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ABSTRACT

An equilibriuwm theory of the length of intense electron bunches
circulating in a storage ring is presented. The consequence of elec-
trical interaction with various resonant structures is expressed in
terms of quadratures over the impedance of the structures, and imped-
ance functions for a variety of elements are evaluated. It is shown
that elements having resonances at high frequency can, above transi-
tion, cause bunches to increase in length with increasing current.
The parametric dependence of the bunch lengthening is found to be in
good agreement with observations, and numerical estimates, which are in

substantial agreement with experiment, are presented.



I. INTRODUCTION

It has been observed that the length of bunches in the electron-
positron storage rings at Orsay and Frascati is a function of the
stored current, although no such effect has been observed at Stanford
or Novosibirsk.l

These observations have stimulated considerable theoretical
effort.2-6 Theories based upon coherent synchrotron radiationg’3 pre-
dicted a shortening of bunches with increasing current, in contradic-
tion with the observations. Resonances associated with clearing-field
electrodesu and resonances associated with radio-frequency caviti655
have been suggested as the source of the phenomenon.

All the above theories are equilibrium calculations; that is,
they are theories in which the effective azimuthal potential well is
modified in strength as a result of the high beam current. A recent
analysis6 suggests that the bunch lengthening is due to an instability
of the internal coherent synchrotron oscillations. The parametric
dependence of the bunch lengthening in this theory 1is not in good
agreement with the observations.

In this paper we present a véry general theory of the equilibrium
length of high-current bunches. Thus, the theories of Refs. 2 through
5 are included as special cases 1n our analysis. Because the obser-
vations show that the bunch lengthening is an effect independent of
the number of bunches and independent of the total beam current, we
restrict our theory to include only the interaction of a bunch with

itself and, in particular, to inelude only direct interactions. (Thus

®

we neglect the interactlon of a bunch with itself as a result of



completing a revolution of the storage ring. Such long-term memory

1

effects can lead to longitudinal instabilities’ as well as bunch
lengthening, but presumably would predict effects which have not been
observed.) To simplify the analysis we neglect gas scattering and
multiple Coulomb scattering within a bunch; neither effect being im-
portant in the regime in which the experimental observations have been
made. It is easy to extend our analysis to include these phenomens.

We also consider only the above-transition situation; the below-transi-
tion behavior follows trivially.

In Section II we obtain an expression for bunch length in terms
of the synchrotron oscillation frequency. In Section IIT a general
form for the self-interaction (which is derived in Appendix A) is
employed to obtain the eynchrotron oscillation frequency as a quad-
rature either over the self-force Green's function or over the self-
force impedance. 1In Section IV bunch length formulas for beam inter-
action with structures which resonate at high or at low frequencies
are obtained. In Section V we sumarize the experimental observations
on bunch length and show that they can be fitted by beam interaction
with structures which resonate at high frequencies. Numerical examples
for some different structures are presented and general scaling laws
derived. Electrical properties of smooth chambers, resonant cavities,
electrodes, etc. are discussed in Appendices B through E.

The theory presented here 1s in good agreement with observations,
and suggests that the bunch lengthening which has been observed is due
to high-frequency resonant elements in the storage rings. In simple

terms, bunch lengthening (above transition) requires inductive coupling



o

between the beam and its surroundings.8 In contrast to a smooth
chamber (which is capacitive and hence produces bunch shortening and
negative mass instability), many elements--such as a resonant cavity
at frequencies below its resonant frequency--are inductive, have a
much stronger effect than the smooth chamber, and lead to bunch
lengthening.

There is, in general, the possibility of bunch shortening, and
this case is Included in the general analysis. However, because no
observation of shortening of bunches in storage rings has been re-
ported, we limit our examples to those giving bunch lengthening. It
should be noted that this lack of observed shortening may be due only
to the difficulty associated with such observations.

ITI. DIFFERENTIAL EQUATICN FOR SYNCHROTRON MOTION

In this section we derive the equations which describe the azi-
muthal motion of electrons under the influence of applied radio-
frequency fields, incoherent synchrotron radiation (including the
quantum fluctuations), and self-fields. As explained in Section I,
we consider only a single bunch of electrons and, furthermore, a
constant guide field.

In the absence of self-fields the linearized equation describing

synchrotron motion i59
Y, O a e b (2.1)
+2 —+Q ¢=-P , 2.1
th S at 5 s

where ¢ 1

0]

the phase relative to the synchronous particle, a, is the

radiation damping constant, ﬁys describes the fluctuations, and QSQ-_



the small-amplitude synchrotron oscillation frequency--is given by

2
02 hnws cosq)S eVrf
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Note that we have taken a sign convention for phase ¢ opposite to that
in Ref. 9. 1In the formula for Qse, h is the rf harmonic number, n is
a dispersion coefficient, Es is the total energy of the synchronous
rarticle, and B its velocity in units of light velocity, Qg is the

revolution frequency of the synchronous particle, V is the peak rf

rf
voltage, and @S the rf phase of the synchronous particle. The coeffi-
cient n is given by

E dw
n=8 ~3F . (2.3)

E=E
s

In the presence of self-fields, which we treat in linear approxi-

mation, the only modification to the above formulas is to replace

cosP_ &V ., in (2.2), by

d
cosQ_ ev . + e av , (2.4)

do ?
$=®S

where eU is the energy change per revolution of a particle due to self-
fields and the subscript s indicates evaluation for the synchronous

particle. Thus ng is changed to 92, where

hnw 2e EE
9 =gf . =5 dos, (2.5)

2R ES

If the fluctuvation term’is-assutedr to be dominated by quantum effects



in the synchrotron radiation, the mean square equilibrium bunch length
is given bylo

2

5 oc /p 55 e2c2h77 1
N =) —1

= 1. (2.6)
3.3/2 3 ’
QE \RS 2737 p_ uaSJ

s

where pS is the radius of curvature in the bending magnets, R is the

average radius, H is Planck's constant, y is Es/mcg, and ¢-~the momentum

compaction factor--is given by

a = Be

=] N cal

dR
% - (2-7)

We wnite (2.6) in the convenient form

2 2
A = AO 7S 55 (2'8)
£ -8
s
L+ —
£

where Ab2 is the mean square equilibrium bunch length in the limit of

zero bunch current. From (2.6), and using well-known expressions for

the various quantities therein, we have--in the relativistic limit

(72 >> 1/a) in which one is above transition--that

¥/2 2
2 55(3} / TR K me 75

AO =

p (2.9)
96 JsheVrf cosQ,

where Kc ie the electron Compton wavelength, and JS is a dimensionless

parameter which relates the energy radiated per electron per unit time,

W, to the damping constant as,

. (2.10)



In the remainder of this paper we congider only the above-transition
case and hence, as can be seen from (2.2), cosp, is positive.
ITI. SELF-FIELDS

The electromagnetic self-fields acting on the bunch are assumed
to arise from the interaction between the bunch itself and the material
structureswhich are near the bunch trajectory, such as, for instance,
rf cavities or monitoring electrodes.

It is shown in Appendix A that the force on one electron in the
bunch due to the self-fields can be written, in the ultrarelativistic

limit, as
@®
(8= e [ a0 Mo") oo - o', 1), (5.1)

g

where ¢ 1s the distance from the synchronous particle measured along
the bunch o = Ré(@ - @S)/h , Mo) is the linear charge density of the
bunch,and G is a function which characterizes the particular structure
interacting with the beam. The energy change of a particle per revolu-
ion, eV, is proporticnal to the integral of (3.1) over one revolution

period,
{_T 0
eU(o) = eBc] dtj do’ A(o') G(o' - o, t). (3.2)
0

g

Assuming the synchrotron oscillation period to be much larger

than T, and defining a new function
T
Y (ot - 0) = BCf at ¢(o' - o), (3.3)

0



8-

we can write the energy change GU(U) approximately as

€3]
eU(o) = ef do' Ao") Y(ot - o). (5.14)

g

To evaluatce the change in synchrotron oscillation frequency we

need, according to (2.5), the quantity

e8]

Jau| _Bef gy (o) 5.5
e T 71 dcg (o) o (3.5)
[l O

where ve have used ¢ = R@/h (vhich is consistent with our sign conven-
tion for @). Using (3.5), (2.5), and (2.2),we have
2 2
Q° - Q efe [Q) ax(o)

= ) do ¥ (o)

alf; 7
94 hDS couws eer 0

. (3.6)
do

Consistent with the linecar approximation, already made, the charge
density A(o) has the form
2
Ne -0 /QA?

}"(U) = 1/5 € P (5'7)

(em) " “n

where N i5 the total number of electronc in the bunch, and A must be
determined as a solution of (2.8), (5.6), and (3.7). Inserting (3.7)
into (%.6), we obtain

2
Q -1 -Ne Bc s

3 ; —UQ/QA?

— = NN R / 0 dogf(o)e . (3.8)

Q hy  cosgp eV _(2m) ' a7 J
5] IS rf




It is convenient to introduce an impedance Z(w) by

2w) = [ & (ser)ear, (5.9)

o¥
so that (3.8) becomes, after we employ the inversion of (3.9) and

after we interchange the order of integratiomn,

A .
a.’ iwg
Q2 _ QSE -NeQBc e0) w - ;ZE ”
5 = 575 5‘// dw Z(w) o do e . (3.10)
Q (2m) ho  cosp_ eV o &7 S o
Performing the integration over ¢, we obtain
Qg - 932 -ENeQBc ®
= dw Z(w)
2 72 /
Q (o) ho  cosp eV . A
L & it P22 o
X [F {1 55 - —5 5 + $75m T e ,  (3.11)
- 2B ¢ 2 Be
where lFl is a confluent hypergeometric function. In performing the

w integration in (3.11) the contour should be closed in the lower
half-plane.

In general, to obtain the bunch length A, one must first evalu-
ate the impedance function Z(w), or equivalently, the Green's function
Y (o), of the storage ring. Then one evaluates 92, using (3.8) or (3.11),
and then the bunch length from (2.8). In the Appendices B through E we
present & (o) or Z(w) or both for a variety of elements which can-=and
do-~appear in storage rings.

For situations where Z(w) is a complicated function (coming, for
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example, from a variety of resonant elements) and known either by com-
putation or from measurement, it is convenient to employ (3.11). For
simple models it is often easier to employ (3.8) directly.
IV. HIGH- AND LOW-FREQUENCY RESONANCES
In the previous section we have obtained a general expression for
92 in terms of the self-force impedance Z(w). Tt is illuminating to
consider two limiting cases of this expression. Suppose, firstly,

that Z(w) is nonzero only for low frequencies, i.e., for frequencies

such that |o| << Dopit = Be/A. In this case (3.11) becomes
9% -q? _oNe“Be F
S LF
5 ~ 5/5— s (M.l)
e (er) b, cosp, ev o A
with Wyt
2:LF - Z(w) dw. (b.2)
- .
crit

If, on the other hand, Z(w) is nonzero only for high fregquencies, i.e.,

for frequencies with |w| >> @ .., then
crit
2
Qg -8 2 2Ne SBC3
s FH
2 (21r) b, cosp, eV . A
with
loo] - Perit
] Z{w)dw | Z(w)dw X
Erﬁ% = —— + —s— .0 (.h)
Lo oo w
Porit

In deriving (4.2) and (4.4) we have used small-argument and large-

argument expansions for the confluent hypergeometric function.ll Note

F F ixpn s .

A T A P | b e

that & and 2 have different dimensions.
LF HE

With the aid of (4.1) through (4.k) we may readily solve (2.8)

for the bunch length A. 1In the low freguency case



A ¥ 2 ~2 q1/2
-u H
S5 [ , (LF) (k.5)
By 2 L
where
-QNeEBc
b = . (1.6)
LF 3/2
(em) o cosg_ eV . &
In the high-frequency case
A
2 2 0
8 = 4, 1*“131«*3}11?; , (HF) (4.7)
where
—2Ne255c5
(4.8)

Mo = .
HF 3/2 2
(2m)”" "hw cosp eV p &

The parametric dependence of A may be explicitly exhibited in the

two limiting cases. The functions érLF and.é;HF are, in these limits,

independent of W, [since the Z(w) is assumed to cut off the integra-

rit
tions]. Thus, the F functions characterize the structure, but are
independent of beam energy, beam current, and bunch length. For

example, in the high-frequency case we obtain, from (4.7), (4.8),

and (2.9),

A=A 1 +k ——1, (HF) (4.9)

where I is the beam current, and the constant k, which depends only
upon machine parameters, is given by

-192 Js(mcg)3 R ] R
C

T S wen o A, i H
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with IO = mc5/e = 17 000 A. DNote that applied voltage appears only
through the dependence of £y, upon Vrf' The functional form (L4.9) has
been previously obtained by Le Duff and Robn‘.nson.a’5

V. DISCUSSION AND COMPARISON WITH OBSERVATIONS

In this section we first summarize the experimental observations

on bunch lengthening in ACO and ADONE. The experimental observations
have been empirically fitted with the phenomenological forumlasl

o > 3 I(ma)

1+ 2x10 1, (Aco) 5.1)
%o ’ EE(GeV) A(ns) ° (

>
I

, for & >> A. (ADONE) (5.2)

[}({m) 0.46 I(mA)l/B;" 30 }1/6
%75(%)_ E(Gev)7/6 i_vrf(kev)J

For ACO the functional dependence (5.1) is gquite close to (4.9), with
3

=4 -
only the E factor replaced by E ~; however, a recent analysis (pri-

vate communication from J. Le Duff) indicates that the data may be
equally well fitted with E-B. For ADONE the agreement is again quite
good, but now E_7/6V-l/6 is replaced by gt Actually the ADONE
dependence upon V could be weaker than that given in (5.2).l

It is rather remarkable that the simple model of only high-frequency
resonances yields a formula for the bunch length (4.9) in such good
accord with the phenomenological formulas (5.1) and (5.2). Such would
not be the case for low-freguency resonances, and in the remainder of

this section we consider only high-frequency resonances (although either

bunch lengthening or shortening through low-frequency resonances is,
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in principal, possible).

" Also with high frequency resonances, where the functional form
(4.9) is assured, there is the possibility of bunch lengthening or
shortening corresponding to positive or negative values of k. Tor
the interaction of a beam with a smooth chamber one finds, in fact,
bunch shortening as was discussed in Ref. 5 and as can be readily seen
from Z{w), which is given, for this_case,in Appendix B.

To the contrary, there are a variety of structures such as rf
cavities, pickup electrodes, and clearing electrodes, which are always
present in storage rings and which usually will cause bunch lengthening.

We leave the task of detailed computations of bunch length, for
any particular machine, to the interested reader. Here, we limit our-

selves to a few illustrative examples.

Example No. 1: Single-Resonance Model

As a special case of the general discussion in Appendix C,
ve are led to consider an impedance Z(w) of the form

7, 1 1
2(a) = KB . 1 . (5.3)

2i w ~ wh + 1FR W + w? + IFRJ

so that ®p is the real frequency of the resonant structure, PR

is the damping constant, and Z_ is the structure impedance. The

R

sign of ZR is taken positive, corresponding to resonant cavity.
We evaluate S&HF’ where
@ T Terit
7 . [ 2w 7.(e)do
R - —7 (5.4)
< W - 48}

crit @
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by extending the range of integration from -~co to o and exclud-
ing the pole at w = 0. The contour must be closed in the lower

half-plane,and thus

@Rz -
¥ e: .
Typ T " STIR0p (2 22 (5.5)

+ PR

We assume the damping constant is such as to reduce the induced
fields to a negligible value in a time of the order of one particle
revolution (and bence there will be negligible bunch-bunch coupling),
while~--at the same time--the decay of fields during the passage of
one bunch is negligible. Thus we take I'rA << 1 and, since we have
assumed (high-frequency resonance) wpA >> 1, we obtaln mp >> Iy,

so that

Foo~—2 (5.6)

38k g. 1 !,/ws (7.0) R, R (me?)> (5.7)
k = -l —= (24) | — —}(mc") 5.7
s5(6m) ™2 ala, | T\ Ky, I,

For numerical evaluation we adopt the parameters given in

Table I, and--arbitrarily--take - 10™Y sec™ and z.c = 33 . (cor-
“R R

responding to an impedance of 1 kQ). We find, for ADONE,

-~ A z
K = 5.1 x 1072 (GeVoens/mA) so that W5 0.17, which is to be

compared with the coefficient 0.46 in (5.2). For ACO, k ~ lO“5

)
4

to 107" (GeV” ns/mwh). (corresponding to the range in &), which is
3

to be compared with the coefficient 2 x lO_j in (5.1). Clearly



if there were more than one resomant structure (bhaving ZR =1 k)
the coefficient k would be increased.
Table I. Machine parameters employed

in the numerical examples.

ADONE ACO
J 1 1
S
& 6. x 1072 0.06 to 0.6
W 2. X lO7 sec-l 9 x lO'7 sec_l
3 2
R 1.7 x 107 cm 3.41 x 10 cm

Example No. 2: Resonant Cavity Model

The closed-cavity model of Appendix D may be employed to
evaluate Z(w). In the approximation of a bunch long compared 'with
the cavity dimensions, Z(w) is given by (D.8), which is precisely
of the form (5.3). Thus we obtain from the cavity model, in con-

trast to the above evaluation, explicit formulas for the quantities
ZR and aﬁ?
= 2.4 .
W, = 2 lc/b (5.8)

and

{
z.c = 8.5 % [l - cos gzgulL” , (5.9)
i

where we have taken B = 1, b is the cavity radius, and L the

cavity length. Note that sign of 7Z_ produces bunch lengthening.

R
The bracket in (5.9) varies between O and 2, so we take it

as 1. If we choose b = 7.2 cm, then wy = 1010 sec'l, and if we



-16-

Take I, = 1.35 em then ZRC = 33, ac in the preceding example.

Fxawple Ho. 9 Electrodes

The interaction of a beam with an eleclrode is¢ considered

7

in Appendix In, where 1t 1s shown that for an electrode of lcength
7, termipated at b nds by ils characteristic impedance 7.
Z, termincted at both ends b L cteristic laric /U’

the Green's Tunction is

&I(G)~'—ZO(Eﬂ9¥‘--6 9~-,{dﬂ}

1 )
Vfe] fic _’; (5.10)

From (3.8},

2 2 252

Q - 2 Ne B ¢ hyel e
= = - 175 5 - (5.11)
- (>m)” Thoy, oS chf I8

Thic yields bunch lengthening which, when £ >> A, iz a swmall
effect., 'This appears Lo be in agreement with the observation on
ADONE that removal of the long clearing-field clectrodes had no

s . L. . , . - . ;
efTect on bunch length. I £ <A vwe have, {rom (2.8), o formula

of the form of (4.9),

no

1/2
192 [2 |\ / (ZOC)(mOc )3
k UL e m——

55 \ >

J IR

. (5.12)

78 o I 0

/

Taking the parameters of Table 1, £ - 10 cm and (7,¢) = 0,35
v
. i o ] =

(corresponding to 10 @), we find for ADONE k = 9.2 x 10
( - Ay A n Tonn ] o 0 cmesdn ] iy e o e 4 - Lo o

(CeV™ ns/mh). A hundred of such elenento--or ften elements of
impedance 100 Q--would explain the observations. For ACO, taking
o = 0,006, ten 10-3 elements would give the observed effect, whereas

for a = 0.6, 100 are required. Pickup electrodes, in both these

-machines, could well be described by this model.
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Finally, we turn from examples to some general remarks. In prac-
tice, it is extreme bunch lengthening which is a serious effect, co
it is interesting to examine scaling laws in this case.

In the limit of bunch length, A, much larger than the natural

length, 4, we have, from (4.9), the relation

2
Ab kT

) | (5.13)

ITr order to see the general dependence upon parameters we can evalu-
ate k for the single-resonance model, as in {5.7), and also use (2.9)

to obtain

r(26)Y 65113 } 7 1/2 i

A !

[ Ts
— = l
N L(55)1/H /10 l/éj\ \%' 2 ]

1/2 \1/6
R / {heVrf cos@_ | /

o 7 ot /3,1 \1/3
o } . (5.14)

X = —_
Y R tY

1/6 1/6)

The dependence of A/AO upon rf parameters is weak (h and Vrf

J
as 1s the dependence upon beam current (Il/a). The strongest readily
controllable dependence is upon energy (7-5/2), and upon momentum com-

vaction (a-l/g

= vr)o The last dependence could explain why bunch
lengthening was not observed at the weak-forusing (vr < 1) Stanford
and Novosibirsk storage rings.

Tt is interesting, in this same 1imit of a strong effect, *to

examir2 the rarametric dependence of the bunch length itself,
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,3/2.1 /2 =

m02 , I 1/3
A = %) ﬂ R . (5.15)

| (gl — ]I Ry
heVrf coscpS mR / IO[J
It is seen that A is independent of energy and momentum compaction and
depends~-only weakly-- upon rf parameters and beam current.

In the limit of a strong effect, the bunch length is set by the
balance between the potential-well-reducing self-forces (which are
strongly dependent upon bunch length) and the applied rf voltage. Thus
the bunch length is independent of radiation damping and quantum-
fluctuation undamping.

ACKNOWLEDGMENTS

Our interest in this problem has extended over many years and has
been the result of continuved stimulating remarks, concerning the experi-
mental observations, by P. Marin and F. Amman. We have had an interedg -
ing correspondence with H. Zyngier, and this present paper was stimulated
by a communication fromKK. Robinson. We are indebted to L. J. Laslett
for an important contribution to our early work on this problem, as well

as for many helpful discussions.



-16-

APPENDICES

A. Formal Expression for the Self-Force

We need the axial electric field, E_, associated with a rigid
Ly
collection of charges moving axially at a constant speed v. Because

the current, Jj, and charge, p, are trivially related, we may write

N
- f =
Ez(z,t) = e ; jdt']dz' 8(z' - vt' - crk) Gz - z",t - t',t), (A.1)
k=1

where ¢, is the position of particle k at time t = O, and E is a Green's

k

function in which the integration over transverse coordinates has already
been performed. In writing (A.l) we have assumed a passive system (no

feedback loops). From (A.1)

N
E (z,t) = e 7_[(115’ Gz - vt' - o, t - &',t), (A.2)
k=1

and writing

2 =Vt + 0, (A.3)

we obtain the field at the position of the ith particle,

N
Ezi(t) = e EIIJ[At' E(Gi -0, bt - t1,t). (A.4)
k=1

In (A.4) we have introduced G, where
E(OJT)t) = E(U + VI,T,t). (A.5)

Causality implies that G is nonzero only in the past light cone,

namely where
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(z - z')2 - ce(t - t')2 <0, (A.6)

and t -t > 0. (a.7)

When. we employ (A.B), (Ax6):dmplies

T S S 5 for o, > oy , (A.8)
c - v
o, - 0,
t -t > ——— for o, < g - (A.9)
c+ v
Hence (A.4) becomes :
N 00 @ ;
Ezi(t) = e E;: 5(0i - Gk,T,t)dT + E(Ui - o,,7,t)dr ). (A.10)
=1 0 =04 0;7 0y
c+v c-v

The second term in (A.10) should be small, in the relativistic
limit, as the lower limit of the integral is large. Tf we neglect this
term, (A.10) is of the form

N
Ezi(t) = e Z G(ok - ai,t) (for o - 05 > 0) (A.11)
k=1

where (A.7) has been employed in writing the restriction on the summa-
tion of k, and G 1is defined by the t-integration of G. Expressing (A.11)

as an integral, we finally obtain
@
Ez(ci,t) = [ do AGo) G(o - ci,t), (A.12)
%

where A(c) is the line charge density.
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B. TImpedence Function for a Smooth Chamber

The interaction of a circulating bunch with a smooth perfectly
conducting vacuum chamber has been studied in Ref. 3, under the approxi-
mation of replacing the vacuum chamber with two parallel perfectly con-
ducting infinite planes. A pillbox. model has been studied by A. Entis
and L. Smith.12

For the infinite plate geometry, and in the approximation that

the bunch length is much larger than the distance, H, between the

planes
[1 oH BH \2'1 M (o)
EZ(U) =-2|—=|l+2In—|+{—] {—, (B.1)
Ly ra 7R _} Ao

where R is the orbit radius, a is the bunch transverse radius, B = v/c,
and y = (1 - 82)_1/2.

Comparing (B.1l) and (A.12),ve may write

1 2H BH 25
G(o’) = Ll— -'?- 1 =+ 2 In — + ] = 16’(0‘) E) (B'E)
4 ma TR} |

wnere o [e) 1s e 1irs derivative o e irac e a. unctlion, an
h 5 ( is the first derivati f the Di delta functi a

the extra factor of 2 arises from the & function of the limit of the

integral. Thus, from (3.3), (3.9), and (B.2),

(B.3)

1 o\ (eE\®
— {1 +2 1n ——} + | = w
2
\ LY TR B

with oy = BC/R, and with this formula walid only for frequencies

w < TBc/H.

In Ref. 3 it was shown that this ({nonrescnant) z(w) leads, above



T

transition, to bunch shortening. In this simple G(U) it is more con-
venient to employ (3.8) directly rather than the formalism of (3.11).

C. TImpedance Function for General Resonant Structures

In Appendix A it was shown that the average axial self-field is

%

For a general resonant structure, there will be characteristic
frequencies > where n characterizes the various modes. These fre-

quencies are complex,and

w = - il ; (c.2)

i

with EB, Fn real and I'_ > O, The impedance function, Z(w), as defined
by (3.3) and (3.9) is simply

w._7 1 1

Z(w) = 7 nn + ,  (c.3)

2i | w - (ah - ﬁPn) w + (wn + 1Pn)

n

where the real constants Zn are characterigstic impedances of the struc-
ture. For a cavity model the constants Zn are positive, corresponding
to the inductive impedance of a cavity below resonance. It might be
noted that the I' ensure that ﬁf(d) is zero for o < 0, and it is also
easy to check thatzz*{ﬂﬁ:: Z(w),s0 that é{(c) is real.

D. TImpedgnce Function for a Closed Cavity

The model considered in this appendix is a right circular per-
fectly conducting cavity with radius b and length .. A bunch having

negligible radial extent and longitudinal charge density described by



az - vt) is assumed to move at constant speed v along the axis of the
cavity.

The interaction of the bunch with the cavity and hence, also, of
the bunch with itself--via the cavity--may be easily calculated by
employing the method of Condon.13 The analysis is sufficiently closely
similar to calculations in the literaturelu’l5 that we merely sketch

the method and present the result.

Taking

o(ny 9,2,8) = 25 5 (2 - v), (p.1)

2mr

it is easy to compute the w component of the bunch current (axially

directed):

T = _L_ (102 /7) SNEI (0.2)
where 0o
Nx) = lﬁ J’f e % (5)és . (D.3)

Computation of the cavity fields excited by the Fourier component J
follows the method presented in the references cited. The axial elec-
tric field may then be evaluated at the position z = oy + vt and the

average field experienced (in crossing the cavity) computed as a

function of GO:

(5 (o)) = “TZ Z(1+5 )[ [

s=1 p=0

e X{ )fl - (- l) cos %ﬁﬂ
N 5 . ’
L(E) - (%E) - uSEJ




s} IR

where & is a Kroneker delta, s and p are integers, and the quantities

My are determined from

Jo(usb) =0, for s =1, 2, ***, (D.5)

2

The only poles with nonzero residue in (D.4) are

2 om? 1/2
o, = c{us + {i’) 1 , (D.6)

which are just the resonant frequencies of the cavity. These poles
really have a negative imaginary part corresponding to the resistive
decay of cavity-mode fields.

When (3.3) and (3.9) are employed, the impedance function Z(w)

becomes
6 & & s guf(2) - (B - ()7 e 8
7o) = bgLV2 5:2 ji: 2 . [ w 22 2 2 (-7
=1 p=0 Jq (usb)[(%ﬂ) - \VJ } [ %) - wsp]

When I, and b are much smaller than the length of a bunch, then
the terms s = 1, p = O dominates in the sum and
r
16iv° |1 - cos EE] 1 1
v

= 5 5 + (D.8)
b L Iy (ulb)m @+ Cy = CHy

Z(w) =
where p,b = 2.41 and J,(u,b) = 0.52. In the case in which the range
of interesting frequency is such that o << S Z(w) becomes

16iLm
(p.9)

Z(w) =~ -
2r 2
c tLulml(ulb)]
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Robinson has given an approximate analysis of a cavity-like

p)

structure” and obtained an impedance function

Li re\
Z(w) = — | In — o,
Te rlf
!

(D.10)

which can be seen to be of the same functional form as (D.9).

E. TImpedance Function for Electrodes

As long ago as 1967, L. J. Laslett produced an electrodynamical
analysis for clearing electrodes, and thus supplied the first model
which could explain bunch lengthening.

Subsequent to his unpublished work, computations for general
electrodes have appeared in the literature.l6 We summarize these
formulas, in this Appendix, as a convenience for the reader.

From Ref. 16, a beam of radius a moving at speed v, down the
axis of a vacuum chamber of radius b, interacts with an electrode which
is a cylindrical segment of angular extent 2@0, length 4, and radius
approximately b. The electrode has characteristic impedance ZO and is
terminated, at the ends, with impedances Zl(m) and Ze(w). The space
and time Fourier transform of the longitudinal electric field on the
chamber axis, ﬁz(k,w), is given in terms of the double Fourier trans-

form of the beam charge density, A(k,»), by

8i7 ¢
~ 0 lo 2 ¥*lon, 1o ~
Ez(k,d)) = — (K ng) g g(k) P ng(k)w) X(“KJ(D)) (E'l)
2TR
®
where Klong = —9
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2y I,(ka/7)

*
and g long = _._._._-—__-—§ s
ka [Io(kb/yﬂ
B |2ir (w)[cos 2 os kg 4 sin 22
long D c J c
and P (k,w) = — 0 T 5
2 2 cos = - 2iW(w) sin —
c c
A
with rp(w) S
2o(2) + 2,)
2
ZO + ZlZ2
and Ww) = ———— . (E.2)
zo(zl + Ze)

Note that our definition of Fourier transform differs from that of
Ref. 16 by the interchange k - -k, o = -w.
From (3.3), (3.9), and (E.1) we obtain
817
0 1lo 2 *lo lon
Z(w) = — (K )7 g " (w/pe) PO (w/pe,0).  (B.3)
B
Of particular interest is a pickup electrode which extends around
the full chamber and is terminated in its characteristic impedance.

In the limit of a relativistic beam {(aﬁ/BC7) << 1, for all w of

importance]
7(w) ~ Biz P "8, (B.14)
/i /0 . Ao
Tong 1 i(cos - - cos EE) + sin —
with P ~ . (E.5)
J/a) . . Ao
(cos = - 1 sin —) ]
c c

2
Neglecting terms of order 1/7 , the impedance function can be written,

using (E.4), (E.5), as
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Igmz/c).

Z(w) =~ - ZO(l - e (E.6)

Tt is convenient in this case to evaluate the functicnlf@(o); using

(3.9) and (E.6) one has
b = -2 o) - ol - )] -

In the 1limit of electrodes short compared with the bunch length,

(E.7) becomes

27, 1 g
Y (o) ~ - 5'(;} . (E.8)
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