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ABSTRACT 

A prescription is made for "geometrizing" the space-

time manifold as an extension of Wheeler's "worinhole" 

theory, In the method presented, a set of physical 

variables, terd quantal units, are uniquely expressed 

in terms of universal constants. By use of the quantal 

unIt interpretation, a set of Generalized Heisenberg 

Uncertainty Relations are developed, as a generalized 

set of canonically conjugate variables obeying commutation 

relations expressible in terms of universal constants. 

Two procedures of quantization termed primary and secon-

dary are defined and applications are made to atomic and 

nuclear systems. The quantal units are interpreted as a 

representation of the geometrical structure of the space-

time manifold and are manifest in nuclear and cosmological 

physics. 	 . 



I. INTRODUCTION 

J. A. Wheeler' attempted to geometrize the space-time manifold in 

terms of, a "quantum of length," termed the Wheeler "wormhole," £ = 

(G/c3)l'2 Wheeler pictures the metric of his space as fluctuations 

in a multiple-connected, foanilike structure in which the microcurvature 

has a scale "size" of £ characteristic of his tOpology. The micro-

curvature sets a lower limit on the meaningful Intervals of length and 

time. He also discusses a quantum of mass, m = (c!/G)l/'2 and a quantum 

of density, p = c5 /G2fc 

Earlier, N. Planck2  derived dimensioned quantities in terms of the 

fundamental universal constants ' (Planck'•s constant), G(universal 

gravitational constant), c (velocity of light). The quantities Planck 

introduced were: 

£ 	(G!c/ 3Y- '2 	= 1.60 x 10 	cm, 	 (la) 

t = (Ofi/c5)uJ2 	= 5 36 x 10 	sec, 	 (lb) 

m= (a/G)2 	2.82 x 10 	gm, 	 (lc) 

for length, time, and mass, respectively. The values of the universal 

constants used in evaluating the Planck quantities are c = 2.998 x 

1010  crn/ec, 4 = 1.055 x 10 27  erg-sec, 	and G = 6.673 x 108 	cm3 2 

gm-sec 
These values are taken from the recent work of B. N. Taylor, W. H. Parker, 

and D. N. Langenberg 3  on the theoretical and experimental implications 

of the universal constants. 

Planck discussed the universality of the expressions in (la), (ib), 

(lc), which comes about through their unique expression in terms of the 

universal constants. The quantities in.(la), (lb), (lc), and all physical 

I 

variables, can be uniquely expressed in terms of.unversal constants and,- 
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in this form, are here termed "quantal units " Table I contains the set 

of quantal units and their numerical values relevant to the calculations 

in this paper. 

E. R. Harrison 4  discusses some aspects of what he terms "quantum 

cosmology".in terms of the Planck quantities or quantal units and their 

limiting values in the space-time manifold. 

P. A. M. Dirac5  and more recently R. A. Aipher and G. Gamow6  have 

proposed that the close agreement of ratios of universal constants 

expressing both atomic and cosmological aspects Is not coincidence but 

is an expression of the theoretical significance of. universal constants. 

There has been much interest in the recent work of B. A. Taylor, 

W. H. Parker, and D. A. Langenberg 3  on the theoretical implications of 

the universal constants. They demonstrate the manner in which the 

universal constants, on a fundamental theoretical framework, may possibly 

unify various diverse branches of physics. This is what Is proposed 

and may be possible by use of .the quantal units form of physical variables 

which are manifest in atomic, nuclear, and cosmological physics. It is 

suggested that the quantal unit form of all physical variables may 

represent a more complete geometric description Of the space-time marii-

fold than that proposed by Wheeler, For a more detailed discussion, 

see Ref.. 7, Presented here are some nuclear aspects of the theory and 

in Refs7 and 8 some of the cosmological aspects of the theory are presented. 

We define two distinct quantization procedures . , primary and 
e 

secondary, where primary or maximal quantization is that quantization 

procedure in terms of the quantal units and secondary is that quantiza-

tion procedure which is the ordinary or standard form of quantization. 



'U,  
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II. GENERALIZED HEISENBERG RELATIONS IN PRIMARY 

AND SECONDARY QUANTIZATION 

We shall consider the pair relations obeyed by the quantal units as 

elements of non-Abelian algebras That is, the canonically conjugate 

pairs of physical variables in terms of both primary and secondary quanti-

zation form commutation relations that are non-zero but are4, c, , ', 

F, and w or cobinations of these constants. These constants or combina-

tion of constants represent a limit on obtainable information of the 

physical world. 

Heisenberg developed the relations in terms of E, t and x, p which 

represents •a limit on observation of physical phenomena as relates to the 

magnitude of i. 	 . 	. 	. . 

We have the well known relations 

(2) 

(Note £ or x is the dimension of length.) The sub ic on the bracket denotes 

the Generalized Heisenberg Relation in terms of !c. As discussed by Bohr 

the canonically conjugate pairs £, p and t, E relate in a quantum mechani-

cal manner to Fi as a limit on the simultaneous observability of 9. and p 

and also t and E. These relations we call horizontal relations as the 

relations of 2 to p and t to E (see arrow in Eq. (2)). Eq. (2) represents 

six Generalized Heisenberg Relations. 	. . 

Looking at the vertical relation between these four variables we see 

that tis the fourth component of 2. and E is the fourth component of p, 

in Einstein four vector notation, 	 . 
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(2., t) 	 (3a) 

and 

p 
.••= (a, E) . 	 (3b). 

We shall now note a "network" of paired relations as indicated by the 

arrows in Eq. (2). The first new relations are obtained as paired rela-

tions between the diagonal pairs of quantum variables (Indicated by the 

diagonal arrows). These pairs are E, P, and p, tan4 form the relations, 

[E, 2.] 	(' 	 (4a) 

[p, t] 	E 	 (4b) 

where we define 2.' H ch and 2. h/c as in Table I 	The commutation 

relations between one space-like component of a four vector with the time-

like component of a four vector is equal to 	 Now let us lOok at 

the third possibility of the relation between pairs in Eq (2) We form 

the vertical pairs (2., t) and (p, E) 	As before, we are considering one 

componen.t .•of 2., is an isotopic space as JL =£ 2 =:.2 3  and similarly for 

= p 2  = p 3*We have, 

[2., t]= 	
F ' 	= 4c/F = 	

(5a) 
cF 

and 

[p, E] = (.t.)1/2 F = iF, = cF 	 (Sb) 

using the quantal units given in Table I. Note that p = cF is the quantal 

power. So we have a.generalized set of interrelated  canonically conjugate 

relations, for primary quantization. We can also write [2., t] as [x 1 , x4 ] 

and [p, E] as [p19  p4 ]. We have presented six cases of the 

Generalized Heisenberg Relations. 

(3 



In primary quantization we have* (from Table I), 

1/2 	
1/2..... 

(6a), (6b) 

t = (/F) 1 	 E = 	 (6c), (6d) 

In ordinary quantization we have, 

= 	 = hk = 1i/X 	 (7a), (7b) 

t0 - 	 EhVw 	 (8a), (8b) 
mc 

The quantity 9 is the Compton wave length for a particle of mass, m and 

to  is the corresponding time, t o  = £/c. A.H. Compton 9  studied the 

scattering of x-rays off of electrons and the constant, '/mc, depending 

on the target mass, arises in the expression of. relating wave length of 

radiation and scattering angle. . . . 

In primary quantization we have for the hOrizontal arrows in Eq. (2), 

	

...[., p] = ()l/2 = 	 .. 	. 	 (9a) 

[t, E] = 
( (?) 1/2 = 	 (9b) 

In ordinary quantization we have for the horizontal arrows, 

h 	.t12 
.[ 2 , p] = £ p 	- . 	 .. 	

. 	(lOa) 

from k in Eq. (6a) and p in Eq. (6b) and wave numbers, k i/K. 

* The factor F/1 Eq. (6a), has cosmological significance in Einstein's 

fie1d equations. The term 87rG  Tik = 	
• rf  = 87T(F/'). . This is 

discussed in detail in Refs, 7 and 84 
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Multiplying top and bottom of Eq. (lOa).by c and using the relation 

E = me2  =4iw, then, 

2 	2 

•:[ 	pJ = 	= 	= 	= 	 . 	(lob) 
mc 	 Li 

and 

[t, E} = to  E = 	 A) = 	 (lOc) 

from t in Eq. (7c) and E in Eq. (7d) and then using the relation me 2  = 

E = liu, we have, 

[t, El 	= ..c 	 (lOd) 
AW 

Fo.r. primary quantization, we had from before in Eq. (4a) and (4b) 

for the diagonal arrow relations in Eq ( 2 )31 

11 	1/2 	...
[E, 9] = E9 = ('F)2 

(

.,v. ) 	
= ((Tt ) hI2 = 	ct 	(ha) 

and 	.. 	., 	 . 
l/2 

[p, t} = pt = (F)1"2 
	i/2 = e a 'n/c 	 (lib) 

from the quantities in Eq. (6a), (6b), (6c), and (6d). 

For secondary quantization we have, 

2 
[E, 9.] = E 9. = 	 = 	 (lie) 

from Eq. (7a) and Eq. (7b). Multiplying top and bottom by c and using 

the relation E = mc2 = w, we have, 	 . . 

2 	2 

	

..I[E, £]= 	= 	we = 'c = 	: 	 (ild) 
mc 

and 	 . 	 . 

[p, t]= pt = 	
= mc2 	

(lie) 
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from Eq (7b) and E of (70, and ' = l/ 	Using the relation E = mc 2  

= 4iw, we have, 

[p,tJ 	= 	= - = 	 (hf) 

for c = wC 

So we obtain the same result in the case of the ordinary quantization 

and so these are indeed the primary and secondary quantization representa-

tion of the physical variables, E, £ and p. t These are the same results, 

Eq. (lid) and Eq. (hf), for [E, £] and [p, t] as for Eq. (4a) and Eq. (4b) 

Now for primary quantization f or the vertical arrows, Eq (2), we 

have, 

1/2 
[2w, t] = 9,t = ( j-) 
	

q
1/2) 

	•= 	
(12a) 

for 4"/c =4c since ' E 

[p, E] 	pE = (6) 1 " 2  ('F) "2  = cF = 	 (12b) 

for 4c = since 

Note the analogy of c and F in Eq. (ha) and(12b) and Eq. (hib) and 

(12b). These results are the same as for [2, t] and [p, E] in Eq. (5a) 

and Eq. (5b). And for secondary quantization we have for the vertical 

arrows, 

ti = 	to  = 	-- = 	 2 	
(13a) 

mc 	mc 	(mc) 
p 

from Eq. (7a) and Eq. (7c) and then multiplying top and bottom by c. 

., 
Using therelation E = mc 2  n =w and. d ='nc, we have, 

a 

tI = 'n c 
	= 	= 	=c 	 (13b) 

and 



[p,. E} pE 

-10- 	 UCRL-19 893 

(13c) 

	

Using the relation c = 
	

so that 	c/w 

22 	 2. 
= 	W 	

(w2) 	L. 	. 	. 	(13d) 

for ( 

The primary quantization criterion give a product or ratio of cF to 

or 4:' (Eq. (12a) and (12b) and equivalently the ordinary quantization 

process gives the quantity AW and ( and ' (Eq.. .(13b) and (13d) which is 

equivalent to cF, the quantal power. A frequency w is associated with 

the quantal force, F, or quantal power p = cF. 

The relation of the quantal power p = cF and quantal frequency, w, 

is a relationship between primary and secondary quantization. Also, we 

have 2L. = - as the Compton wave length; for an electron we have - = 
o mc 	 mc 

ll 	 1/ 	
e 

3.86 x 10. 	cm and for a proton, 	= 2.10 x 10 	cm. Let us calculate 

	

mc 	 . 	
l/2 

the Compton wave length for the primary quantal mass in = (-) . We 
,, 	1/2 	1/2 

have I = 	= (- 	= 
( IIG
-- 	 which is the quantal unit of length 

0 	mc 	c\ch/ 

(see Table I). 

Primary and secondary quantization are related by the same equations, 

but primary quantization deals with the geometric structure of the space-

time manifOld and ordinary quantization deals with.the physical particles, 

electrons, etc., of the space-time manifold. 

Then we have the fundamental quantal frequency in the case of primary 

quantizatio,n for cF = 
	

2 or dc/F = c/W2  so w 	cF in Eq. (12) and (13) 

from the primary quantization commutation relations of (I, t) as [I, t] = 

'/cF and the secondary quantization relations..[I,t] 	0I41w2  (Eq. (12a) 

and (13b)). Also these relations can be obtained from the (p, E) 

from Eq. (4b) and Eq. (4d). 

then, 
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commutations (Eq. (12b) and Eq. (13d)). In relating primary and secondary 

quantization, we have p cF ='w 2  as we have first presented. We can 

uniquely express the quantal force in terms of the frequency as, 

F= 	 (14a) 

and uniquely express the quantal frequency in terms of force as 

=± 

 

Vc = ± 	= ± 	 (14b) 

Let us see if the relation c =wX or c = wL holds. We have, 

/cF\ 1/2 IF \L'2 	/Fc2 \l/2 	IF \ 1/2 	£ 
=) 	

=rr) 	c= 	(15) 

so thatw 	c/9. or c = w2 for (/' 	1/c2 . 

As we see the quantal force has associated with it the quantal 

frequency. 

We .:have presented six Generalized Heisenberg Relations in both their 

primary and secondary quantized forms. To better Understand the limits 

on observability as set by the four new relations, one can study their 

wave function representation and the wave equations satisfied by these 

wave functions. In the next section, we discuss some cases of the 

Generalized Wave Functions. In his recent work, W. Silvert 10  discusses 

a set of Generalized Uncertainty Relations and the nature of the 

uncertainty principle for periodic systems. 

I 

V 
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III GENERALIZED PRINCIPLE OF LEAST ACTION AND 

GENERALIZED WAVE FUNCTIONS 

A Generalized Principle of Least Action can be formed in terms of 

#, (, 40 ,/cF and '(cF. The "least action principle" or the variation 

of the action integral is given by,. 

.= 

 

	

f Ldt, 	 . 	 (16) 

or the variation of the action variable 5, gives., the infinitesimal genera-

tors that obey canonically conjugate pair relations. We can express this 

as 

:1 	f 	Ldt = 5G1  = G2  - G2 	 . .... 	. 	 (17) 
t 2  

where the .G's are the infinitesimal generators of the group of transfor-

mations that act on the dynamical variables. These generators and their 

commutation relations make up the algebra of the group, of which we require 

Lorentz invariance when expressed as an equation of motion. 

Some of. the 'expressions of the least action principle are (for the 

horizontal arrow for 2,, P and t, E (noteq is the generalized coordinate 

of length)). 

	

pdq = nh 	 . 	 (18a) 

	

Edt = nh . 	 , 	 . 	 (18b) 

This is why Planck trmed the action variable in his theory of radiation. 2  

For the cross arrows, for (E, £) and (p, t), 

	

fEdq = n'(' 	 . 	 (19a) 

	

pdt= n' 	 . 	 (19b) 

and for the vertical arrows (i,' t) and (p, E) we have, 
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'qdt = 	 (20a) cF 

pdE = mcF 	 (20b) 

	

where n, n', n " , in, in' are integers 	There are now a set of so-called 

phase spaces such as (p, q) space There is also a (E, t) space and 

(E, q), (p, t) space and the (q, t) and (p, E) space 

The usual expression for a "free particle" plane wave (i e , a 

particle not under the influence of a potential field) is, 

1 [. 	x -Et] 
(21) 

The purpose in mind was to show how the relations develop and occur 

f or E and 2, and also p and t in terms of '(' and .',. respectively. 

Now we can construct a wave packet from the plane wave expression, 

- 	
(22) 

Also a plane wave expression for the pairs x and t in terms of 1'/cF 

and p and E in terms of (cF can be formed. We now have, 

= e 
[(xt) (cF) 

 -
(23a) 4cF] 

This i can also be expressed as, 

= ei [(xt) 	W 2) - 	pEj 	 (23b) 
ZhwJ 

The phase space of p and q relates to the constant tc. The phase space in 

terms of £, t and E, p relates to £' and (. 

The phase space in terms of (2,, t) and (p,E) is expressed and relates 

to - and Fc or'tw2/' andw2 . Fc 
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There is another alternative expression, from Eq (12a) and (12b), 

= e2 [(xt) () - 
	

(23c) 

In Eq. (23á), (23b), and (23c), x and t and also p and E are considered 

as variables and F and w are considered as constants in their quantal 

unit form. One can construct a plane wave or wave packet for any two 

pairs of canonically conjugate variables. 

In the next section, we shall discuss the primary and secondary 

quantization procedures as applied to nuclear lengths, energies, and 

magnetIc. quantities. We demonstrate the manner in which the two quanti-

zation procedures reduce to the same form for the six Generalized 

Heisenberg Relations discussed in Sec. II. A generalized form of the 

ItquantumlengthsU in nuclear physics is also presented. 

U, 
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IV. PRIMARY AND SECON])ARY QUANTIZATION AND 

NUCLEAR QUANTITIES 

'I 

A. Primary and Secondary Quantization of Atomic Lengths 

Let ,us, look at the usual or ordinary quantized form of some of the 

atomic lengths. This is theformwe term secondary quantization. Using 

the secondary quantized lengths and substituting the quantal mass for 

the particle mass in these expressions and using e 2  = c for the, charge 

where cis the fine structure constant, we form a .generalized primary 

form of these lengths in terms of the quantal length. 

The first of the usual "atomic lengths" is the Bohr orbit radius 

represented in its secondary quantized form as, 

a=--. 	 . 	 . 	 (24) 
me 

A second length is the Compton wave length for particle of mass, m, 

(25) 

and the third length is the Lorentz electron radius, 

2 

re = mc2 	
(26) 

where me is the mass of the electron and the fourth length is the Rydberg 

length defined in atomic spectra as, 

47ra 47ri c 
 cm 	4 	a 	 (27) 

me 

and hR is termed the Rydberg constant. 

In their primary quantized form we have first for the Bohr radius, 

G 1/2 
a = -i 

 = -- (-) 	 , 	 (28) 
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where the quantal mass is substituted for m. Using, the expression for 

the fine structure constant, we substitute e 2  = ctc into the above 

expression and obtain,  

G 1/2 	1 1/2 

=() 	

(6G) 
	(29)  

And from Table I we see that 2. = (-) 
	

, which is the quantal length. 

So that 

(30) o a 

where a is the fine structure constant. 

The Compton wave length, as we had before In Sec. II, is, 

' 	4 IG )1/2 	
I4G\ '2 

	i i - i 	 ( 31) c mc ccn'  

which is directly equal, to the quantal length, Z. 

The Lorentz electron radius becomes, using e 2  cefc and the quantal 

mass for m e 
2 

e 	2. 
= 	=aa =a2., 	 . 	 ( 32). e 	2 	o 
mc 
e 

where comparison to Eq. (29) is made to express re  in terms of a0 . 

Theprimary quantized form of the Rydberg' length is, 

4ira 
o 4irci 	 4ir R = 	c = 	=-. 	(33) cm 	4 	a 	2 me 	 a 

So in summary, the primary quantized lengths are: 

R 	=-2. 	 . 	 (34a) cm 	2 	 . a 

a = 1/a £ 	 . . 	 (34b) 
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(34c) 

r =at (34d) 

B. 	The Relation of Length and Energy .  

The manner in which energy and length are related in both secondary 

and primary quantization is the same. 

In secondary quantization we have c = Ày where A is wave length and 

V is frequency and E = hv so that, 	 • 

'rc 	(' 

In primary quantization, we have the quantal energy and length as, 

• 5l/2 
• E=() 	 (36a) 

• 	and 
1/2 

2.. 
= (-_) 	 (36b) 

so that.E = '/2. or 

E) = ' 	 (37) 

This is also our Eq. (lld). 

Each of our lengths, Eq. (34a), (34b), (34c), and (34d), have 

associated energy such as the Rydberg length, 

1cm = 4Tr 3c 	 • 	
(38) 

and the Rydberg energy, 

4 

The variables of length and energy are related to each other in forming a 

product of 2.. and E to equal .(' (see Eq. (nd).) •Length can be obtained 
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from energy and from length by dividing length or energy by i". This is 

true in both primary and secondary quantized representation. 

C. Magnetic Moment, Bohr Magneton and CyclotronAngular Frequency 

	

The magnetic  moment of an electron in a fired orbit (or any rotating 	fi 

charge) producing an induced magnetic field, B, is given by, 

LI = g 2mc 	 (40) 

where me  is the mass of the electron and g  in general -is the Lands g 

factor. For example, 

U = \1J.(2+l) 	
(2m e. c) 	

(41) 

for an atomic orbital electron. The Bohr magneton is given as, 

U = 2c = 9.28 x 10_ 21  erg/gauss. 	 (42) 

Some references such as Reference 11 define the Bohr magneton (the 

natural unit of magnetic moment) as, 

(43) 
- 	o 	2m 

	

- 	 e 

where f- is the gyromagnetic ratio. 	From Eq. -(42) and the substitution 

of e =.Q -  and quantal mass m, 	 - 

u = 	= 	( G 
K 	

.
)l/2 	

- 
2mc 2c  

	

-- 	u = 	
()l/2 = 	 - 	 -. 	

- 

where £ js the quantal length, and from Eq. (43) we have, 

-- 	U 
-- 	U=. 	- 	 (46) 

c 
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The electron cyclotron frequency is given by, 

w 	=  e 	mcmc e 	e 

for e 	Q, and for quantal magnetic field, B (see Ref 	7), 

3 
 GQ 

We substitute the quantal mass for me  as, 

1/2 	'F1/2 

= (c" ) 	= 

and then substituting Eq. 	(49) into Eq. 	(47) and again defining e Q, we 

have, 
1/2 

== QB ()  mc 

Now substituting the quantal magnetic field from Eq 	(48) into 

Eq 	(50), we obtain, 

1/2 1/2 	1/2 	1/2 / 
Qc 	IG (C' 

• 	c = 	 = 	/ 	= 

IcF\ 	fF\ 
? 1  

Using the quantal force, F 	c4 /G and the quantal frequency, 

•1/2 F112 
= (i-) 	= ()  

we have, 	 • 

 

We have investigated some of the relationships between primary and 

secondary quantization in atomic and nuclear quantities. 	These relations 

for length are summarized in Eq. 	(34a), 	(34b), 	(34c), and (34d). 	Also, 

the primary and secondary expressions for energy were investigated using 

the relation (2,, E) = 	(Eq. 	(lid)). 	The primary. quantal frequency can 
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also be related to the secondary cyclotron frequency (see Eq. (53)). In. 

subsection D. we introduce a primary form of the fine.structure 

constant. incorporating both nuclear and cosmological features and relate 

it to the secondary or usual form of the fine structure constant, 

a = e2 frfc. Through the quantal mass, the two forms are found to be 

equivalent. 

D. 	Primary Form of the Fine Structure Constant 

The ratio of the Coulomb to the gravitational potential between two 

particles of charge magnitude e and mass, M.  is given by, 

2 

2 
Gm 

It is interesting to 

= (o ~/G) '2  in Eq. 

2 
e 	e 

Gm 	G(- 

note that upon substitution of the quantal mass, 

(54), we have, 

2 	2 
H. 	 (55) 

where e2/c = a, the ordinary fine structure constant and ' 	 cf, as 

before. The form in Eq. (55) represents another equivalent form of the 

fine structure constant in primary quantization. The charge, e 4.80 x 

-10 
10 	esu.is considered to be a fundamental universal constant. 

The quantal mass can be identified with the matter-energy content of 

the space-time manifold. 7  The expression e2/xn2  can be identified macro-

scopic (gravitational and electromagnetic) phenomena and a = e 2 /c is 

identified with atomic phenomena. If Eq. (54) is used to calculate the 

ratio of the constant force between an electron and a proton or two 

39 
pions, one obtains a value of about 2.3 x 10 which is approximately 

equal to inverse of the gravitational coupling constant relative to the 
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V. CONCLUSION 

By expanding Wheeler's wormhole description of the topology of the 

space-time manifold, we have developed a set of physical variables 

termed quantal units. This set of variables represents a quantization 	
LA 

procedure which is termed primary quantization as opposed to the standard 

or ordinary quantization procedure which is termed secondary quantization. 

Asiñ Wheeler's interpretation, we propose that the quantal units 

represent a;.geometrlc description of the space-time manifold which is 

more complete than that proposed by Wheeler for the quantal unit of 

length.:terrned the Wheeler wormhole. 

The quantal units are expressed in terms of the universal constant 

and as suggested recently by Taylor, Parker, and Langenberg, the 

"universal constants are an important link in the chain' of physical 

theory which binds all the diverse branches of physics together." Four 

new Heisenberg like relations were introduced as canonically conjugate 

pairs of variables with commutation relations which.are expressed in 

terms of universal constants, other than I, combinations of universal 

constants and quantal units. Itis suggested that. thesenon-commuting 

elements may represent a scale of observality which may unify various 

branches of,. physics. Both primary and secondary forms of the Generalized 

Heisenberg Relations were discussed and primary and secondary forms of 

nuclear quantities were also presented. 
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Table I. Universal Quantal Units. 

Quantal unit in terms Numerical value of 
of force, 	and. 	a guantal unit b 

2.. (-) (i-)
1/2 33 

= length £ 
= 

1.60 x 10 	cm 

= Gi~ )1/2 
5.36 10 	sec 

5). 
time 

F 
x 

= 
m mass 

()h/2 
x m 2.82 10 	gm 

 1/2 
E = 

( c

5). 
energy E = ((?F)1'2 1.25 x 1016  ergs 

(S~36  )l/2 
momentum p = 

= 

 

(F)h/2 4 16 x 
1010 gm-cm 

sec 

L = angular L = '1 1.06 x 10 27  erg-sec 
momentum 

F = c4 /G force F = F 1.22 x 10 	dynes 

c = c velocity c = c 3.00 x 1010 cm/sec 

/ 	7\1/2 / 	2 	\ 
a = 

IC 	I 
Gfi acceleration a 

= 
icFi 

5.72 x 
53 	2 

10 	cm/sec 

p = power p = cF 3.66 x 10 	dyne  
sec 

P = 
7 

C 
pressure P = 

2 

5- 4.75 x 
114 
 dyne/cm2 

p = 
G4L 

density p = 
ct 

6.50 x 10 	gm/cm 

/ 	S\1/2 
IFl/2 	 43 

= 	
frequency 	w 

= 	
1.91 x 10 cycles/sec 

a The quantal units are expressed in terms of the universal quantal force, 
F = c4 /G, , 1, and c. The quantities, e and (' are defined as ( i/c 
and V = c. 

b In the evaluation of the quantal units, the values of € = 3.50 x 10 38  
gm-cm and ..2 = 3.15 x 10-17  erg-cm have been used. 
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