A..Alpher'andiG. Gamow® have
proposed.thet the close-agfeement of ratios ofsuniversal constants
expressieg.ﬁoth atomic and cdsmelogical aspects i; not coincidence but
is an‘expression of the theoretical significanee of’uhiversal censtents.

There has been much interest in the recent. work of B. A, Taylor,

W. H. Parker, and D. A, Langenberg3 on the theoret1cal implications of
the universel constants. They demonstrate the manner:in which the
universal censtants, on‘a fundamental theoretice;wframework, may possibly
unify Various diverse branehes of physics. This ie'what is proposed

and mey be ﬁossibie by.uee ef_the quantal units»ferm of physical variables
which are‘penifest in atomic, nuciear, and.cosﬁo;ogical ph&sics. It is
suggested;that the quantal unit form of all phyeieei variables may

represent a more complete geometric description of the space-time mani-

~fold - than that proposed by'Wheeler._‘For a more detailed discussion,

see Ref, 7, Presented here are some nuclear aspecte of the theory and

in Refs, -7 and 8 some of the -cosmological aspects of the theory are presented.

We define two distinct quantization procedufee, primary and
secondary, where primary or maximal quantizationris that quantization
procedure in terms of the quantal units and secondary is that quantiza-

tion procedure which is the ordinary or standard form of quantization.
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In Sec.?iI;>éix Genqraiized Heiéenberg Relationé éfé-presented and the
" manner iﬁ‘ﬁﬁich sécondary quanfizatiqn reduces t§ p?imafy, by use'bf
the reléj::}.ég of the quantal force and t'hevquantél-?'_-t;i:équ_ency, is shown.
In Sec;:ill,lwave fﬁnctions are constrﬁétedvfof §riﬁéry qﬁantization; i
In.Sec;'iV;1We.define some nuclear qﬁaﬁtifiéé inhﬁéfms'of ptimaff

: quantiz-?t‘:'ion .
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'II. GENERALIZED HEISENBERG RELATIONS IN PRIMARY

AND SECONDARY QUANTIZATION

WeZShéil considef the pair relationé obeyed 5y'the Quantal units as
elemeﬁtéﬁéf ﬁon—Abelian aigebfaé. Thét is, the canonically conjugate
pairs ofléﬁysical variaﬁles in terms-of bdth‘primary and secondary quanti-
zation ﬁdim commutation relations that are non—%éréHSut are i, c, %;‘f',
F, and wtor'coﬁbinations of these constants. TheééEéonstanté or combinﬁ_

tion of constants represent a limit on obtainable -information of the

'physicai world,

Heiéenberg developed the relations in terms of E, t and x, p which
represents ‘a limit on observation of physical pheﬁomena as relates to the
magnitude of 4.

We have the well known relations
—_—
(2, P]ﬁ 2 A
_ ' (2)
o [t, E]ﬁ > 8

(Note 2 6r x is the dimension of length.) The.éﬁb%ﬁ on the bracket denotes
the Geﬁeralized Heisenberg Relation in terms of ﬁ.;_As discussed by Bohr
the éanonically conjugate pairs £, p and t, E relate in a quantum mechani-
cal manﬁervfo 4 as a limit on the simultaneous ébSérvability of £ and p
and also't‘and E. These relations we call horizsntél relations as the
relations of £ to p and t to E (see arrow in Eq. (2)). Eq. (2) represents
six Geﬁeralized Heisenberg Relations. -

| qukiﬁg at thé vertical relafion between tﬁesé.four variables we seé
that t is the fourth component of £ and E is the fourth component of p,

in Einsteiﬁ four vector notation,
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= (% t) | S (3)
and ‘

We shall now note a '"network" of paired relations asvindicated by the
arrows iﬁ Eq. (2). The first new relations are’dbtained as paired rela-
tions between the diagonal pairs of quantum Vatiéﬁlgs (indicated by the

diagonal é#rows). These pairs are E, & and p, t;aﬁd form the relations,
C[E, Rl2AzL S B o (4a)
Ip, tlzflczd | IR G

where We_&éfine L' = chfand 2 = h/c as in Table'I;_ ‘The pommutétion

relations between one space-like component of a four vector with the time-

like comppngnt of a four vector is equal to ¢'or_{?,. Now let us look at

the thirﬂ_pbssibility of the relation between péits in Eq. (2). We form

the vertiéal pairs (&, t) and (p; E). As befofé;;We are considering one
componentfbf 2, is an isotopic space as ll = 22_;%23 and similarly for
'pl‘f Py #-93. We have,

S .({'5)1/2 ~ _ A ST , N
and - v
[p, E] = ('ﬁ'{)l/? F = F, = 4cF S - (5b)

using the quantal units given in Table I. .Note that p = cF is the quantal

power.'jsb"we have a generalized set of interrelated canonically conjugate

relations for primary quantization. We can alsQZWrite'[z, t] as [xl, x4]
and [p; E] as [pl, p4]. We have presented six éaées.of the

Generalized Heisenberg Relations.
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_'In_priméry quantization‘we have* (from7Tablé I),

™ e (%“) | Cp=wnt? (6a), (6b)
e amt? =awnt2 6, )
Iniorqinary qganti:ation we have,

o f:_ A ' - o : ;
- ;20 = ne L Ap = hk —-ﬁ/A » (7a), (7b)
4 |
t, =5 AE = hv = fiw - (8a), (8b)

O mec o

The qﬁaﬁﬁif&'ﬁovis the Compton,wave‘length fo; é éarficle ofvmass, m and
t, is tﬁe corresponding time, t, = Qo/c. A.H.bcbmpton 3 ’stﬁdied the
scattéring 6f x-rays off of electrons and the cdnstant,‘ﬁ/mc, depending
on the térget mass, arises in the expression ofjféléting wave length of
radiatibﬁ»énd scatﬁering angle.

In §rimary quantization we have for the hprisztal arrows in Eq. (2),
el = @M o)
[t, 8] = )2 -4 - (9b)

In ordinary quaﬁtization we have for the hbrizontal arrows,

| £ . n_ % 4 |
Bopl=dPp=00 " XX "2k - (10

from £°7in Eq. (6a) and p in Eq. (6b) and wave numbers, k = 1/X.

¥ The faétor Fﬁ{: Eq..(6a), has cosmological significance in Einstein's
o . st
| e term 21E =5t F '
ﬁfie;d equations. The te C4 T =F Zﬁi 8T(F/4'). This is

' 'diséussed in detail in Refs. 7 and 8.



-8~ | . UCRL-19893

Multiplying top and bottom of Eq. (10a) by c and using the relation

E = méz = /AW, then,

ﬁzc - 62c ﬁé:A '6

B I (10b)
— me 4 : ,
and
[t, E] = t;'o E = —é-z— . Ao = 6’41;(» (10¢)

me . mc™
from to’iﬁ'Eq. (7c) and E in Eq. (7&) and then:using the rélation mc% =
E = ﬁm,AWe'have, |

4 A

xa[c, E] = = ﬁ |  ’ ¢? A E . (;Od)

FoxApfimary quantization, we had from before in Eq. (4a) and (4b)
for the dilago_nal arrow relations in Eq. (2),

- w2 (L)

I Al

and A-;  g ' I _ v
1 1/2

Sl el=pe= @ (E)T @ ek ahe

from the'qﬁéntities in Eq. (6a), (6b), (6c), and.(§d);

For_seéondéry quantization we have,

B, 2l =EL =g - L - AU (11c)

from Eq; (7a) and Eq. (7b). Multiplying top and?bgttom by c and using
the relavt_i.o_n E = mc?f"_= fw, we have, '

#20c £#20c

© e, 4 - - - fc = £ Q@i
. mc® fu | o -
and
2
b, el= pr = & . £ _ % (11e)

mc2 mqZX'

= '(ﬁ'_'t_'i_"‘_)_y'z =4 = cé{, - (11a)
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from Eq(7b) and E of (7¢), and ¥ = 1/X. Using the relation E = mc>

= fiw, we have,

fbr c= uYX

o

= £ : (11.f)"

So :vve’:dbtaiﬁ the same result in the ‘¢ase of‘i -’ti:he ordinary quantization
and so:if;_r}:i»e'é”e are indeed the primary afxd secdﬁdér&; ‘q.uantization representa-
tion of 't"hei»physic'al variables, E, ‘SL and p, t. ‘ Ihése afe 'fhé same results,
Eq. (11d) and Eq. (11f), for [E, %] and [p, t] és.“f_or Eq. (4a) and Eq. (4b).

Now vao'r primary quantization for the "vertica'l_-arrows, Eq. (2), we

have, |

- ‘j[.:ls e s (%,._)1/2 (%)1/2 - %=% (128)
for o{'/c=/ﬁ since £' = c&{ |

o [p £] = pE = (02 wmn/? - {cF=6F | | (12b)

for &c :~¥ 6 ‘since.c( = K/c.
, N_été ‘the an.alogy‘ of ¢ and F in Eq. (11a) and ‘:_(12b) band Eq. (11b) and
(12b)',:, .These results are the same as for [, t]and [p, E] in Eq. (5a)
and Eq " (5b). And for secondary quantization we. have for the vertical
arrovs, -

G S
[2, t]= 2’0 to =—gz. . 6 = ‘ﬁ C = 6 C (133)

2 2 4 2,2
mc mn” ¢ . - (me”)

from Eq. (7a) and Eq. (7c) and then multiplyin__g' top and bottom by c.
Using the relation E = mcz = Kw and L = #c, we have,
AZc Ae 74 ¢

S, el - - - -

e~ (13b)
(Alﬁco)2 fw?  Aw? wz_'};

and
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S ' 2 L _ .
~Ipy E] = pE =§( - Aw = é—f L o (13¢)
fromvK; (4b) and Eq. (4d). Using the relationgc~=;mx so that'ﬂ = c/@
then, ' |

I 2 2 : 2. . -
-i'[p-,'E]=6Cw =¢(ﬁw2)=%-”' , SR (13d)

for £ = ﬁ/c

Théipf?mary quantization criterioﬁvgive a ﬁfqdﬁct or ratio of cF to
ﬁfof,{ft(ﬁd:‘(lZa) and (12b) énd equiValeﬁtly thé}gféinary quantization
process gives the quantity'6w2 and 4 and 1" (Eq: (l3b) and (13d) which is
equivaien:'to cF, the quantal power. A frequenﬁ& w is associated with |

cF.

the quantal force, F, or quantal power p

The felétion of thé quantal power p = cF and_duantal frequency, W,
is a relétionship between primary and secondary qﬁantiéation.v Also, we

have 201%-;c as the Compton Vave leﬁgth; for an‘gléctroh we have ne -

3.86 #;ldfll cm and for a prbtbn, éﬁz = 2,10 x 10714 cm. Let us ca;culate
the Coﬁétéé'wave lehgth for the priZary quantal ﬁass m = (%ﬁ)l/z.
have 20'_’%_%5 =§ (%ﬁ') H2 = (f—g) 12 which is -_then quantal unit qf length

(see Tégle I).

We

B?iﬁary and secondary quantization are re1§tgd by the same equations,
but priﬁ#ry quantization deals with the geomettiéistructure of the space-
time ménifoid and ordinary quantization deals with the physical particles,
electrons,vetc., of the space-time manifold. | |

Tﬁen we havé thevfundamenﬁal quantal frequenéy in the case of primary
quantiZagion for cF = ﬁmz or £/F = c/w2 so w%ﬁv¥ cF in Eq. (12) and (13)
~ from thguﬁrimary quantizétion commutation relétioné of (4, t) as [&, t] =

£'/cF an&athe secondary quantization relations [&, t] = £ /18° (Eq. (12a)

and (13b)). Also these relations can be obtained from the (p, E)‘
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commutationé'(Eq. (12b) and Eq. (13d)). 1In relating primary and secondary
quantization, we have pp = cF =aﬁm2 as we have fifst presented. We can

uniquely express the quantal force in terms of the ‘frequency as,
‘:'v-Frﬁ="' w =7 o o ' (14a)

and uniqdé1§’express the quantal frequency in terms'of force as, o
Cw=t 4%13 = i\/% =t ‘/F{ )

Let us see if the relatidn c = WA or ¢ = wh holds.i”We have,

@) )T ) o
so that & c/% or ¢ = wl for £/4' = 1/c2. o :
As Qe see the quantal force.has associated Wifh it_the quantal
frequency. |

We ha§é presented six Generalized Heisenbefngglations in both their
primary ?ﬂd'secondary quantized forms. To be;tgf understand the limits
on obseryébility as set by the four new relations;npne can study their
wave functién representation and the wave'equafioﬁs satisfied by these
wave functions. In the next section, we discuséfsome cases of the

10 discusses

Generalized Wave Functions. In his recent work,'w; Silvert
a set of Generalized Uncertainty Relations and the‘nature of the

uncertainty'principle for periodic systems,
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i

III. GENERALIZED PRINCIPLE OF LEAST ACTION AND

GENERALIZED WAVE FUNCTIONS .

. . v
A’Géheralized Principlé of Least Actioﬁ éaﬁ Be‘formed in ferﬁs of
A, £, lf' ,4/cF and 4cF. The "least ac'tic:):n priﬁ@iple;' or the variation %
of the'aétién integral is given by," : : | v |
- f Lde, (16)
-or the Variation of the action variable S, gives,cﬁe infinitesimal genera-
tors théé ébey canonically conjugate pair rela;iqﬂs; We can express this
as o6 ; . | -
6[ Ldt =86, = G, - GZ  “' o (17)
2 .
where #h¢ Qi’s are the infipitesimal generators of.the'group of transfor—
mationé thét act on the dynamical vériables. Thégé’genérators and their
commutati$ﬁ1felations make uﬁ the algebra of gﬁe g;oup, of which we require
Lorentzfinvariance when expressed as an_equatioﬁ'ofvmofion.

v Soﬁézof,the-expressions of the least action pfinciple are (for the
horizoﬁté; arrow for £, P and t, E (note:q is the‘genéralizéd coordinate
of.lengﬁh))} | | | -

ﬁ pdq = nh | ' (18a)
- f Edt = nh » B (18b)
e
This is_whvalanck termed A the action variable in his theory of radiation.2
,Fq%_ﬁhe cross arrows, for (E, %) and (p, t), ' ‘ _ | v
Froa - e o -
‘ ﬁpdt = n"g ' _ : (19b)

and for‘the vertical arrows (£, t) and (p, E) we have,
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.";.',i";¢'th = m;f S - (209 :
ﬁpdE = mflcF D S (20b)- -

where n, n', n", m, m' are integers. There are now a set of so-called

phase s‘pgce'sf, such as (p, q) space. There is also a (E, t) space and

(E, q) ,{l;g’(p,.ft) space and the (q, t) and (p, E) "sl.)azice‘.'

The ‘usual expression for a "free particle".“pl‘ﬁé_.n_e wave (i.e., a

part;iclve"'no‘t under‘the influence of a potentiai field) is,

.,_w=e -—7‘-— ‘ (21)

The .p‘mv:pose in mind was to show how the relations develop and occur '_

for E and % and also p and t in terms of 4" and (,A’respecﬁtively.

Now we can construct a wave packet from the plane wave expression,

.w=ei [% ) %t_]

Al:sq;a.'plane wave expression for the pairs x and t in terms of 'I'_/c_F

(22)

and p and E in terms of 4cF can be formed. We now have,
L4 [(xt) (cF) E] |
This { can also be .éxpresé'ed as,

. .‘ ‘ '_. 2 . .’: . N . . ‘.

: i|(xt) dw) _PE : ' '

Y =e [ 7 - = ] (23b)
L & Aho? s

The pha'se_s_paée of p and q relates to the constant 4. The phase space in
terms of £, t and E, p relates to £' and &.

T'he__' phase space in terms of (£, t) and (p, E) is expressed and relates

to %—5 ar;d'{Fc or iﬁwz/{' and ﬂ{wz.
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Theréiis another alternative expression, ftdﬁvK,'(12a) and (12b),
Y= e '4[(xt) (%;) - E F)] o . : (23¢)

In Eq.‘(23a), (23b), and (23c¢c), x and t_and also p and E are considered

¢

as variablés'and-F and W are Eonsidered as constahtsvin their quahtal
unit fofm;7 0ne can construct a plane wave or Waﬁe paéket.for any two
pairs df:éaﬁonically conjugate variables. | | .
Iﬁ‘éhe next section, we shall discuss the primary and secondary
quantiiétiqh procedures as aPPiied to nuclear léﬁgths, energies, ;nd
magnetic éuéntities. Wevdemonstrate the ﬁannér in which the two quanti-
zation précedures reduce to the same form for thé éix Generalized |
‘Heisenbéré_kelations discussed in Sec., II. A ggﬂeraiized form of the

"quantum lengths" in nuclear‘physics is also preéehted.
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" IV. PRIMARY AND SECONDARY QUANTIZATION AND
NUCLEAR QUANTITIES

A. Primary and Secondary Quantization of Atomic Leﬁgths

Let us 1ook at the usual or ordinary quantized form of some of the

atomic lengths. This is the form we term secondary quantization Using

the secondary quantized lengths and substituting the quantal mass for

the part:cle mass in these expressions and using e = ofic for the charge
where a is the fine structure constant we form a generallzed primary
form of these lengths in terms of the quantal length
| The.first of the usual "atomic lengths" is'the Bohr orbit radius
represénted?in its secondary quantized form as;3 ;;

a = ;’5;2- . L RUURE I : (24)

A second 1ength is the Compton wave length for-particle of mass, m,
A= o2 . _ (25)

.C

and the_third length is the Lorentz electron radiua,

where mé is the mass of the electron and the fourth length is the Rydberg

length defined in atomic spectra as,

roae 3 4ma , o _ _
R =4c _ o | e (27)
cm 4 o S -
me . v

and l/Rcm.is termed the Rydberg constant.

In their primary quantized form we have first for the Bohr radius,

R G TR ek
%z 2 (&)

W="3 = 3 (28)
me e
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where the Quantal mass is substituted for m. VUSingféhe expression for -

- _ : . 2 -
the fine structure constant, we substitute e~ = ofic into the above
expression and obtain,

“o  ofic \ch o c3 * S
And from Table I we see that £ = (—3) , which 'is the quantal length.
Lo c N
" So that
a 5 L .y | - (30)

whére o is the fine structure constant.
The Cémpton wave length, as we had before‘iniSec; II, is,
& e ,

e me c 3
c

which is“directly equal to the ‘quantal length,igé .
'Thé_Lorentz electron radius becomes, using é2'=vaﬁc and the quantal

mass for m,s

r,=——5=a%a =a, - (32

where comparison to Eq. (29) is made to express r, in terms of a,.
The primary quantized form of the Rydberg length is, - - —

v= 4'".63(: .== 4‘"&0 = ﬂ ' (33) . .
cm -4 o 2 ° o ’
me o :

R

So in summary, the primary quantized lengths are:

o 4 . . : :
Rcm = 2 L -~; o . (34a)

a_ = 1/a % | o (34b)
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) | T (34c)
. B. The Relation of Length and Energy
L) : .
The manner in which energy and length are related in both secondary
and primary quantization is the same,
In»secondary quantization we have c = Av where A is wave length and
Vv is fregﬁehCy and E = hv so that,
.rhgx fic o' S
In primary quantization, we have the quantal energy and length as,
' 5,\1/2 . _ o .
: ch : ' S ' _
E ‘_. ( s ) | . S ‘ (36a)
and S , ‘
SR 1/2 o
L= (%3) SR (36b)
so that . E = £'/% or
= (2, E) = &' : o - (37)
This 15'5155 our Eq. (11d).
Each of our lengths, Eq. (34a), (34b), (34c), and (34d), have
associated energy such as the Rydberg length,
: 3. : o
A R o Amhe (38)
. cm 4 S
me S v
hd - and thelRydherg energy,
R = | | . (39)

The variables of 1ength and energy are related to each other in forming a

product of 2 and E to equal 4" (see Eq. (lld) ) Length can be obtained
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from energy and from length by dividing length cr?energy by £'. This is

true inAboth primary and secondary quantized representation.

C. Magnetic Moment, Bohr M@gneton and Cyclotron ular Frequency
The magnetic moment of an electron in a fired orbit (or any rotating {
'charge) producing an induced magnetic field, B is given by,
umets o (40
where m, is the mass of the electron and g in general is the Landé g
factor;”'For example,’ . : ’ R ' .
.Anq o 1JZ(Z+1) (Zmec> o o (4;)
for an atomic orbital electron. The Bohr magnerbn is given as,
of a2l o
‘u = 7n_c = 9.28 x 10 erg/gauss. IO _ (42)
.Sdﬁe”references such as Reference 11 define the Bohr magneton (the
natural unit of magnetic moment) as,
Yo = Zu_ T (43
where %E ié’the gyromagnetic ratio. From Eq. (42) and the substitution
of e =AQ*and quantal mass m,
o % .G 1/2 o ' ' ' A
U= Zoe ~ 3¢ (&) o (44)
'1/2 . - ‘ y
u = Q(8C =8 : L o
=213 2 ¢ | (45)

where £ is the quantal length, and from Eq. (43) ﬁe have,

: Uo B AT .
u= rali ‘ (46)
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The'electron cyclotron frequency is given by, -

e = o =SB _ QB S . (47)
e e mc mc _ o D _

for e E;Q;jand for quantal magnetic field,ZB‘(seg”Ref. 7),

SN 3 S . .
8- aQ | R - (48)
We.substiﬁﬁte the quantal mass for‘me aé,t‘ - ‘ | _
R e G . c2 S .

and then shbstituting Eq.A(49) into Eq. (47) and'aééin defining e = Q, we
have, -

.“ :@" =£H§.=‘QB ({3{) | : : .':  o | (50)

Now‘substitutiqg‘the'quantal magnetic field from Eq. (48) into
Eq. (50),'we obtain, _ , L
R ., (/2 1/2 1/2 . 1/2
o 3 ) 5 S v
Lo _<G e ) _ g) =(F) ) (51)
Ye 76 \eh Gh X \T) :
Using thé}qgantal force, F = c4/G and the quantal frequéncy,v

1/2 1/2

we have, . ' _ o .
o =w | R (53)

We have investigated some of the relétionsﬁips between primary and
second#ry;qﬁantization in atomic and nuclear quantities. "These relations
forbleégﬁh are summarized in Eq. (34a), (34b),’(34c),‘and (344d). Also,
the pri@gfy gnd secondary expressidns for energy‘ﬁere investigated using

the relation (Z, E) =;4' (Eq. (11d)). The primary quantal frequency can
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. also be_rélated to the sedohdary cyclotron freqﬁehcy-(see Eq. (53)). In
subsectioﬁ:D;' we introduce a.pfimary form of tﬁe fing.structure
'constan£ inc§rporating both nuclear and cosmologiééi featurés aﬁd relate
it to_thé'éécondary or usual form of_the fine stru;tufe constant,

o ='é2/ﬂ¢; fThrough the quantal mass, the two fofﬁéﬂare found to be
equivaleht; 

- D. Priméry Form of the Fine Structure Constant

Thé=ratio of the Coulomb to the gravitational potential between two

particiesnof charge magnitude e and mass, m, is given by,
2 » o |
£ e | (54)
Gm ‘

It is interesting to note that upon substitution of the quantal mass,

; = (oﬁ/Q)l/z iﬁ Eq. (54), we have,

v 'é2 e2 e2 e2
2T &R TA&RTT (55)
Gm G (—G—) ‘
where ezﬁﬁc = ¢, the ordinary fine structure constant and £' = oK, as

befOre.‘;The form in Eq. (55) represénts another equivalent form of the

fine structure constant in primary quantization. ‘The charge, e = 4.80 x

10—10 esu-is considered to be a fundamental universal constant.

The quantal mass can be identified with the matter-energ? content of

2
the space-time manifold.7 The expression e2/Gm can be identified macro-

‘scopic (gravitational and electromagnetic) phenomena and o = ez/ﬁc is
‘identified with atomic phenomena. If Eq. (54) is used to calculate the
ratio of the constant force between an electron and a proton or two

39

pions,_bne‘obtains a value of about 2.3 x 10 which is approximately

"equal to inverse of the gravitational conpling constant relative to the

\d
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'electrbmagnétic coupling constant, o = 1/137. The éharge e, on a proton
"or on aﬁfeléttron is an atomic feature and G, the universal gravitational

constant-isga macroscopic feature,
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V. CONCLUSION

‘Byiexpanding Wheeler's wormhole descriptioniof'the topology of the
space—timelmanifold, we have developed a:set othphysical variables
termed duantal units; This set of variables represents a quantization . 'S
procedure which is termed primary quantization as opposed to the standard
or ordinary—quantization procedure which is termed secondary quantization.

As in Wheeler s interpretation, we propose that the quantal units
_represent a geometric descriptlon of the space-time manifold which is
more complete than that proposed by Wheeler for the quantal unit of
length termed the Wheeler wormhole. |

The quantal units are expressed in temms of the universal constant
and as suggested recently by Taylor, Parker, and»Langenberg, the
"universal ‘constants are an important link in the chain of phySical
theory which binds all the diverse branches of phys1cs together.'" Four
new Heisenberg like relations were introduced as canonically conjugate
pairs of variables with commutation relations which are expressed in
terms of universal constants, other than 4, cbmhinations of universal
constantsfand quantal units. It is suggested thatctheSe non-commuting
elements may'represent a scale‘of observality which'may'unify various
branches Of:physics. Both primary and secondary'rorns of the Generalized
Heisenberg ﬁelations were discussed and primary andpsecondary forms of

.’_)

nuclear quantities were also presented.

&
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Table I. . Universal Quantal Units.

Quantal unit in terms o Numerical value of
N of force, 4 and. {' _ quantal unit “
o eR\M2 | N2
= (gﬁg) - length 2= ({ ) . 71,60 x 10 33
1/2 N2 s .
= (%) . time t = (%) o © 5,36 x 10 44 sec
c /- ' L .
Cfa\L/2 ' 1/2 L
= (‘g—ﬁ—) .- mass m = (_Z_g’) . 2.82 x 10 > gm
. _ c L
5,\1/2 | o
= (9—(;4{—) energy E = (&"'F)l/2 ©1.25 x 1016 ergs
= (Ccﬁ) momen tum P = (‘J!,'F)]'/2 4,16 x 1010, —ci
L v . sec
=4 angular L=4f 1.06 x 1027 erg-sec
: momentum ' : B - : '
= c4/G"" - force "F=F 1.22 x 10%° dynes
=c ‘ ~ velocity c=c 3,00 x 1010 cm/sec
7\1/2 : 2
= (-%ﬁ—) " acceleration a= (EZE) ' oo 5.72'x 1053 cm/sec2
S o 55 em
= | °  power p=cF o '3.66 X lQ dyne Sec
7 ) 2 o s
= -9-2—— " . pressure P = %,— . 4.75 x 1011{} dyrie/cm2
5 . 2 S
= 32-— density p = -E-z— ' 6.50 x 1073 gm/cm
G 4 a _
1/2 J . ‘ v ‘ f:
= (-E%-) frequency w = (%)1/2 ©1.91 x 1043 cycles/sec

vThe quantal units are expressed in terms of the unlversal quantal force,
F=c4/G, £, £', and c. The quantities, € and £' are defined as € = f/c
and & —cﬁ o

In the evaluation of the quantal units, the values of & = 3.50 x 10~ -38
gm-cm and Z' = 3,15 x 1017 erg-cm have been used.
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