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ABSTRACT 

UCRL-19940 

The renormalizedRPA-equations are solved for a density-dependent 

particle-hole force emerging from the nucleon-nucleon interaction. Migdal's 

16 40 ' , 
renormalization constants are determined for 0 and Ca assum~ng Saxon-Woods 

states for the quasi-particle and quasi-hole propagation and compared with the 

renormalization constants for a harmonic oscillator propagation. In both cases 

the assumption of good isospin is made. Furthermore we determined the re-

16 40 48 208 ", 
normalization constants in the 0, Ca, Ca, and ,Pb-problem ~n order to 

test the assumption of a mass number independent renormalization constant. For 

this purpose we used the standard harmonic 'oscillator states for the quasi-

single-particle (-hole) propagation (no 'good isospin). 
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I. INTRODUCTION 

In the last decade many calculations of certain excited states of 

even nuclei have been performed under the assumption that those states are 

describable asa superposition of particle-hole and hole-particle excit~tions 

(RPA-approximation). One can derive the random-phase approximation with 

different methods known as the quasi-boson approximation, the time-dependent 

Hartree-Fock method and the Green's function approach, which can be found, 

for instance, in Ref. 1,2, 3, and 4. In most of the calculations one assumes, 

that the one...,.particle propagation takes place with the experimental single-

particle energy in a shell-model state.apprciximated by a suitable harmonic 

* oscillator potential. With this assumption a certain kind of force is 

connected, since a change in the single-particle propagation can result in a 

change of the effective forces. It is the aim of this paper to investigate 

the change of the force due to the use of Saxon-Woods functions instead of 

harmonic oscillator functions. We calculated this effect for the case of 160 

and 40Ca . In order not to complicate the calculations we assumed good isospin 

for both cases. In addition we wanted to test Migdal's assumption, that the 

renormalization constants can be kept approximately fixed throughout the 

periodic system. For this purpose we calculated the spectra of 160, 40ca , 

48 . 208 . 
Ca, and Pband determined the "best" renormalization constant in each case. 

In order to make plain the assumptions involved in a renormalized RPA-

treatment we will briefly recall in the second section the relevant features of 

the renormalization procedure. In the third .section we will shortly describe 

* According to the derivation in the quasi-boson approximation and in the time-
dependent Hartree-Fock method one should use in those approaches the Hartree
Fock single.,.;particle energies (unrenormalized RPA) .. 
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the calculations and the results for the mentioned nuclei using an effect-ive 

5 - 6 
particle-hole force derived from the Puff-Reynolds nucleon~nucleon potential, 

which is fitted to S~wave scattering data. 

In the appendix we give some more details not contained in the submitted 

paper. Thereport is written in such a manner,that if one is not inter'ested 

in too many details the appendix can be neglected. 

II. RPA-EQUAT10NS AND RENORMALIZATION PROCEDURE 

The excited states of the N-particle Ilucleus can be obtained by 

calculating the poles and the residues of the autocorrelation function of the 

density fluctuations, which is defined by:3 

= _ (0 I {.tjJ,t tjJQ(W _ H+ in)-ltjJ i" tjJ _tjJ t tjJ(w + H .,. in)-l tjJ~tjJQ} I 0 ) 
1\ fj _ \) 11 . \) 11 1\ fj 

(11.1 ) 

t 
Here, tjJA and tjJA are .the Schroedinger creation-and annihilation operators, 

respectively, of a nucleon with the quantum number set 'A fixed by an independent-

particle hamiltonian. Hs.1 0) denotes the exact groundstate of the total 

hamiltonian H for the N-particlesystem; the groundstate energy is chosen to be 

E (N) -0. By inserting a complete set of states into definition (11.1), one 
o 

obtains: 

* P P 13 l1\), NA , N 
W + ~ - in 

IN) of 10) (II. 2) 

with: 

. t 
PSA , N: = ( 0 I IjJA tjJ /3 IN) (11.3 ) 

With -I N) we abbreviate the excited states of the N.,..particle system 

( IN): = IN, E (N), ex ) ). ex . 
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In order to calculate the wanted amplitudes p and the excitation energies 

~ one needs the equation of motion for the response function. According to our 

knowledge an exact equation for the response fUnction does not exist, if one 

imposes the condition, that such an equation should contain only the response 

function and the effective force bel!lides quantities describing the one-particle 

propagation in the nucleus .• 

In order to overcome this difficulty we use a method which connects 

the autocorrelation fUnction with a more general function--the so-called 

general linear response function,7 which describes the first-order change of a 

single-particle propagator due to an external source--for which the equation of 

motion can be derived. We utilize the Green's function framework to take down 

the relevant equations. In this paper we use the following definition of the 

Green's function: 

(n.4) 

where the latin indexm includes the time-coordinate t as well as the quantum 
m 

number set ~ (m: = t , ~). Since the general response function emerges from a 
m 

functional derivation of the single-particle Green's function ~, with respect 

8 to an external source, it can be put in the following form: 

For the.one-pointfunctibn and the general response function the following 

coupled system of equations holds: l ,8,9,lO 

(n.6) 
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v' = 2'v ~',+ iv' gIL k,Q, - 1. kajb -:'ba kman ar re,Q,d dnem 

L 0' 
kmjn =L {o" 0 - I L } 
"kbj cbm hc cubv vmun 

(n.8) 

with: 

v" 
kmjn 

'21{. ( Klli v I a.v) - ( kll I v I va. )} 8( tk - t ) 8(t - t ) 8 (tk - t ), (II. 9) m 'an a 

= (11.10 ) 

(n.ll) 

In (II. 6).-( 11.8) we use theconvent1on according to which summation or integration , 

respectively, is to be carried out over all doubly occuring Latin indices. It 

ca,n be easily shown by transforming to energy-representation and comparing the 

definition that the followingrelatlon between the general response and the 

'* autocorrelation function holds: 

, 
E: , w) w :f 0 (n .12) 

where we have omitted the common a-factor of energies (energy-conservation). 

Applying the double integration of (n.12) on equation (n.8) does not lead 

to an equation for L(w) alo~e, since I depends in principle on three energy 
, 

variables, so that only the integration over ,£ can be performed. Therefore 

* We distinguish the different response functions not, by a different letter but 
by the different number of energy.;..variables. The decomposition of the energy
variables is done in the particle .... hole description 

(E:: = 
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one usually makes the assumption that near the Fermil,:evel the E and £ .,. 

dependence of I is sufficiently weak to obtain the desired equation for 

L(w) : 

L(3]JA)W) = L~]JAV.(W) - 27T 2.: L~YAa(w) 1aoyp(W) Lp]JOV(W) 

ay 
op 

with: 

o () i f' d"( , w)' '( w) LS]JA\) W : = 27T '£ g(3v £ + 2" gllA £ - 2" 

(II.13) 

(II.14) 

The two-point function obeys the following exact Lehmann spectral representation: 

(II.15) 

with 

(II.16) 

where In > , , Ih', > are the exa.ct eigenstates of the N + 1-, N - I-system, 

respectively. Using'this spectral representation one can perform the 

integration in' (II.14). As a result one obtains an equation for L(w) containing 

the experimental single~particle energies and the generalized single-particle 

(~hole),wavefunctions, which obey the following equations of motions deductible 

from (11.6) and (11.15): 

I" 
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L {E:n °as 
1 2 

vaS (En)} ( 0 I 1/Js In ) a PaS - = . 2m (lI.n) 

(3 

L {EA CaS 
1 ,2 . t '. 

- - Pa(3 - vaS ( E A)} (A I 1/JS 19 ) , = 0 
2m 

(11.18) 

(3 

. .. 12 
Unfortunately v

a
(3(W) contains L(w), so that in principle one has to determine 

the single-particle problem and the excited N-particle states simultaneously. 

This is aue to the fact, that the effective single-particle potential 

("irreducible mass operator") contains the following term: 

I ·p(3vcx. 

(11.19 ) 

I I 

where the states In) and. \A) are expected to be mainly describable by a 

weakly energy-dependent single~particlehamiltonian but whose eigenvalues are 

not directly comparable with the experimental s;ingle-partic'le energies. In 

other words V~A + I1vpA (w) should reproduce the experimental energies, if 

only theparticle-vibration-coupling is important. Due to the possible energy-

dependence the generalized single-particle functions are normalized as follows 

4 ( olo) = 1, (AlA) = 1, etc.): 

.t: 
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L ( nltP: 10 ) 10 
-

cv (e:) I 1 = an . (0 Il/J~ ) (II.20) an d£ n 
all £=£ n 

1 L (0 Il/J:~) 10 
-

dV d:[j( E) I (All/J 10)· (II. 21) an .dE I n 
an £=EA 

If one wants to avoid solving self-consistently the coupled system of equations 

(1I.13), (11.17), and (II.IB) with the expression (11.19) and a suitable form 
i 

of V~A' one can proceed with the ass~ption, that for a suitable single-

particle representation one diagonal term in (11.15) is most important compared 

with any single other term; so obta.ining 

O"jJ ..... , (0 Il/J\) In )(n Il/JJ" 10 ) 
v £ - £n + in 

+ ( 0 Il/JJ \A )( A .Il/Jv 10 ) I" 
e: - £A -~ll 

R 
+ g 

VjJ 
( 11.22) 

". R .'. . 
where the rest term ~canbe taken into account by changing the force. In 

jJ . 

the quasi-boson or time-dependent Hartree~Fock approach, in which the second 

term in equation (II. 7) is neglected, the rest term~jJ is exactly equal to 

zero, if one chooses the Hartree-Fock solutions, since in this case the single-

particle problem reduces to the Hartree-Fock problem. For the particle-hole 

force one gets two times the nucleon-nucleon potential (see II.7 and 11.11) . 

Furthermore the second term in condition (II.13) and (n.14) is equal to zero by 

definition. The only problem is that one should use in this case, consequently, 

the Hartree-Fock single-particle energies and the nucleon-nucleon potential for 

the calculation of L(w) (unrenormalized approach). 

One can obtuin'equations very similar in formal structure to the out-

come of the quasi-boson or time-dependent Hartree-Fock method by the fcl.lowir;g 
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renormalization procedure: ExpreS$ion (II.22) can be put in the following 

form assuming that the nucleus still has dominantly shell-model structure: 

=0 z· . \).. + \) .. .. + R Il->n n I 
\)11 \) E - E + in E- E - in·. . ~ (II. 23) 

with 

z : = 
\) 

\) \) 

l
·~ t·2 \ t··· dV. "'n· (En) 

(1 - n) . 1 - L I (0 \1PjJlo) I> + 'L( ~ \1Pa 10 ) a"£ ~G 
ll¥\) an 

i 2 \ i dV"'n(E) 
I (0 IIJi 11 IA) + G ( 0 IIJi a IA ) a"£ 

an 

E=E . ~ 

(II.24) 

Here, n\)is the quasi-particle occupation nurober,4 E\) the experimental single

particle (-hole) energy accordin~ to the shell-model quantum numbers. Inserting 

this expression in the definition (II.14) for LO give$ the following result: 

>. 

. S oR· = 0a\) 011 1.. LSI.. (w) + LSllA)W) (II. 24) 

with. • 

(11. 25) 

Practical calculations are usually done in a restricted basis. One can take 

into account this effect and the second term in (II.24) by changing the 

.. .. 13 
interaction utilizing standard procedures. Lumping the neglected single-

l! 
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particle states and the second term together in LoRS one obtains for L(W) 

instead of (11.13) the following equation: 

where I obeys: 

.~ RS ,., 
I = 1- 2n I L I 

In eq. (11.26) the summation is restricted to the chosen basis. 

By introd'ucingthe renormaUzed quantities 

one obtains 

LSflA)W) = ~A (w) lOavOAV - 2~ [' ISPAa(W} Laup)W)j 
po. 

(II. 26) 

(II. 27) 

.. (II. 28) 

(II. 29) 

(11.30 ) 

(II. 31) 

Inserting (11.2) and taking the. :pole terms one .. obtains the renormalized RPA

* equations: 

., ".., 

PVIJ , N = (nv ~ n)l) ~ + ;fl - £( ':'2n) 2.: I VCYflA (~) PAcy , N 

CYA 

which have formally the structure of the quasi-boson approximation. 

* 

(II. 32) 

In the continuum the first term of( II .31) has also to be taken into account. 
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So far we have not tried to give an expression for the effective 

particle-hole interaction I. One can obtain the Feyrunan series for I very 

easily by using the expansion cjf vkR. in terms of the nucleon-:rlucleon interaction 

ahd the two-point function and then using definitiort(II.ll). The desired 

explicit expansion of vkR. can be straightforwardly obtained by taking down (11.7) 

and (11.8) in a different manner: 7 ,10 

oVbR. 
v

k
" n. = ~2i v, __ n g + i v g----

N . ~n run kman ab 0Cl.mn (II. 33) 

(II. 34) 

Here, q is an external source which. can be put equal to zero after obtaining 

the series. Iteration of (II.33) and (1I.34) starting with ~~ = 0 gives the 

desired expansion of vkR.not explicitly depending on q (therefore we can put, 

finally, q = 0) •. One has then only to differentiate· wi ~hrespect to the two-

point function in order to obtain the effective particle-hole force ("irreducible 

vertex part of Migdal"). Nowadays one believes that the subseries of ladder 

diagrams for a suitable nucleon-nucleon potential is a good approximation t.o 

this force and therefore we would like to use the ladder approximation. But 

unfortunately these matrix elements are, even in the nuclear-matter case, 

difficult to calculate and the computer time necessary in our calculations would 

btl Th f d h 11 ·d· AOO " . t .14. h' h . e 00 arge. ere ore we use t e so-ca e -apprOXlma lon .-In w lC , In 

the intermediate states, the single-particle propagati.on in matter is replaced 

by the free propagation-to get the needed matrix elements. 

.i{ 
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III. CALCULATIONS AND RESULTS 

First, we are going to investigate the change caused by the use of 

Saxon-Woods functions instead of harmonic oscillator functions on the re-
. i 

normalized effective particle-hole force. Since the state 1jJ 10) for a 
\) 

suitable Saxon-Woods potential 1s believed to be a better approximation to the . . . 

true state In ) than for a h'~rmonic osciliator potential, one would expect 
, . \) 

according to our considerations a.· greater renormalization constant for the 

Saxon-Woods case. 

In principle, one has a different renormaliZation constant for each 

single-'particle state. Since we are not able to calculate all the re-

.. .' 4 
normalization constants we use, as proposed by Migdal, a fixed average 

renormalization constant in all matrix elements for each nucleus. Otherwise 

one would have too much freedom in describing the data. But the value of the 

renormalization constant might depend on the used single-particle basis and 

other assumptions--for instance assuming good or no-good isospin for the 

excited states. The influence of the second assumption can be read off from 

our results in two cases. Since" one neglects, in the good isospin case, some 

terms on the right hand side of eq. (11.32), a change is expected. If the 

neglected terms add up coherently, one would get a decrease in the re

normalization constant for the no-iood isospin case. Furthermore Migdal m:ade I 

the assumption that one could use the same renormalization constant throughout 

the periodic system if one interpolates the density-dependence of the force 

according to the known density distribution of the considered nucleus. We are 

using the same procedure in our calculations. For the nucleon-nucleon potential, 

we have chosen 'the Pi.lff-Reynolds potential, 14,15 since one can calculate the 

K-mHtl'ix explicitly for this potential. 
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Explicit Equations of Motions; 

The unrenormalized reduced particle-h.ole matrix elements in a harmonic 

oscillator basis used in our calculations are given by the. following expression 

(good isospin):" 

j,t 

= LL 
,."..., ,.., 

i=1,.2 nn Inn' t 

A.2 A 2 A2 A 2 A A A. A A A Jl J2 j 12 tlt.2t12 J12 t12 t12 S12 J t jl j2 J3 J4 
j4 j3 j t4t3 t 

t sl Jl t,., s . j 1 .) 3 3 

t2 s2 j2 t4 s4 J4 
(n't il'!, t12 Inl tl n2 

t12 s12 j12 t12 s12 j·12 

r. . it A t 
( nt nr, ~12 In3. t3 n4. t 4 " t12 ) (-I Fil -) ( ,I Ki .. I ) 

n' n.n S12t12· n 

t
2

, t12 ) 

(IILl) 

The equations and eJ(:pressions for the K-mat:rix can be found in Ref. 14-16. In 

expression (111.1) we used the fact that the Puff-Reynolds potential acts in 

S-states only. The density interpolation is given by (R is the centre of mass 

coordinate) : 

(III.2) 
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peR) : 
(r 

o ~~: _ R)) -1. 
(III. 3) 

The matrix elements occuring in (IILl) are defined as follows (A: = b//2; 

c, =(.I2b) -\ k is the relatiVe momentum; b, = (h\~ ~12) 1/2) , 

R- •. R-
e . .-, \ FJ.\ __ ) .. = f · 2 - (R)· i() . (R) 

. dR R W ~'r p:F R W~R- p: (III. 4) 
n· n 

* We use the phase convention. of Ref. 17. W is the radial part of the wave-

function. Wdenotes the wavefunction corresponding to the contragredient 
I 

tensor. 

In order to get the matrix elements for the Saxon-Woods potentials, we 

expanded the Saxon-Woods fUnctions in terms of oscillator functions so obtaining 

the desired .matrix elements in terms of matrix elements in a harmonic 

oscillator basis given by expression (lII.l) • 

The equations· we .have to deal with can now be obtained by the use of 

the reduced matrix elements of eq.(II.3) defined by 

j ) .( I N j 

m . ~ m 

* 
t 

I ::) 1 1 ( oU Btjt 
~ ~ 
J. T E:Aj"R."t"., 

0 ·0 T 

(nr.6) 
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Insertion into (11.31) gives: 

J t e: J R.t ex. ex. ex. ex. 

L 
e:J It···· 

\) \)\) V 

Following the standard procedure by introducing 

.ujt ,N . . Aa . 

--U ,N . . ~a : 

J+T .... J~- i 
= (_) 0 0 N .-"N < N H B jt n· 0 ) * 

t· 
= (0 D B jtu N ) aA 

aA 

UCRL-19940 

(111.7) 

(III.B) 

. .' '. .( j tN' '. j 1 -j 3 . _it N) 
one obtains the known RPA-matrix equation UAa " = ("::') WSA" : 

(IlLIO) 

with 

~ph~P' : = (e: - Eh)Ohh
' 

O. ,+ ,,\ 21T (p 'h' II I'jt II nj) ,( IILll) 
P . PI> j t 

, 
.... , 
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.. j -j . 

= (-,{ ~P < pp' II Ijt IIhh' ) 
j t 

UCRL...;19940 

(IIL12) 

Here, with p, p'we label the particle-states; with h, h'we denote the hole-states. 

In (IlL 10) the.labels of U and Ware restricted to the combination (h, p). 
I 

For no~good isospin one has to neglect theisospinterms. 

Results: 

In our calculations we have used experimental single-particle energies 
, ' , 16 

known from the literature. 'The energies needed in the calculations for 0, 

40ca , and 48Ca are given in Table 1. In Tables II and III the results for the 

excitation energies for negative parity states of 160 and 40Ca using Saxon

Woods functions are shown. For comparison the results of the standard 

calculation using harmonic osci1{ator functions are also given.16 Since we 

wanted to test mainly the ·change of the renormalizationconstants due to the 

use of Saxon-Woods functions·' we used the assumption of good isospin in order to 

reduce the computer time. For harmonic of)cillator functions it was possible 

* to use a common renormalization constant zH.O. = .8 for both nuclei. For 

Saxon-Woods functions we had to use, 

We obtained zS.W. = .877 for 160 and 

as expected, larger renormalization constants. 

84 
,40 

zs.W. = .. 3 for Ca. Since especially 

the coherent states are very 't' t th h' f' 16 Id 1 sens~ ~ve 0 e c o~ce 0 z, we cou no onger 

** use a common renormalization constant for both nuclei. The fit to the 

. i tId t . Ii htl b tt f th S W d f t .18 exper men a a a ~s s g y .. e eror eaxon,;., 00 s unc ~ons. As an 

example of the nature of states with a large deviation from the pure 

* The best fit gives z 
** H.O. 

16 
= .795 for 0 and zH.O. = 

40 .81 for Ca, Ref. 16. 

See also Ref~ 19. 
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shell-model picture, we give the results for the lowest 3--state for both nuclei 

in Table IV. For comparison we also included in this table the amplitudes for 

the no-:good isospin calculation. The eigenvalues and amplitudes for this state 

depend very little on the choice of basis and moderately on the assumption of 

good or no-good isospin. But for some higher states we could not verify the 

assumption of good isospin. 

The next part shows the results·· of the test whether or not one can use 

a common renormalization constant independent of N. For this purpose we calcu .... 

··1640· 48 . 208 . 
lated the spectra of 0, Ca, Ca, and Pb assumlng quasi-one-particle propa-

gation in harmonic oscillator states and dropping the assumption of good isospin. 

In all cases we determined the best z-values suitable to the experimental data. 

The obtained spectra together with the z-values are shown in the Tables V -VIII. 

The results for the z-values show that the deviations are not negligible 

(z(160 ) = 0.808; z(40Ca ) =0.789; z(48Ca ) = 0.706; z(208pb ) = 0.706), since, as 

mentioned b~fore, especially cohereht states depend strongly·on z. On the average 

one gets':'-as expected--a smaller renormalization constant than for the case with 

the good isospin assumption; it seems that the renormalization constant is slightly 

larger for smaller mass-:numbers. The single-particle energies needed in the 208pb_ 

calculation were taken fromZawischa and Werner.
12 

As a byproduct we give the ampli

tudes of the 3-- and 5-~states of 48Ca: in Table IX and the amplitudes of the 3-

states Of 208pb in Table X. Further amplitudes can be found in Ref. 18. 

We have not discussed so far the question that one should renormalize 

the solutions of (II . .26) and not I directly. It has been shown by Lutti;nger 

and Nozieres 20 that one can include this effect, under certain conditions, by 

changing again the renormalization constants. We have implicitly assumed this. 

The change of the renormalization constant for the case of no-good isospin is, 

for instance, an effect of this kind. 
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IV. s'OMMARY 

The renormalization procedure for the random-phase approximation has 

been discussed in detail 'in order to trace the different effects contributing 

160 an'd 40Ca the to the renormalization~ We calculated for renormalized 

effective particle;...hole interaction using Saxon-Wood states for the quasi-

particle description and compared the results with the outcome of the harmonic 

oscillator state description of quasi-particles. As expected we found an 

increase in the renormalization cqnstant. Furthermore we tested the assumption 

* of keeping the renormalization constant independent. of the number of particles. 

At least for smaller nuclei we were not able to confirm this assumption. The 

density-d~pendence of the force was interpolated b.etween .the centre-value and 

the vac;utml-value according to the density distribution of the considered nucleus. 

For the effective particle-hole force we used the solutions for the Puff~Reynolds 

potential in the AOO- approximation. 
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Table 1._ Single-particle energies used in the calculations (in MeV). 

160 a) 40Ca b) 48Ca b) 

State 
n, p n p n p ..... t 

Is 1/2 '"' 

1p 3/2 -21.74 -18.4 

1p 1/2 -15.6 -12.1 

Id 5/?- -4.15 - 0.6 -21.92 -14.845 -18.64 -20.22 

2s 1/2 - 3.28 -0.096 -18.02 -10.945 -13.64 -15.62 

Id 3/2 0.93 4.1 -15.62 - 8.345 -13 .64 -15.22 

If 7/2 - 8.36 - 1. 085 - 9.94 . - 9.62 

2p 3/2 - 6.26 0.815 - 5.14 - 5.20 

If 5/2 - 2.36 5.315 . -1.14 - 3.72 

2p 1/2 ";4.26 3.015 - 3.14 - 2.75 

199/2 + 0.36 - 3.12 

a . 
Ref. 21. 

b)Ref. 22. 

"., .. 
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Table II. Eigenvalues of excited states of 160. calculated in a harmoni~ 
oscillator basis and in a Saxon-Woods basis (good isospin).a) 

State 
T J7T 

-0. 0. 

-0 1 

-o 2 

E 
23 

expo 

10..94 

7.12 

9.58 

12.43 

8.88 

12.52 

13.97 

6.14 

11.62 

12.78 

13.1 
.' 17.3 

20 ... ' 

22. 

25. 

12.96 

13 ~'26 

H.O. 
Elb 
theor. 

zH.o..=·8 

12.92 

24.20. 

10..2i 

10..99 

16.73 

17.94 

23.54 

11.95 

15.65 

17.66 

19.18 

22.92 

6.58 

16.22 

21.15 

13.90 

27.29 

14.11 

18.13 

20..49 

24.23 

26.89 

'. 13.29 

18.45 

19.41 

21.18 

24.07 

13.59 

19.0.3 

25.53 

a or the Fermi energy the value EF = -12.2 MeV was' taken. 
effective force as a function of EFis given in ref. 16 . 
....... ; ... ; .. = ..... = 

S.W. 
E theor, 

zs.w.=·8773 

12.86 

24.20 

10.3i 

10.84 

16.67 

18.07 

23.57 

11.98 

15.54 

17.70 

19.11 

22.91 

6.13 

15.82 

21.36 

13.75 

27.43 

13.93 

18.26 

20.39 

24.26 

26.90 

13.34 

18.45 

19.46 

21.04 

24.12 

13.65 

19.0.9 

25.60 

The dependence of the 
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Table III. Eigenvalues of excited states of 40Ca calculated in a harmonic 
oscillator basis and a Saxon-Woods basis (good isospin) .a) 

State 
T J'IT 

o 3:-" 

E expo 
24 

6.95 

9.61 

10.33 

7.53 

3.73 

6.28 

6.59 

H.O. 
E16 
th~or. 

z . =.8, 
H. o. 

9.86 

14.15 

20.81 

T.li 
8.67 

10.0,9 

10.39 

13.59 

14.07 

14.54 

20.32 

7.93 

9.34 

11.45 

11.95 

12.29 

14.01 

15.37 

16.24 

17.75 

19.86 

3.55 

7.92 

9.03 

11.67 

13.66 

14.83 

15.66 

S.W. 

Etheor. 
zs.w.=·8426 

9.91 

14.17 

20.93 

7.85i 

8.37 

9.83 

10.18 

13.59 

14.04 

14.63 

20.42 

7.98 

9.33 

11.46 

11.88 

12.19 

14.05 

15.39 

16.30 

17 .76 

19.91 

3.56 

7.93 
·8.93 

11.52 
. 13.65 

14.80 

15.62 

(continued) 

. .;. 
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State 
T J1T 

."-24-

. Tab.le III (continued) 

E expo 

7.69 

7.66 

24 . 
H.O.· 

E16 .. 
theor. 

Zyr 0 :=.8 . . . 

18.40 

20.56 

8.01 

9.86 

10.88 

13.74 

14.69 

15.67 

16.78 

18 .. 22 

20.74 

7.66 

10.39 

14.01 

14.44 

16.04 

19.87 

8.45 

13.75 

20.80 

UCRL-19940 

S.W. 
E theor. 

z=.8426 S.W .. 

18.38 

20.71 

8.13 

9.93 

10 .. 85 

13.80 

14.92 

15.69 

16.72 

18.21 

20.84 

7.71 

10.40 

14.09 

14.52 

16.06 

19·91 

8.55 

13.82 

20.94 

a)rn order to compare with Ref~ 16, we have chosen the same neutron single-particle 

J",:,~ 

energies as in Hef. 16, which differ barely from the ones of Table I. The Fermi ,~ 

energy was takerito be £F = ~8. 3 MeV. 



)- t, 

Table' :he amplitudes of the lowest 3--state of 160 and 40Ca . 

Nucleus Basis state a)H~O.NoIsospin b)H.O. Good Isospin 

Proton Neutron T= 0 

:u-ticle Hole U W U W U W 
40Ca .. f 7/2 2 s 1/2 .415 -.18 -.41 -.18 .415 -.19 

- f 5/2 2 sl/2 -.18 +.105 -.185 .11 -.19 .11 

_f 7/2 1 d 3/2 .455 -.14 .425 .43 -.15 

f 5/2 1 d 3/2 .225 -.12 .23 .23 -.13 

~ p 3/2 1 d 3/2 .27 -.11 .25 - .26 -.11 

f 7/2 1 d 5/2 .28 -.15 .275 .30 -.16 

.. f5/2 1 d5/2 -.11 ".07 -.11 -.12 .Q7 

~, p 3/2 Id 5/2 ~10 -.055 .095 .10 -.06 

~ P 1/2 1 d 5/2 -.095 .06 .... 095 -,10 .06 
16

0 :. d 5/2 1 P 1/2 .68 -.185 .65 .66 -.17 

d 5/2 1 P 3/2 .265 -.12 .265 .26 -.11 

_ d 3/2 1 P 3/2 -.235 .125 -.23 -.22 .12 

a)u .",. i ( i' ) Sln€ ~-;armonlC oscillator bas s no good SOSplU. 

b)Usin€ ,_ -,armonic oscillator basis and good isospin (T = 0). 

c )Usin€: t-~axon-Woods basis and good isospin (T = 0). 

The an1:f,:-;Aes for'cases b) and c) were divided by 12 for easy comparison with case a). 

• 

c)S.W. Good Isospin 

,T =0 

U W 

.41 -.19 

-.17 .10 

.45 -.16 

.23 -.13 

+.22 -.10 

.32 -.18 

-.13 .08 

+.10 -.06 

-.10 .06 

+.665 -.19 

+.275 -.125 

-.23 +.13 

I 
1\)' 
VI' 
I 

c::: 
(') 

~ 
I 
I-' 
\0 
\0 
-t="' 
o 
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Table -V. Eigenvalues of 160 using harmonic oscillator -functions and no good 
isospin. 

State E -__ 23 Eb) ~\ 

J7T IT}a) 
expo theor. 

zH.O.=·SOS 

0 - (0)- 10.94 12.45 

0 23.92 

(1) 12.78 13.69 

1 27.13 

1 - 10.5i 

0 7.12 10.57 

0 9.58 16.40 

(0) 12.43 17.51 

0 23.26 

1 13.1 13.S1 

(1) 17.3 lS.02 

_-1 20. 20.29 

1 22. 24.20 

1 25. 26.27 

2 - 0 8.S8 11.76 

0 12.52 15.25 

(0) - 13·97 17.51 

(0) lS.S3 

(0) 22.59 

1 -12.96 13.16 

1 18.20 

(1) 19·30 

(1 ) 21.06 , 
(1) 23.90 

3 - 0 6.14 6-.155 

0 11.62 - 16.07 

0 20.87 

1 13.26 13.45 

1 18.96 

1 25.32 

(continued) 
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TableV.Continued 

a)The predominant isospin component. We label larger isospin impurities by put

tirig the predominant isospin component in brackets. 

b)The'Coulomb interaction between a proton particle and proton hole was taken 

to be -~4MeV. (~= -1,2.2 MeV) 
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T bl VI Ei 1 f 40C . h . . . . '11 t ft· d· : d a e.. . genva ueso . a us~ng armon~c osc~ a or unc ~ons an no goo 

0- (0) 

( 0) 

0 

(1) 

(1) 
1 

-1 

(0) 

(0) 

(0) 

(0 ) 

(1 ) 

1 

( 1 

2- (0) 

(0) 

(0) 

( 1) 

(1) 

+ neutron (2~3/2 ,ld3/ 2 ) 

- neutron (2P3/2 ,ld3/ 2 ) 

proton ( 2P3/2' Id3/ 2 ) 

neutron (2p3/2' Id3/ 2) 

3-0 

proton (lf7/ 2, Id3/ 2 ) 

neutron (lf7/ 2, Id3/ 2) 

o 
o 

(1 ) 

1 

isospin. 

E expo 

6.95 ? 

9.61 ? 

10.33 ? 

. 7.53 ? 

8.47 

3.73 

6.28 

6.59 

7.69 

Eb ) 
theor. 

zH. O. =·789 

9.57 

13.94 

20.96 

10.51 

14.68 

22.90 

6.95i 

8.63 

10.12 

13.42 

10.19 

·9.74 

12.11 

12.86 

7.70 

11.16 

11.77 

8.67 

11.75 

8.99 

9.58 

3.76 

7.63 

7.90 

8.80 

11.6'r 

9.70 

10.67 

(continued) 

,.-

loi, 



State· 

J 7f [T]a) 

4- proton (lf7/ 2, 1d3/ 2) 

neutron (lf7/ 2, 1d3/ 2)· 

(o) 

(6) 
o 

(1) 

1 

5- 0 

o 
o 
1 

1 

1 

-29- . 

Tab1eVI (continued) 

E 
expo 

5.61 

7.66 

4.49 

8.54 

a)The predominant isospincomponent. 

UCRL-19940 

b) 
E theor. 

zH.O. =.79 

7.02 

7.51 
9.82 

13,22 

13.57 
10.19 

14.03 

5.50 

13.90 
18.63 

8.23 

13.94 

20.97 

b)The Coulomb interaction between a proton particle and a proton hole was taken 

to be -.32 MeV. (~= -8.3 MeV) 
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Table VII. The calculated energy levels of 48Ca are compared with experiment 
and the theoretical values given by Blomqvist and Kuo. 

State E ~K 
E a) 

expo theor. 
JTf z = .706 

0 9.13 

10.49 

10.97 

13.08 

i - 4.80i 1 7.76i 

6.95 8.03 

15.62 15.92 

17.22 17 .Ii? 
.17.94 18.88 

2 - 6.15 

8.61 

8.92 

3 - ,'4.50 2.60 4.50 

5.37 6.15 5.54 

7.68 7.59 7.97 

4- 5.41 

6.04 

10.26 

-5 5.73 . 5.66 5.15 

9.94 

10.64 

a)The Coulomb interaction between a proton pa~t'icle and a proton hole is taken to 
be -.3 MeV. (Ep= -6.0 MeV) If one chooses the single particle. energies given by 
A. JaffrinSand G. Ripka,25 which differ slightly from those of Ref. 22, one obtains 
Z = ,657,1 . 

"t-

~ 
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Table VIII. The '. calculated energy levels of 208Pb compared with experiment 
and the theoretical values given in Ref. 26. 

'"'" State E ELE EGGS E . 
a) 

expo theor; 
J7f 

z = .706 
~> 

2 4.11 4.21 4.28 

4.94 5.08 

3- 2.62 2.63 2.74 2.62 

5.13 4.08 4.03 4.06 

4.4.7 4.57 4.21 

4.82 4.74 4.70 

4.91 4.89 

4- 3.5 3.47 3.48 3.51 

4.03 3.99 3.91 

4.27 4.07 4.07 

4.35 4.20 

4.61 4.40 

4.82 4.86 

5 - 3.18 3.22 3.12 3.25 

3.71 3.73 3.50 3.56 

4~35 '4.10 3.90 3.86 

4.74 4.30 4.20 4.02 
.... 

5.8 4.33 4.23 4.26 

6.09 4.54 4.31 4.30 
' .. 

4.75 4.79 

4.96 5.13 

6- 4.01 3.95 4.02 

4.27 4.23 4.11 

4.39 4.41 4.26 

4.64 ·t· 4.42 
~ :: 

(continued) 



State 

J 

4+ 

E expo 

4.1. 

4.35 

4.75 

5.30 

5.8 

6.09 

'-32- . 

TableYIII . (continued) . 

ELE EGGS 

4.85 

4.80, . 4.46. 
'. 

5.93 . 5.94 

'. 5.12 4.89 

5.93, 5;86 

4.89 4.83 

5.84 5.75 
6.10 6.17 

6.39 6.32 

UCRL-19940 

E 
a) 

theor. 

4.48 

4 . .56 

. 5.52 

5.12 

5.38 

4.93 

5.26 

6.01 

6.06 

6.62 

a) Here weus~d the same oscillator' range parameter as .in ,Ref. 26. The Coulomb

'interaction·between a proto~ particle and a proton hole was taken to be 

-.16 MeV. (e:
F

:::: -5.0 MeV) 

. ,'~ 
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Table IX. Amplitudes for the lo1(est 3- and S--states of 48Ca . 

Basis State 3- 5-

Particle Hole U W U W 

1 f 7/2 2s1/2 -.73 .10 

1 fS/2 2s1/2 .1S -~OS 

1 f 7/2 1 d 3/2 -.51 .07 '-.99 .04 

Q 
:1 f S/2 1 d 3/2 -.13 .OS 

0 2 p 3/2 1 d 3/2 -.09 .04 +" 
0 
H 1 f 7/2 1 d 5/2 -.18 .07 -.04 .02 p.. 

1 f 5/2 1 d S/2 .07 -.02 .OS -.01 

2.p 3/2 ·1 d S/2 -.05 .02 

2 p 1/2 1 d 5/2 .05 -.02 

1 g 9/2 1 f7/2 -.28 .10 -.12 .04 

1 f 5/2 2 P 1/2 .15 -.07 

1 f 5/2 1 d3/2 -.15 .07 
Q 2 p 3/2 1 d 3/2 -.19 .05 0 
H 
+' 1 f 5/2 1 d 5/2 .07 -.05 .06 -.04 ::l 
Q) 

z 2 P 3/2 1 d 5/2 -.07 .03 

2 p 1/2 1 d 5/2 .06 -.04 
~ 



-34- UCRL-19940 

Table X. Amplitudes - 208 of, the lowest 3 -state of Pb. 

Basis State 

# Particle Hole 11 W 

1 1 i 13/2 1 h 11/2 -.21 .08 

2 2 f 7/2 3 sl/2 -.23 .05 

3 2 f 5/2 3 s 1/2 .13 -.06 

4 1 h 9/2 2 d 3/2 -.59 .15 

5 2, f 7/2 2 d 3/2 ';'.12 .04 

6 2 f 5/2 2 d 3/2 -.10 .05 

7 3 p 3/2 2 d 3/2 -.10 .04 

s:: 8 1 h 9/2 2 d 5/2 -.001 .001 
0 

+> 
2 f 7/2 .07 0 9 2 d 5/2 -.16 ~ p.., 
2 f 5/2 .06 -.03 10 2 d 5/2 

11 3 P 3/2 2 d 5/2 -.06 .04 

12 3 p 1/2 2 d 5/2 .06 -.03 

13 1 h 9/2 1 g 7/2 -.17 .08 

14 .2 f 7/2 1 g7/2 -.04 .02 

15 2 f 5/2 1 g 7/2 -.03 .02 

16 3 p 3/2 1 g 7/2 -.03 .01 

17 3 p 1/2 1 g 7/2 -.02 .02 

18 1 j 15/2 1 i 13/2 -.26 .10 

19 2 g 7/2 3p 1/2 -.17 .06 

20 3 d 5/2 3 p 1/2 -.12 .04 

21 2 g 9/2 3 P 3/2 -.39 .09 
"-' 

22 2 g 7/2 3 p 3/2 .. .07 -.03 
I 

s:: 23 3 d 5/2 . 3 P 3/2 ·-.09 .03 
0 

;J> 

~ 24 3 d 3/2 3 .p 3/2 .07 ";.03 
+> 
;:$' 
OJ 25 1 i 11/2 2 f 5/2 -.36 .09 z 

26 2 g 9/2 2 f 5/2 ;...17 .03 

27 2 g 7/2 2 f 5/2 -:.14 .06 

28 3 d 5/2 2 f 5/2 -.05 .02 

29 3 d3/2 2 f 5/2 -;05 .02 

30 4 s 1/2 2 f 5/2 -.04 .02 

(continued) 
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TableX. (continued) 

State 
,...,'" 

# Pole Hole U W 

31 1 i 11/2 2 f 7/2 .06 -.02 

32 2 g 9/2· 2 f 7/2 -.17 .05 

33 2 g 7/2 2 f 7/2 .05 -.02 

34 3 d 5/2 2 f 7/2 -.03 .02 

35 3 d 3/2 2 f 7/2 -.00 .0001 

36 4s i/2 2f 7/2 -.02 .01 

37 1 i 11/2 1 h 9/2 -.18 .07 

38 2 g 9/2 1 h 9/2 .... 04·· .01 

39 2 g 7/2 1 h 9/2 -.04 .02 

40 ·3 d 5/2 1 h 9/2 -.14 .12 

41 3 d 3/2 1 n 9/2 .001 -.004 

l~" 
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APPENDIX 
. . , 

In order to obtain' the desired ,expansion coefficients of the Saxon....;Woods 

functions in terms' of os~illator functions ,we solved the Saxon-Woods bound 
, , , 

state Single-particle problem in an oscillator basis using the experimental 

single-particle energies as an input. The obtained potential parameters and 

the expansion coefficients are given in Table Al. Since this method cannot be 

'16 ' " 
applied to the Id3/2~resonance in 0, we approximated the Id3/ 2-wavefunction 

by a sum of 5 oscillator ftlnctionsup to 5 fermi. The result is shovn in Fig. IA. 

The obtained expansion coefficients are also given in Table AI. Figure IlA shows 

the resonance behaviour of the used Id3/2-Saxon-Woods function. 

In order to give some examples of approximateT = 1 'states, we took down 

, , ~, 
in Table A2 ,theampli tudes of the dipole states of 0, which might be of interest. 

48 
For 'Ca one has two different sets' of single-particle energies available, which 

, , 

differ strongly from each other. ,The more recent values of Blomqvist and Kuo 
. . 

have been used in our calculatJons (see Table'VIl and IX) • For completeness 

we also performed the calculation using the single-particle energies given by 

,Jaffrin and Ripka. The resUlts for the 3-.. and 5--states are given in the 

Tables A3 and A4. The energies and, the eigenvectors:are close to the obtained 

values of the corresponding calculation of Jaffrin and Ripka,25 but the deviations 

from the eigenvectors of the 'calculation with B.-K.-single-particle energies 

are'not negligible. 

It'is well known-for instance from the schematic model-that especially 

the coherent states depend strons1yon the strength of the force. Since in our 

calculations this strength can be -varied by changing the renormalization 

constants, we expected and obtained for those states a strong variation with z. 
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In Fig. IlIA we give thiSdependenc~ in a sample more explicitly by shoving the 
~O ' ',' , 

change of the lowest energy eigenvalues of Ca as a function of the renormal-

ization constant. 

* In the effectiVe particle .. hole force one has to insert the value of the 
16 ' '. ' ,. 

Fermi energy.' "Since for finite nucle:i,~incontradiction to the nuclear matter 

case- a gap exists between the first unoccupied and the last occupied level, one 
. ,.... ,".., . 

has a certain freedom in choosing theli'ermi energy,' This freedom is irrelevant 

if the'K-matrix inAOO-approximation is only weakly energy-dependent. Testing 

this assumption we have found that one can get a. few percent deviations in the 

energies and eigenvectors of'the coherent states by going 'from one limit to the 

other. An example is shown in TableA5, where we have calculat ed the energy

eigenvalues for the 3--and ,--states of 48Ca for different possible Fermi 

energies. The deviations for the eigenvectors are of the sa.m:e order. Since 

one can readjust for every choice of the Fermi energy, the calculated energies 

to, the experimental values by refitting the renormalization constants, 'We can 

determine due to the ambiguity of oUT method caused by the used kind of local 

density approximation, a Fermi-energy independentrenormalization constant 

only w5,thin the limit of f&W percent. So we have to be mindful of the fact that 

our given z.,..values are determined for the chosen Fermi energies and can change 

a little bit for a different choice of the Fermi energies. 

*With excePtion,Of 208pb we us~ in our calculations for the proton-proton 

particle-hole force the corresponding neutron-neutron particle-hole force. 



Tab2-:= .. U.Saxon-Woods parameters chosen to reproduce ~erimental neutron single-particle (hole) levels for 
160 .~ 40Ca . We used a reduced mass equal to A/A + 1 times neutron mass. for both particle and hole states, 
witb .1 equal to 16 or 40~ Also are givenheret~e coefficients used to expand the Saxon-WoodsvayefUnction 
int:a..~ of harmonic oscillator wavefunctions .. (bot~· defined to l¥'ve thes~gn (_)n near the origin) ... The 
radi~ tlarameter was chosen to be 1.25f. For the oscillator constants we have used ex =. ·~.6264 for 160 and 
ex = .5.3T7for 40Ca. ... . ..... . . 

16 o 

40
Ca 

to. 
J 

State 

l s 1/2 

1 P 3/2 

1 P 1/2 

1 d 5/2 

1 d 3/2 

2 sl/2 

1 d 5/2 

1 d 3/2 

2 s 1/2 

1 f 1/2 

1 f 5/2 

2 P 3/2 

2 pl/2 

Potential 
Depth 

70.08 

55.76 . 

" 

·52.70 

52.40 

54.93 

53.32 

" 

.55.37 

51.94 

II 

55.26 

" 

If 

Spin Orbit I Surface 
Potential Thickness 

10.03 

it 

5.28 

5.28 

9.86 

" 

6.38 

" 

7.11 

" 

.. 53 

" 
tI 

" 

" 

" 
.55 

" 
" 

" 
" 

" 

" 

·999 

.998 

.997 

.977 

.942 

-.051 

.999 

.997 

-.090 

.998 

.991 

-.027 

.012 

Oscillator Expansi6n Coefficients 

,....015 

.048 

.032 

.142 

.073 

.915 

-.005 

-.069 

.995 

-.017 

-.003 

.988 

.978 

.017 

-.018 

-.055 

... -.116 

-0300 

.269 

-.022 

.025 

-.005 

.033 

.107 

.069 

.091 

.019 

.034 

.035 

.087 

.l~ 

.211 

.039 

.035 

.002 

.052 

.066 

-.092 

-.139 

., 

.005 

-.000 . 

-.005 

-.039 

-.073·· 

.160 

-.005 

-.009 

.050 

- .. 002 

.020 

.094 

.. 110 

J 
w 
(Xl 
I 

c::::: 
(") 

!:O 
t-< 
I 
I-' 
\0 
\0 
.t:'"' 
o 
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Table A2. Amplitudes of 160 Dipole States. (T:=:;: 1) 
- - -.-~ 

Eigenvalues ~ 13.Bl IB.02 
.. 

Ba.sis States 

Particle Hole U W .·U W 

1 d 3/2 1 P 1/2 .016 .009 .169 .001 

I=: 2 s 1/2 1 P 1/2 .646 .005 .011 .012 
0 
.p . 

-.080 -.004 Old 5/2 1 P 3/2 .092 .021 
J... 

p.. 

1 d 3/2 1 p 3/2, - .• 035 .005 .098 .003 
-. 
2s 1/2 1 P 3/2 -.103 .013 .... 196 .000 

1 d 3/2 lp 1/2 . .019 -.013 
) 

-.B21 -.009 
-

.1=: 
0 

2 s 1/2 1 pl/2 -.742 -.004 .065 -.002 
H 

1 d 5/2 1 P 3/2 .. 444 -.OlB .p .115 -.002 
;:l 

.Q) 
l2; 

1 d 3/2 1 P 3/2 .027 .007 -.186 -.010 

2 s 1/2 Ip 3/2 -.011 -.013 .OBO .001 

20.29 24.20 
, . 

U W U W 

.' -.032 .00B .184 .061 

-.026 -.014 .102 "~009 

• 210 +.002, . .5B7 '.' .036 

-.151 -.008 ~153 -.037 

.... 606 -.006 .144 ,019 

.047 .... 008 -.200 ..;..062 

.003 +.011 -.113 -.009 

-.246 -.002 -.62B -.037 

.139 .008 -.335 .036 

+.695 .006 .... 146 ...,.019 

26.27 

U W 

.266 ,.·.·.027 

.006 .023, 

.147 .063 

":'".572 .007 

.164 .OOB 

.... 275 -.023 

-.001 -.021 ' 

...,.124 -.059 

.666 -.008 

-.171 -.007 

I 
W 
'0" 
I 

c:: 
fa 
t'1 
I 
I-' 
\0 
\() 
+:
o 
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A3 C .. 3'" d 5"" . . i 48C i' Bl . t K 22 Table • ompa.r~son of the -an' .. en erg es of a us ng omqv~s - uo 
or Jaffrin ... Ripka25 single ... particle energies.'Furthermbre we give the results 
of the calculation of Blomq'Vist and Kuc; and. a sample of thetheoreticalvalues 
obtained. by Ripka and·Jaffrin. 

State 
J7T 

,E expo 

4.50 

5.37 

7.68 

5.73 

~. 

2.60 

6.15· 

7.59 

5.66 

E25 
J.";"R. 

4.51 

5.11 

7.61 

5.53 

8.66 

9.50 

.. Eth eor. 
z·= .706 
(Bl.-Kuo) 

4.50 

5.54 

7.97 

5.15 

9.94 

10.64 

E theor. 
z = .6573 
(Ja.-Ri-. ) 

4.51 

5.75 

7.75 

5.56 

8.69 

9.59 
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Table A4. Amplitudes for the lowest 3'"':and 5-... states of 48Ca c~lculated with 
the single ... particle energies of'Jaffrinand Ripka. 25 (z = .657) 

- -Basis State 3 5 

Particle Hole 'U W U W 

\ 

If 7/2 2 s 1/2 .... 853 .085 

1 f 5/2 2 s 1/2 ,128 .... 038 

1 f, 7/2 1 d 3/2 .... 292 .056 -.984 .038 

s:: 1 f5/2 Id 3/2 ..... 100 .039 
0 

+> 
2 P 3/2 1 d 3/2 ... 082 .040 0 

H 
p.. 

1 f, 7/2 1 dS/2 -.169 .062 ... 054 .015 

1 f· 5/2 1 d 5/2 .068 -.024 .053 -.011 

2 pi 3/2 1 d 5/2 ... ',044 .020 

2 p 1/2 1 d 5/2 .043 - .. 019 

1 f 5/2 2 p 1/2 .120 -.057 

1 f5/2 1 d 3/2 ... 122 .056 

s:: 2 p 3/2 1 d 3/2 -.159 .046 0 
H 

+> 
1 f 5/2 1 d 5/2 .066 -.042 .. 065 -.042 ;::l 

<1l 
Z 

2 P 3/2 1 d 5/2 .... 069 .032 

2 p 1/2 1 d 5/2 .060 -.035 
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, ." < ,,' 48 ,-, " -' -. ',' ,.,..." - ,,'., ' , 
Table A5. Energy-eigenvalues of ,CatOO'the 3 ahd the 5 -states for different 
choice~ of the Fermi-level. The renormali:i.ation constant wastak,en to be ,...700. 
The other parametersa,gree -vitlithose given in Table VIIi. 

State E 

JTT 
EF 

-3 

theor. 

= -6~o 

4.48 

5.54 

7.93 

5.13 

9.92 

E 
theor. 

Eli' = ;'7.6 

4'.42 

5.54 

7.93 

E 
theor. 

EF = -9.6 

4.17 

5.54 

7.61 

5.02 

'9.89 

J 
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FIGURE CAPTIONS 

Fig. lAo The neutron 1 d 3/2 va:vef'unction at resonance. The solid curve is the 

Saxoh .. Woods wavefunction. '!'hedaehed curve is an expansion over 5 OSCillator 

functions by the least sVle.reS1ll.etnodwi tll e. c'lit ... off at 5 fends. The 

agreement of the two curves below 5f. is better than 1%. 

Fig. IlA. 
" .. 1~ 

The neutron 1 d 3/2 resonance on . 0, calculated for a Saxon-Woods 

potential w1th the follow-ing parameters: r = 1.25f, V = 52.4 MeV, 
o· 0 

V = 5.28 MeV, a f = .53f. so . '. . sur • 
40 . 

Lowest energy-eigenvalues of Ca as a function of therenormalization Fig. IlIA. 

constant z . 

1, 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of .any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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