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ABSTRACT 

We have developed a simplifi.ed.model of a cell consisting of aseries 

of linked reversible enzymatic reactions dependent on the concentration of a 

single external substrate. The general. mathematical solution for this system 

of reactions is presented. This general solution confirms the concept of a 

rate limiting step, or "master reaction", in biological systems as first 

18 	. proposed by Blackman. 	The maximum rate of a process consist:ing ofa seraes 

of consecutive enzymatic reactions is determined by, and equal to, the 

maximum rateof the slowest forward reaction in the series. 

Of practical interest in modeling the growth rate of cells are three 

cases developed from the general mode. The simplest special case results in 

1,2 
the Monod equation: 

p[s] max 

B+[SI 	 . 

* 
Work performed under the auspices of the U.S. Atomic Energy Coroniss ion. 

1- 	 . 
Present address: U. S. Department of Agriculture, Bradfield Hall, Cornell 

University, Ithaca, New York 114850. 

resent ad4ress: School of Chemical Engineering, Cone1l University, 
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-1  
where p 	 p ft 	 p 	i is the .secic growth rate, time 	; 	s the maximum specific

max  

growth rate, time 	[SI is the concentration of the external limiting 

substrate, mass/volume; and B is a constant, mass/volume. The Monod 

equation results when the maximum forward rate of one enzymatic reaction 

in the cell is much. less than the maximum forward rate of any other enzymatic 

reaction. 

More realistic is the case where the maximum forward rates of more 

than one enzymatic reaction are slow. When two slow enzymatic reactions are 

separated from each other by any number of fast reactions that overall can 

be described by large equilibrium constant, the Blackman forrn results: 

p = [SI/A, when [Si < A 0 max 

andpp 	',when[SI >Ap max 	 max 

where A is a constant, mass x time/volume. 

A third case is that in which two slow enzymatic steps are separated 

by an equilibrium constant that is not large. Unlike the Monod and Blackman 

forms, which contain only two atbitrary constants, this model contains three 

arbitrary constants: 

[S] = pA +pB 
max 

where the specific growth rate, p, is implicitly expressed. The Monod 

Blackman forms are special cases of this third form. 

elve sets of experimental data from the literature were examined. 

The Monod equation gave poorer fit of the data than the Blackm.n form in 

nine of the twelve cases, as determined by a non-linear least-squares fitting 

technique. 
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I. INTRODUCTION 

Current kinetic analysis of the growth of microorganisms, both 

batch-wise and continuous culture, is primarily based on the -'elationship 

beteen limiting substrate concentration and growth rate first iropsed by 

Monod: 1,2  

p 	[s] max 
B+[S] 

where p = specific growth rate, time 	p 	= maximum specific growth max 

rate, time; [s}= limiting substrate concentration, mass/volume; 

5 = a constant, mass/volume This Monod equation, as it is usually called, 

is analogous to the Michaelis-Menten equation, which expresses the relation 

between substrate and rate in a single enzattc reaction. 3  

Several criticisms of the Monod equation have.been raised that will 

not be considered here, having to do with required maintenancc energy, 

substrate inhibitioh, 5  and effects of cell density. 6  These particular criti-

cisms, if valid, will also apply to the equations given in the rest of this 

paper. More important is the fact, recognized by Monod, 2  that the above 

equation desóribes an oversimplified model. As will be shown later, much 

of the experimental data in the literature, including Monod's original data, 

fails to fit the simple hyperbolic form of Eq. (i). 

Severalempirical relationships have been proposed. These have not 

been widely used by workers concerned with the kinetics of growth of micro-

organisms. The form proposed by Teissier T  is; 

IS 1 
P = Pmax(l  
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where. k is an arbitrary constant, volunie/Inass. This form is not easy to 

handle mathematically, but some workers find that their data is better fit by 

this form8 ' than by the Monad equation. Another correlation was proposed 

10 by Moser that contains, instead of two, three arbitrary constants, p, B, 

Rnd r: r 
i 	[SI 
max 

B+ESI" 

The three arbitrary constants allow this form to fit a greater variety of 

curves. However, Powell 11  points out that this model may be unrealistic at 

very low substrate concentrations,. since 	 . 	. 

dp/d[S] 	at [s]o, ifr<l, 	. 

while 	 dlJ/d[S] = 0 at [S] = 0, if r > 1. 

Simple, diffusion is probably not important in the transport of large 

organic substrate molecules such as sugars into a cell, since permeases are 

necessary for.the transport of these. molecules. But diffusion may be impor-

tant for smaller molecules where no permeases exist. 

The case of simple diffus.ion followed by a single irreversible 

Michaelis-Menten enzyme has been treated by several workers.
11

' 12 ' 13  

The resistance to diffusion maybe the cell wall, the cell membrane, cytoplasm, 

or a combination of these. The model is shown diagrammatically in Fig. 1 

as a cell that contains a resistance to the diffusion into the cell of external 

substrate of concentration [SI. The cell contains a single irreversible 

Michaelis-Menten reaction, which produces the product, new cellular material. 

(3) 
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The solution to this problem is given, for example,by Reiner's 

Equation XI. 3),13  where the velocity of th enzati reactihn, v, is 

iiiplicitly expressed. Reiner's solution may be made more general by noting 

that there is:not necessarily a one-to-one correspondence between.substrate 

consumption and new cell material formation. A yield coefficient, Y, relating 

ji to V, may be introduced. The following form is obtained with ji implicitly 

expressed: 

[s] = 	BU 	+ 	P kaY 	 () p 	- p  max 	 c 

where k is the substrate mass transfer coefficient between the bulk liquid 

phase and the cell interior, where the substrate is consumed, length/time; 

Y is the yield coefficient for the substrate and microorganism in question, 

cell volume/mass substrate; and a is the surface area/cell volume. If, 

as is generally assumed, the denominator of the last term,kaY, can be 

considered to be constant, this equation has the same form as the three 

constant model proposed later in this paper. However, the three constant 

model proposed later results from a different situation, where diffusion is 

not considered to be a limiting factor. 

Reiner13  also presents the kinetics of disappearance of substrate 

when there is a permease followed by a Miciaelis-Menten enzymatic reaction. 

His model considers leakage out of the cell to be in direct proportion to 

the internal substrate concentration. In order to convert substrate utiliza-

tion, v, to specific growth rate, ii,  a yield coefficient, Y, must be inserted 

into Reiner's Equation XI. 6). 	There are a total of five arbitrary constants, 

making this model of little use in correlating experimental data 
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II. A SILIFIED MOflKL OF A CELL 

Our simplified model of a cell consists of N consecutive reversible 

Michaelis-Menten enzymatic reactions. The model is oversimplified in that 

double substrates, coenzymes, and allosteric effects are, not considered. 

The case of.a single enzyme-substrate complex 'undergoing successive trans- 

	

formations,'as described by llearon', 	should not be confused with.this case 

in which the product of each enzymatic reaction is the substrate for the next. 

There is one external limiting substrate, S. The model is described by the 

following systems of N equations 

k 
S+E1< '> SE1  < > 

k 1  

__ 	k'  

	

P + E <_> 12 < > P2  + E 	' 

(5) 

Ic' 
P 	+'E 	>P 	E 	>P' +'E'. 
n-i' . n < 	n-i n < 	n 	n ' 

Ic. 	 . 	. 	, 
-n 	 -n

kN  EN-i + EN <_> PN1EN < > 	+ EN 

k 	 k' _N 	 N 	. 

E denotes the enzyme, P denotes the products of the enzymatic reac- 
4- 

tions, and k denotes the rate constants. P is the final product, considered 

here to be new cell material. Catalysis occurs in the substrate-enzyme com-

plexes, such as P 1E . In. this general case no reaction steps are considered , 
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to be irreversible; irreversibility La approached only by virtue of a large 

negative free energy change. 

th  
The velocity of the n 	reaction, v, is found by assuming that 

steady state is obtained. Steady state may be assumed even if we consider 

an autocatalytic process such as balanced cellular growth, if we express 

enzyme concentrations per unit of cellular volume. The solution' 5  is given 

here with v implicitly expressed: 

[F] (v 	+ v) + K'v 	, 	
( 6) = 	

. K/K(VFfl_ v) 

whe.re [F ] and [P 	1 are concentrations of species P 	and P 	; n 	n-1 	 n 	n-1 

mass/volume; V = k'E° , the maximum forward rate, mass/time/volume; 
Fn 	nn 

V = k E° , the maximum backward rate, mass/time/volume; E °  is the 
Bn 	-nfl 	 .. 	. 

total amount of the th enzyme, mass/volume; K 	(k + 
n 	-n 	fl 	n 

mass/volume; K' = (k 	+ k')/k' , mass/volume. Note that V , V , K 
n 	-n 	n 	-n 	 . . 	Fn 	Bn 	n 

and K are rlated to the equilibrium constant for the transformation of 

n-1 to P 
	K 	through the so-called Haldane relation, 15  

= V K'IV  K . 	 . 	. 	. 	. eqn 	Fnn Bnn 

All of the individual reactions give equations of the form of Eq. (6). 

We obtained the solution for the whole system of N equations by realizing 

that at steady state v = v1  = v2  = .......= v = .......= vN. and by making 

a 	. 	successive substitutions until the concentration of S, [S] , is related only 

to v and [F] the concentration of final product. If P is a cellular 

constituent and cellular growth is balanced, then 	is constant with time 

(when expressed per unit of cellular volume). The solution is: 
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.77  
N 	K n  Tr (V3 	v) 	N1 	

i 
( vBfl+ v) 

Es]= 	n 	K ' • 	 + 	N K' 	
' 

''= 	iT 	(VFi_ v) 	 (V-v) 
1=1 1] 	 n1 n 

where V 	is defined equal to zero, and K'/K.is defined equal to one. 

If, for exwnple, we have three enzymatic reactions, N = 3, and: 

- ________ 	K2v(VB1+ v) 	 K3v(VB1+  v)(vB2+ v) 
Es]- (V 	+ 	

+ ç K Fl-v) 	
(v- v)(VF2_  v) 	- - -- (v- v)(VF2_ v)(VF3_ v) 

[P 1 (V + v)(V + v)(V + v) 
+ 	,3 	Bi 	B2 	B3  0 

(V 1  v)(VF2v)(VF3 v) 

If one wishes to convert Eqs. (7) and (8) to [s] as a function of P 

by using the relation p Yv, then these new equations would be of exactly 

the same form with the S ame number of arbitrary constants. 

Eqs. (7) and (8) include the case where a perinease functions to 

bring substrate into the cell. A perrneäse is simply a "directional" enzyme, 

using its active site to move substrate in one direction. 
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III. THE MASTER REACTION CONCEPT 

In Eq (7), the maxununi rate of forming new cell material is set by, 

and cannot exceed, the smallest V, since [s] approaches infinity as v 

approaches the smallest V. Such a rate limiting step, or "master reaction", 

cannot occur in a sequence of chemical reactions of higher than zero-order 

(see Denbigh •et all6 for a discussion of first-order chemical systems). But 

as Ferret 17 has pointed out, a rate limiting step must occur in a sequence of 

enzymatic reactions, since an enzymatic reaction becomes zero-order with 

respect to the concentration of its substrate when the enzyme is completely 

18. 
saturated with its substrate. Blackman is usually given credit for the 

master reaction concept when he stated in 1905 without proof, 'whena process 

is conditioned as to its rapidity by a number of separate factors, the.rate 

of the process is limited by the pace of the 'slowest' factor". The validity 

of this statement has been questioned by BurtoJ9 , Monod2 , and others. 

Burton, arguing on the basis of first-order transformations, concluded that 

a rate limiting step cannot exist in a sequence of consecutive reactions at 

steady state. 

Unfortunately, Burton's dismissal of Blackman's axiom has been 

accepted by many workers in the biological sciences as the final word on 

this matter, despite Ferret's 17  criticism that it was based on irrevrsible 

uncatalyzed first-order reactions. Likewise, the statement of Monod, 

"A master reaction could take control only if its rate were very much slower 

than that of all the other reactions", has also servedto mislead workers 
NO 

in biology. Equation (7) provides a mathematical proof for Blackman's axiom, 

which Blackman himself did not offer. 
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Care must be used not to carry the master reaction concept too far.. 

Even though the slowest reaction sets the.maximi.un rate at which the overall 

process may proceed, it does not entirely determine the relationship of 

overall rate as a function of substrate concentration. At low substrate 

concentrations more than one of the reactions in the series may influence 

the overall rate. 	 . . 	. 	 -. . . 

An exception to the master reaction concept does exist. Consider 

two parallel reaction sequences producing the same product. Two.enzymes, 

one in each of the parallel sequences, must reach their maximum rates before 

the process reaches its maximum rate But if we treat these two limiting 

steps as a single enzyme, then the above arguments hold. Similar situations 

result when there are more than two parallel sequences producing the same 

product. 	 . 	 . 
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IV. A SINGLE SLOW ENZYMATIC REACTION: THE M3NOD EQUATION 

Equation (i), the form for specific growth as a function of substrate 

concentration suggested by Monod, 1 ' 2  will arise from the general form, Eq. ((), 

in two different cases. The first case, which wilinot be examined further, 

occurs when alithe arbitrary constants (the V and K values) are of the 

same order of magnitude, but fortuitously have the right values so that Eq. (7) 

collapses into the Monod form The probability of this occurring is small 

• 	The second case arises when the maximum forward velocity of one of 

the enzymatic reactions is much smaller than any of the other enzymatic 

reactions, and there is a large negative standard free enerr change between 

this slow reaction and the ultimate product formation of new cell material. 

A negative standard free energy change between the slow step and the formation 

of product is likely, since the probability of the last enzymatic step of 

the series being the slow one is small, and since negative standard free 

energy changes are associated with spontaneous biochemical reactions. Since 

all reactions are assumed to be very fast and reversible, except for the one 

slow reaction, the substrates and products of the fast reactions can be 

assumed to be in equilibrium with each other. This means that all irreversi-

bilities occur in the one slow reaction. 

The Nonod equation can be found from the general form, Eq. (7), or 

from the following, using the above assumptions: 

<-k p 
1 	2 

< 	> p < 	> ......<- 	> P 	 (9a) n-1 

k 
p 	+E 	'>P E 	

n> 	+E 
n-i 	n < k 
	

n-1 n < 	' 

(9b) 
(the slow.step) 
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Pn  < 	> P i< 	> 	< 	> 	 (9c) 

For Reaction (9a)  there is an equilibrium constant relating the 

concentrations of S and P 1 , EP 1 I = K [S] 	For Reaction (9c) 

there is a similar relationship, [lEPN1/Kq However, since a large 

negative standard free energy change has been assumed for this step, K q  

approaches infinity, and [F] approaches zero.. As . [F] approaches zero, 

the rate of the back reaction associatedwith k 	also approaches zero, 

and the last step in Reaction (9b)may  be treated as an irreversible one; 

therefore: 

vEF 1 ] 

V = [ F 	I + K 	 (10) 
n-i. 	n 

This is the irreversible Michaelis-Menten equation. Making use of the equili-

briujn relation for Reaction (9a)  and the fact that all the new velocities 

are equal, the Monod equation is obtained relating overall rate to substrate 

concentration: . 	 .. 

yEs] Fn 
V 

- Es] + K /K . n eq 

where Kn/Keq  is an apparent Michaelis constant, which will be smaller the 

larger K 	becomes. K 	can be expected to increase as n increases eq . 	 eq 	 . 

because of the usual negative standard free energy change associated with 

biological processes. 	 . 	. 
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V. THE CASE OF TWO SLOW ENZYMATIC REACTIONS THE PHEEE CONSTANT FORM 

This case assumes that two enzymatic reactions have slow maximum 

forward rates. As in the preceding case it will be assumed that all other 

enzymatic reactions are fast and in equilibrium, and that there is a large 

negative standardfree energy change (and hence a large equilibrium constant ) 

between the second slow enzymatic reaction and the formation of P N  new cell 

	

material. The system is: 	 - 	 - 

S< 	>P < 	>P < 	> .....< 	>P 	 (12a) 
1 	2 	 rn-i 

k. 
P 	+E 	'>P E 	

>P +E 	 (12b) 
rn-i 	m<k 	rn_lm<kI 	rn 	m 

- 

	

< 	
> Prn+l < 
	> • ... < 	> Pnl / 	(12c) 

k 
+ E  ____> P E ____> P + E 	 (12d) 

n-i 	 n-i n'< . 	n 	n 
-n 

	

P < 	>P n+l 	 N 
< 	> .....< 	>P 	. 	 (12e) 

n-  

For Reaction (12a) there is an equilibrium constant relating the 

concentrations of S and Pm-l' m-j) = eqt SI. A similar relation holds for,  

Reaction (12c), [P 1J = K qEPJ• [P] approaches zero, beacuse of the large 

equilibrium constant assumed for step (12e). The irreversible Michaelis-Menten 

equation results 

viP I Fn.n-1 

	

r[P 	1+K 	
• 	 (13) 

n-i 	n 
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For Readtion.(l2b), however, irreversibility is not assumed, and the 

back reaction iust be considered: 15  

	

V K t EP 	1-v K[P] 

	

Fmni rn-i 	Bmrn m 
Vm=K[P 	I +K[P} +KK' 	 (ia) 

	

m rn-i 	m m 	mm 

Making use of the equilibrium relations and rearranging the above two 

equations, they become respectively: 

V K/K' 	
(15) [P1= V-v m 	

Fn 	n 

rn1 (v 	+ v) + Ky 
 

	

[ST 
= 	(KeqKm/Km )(VFm  - 

Substituting Equation (15) into Equation (16), and since at steady state 

v = v = v: m 	n 

K 
n m 	 Bm 	 m 
K 	v(V + v) 	 K 	v 

ri - 	 . 	 1 
LJ 	K K' K' (V 	- v)(V 	- v) + K. (V 	- v) 	l7 

	

eqeqin 	Fm. 	Fn. 	eq 	Fm 

Equation (17)  has five arbitrary constants and hence is of limited value 

in fitting experimental data. Two more assumptions will be made in order to 

reduce Eq. (ii) into a more usable form with only three arbitrary constants. 

These assumptions are that V 	and V 	are large in comparison to V.Bm 

With these assumptions the first slow enzymatic reaction is largely responsible 

for setting the effective Michaells constant, while the second slow reaction 

corresponds to the slowest of the enzymatic reactions in the chain. It is 
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unlikely that, a single enzymatic reaction sets both of these quantities, 

as the previous case that yielded the Monod equation assumed. 

The aboie assumptions are reasonable. The reaction that sets the 

effective MichaelIs cnstaxit would be expected to occur early in the series 

of reactions, because in general the effective Michaelis 'constant decreases 

(and Keq increases) the farth.er a step is from the beginning of the series. 

It is also probable that the slowest enzymatic reaction occurs after this 

step, since there are so many enzymatic reactions involved in cell growth. 

If V' and V 	are large in comparison with V, Eq. (11) reduces to: 

	

KKV ' 	v 	 K 
• 	 nmBm 	m 

	

[SI 	K K K'V 	(V 	- v) 	+ K v 	(18) 
eqeqrnFm 	Fn 	. 	eqFm 	. 

Equation (18.) has three arbifrary constants and is of the same form as Eq. (n), 

the case where simple diffusion is important. Therefore one cannot distinguish 

between these, two different cases on the basis of curve shape. 

Even though the above three constant form will be used later in the 

fitting of experimental data, where it is called "the three constant form", 

other three constant forms are possible. 

For instance, if K q  the equilibrium constant between the two slow 

reactions, is very large, we obtain from Eq. (11): 

Fn  

	

K 	v Km  _____ 
Es] = 	(V-v) 	when[S] < iT (Vp_V 

	

fl 	F) 

(19) 

K 	V 
[si = 	 , 	when [s] > 	( V 	- V 

eq 	Fn . 	n 
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Equation (19) results in a Michaelis-Menten shaped curve at low substrate 

concentrations, but a sharp bend to the saturated rate occurs when .V 	isFn 

reached Johnson, 2°  without mathematical support, has postulated that this 

form might be expected in a series of enzymatic reactions containing two 

slow enzymatic reactions widely separated from each other., J½mong the twelve 

sets of data that we have examined, this behavior was not found.. 

However, for photosynthesis in the alga Chlorella, behavior close to 

the model expressed by Eq. (19)  has been found. Figure 2 shows the light 

response curves of photosynthesis that were obtained by Myers and Graham 21  

for Chiorella grown at differing specific growth rates. All sets of data 

give nearly the same initial curve shapes, but the light saturated plateaus 

bend sharply from the initial curve. Similar data gathered in our laboratory 22  

are shown in Fig. 3. 	. 	. . 	. 	. 	. . 	. 

The kinetics of photosynthesis are complicated, since the two light 

reactions involved in photosynthesis must be considered. This case is 

treated elsewhere. 22 	 . 	. . . 	. 

A third possible three constant form results from Eq. (17) when Bm 

and V Fn are small compared to V Fm 
. 	 . 

KK 	v2 	 K 

	

Es] = K K4 K'V 	(V 	- v) + K 	
v . 	 (20) 

eqeqmFm 	Fn 	 eqFm 

Equation (20) is exactly the same form as Eq. (18) except that 

replaces v in the first term on the right side. 
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VI. THE BLACIOAN FORM 

	

If, in Eq. (18) K' 	becomes very large because of a large negative 
eq 

standard free energy change betweenithe two slow reactions, then: 

	

K 	 KV 
1 ' 	.fl 	 mFn 

	

tSi = K 	
v , when ES] < K V 

eq Fn 	 eq Fm 
(21). 

VFn  

	

[s]= Co 	 ,when [SI> Ky eq Fir. 

This form was first proposed by Blackman,18  without mathematical jistification., 

for the rate of photosynthesis as a function of carbon dioxide concentration 

or light intensity. The model gives first-order behavior with respect to 

substrate concentration that, as substrate concentration is increased, suddenly 

changes to zero-order behavior. 

A saturated rate must result, since no matter how large K' becomes,. 
eq 

the first term on the right hand side of Eq. (18) approaches infinity as v 

approaches V. A large value for Keq  can be expected if the two controlling 

enzymatic reactiOns are not situated close together in the reaction series. 

Since hundreds, if not thousands, of enzymatic reactions are involved within 

the cell, this sort of behavior can be expected often. 

There isa simple physical.explañation for the sharp break in the 

Blackman form. Since the equilibrium constant Keq is very large, the product 

of the first slow enzymatic reaction, P, is present at a concentration 

approaching zero, being instantly swept away by the fast reactions between 

the two slow steps The second slow reaction keeps pace with the firs.t and 

exerts no influence on the first reaction until the substrate concentration is 
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raised to the point where the second slow step is working at its maximum rate. 

Now the concentrations of intermediates in the chain between the two slow 

reactions rise until the net rate of the first slow reaction is ecival  to the 

maximum rate of the second slow reaction. Thus, thesharp change from first-

order to zero-order behavior occurs because the second slow reaction exerts 

no effect on the first slow step until the maximum rate of the second is 

reached. When this point is reached, the second step completely controls. 
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VII ANALYSIS OF EXPERflViENTAL DATA 

The three forms that will be tested against twelve sets o± data are 

given by Eqs.(ll), (21) and (18), which represent the Monod, Blackman, and 

three constant forms, respectively. We now introduce the yield coefficient, 

Y (relating substrate consunption tocell material production), to express 

the equations in terms of specific growth rate, p,  rather than rate of 

substrate consumption, v. Introducing the yield coefficient does not change 

the form or the number of arbitrary constants in the equations. 

Equation (ii), the Monod equation, becomes: 

[SI = 
	pB 	 (22) 

max 

or equivalently 

iEsJ max 
- Es] + B 

wherep 	YV,andB=K/K. max 	Fn 	 n eq 

A property of the Monod equation is that the slope of the tangent to 

the curve at 	umax  must be ¼ of the initial slope (where [S] and '.i are zero). 

This can be used as a rough check to see if data fit the .Monod equation. 

Equation (21), the Blackman form, becomes: 

Es] = pA , when [s1 < Ap max 

[S] = 	, when [SI > Ap max 



An alternate way to express the Blackman form so that a continuous 

function is obtained is: 

[Si = Ap + 	
- 	

(26) 
max 

where e is very much smaller than A. In the computer fitting of data 

-20 
E was set equal to 10 	. 

Equation (18), the three constant form, becomes: 

[sJ=pA+ 	'i'- 	 (21) 
"Max 

or e4uivalently: 

B+Ap 
max 	 max +[sl - 	( B+ATJ 	+[S])2_ 	max 

LA! 	Es] 
(28) 

2A 

where =  YV , A = K /YK V , and B K K V / K K '  Ky 
"Max 	Fn 	m eqFm 	 nmi eqeqrnFm 

The negative square root must be taken in Eq. (28) in order to have a physically 

meaningful situation., 
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A non-lihear least squares iterative procedure was used to determine 

the constants of best fit for the three forms. The computer program used 

was a Lawrence Radiation Laboratory Computer Library program, E2 BKY LSQVIvIT 

The minimization procedure is an iterative gradient method that uses a variable 

metric. 23  Subroutines must be furnished by the user giving the fitting functions 

and their first derivatives. with respect, to the fitting constants. The sub-

routines used are given in Appendix I. The quantity to be minimized is the 

sum of the squares of the errors, SUMSQ: 

N 
SSQ = 
	

- F(S.,11ma ' A,'B) 2  weight. 	 (29) 

where F is the fitting function, corresponding to either the Monod, Blackman, 

or three constant forms, and Nis the number of data points. The weighting 

factor, weight, was set equal to 1.0 in all cases. Equation (29) assumes 

that the independent variable, S., is well known, and that all scatter is in 

the dependent variable, p.. This is probably a reasonable assumption for the 

data examined.  

Table I shows the results corresponding to the best fit to each of 

the three models for the twelve sets of data examined. The arbitrary constants 

umax' A, and B are given along with three criteria for goodness of fit: 

(1) the sum of the squares of the errors, SUMSQ, (2) the standard deviation, 

s. d., and (3) the modified coefficient ofdetermination, CODET. The sum 

of the squares of the errors is probably the best criterion to use in comparing 

the appropriateness of each of the three models against a given set of data. 

Indeed, this is the quantity minimized in determining the arbitrary constants., 
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The standard deviation, s d , was defined by 

S. d. STJMSQ
d 	

(30) 

V N- 	f 

where d. f. is.,the degrees of freedom available in the fitting fuctions; 

d. f. =2 for the Monod and Blac1nan forms, and d. f. = 3 for the three 

constant form.. .. . . 

The modified coefficient of determination, CODET, is eouai to the 

"explained variation" divided by the "total variation" 2I CODET is defined 

hereas: 	. 	 N 	 . 	. 	. 	. 
SSQ 

CODET =  
N 	- 

N 
where p is the average of the p i 

 values, p = 	p./N. The reader is referred 

to Appendix II for the problem of defining a coefficient of determination for 

non-linear equations, such as encountered here with all three equation forms. 

Appendix III gives the Fortran IV computer program used in determining 

all three of the above statistical quantities.. Appendix IV gives the twelve 

sets of examined data points. 

The cases given in Table I will now be discussed individually. The 

data were examined using the same units for the variables as appear in the 

original articles, so that the reader may check the results against the 

original articles. Table II gives the units for the numbers appearing in 

Table I. It should be kept in mind while looking at the following data that 

the three constant form will always give better fit than the Monod or Blackman 

forms since it includes the Monod and Blackman forms as special cases. 

7 
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A. Monod's Glucose Data 

These data are often quoted as support for the Monod equation. 

However, the Blackman and three constant forms, as: shom in Table I and 

Fig. 4, fit these data better. In obtaining these data, Monod used sugar 

substrate solutios of known initial concentrations. A very dilute suspension 

of Escherichia coli was then allowed to grow over an interval short enough so 

that an insignificant amount of substrate was consumed. Knowing the time 

interval, Monad was able to calculate growth rates in divisions per hour (the 

specific growth rate, p, = (n 2) (divisions/hour)). This same technique was 

used by Monod in.the next two sets of experimental data. 

The best fit of the Monod equation gave an effective Michaelis constant, 

B, of 11.97  mg/l(e9). This is three times hi.gher than the value suggested by 

Monod) It is clear, however, that these data do not fit the lonod equation. 

B. Monod's Mannitol Data 

These data, 1  also on E. coli, are given in Fig. 5.and again fit the 

Blackman and three constant forms better than the Monad equation. However, 

this set of data.is not ideal, since there arena data points in the region 

between very low and very high values of P. 

C. Monad's Lactose Data 

Even though p max for E. coli is reached at higher concentrations of 

lactose than with glucose or mannitol, the Monad equation form again gives the 

worst fit of the data. 1  This case is shown in Fig. 6. 

D. Nitrate Data of Shelef, Oswald, and Golueke 

These dala, 9  taken on Chiorella pyrenoi.dosa 71105 at 35°  C in continuous 

culture, had nitrate as the only limiting substrate The data given in Fig 7 

show that the Monad equation is better than the Blackman form, but that the three 

constant forth fits the data best.• 
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E. Arginine Data of Novick 

These results from an E. coil mutant 25  are fit well by the Blackman 

form (Fig. 8). 

F. Tryptophane Data of Novick and Szilard 

26 
Similar to the preceding, these data on E. coil mutant strain B/i, 

limited by tryptophane, fit the Blackman form much .better than the Monod 

eQuation (Fig. 9). 

G. PhosiDhate Data of Hinsheiwood 

These data, 27  taken on Bact. lactis aerogenes with phosphate limiting, 

were obtained bytaking tangents from the batch growth curve as it went from 

the exponential into the stationary -  phase. Separate experiments to determine 

the yield coefficient, Y, allowed an estimation of the concentration of sub-

strate, while the slopes of the tangents gave the growth rate. Best fit is 

given by the Blackman and three constant forms, which fall on top of each 

other (Fig. 10). 

H. Schaefer Glucose Data 

The slow growing Mycobacterium tuberculosis is growth limited by 

glucose, except at very high concentrations. 8  The effective Michaelis 

constant is some 500 times larger than for E. coli. This is one of the three 

cases where the Monod equation gives better fit than the Blackman form (Fig. ii). 

The data were obtained by a method similar to the one used by Monod. 

I. Johnson Oxygen Data 

The data presented are one of three sets obtained by Johnson. °  All 

three sets have similar form, differing only in the saturated rate. The data 

shown in Fig. 12 were obtained using an orgen electrode to follow the concen-

tration of orgen as a function of time in a closed system containing the 
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organism Candi,da utilis. Oxygen consumption rates were obtained by. taking 

tangents from the resulting 'curve. In this case (Fig. 12) and the foi1owiig 

cases the dependent variable is the consumption (or production) of oxygen, a 

quantity that should be proportional to the specific growth rate. 

An important result found by Johnson is t,hatr  continuous and batch data 

cannot be directly. compared. The continuous culture data of JohnsOn suggested 

that the Monod. equation almost perfectly fit the data, while batch experiments 

of the type mentioned in the previous paragraph gave results very close to the 

Blackman form. Johnson explained this on the basis of adaptation of the yeast's 

oxygen-saturated respiration rate according to the Oxygen, concentration under 

Which it is grow-n in continuous culture. In Johnson's batch-type experiments, 

however, the yeast did not have time to adapt. Myers and Graham2  also fOund 

that adaptation phenomena in algae prevent the direct comparison of batch and 

continuous culture, data. 

J. The Carbon Dioxide Data of van der Honert 

These.data29  were taken on the blue-green alga Hormidiuin flaccidum 

and result in a curve close to the Blackman form. Only one set of van de'r 

Iionertt s  data is shown in Fig. 13. The other two sets, taken at 'a lower tern-- 

perature and a lower light intensity, also closely approximate the Blackman form. 

K. The Carbon Dioxide Data of Emerson and Green 

Emerson and Green's data30  give a result similar to that found by 

van der Ronert above, in that the Blackman form gives much better fit than the 

Monod equation.. These data were obtained on Chiorella pyrenoidosa in M/25 

phosphate buffer, pH 4.6, at 250  C in a Warburg type respir'ometer with light 

intensity not limiting. The results are shown on Fig. ilL. 	' 
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L. The Carbon Dioxide Data of Whittingham 

These data31  were taken on the same algal species and under the same 

experimental conditions as the preceding data of Emerson and Green. 3°  The 

only experimental difference was that Whittingham used a recording infrared 

spectropliotometer (recirculating the gas) to measure carbon dioxide concentra-

tion. The results are similar in that the saturated rates of photosynthesis 

are nearly the dame. However, the initial slope of this data (Fig. 15) is 

higher than it was for the data of Emerson and Green (Fig. 1)4). Also, these 

data fit the Monod equation almost perfectly, in contrast to the preceding data, 

which fit the Blackman form. 

Since the algae were the same species and the experimental conditions 

were the same, one must wonder why these experimental results differ. The 

answer may be found by referring to an earlier work of Briggs and Whittingham.
32  

They found that the effective Michaelis constant dropped as the carbon dioxide 

concentration to which the algae were acclimated during their growth was dropped. 

Thus, we suspect that the algae of EmersOn and Green, shown in Fig. 14, were 

not grown under the same conditions as the algae used by Whittingham, shown in 

Fig. 15. Teleologically it is logical to expect that as the carbon dioxide 

concentration during growth is dropped, that the algae would compensate by man-

ufacturing more of the CO 2  fixing enzyme, carboxydismutase. This would be 

expected to cause an increase in the initial slope of the curve. 



-25- 	 UCRL-19959 

VIII. DISCUSSION AND CONCLUSIONS 

The shape of the curve, growth rate (or.equivalently respiration rate 

or photosynthetic rate) as a funtion Of substrate concentration, can. lead to 

basic inforrnation on the mechanisms associated with cellular growth. 

• 	For Instance, the magnitude of B relative to Ap 
max 

 in the three constant 

form may give indication of the proxlmityof the two slow enzymatic reactions 

to each. other, since B approaches zero as the equilibrium constant (K 	in eq 

Eq. (18)) between these two reactions increases. Recent data obtained by 

Terui and Sugimoto 33  suggest that the availability of electrons, which ultI-

mately come from organic substrate,' sets the maximum rate of respiration in 

the yeasts Saccharomyces cerevisiae and Hansenula anomala. However, they 

maintain that the effective Michaeiis constant is set by the cytochrome system 

close to the point of oxygen utiliation, perhaps by cytochrome'oxidase.. 

Terui and Sugimoto argue against the possibility of an oxygen diffusion limita-

tion as was proposed by Johson. 20  The fact that Terui and Sugimoto obtain 

curve shapes approaching the Blackman form supports their argument that the 

two controlling enzymatic steps are widely separated from each other. 

The Blackman form may be approached more often among individual cells 

than is indicated by data obtained on unsynchronized populations of cells. 

The cells in unsynchronized cultures are not identical. If all cells as indi- 

viduals obey the Blackman form, but the parameters p 	and A vary (perhaps max 

because of different enzyme concentrations at different life cycle stages), 

then a summation of individual, contributions is obtained. . This sunmation is 

not of the Blackman form', but is rounded in the .transition from first-order 

to zero-order behavior. This could be why much of the examined data, such as 
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that of Johnson shown in Fig. 12,,sh.ow rounding in the transition region. 

The third arbitrary constant in the three constant form allows us to fit such 

data well, even though the reason for the rounded shape may not be the mechan-

istic interpretation used to derive the three •constant form. 

Another problem in ascribing a model to a particluar organism growing 

on a particular substrate is caused by adaptive phenomena: the time required 

for an organism to adapt to a new environment. For this reason batch culture 

data cannot be used to predict continuous culture performance, or vice versa. 

This has been demonstrated experimentally by J ohnson?O  with Candida utilis 

21 
and by Myers and Graham with Chlorella eflipsoidea. 	The reason is simple: 

cells in continuous culture have sufficient time to adapt their enzyme levels 

to their environment, but cells grOwing in batch culture do not. Thus, 

Johnson's Candida, growing with orgen as the limiting substrate in continuous 

culture, exhibited apparent Monod equation behavior. However, cells taken 

from continuous culture at any given steady state approximated Blackman 

behavior. Adaptation effects do not appear to have been. fully appreciated in 

various studies concerned with the kinetics of microorganism growth. 

It is logical to wonder what the effect of branching in biochemical 

pathways has upon the results presented here. The basic system expressed by 

Reaction, (5) assumed a linear sequence in the formation of new cellular material 

from substrate. Branching and network reaction schemes have been discussed 

by Perret. 17  Branching should have a minimum effect on the results presented 

here, since the slowest reaction determines the maximum rate of growth, regard-

less of the branch it is in. However, if there are two or more branches leading 

to the same product, then a single slow step in one of these branches will not 

limit cell growth, si.nce there are one or more other paths leading to the same 

product. 
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Equations (7) and (8) shor how a master reaction can arise in ce1luar 

growth In the discussion of the master reaction concept it was pointed out 

that the slowest enzymatic reaction in the cell determines the maximum possible 

growth rate of the cell. One might wonder why the cell doesn't adjust its 

enzyme levels so that all reactions have the same maximum rate. There are at 

least two reasons. 

If a cell is growing in an extremely low concentration of the limiting 

substrate (at a low growth rate), it has reason to want to manufacture large 

numbers of permease sites for that substrate so that it might absorb that 

substrate at as high a rate as possible. But this cell would be expected to 

manufacture small amounts of the internal enzymes associated with growth, 

since it cannot grow at a fast rate anyway. Taking this cell and placing it 

in a environment with high concentrations of all substrates should result in 

the decrease of the number of perniease sites and an increase in the enzymes 

assOciated with growth, since it is now able to grow at an increased rate. 

Such an adaptive response would be beneficial to the organism if it is going 

to be able to compete and survive according to the Darwinian law of survival 

of the fittest. Such adaptation has been found experimentally in the case of 

22 
Chiorella with light as the limiting substrate. 21, 

	In this case . of algae 

limited by light, chlorophyll is analogous to the permease sites mentioned 

above, since chlorophyll (and to a lesser extent other pigments such as the 

carotenoids) is responsible for trapping the substrate, light. In Chlorella 

the chlorophyll content was found to be higher by a factor of three or four 

when the algae were grown at low intensities, compared to cells grown at high 

light intensities. 
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It has, been shown that all enzymatic reactions in a. metabolic sequence 

do not proceed.at.more or less the same .maxum foward rates. Racker points 

out that some of the enzymes of glycolysis exceed by hundreds of times the 

concentration one would think would be needed. The cell is not foolish, however, . 

and the purpose of these seemingly high concentrations is to ensure that those 

enzymatic steps are both fast and reversibae. Mabler and Cordes 35  discuss 

this point in their chapter on the metabolism of carbohydrates: 

The initial and final reactions in most metabolic sequences, be 
they anabolic or catabolic, are frequently rigged in such a fashion 
as to render them virtually irreversible thermodynamically; i.e. 
they possess AG° ' values (which we recall as the standard free energy 
change at pH 7) equal to 	-4 kcal/mole. Teleologically the reason 
for this ,is not hard to undrstand. It provides for easy flux 
through the pathway and minimizes the possibility of a logjam of 
intermediates somewhere along the line. The enzymes responsible 
for these essentially reversible and unique steps have often been 
referred to as pacemaker enzymes. 

Mahler and Cordes also discuss these pacemaker enzymes in regard to induction 

and repression, and activation and inhibition: 

We shall see that frequently the most sensitive points for controls 
of this general nature are those that stand at the beginning or the 
end of specifi.c metabolic sequences, i. e. the pacemaker enzyme men-
tioned earlier. 

It was previously noted that the general solution to a series of 

reversible enzymatic reactions as given by Eq. (7) includes.the case where a 

perme'ase functions to bring substrate into the cell. A permease is simply a 

"directional' t  enzyme, using its active site and energy, probably in the form 

of adenosine tripho,sphate, to move substrate in one direction. The model 

presented here, Eq. (7) and subsequent simplifications, unlike the model of 

Reiner13  previously discussed, does not allow for leakage of substrate from. 

the cell through "holes" in the cell membrane by diffusion, but allows for 
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leakage only by virtue of the reversibility of the enzymatic permease reaction. 

For large organic substrate molecules, such as sugars,:loss by diffusion 

through holes is probably unreasonable, since such holes are probably too 

small. 	 . 

The results presented in this paper strongly suggest that the Blackman 

and three constant forms deserve closer attention by those concerned with the 

kinetics of bacterial growth. These equations may be used in the examination 

of both continuous and batch culture of microorganisms in the same manner that 

the Monod equation has beenused in the past. Before any of the, three models 

can be applied, it must be ascertained that wall growth is not a problem in 

the culture vessel and that 'adecuate mixing of substrate is achieved in the 

case of continuous culture. Corrections for, substrate inhibition', maintenance 

energy,' and .e.1l density may be applied to the Blackman and three constant 

forms'as easily as they have to the Monod equation in'the past. 	. 
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NOMENCLA.TUPE. 	. 

a microorganism surface area, area/cell volume. 

A a constant appearing in the Blackman and three constant forms, 

mass. time/volume 	. 

B a constant appearing the Monod and three constant.forms, mass/volume 

CODET coefficient of determination 

d. 	f. degrees of freedom 	. 	 . 	 . 

E enzyme 

F . fitting function used in LSQVMT cOmputer program 

k reaction rate constant 

kc 	. mass transfer coefficient, length/time 

K equilibrium constant 	 . . 

P product  

r arbitrary constant in the Moser equation 	. 

S 	. substrate 

S. 	C. sta±idard conditions 

S. 	d. standard deviation 

SUMSQ sum of the squares of the errors 

T arbitrary constant in the Teissier equation, volume/mass 

v velocity of a single enzymatic reaction or a sequence of such 	. 

reactions, mass/time/volume 

V maximum velocity, either forward or backward depending subscript, 

of a single enzymatLc reaction, mass/time/volume 

weight weighting factor that may be used in LSQVMT 

x independent variable 	 . 
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y 	dependent variable 

Y 	yield coefficient relating cellular material formation to substrate 

consumption, cell volume/mass substrate 

C 	 value of B that yields the Blaclonan form as a continuous function; 

set equal to 10 20  in computer program, mass/volume 

p 	specific growth rate, time 

'concentration of the item enclosed mass/volume 

Superscripts 

o 	total amount of all states or forms 

differentiates between equilibrium or rate constants 

- 	mean value 

Subs cripts 

B 	backward 

calc 	calculated value 

eq 	equilibrium 

F 	forward 

i 	indexing subscript 

max 	maximum 

1, 2,.. .m. ..n.. .N 	number of the step in the sequence 

/ 
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Table II. 	The dimensions for the twelve sets of data given in Table I. 

* 
umax A B 

Monod - lactose divisions/hr mg 	hr mg/i 
i divisions 

Monod - mannitol. divisions/hr mg 	hr mg/i 
i 	divisions 

Monod - lactose divisions/hr m 	hr mg/i 
i 	divisions 

Shelef et a1. - nitrate day 1  mg 	day/i mg/i 

Novick 	arginine hr1 	- .y hr/i /i - 

Novick and Sziland - trtophane hr 1  y hr/i  

Hinsheiwood - phosphate divisions/hr mM • h 
divisions 

Schaefer - glucose divisions/hr M 	hr / Mu 
divisions 

Johnson - oxygen pM/2./min mm 

van der Honert - CO2  relative units 
vol%xlO 3  

vol% X  10 3 relative units 

erson and Green - CO2  pi/pi cells/hr 
pM 	pk cells 	hr 

pM/i I  

ittingham - CO2  pi/pi cells/hr 
pM 	pi cells 	hr 

pM/i 

* 
the units of s.d. are the same as p, and the units of SUMSQ are the same as 

2 
max 

max 
. 
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FIGURE CAPTIONS 

Fig. No. 

1 	The case of simple diffusion followed by.a single Michaelis-Menten 

enzymatic reaction. 

2 	Photosynthetic rate as a function of irradiance at 25° C as measured 

in Warburg buffer consisting of 0.19 M KHCO 3  and 0.01 N Na 2 CO 3 . 

The flasks contained 0.12 mg dry weight per cm 2  of Chlorella ellipsoidea. 

21 
Data are replotted from 1rers and Graham. 

3 	Photosynthetic rate as a function of irradiance at 25° C as measured 

in Warburg buffer consisting of 0.19 N KHCO 3  and 0.01 N Na 2CO3 . The 

flasks contained Chiorella pyrenoidosa with 4.2 pg total chlorophyll 

per cm. 2  Data from Dabes, Wilke, and Sauer. 2  

it 	Doubling rate of E. coli at 37°C  limited by glucose concentration. 

Data from Monod.' 

5 	Doubling rate of E. coli at 37° C limited by mannitol concentration. 

Data from Monod.' 

6 	DoublIng rate of E. coli at 370 C  limited by lactose concentration. 

1 
Data from Monod. 

7 	The specific growth of Chiorella pyrenoidosa 71105 at 350 C in contin- 

uous culture as a function of nitrate concentration as limiting 

substrate. The light intensity was above saturation. Data from 

Shlef, Osa1d, and Golueké. 9  

8 	The specific growth rate of an E. coli mutant at 37° C as a function 

of the concentration of arginine. Data from Novick. 25  

9 	The specific growth rate of E. b011 mutant strain B/i at 37 ° C as a 

2  function of trtophane concentration. Data from Novick and Szilard. 
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Fig. No. 

10 Doublingrate of Bact. lactis aerogenes at 40° C limited by phosphate 

concentration. 	Data from Rinshelwood. 27  

11 Doubling rate of Mycobacterium tuberculosis at 38° C limited.by  glucose 

B concentration and grown on Dubos' medium. 	Data from Schaefer6 

12 The rate•.of oxygen uptake of Candida utilis at 300  C as a function of 

oxygen concentration. The data presented here are for cells grown at 

0.97X 10T6 M 	Data from Johnson. 20  

13 The rate of photosynthesis of Hormidium flaccidum at 20 0 C as a function 

of CO2  concentration. 	Data from van der Honert. 29  

14 The rate of photosynthesis of Chlorella pyrenoidosa at 25 ° C'in M!25 

phosphate buffer at pH 4.6 as a function of CO 2  concentration. Light 

intensity was saturating. 	Data from Eerson and Green. 30 

15 The rate of photosynthesis of Chiorella pyrenoidosa at 25°C  in M/30 

phosphate buffer at pH 4.6 as a function of CO 2  conCentration. Light 

intensity was saturating. 	Data from Whittingharn.31. 
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xterna1 substrate concentration, [s] 

Internal substrate concentration, 
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Resistance to diffusion 	 - 
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and/or cytoplasm) 
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Fig. 1 



12 

a. 

4- .  

oE 
01- 	
44  

Cs.J 

02 

0 



>' 10 
0. 
0 

0 
-C 
C-) 

D ci 
4- 

0 
4- 

C-) 
CD 

4- 

- c > c:  
U) 
0 

o U) 

c'J 
0 

EQ 

tJCRL•-19959 

= '1.67 d a y- 
0 

/(a - 

1 tO.I6 day 

- S 
S 

' 	 5 	 10. 	15 
Irradiance (mw/cmZ) 

XBL695-2709 

Fig. 3 



0 
it) 

N- 
N) 
to 
N) 

OD 
a) 
to 
-J 
co 

C 
0 

.4- 

0 
C 
0. 

00 

Lo w 
() 

0 
0 

0 

0 
0 	10 	0 

- 

(Jnoq/suosinp) 04w buqno 

Fig. 4 



LC) r0 
(.0 

OD 
0' 
(0 
.1 

0 
o 

C 
0 

D 

a) 
0 

0 0  
IC) 

0 

C 

0 

d 

0 
IC) 	0 	LO 	0 

S  
0

S 
- 	

-  

(Jq/suosinip) 8401 buqno 

Fig. 5 



UCRL19959 

0 
LO a) 

N, 
(0 
N, 

aD 
0) 
(0 

cc >< 

0 
0 
— c 

0 

0 
-I- 

C 
0) 
0 
c 
0 
0 

LOU)  
0 

0 
0 
-J 

"0 
10 	0 	LO 	0 S  

0
S 

-  

(Jq/Suoisinip) 84DJ buqno 

Fig. 6 



N 

I 

I I 
r 

.4- 

C 
It 
IL 

	

Pt 	(I) 
C 

	

.Lt 	0 

I'l 
a) 

0• 

N\.. 

0 

:::

OD  

LU 	 ro 	C'J 	- 	0 

( 1 1c0p) 71 '8W qMwb 3!!38dS 

Fig. 7 



C I 
- 

V - 

co 	
\~ 

(0 

0) 
(0 
-J 

0 
.-- 	 4- 

I 'D 

C ci.) 
0 
C 
0 
0 

'sJ 
ci) 

C 

(0  0  ro 	o 
(1)q)r/ ' 9 1 DJ q4MOJb o!floadS 

 



UCRL-19959 

	

I 	I 

- 

	

I I 	C 

- 	 U) 
C 

	

I 	0 

	

' 	C-) 
C 
0 

a) 

	

ol' 	IF 

\VV 
1\ \ 

	

¼ 	 0 
• 	 " ' 

LO 
c'J 
(.0 

(0 
-J 
a) 

cr 
> 

C 
0 

0 ro- - 
C 
a) 
C) 
c 
0 
0 

C'Ja) 
C 
0 

0 
0 
4- 

a- 
> 

- 
F- 

I 	 I 	 I 

w (0 	 c'J 0 

( 1 1q) 71 ' 9DJ 44MOJb O!!38dS 

Fig. 9 



-49- UCRL-19959 

(0 
N) 

• w 

J- 
• 

- 

-J 
LB 

- 

0 
C 
0 

4- 

00  a 

a) 
0 

(00 
C-) 

4- 

a 

(1) 
0 



II 
II 

•If 
'I 
II 
II 
II 
I' 

U 
ii 
II 
'I 

I 
II 

a 
Cl) 
c 
0 
C-) - 	
a) 
a) • 	C • 	a - 

E 
0 

C-) 
a 

co

- 
0 

• 

0 

to 
N, 

OD 

co 
U') x 

0 
c'E 

C 
0 
4- 
-I— 

c: 
a, 
0 
C 
0 

ow 
Cl) 
0 
0 

(9 

UCRL--19959 

I" 	 (\J- 	- 
0 	0 	0 	0• 

o 	0 d 0 

(Jq/suosAp) 940J buqno 

Fig. 11 

is 



1.0 

c5O.8 
a 

0.6 
C 
0 
4- 
Q. 

E 0.4 
U) 

0 

0.2 
cu 

C' 



-52- 
	 UCRL-19959 

4- 

I 	C1 
0 
4.- 
U) 
ci. 
0 
0 

a) wi 
-I 

- 

o 
LI) 

__ o 
(D 
-J 

a) x 

E 

0 > 

20 

C 
0 
4- 

0 

C 

0 

LI)0 
0 

0 
0 

0 
0 	 0 

LU 

(S4!unAROI 8A) S!Seq4ucSO4oqd o aD 

Fig. 13 



N 

OD 

0 
LO 

3 
0 
2c 

0 
4- 

-4- 

a) 
0 
C 

0 0  
LU 0  

0 
0 

0 
0 	 0 	 0 
c'J 	 - 

(Jq/sao4'71/Q 'r/) 

S!Seq4wcSO4Oqd 40 8 4 0 eI 

Fig. 14 



-5k- 
	 UCRL-19959 

Al 

Cmhk 

0 

0 
.4- 
C 

C 
0 
C) 

c'J 
0 

N° 

OD 

(0 

(0 
0) 
(0 
-J 

0 
- 

(Jq/sflao 	a1) 
S!S8qIU/cSOOqd jo 8408 

Fig. 15 

;o Lft 



-55-. 	 UCEL-19959 

APPENDIX I 

Subroutines used with LSQVMT, a Non-Linear Least Squares Iterative Procedure 

The Monod Form 

'.JflJT1N 	TABLE 	 ) 
rrMFIsIpN X('.), 	() 

M 	.r). 	) PTIPN. 	 . 
F 	X()*f/(X(fl + U 	 . 	 . 	. 	.. 

(. ) := T'/(X(2) .+ U 	 . 
= -X( 	*T/(X() + T)fr*) 

FETlJF.N 	 . 	 . 	 . 	. 	. 

The Blaclanan Form 	 : 

s il.rl r ,, ! I IT I NE I AK! F ( F,X, TI J . 	. 
D I 	I N 	( 2) 	( 2 ) 
i[-(M1 	... 1 	) RET'JPN 	 . 	. 	. 	 .. 	 - 

- 

(2)=O.5('.5APF-T/ARS 	. 

The Threó Constant Form 	 . . 	. 

5U)UT1NE 1ALE (!,G,X,T,M1) 	 . 
01'1FtrN X(3) , 	;(.3) 	. 
IF 	i.EL, 1.) PETURN 	 . 
Ak 	= ((?),T)**2 	4,*X(I)*X(3)*T 
IF 	 10, 1', eu 	. 
X( 	= 	 1)'X() 	.. . 
(,() 	TI 	. 	 . 	. 	. 	 . 	. 	 . 	. 	. 

2 	AkS = S'HT(ARG) 	 . . 	 . 	.. 	 - 
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APPENDIX II 

The Calculation of th.e Coefficient of Determination, CODET 

N 

	

The "total variation" in y is defined as 	- )2 where.y is the 
- 	N 	 i1 

mean y-value; y = E y./N. With least squares lines or curves of the form 
i=l 

y = a + bx + cx2  + dx3  + ....., it can be proved that: 

- 

(Y Y )
2 
 = 	(y. - ycal.) + 	(ycalc. -• )2. 
	

(a) 

where ycaic. is the y-vailue of the point on the least squares line .o.r curve 
1. 

whose x-value is x. The first term on the right in the above equation, 

- Ycalc) 2 , is simply the sum of the squares of the errors,. SUMSQ, and 

is also called the "unexplained variation". The second term on the right, 

Z(ycalc. - )2 is called the "explained variation", since this is the variation 

of. the points Ycalc on the line or curve. The ratio of the explained varia-

tion to the total variation, (yealc - .)2/E(y - )2, is called the 

"coefficient of determination", and it acts as a measure of goodness of fit, 

reaching one when all data fall on the curve and approaching zero when there 

is no correlation. For a least squares line the coefficient of determination 

is equal to the square of the correlation coefficient, r. 

However, the equations considered here (Monoci, Blackman, and three 

constant) are not of the above form, and Eq. (a) does not hold. The more 

general relation, which also holds for non-least squares curves, is: 

- _)2 = 
	- ycaic.) - (yclac. - ))2 
	

(b) 

=i. - nlc1 	+ 2(y - ycalc)(calc - ) + 	(ycaic1 - y )2 
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where the middle term on the right is not zero, which it was in Eq (a) 

For the three forms ex&iined here, Eq. (b) is true, but Eq. (a) is not, so a 

modified coefficient of determination, .CODET, was defined as: 

•CODET total variation unexplainedvariation 
total variation 	 C 

-2 	 2 

	

- y) - 	(y. 	- yc1c. ) 
CODELT  

	

 
2 	 (d) 

- 

where the unexp]ained variation is the sum of the squares of the errors, S5MSQ 
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APPENDIX III 

Computer Program in Fortran IV for deterrnThing 

the Statistical Quantities SUMSQ, s. d., and CODET 

°P.OGPA' cr1 	( 1rIoT90 , )Tp11T) 

C THE 	 CPNST NT FO —('R:TH P ATE AS A FUNCTIUM OF StJBSTP ATE CONC 

fljNSIJ. Y)AT(5) , X(5(') , VCALC(5C), FCpU(12) , 
c - , fltMESO(S), flELY(511), rIFLYSQ(50), CHAR(12) 

p.r1 	'I"iAY 
PA) 	, (r1PM(j), I 	1, 1 2) 

? FI'T (12) 
6 PFAt) 7, (CHAQ(I), I 	1,12) 
7 	(P'T (U) 

P I; I N T 9, ( CHA(t.), 	1,12) 
P ror'IT (H!, 1246) 

PAI.Q, N 
0 FflP"1.T (14) 

IF (N • r) •  1) r,tj T) 61' 
rjjr 1 r , 

!r Fflf'4T  ('H", ?7 14T4E 	JME 	OF OATA P1NTS =, .14/I) 
4r fl,  (yr).\(),  XCI), I = 1,N) 

FrJ;'4A•r •(?F1'.') 
P4INT 17 

12 FflR.M.T (jQ(, 51-lYnATA, 'lx, 1HXI/) 
PPIIJT 1  4. (yr)AT(1) , X(I), I = 1,N) 

14FWM&7 ('4X, 	 2X, E1•51 
PP I "T ' , , ( F)c'j  (I) , I = I ,12) 

16 rrRA , T (lHr, 1246) 

C THE CALCIiTIflN Ir7  THE VEPAGE CF YOATA, YRAR 
yciju = 

fl'17' != 1 ,N 
=. YS'IM 4 

2" CONT 	Jt 
YRAP = 
PQINT '', vNaP 

22 Fi)PMT  ('.H", 6HYO4P 
A) 	'i1I'4Ax, 	At fl 

2? FflRIAT r1r.. 1 1 
PRNr?4, 'NJ'4 , X, :, 

24 FOM.r 	 7l-l)JUAX =, E13.5, 5X, 3H4 =, F1?.5, 5X,' 1118 =, E13.5) 

C CHECK IF S 1 1 4  rF SQUARES OF 'RROP5, S'JMSO 
$11MS?) 

• no 3: r = 
VrALCI) = 

flLY(I) = Yr)rA.(I) — YC1C(I) 
flELVSfl(I) = 
,, IJMS o  = SIJ%5I) + 	LYS( I 

3C CONTI'J'I 
P.IN1 3, SIJMSO 

37 F"DMAT (tHr, 34H51JM OF SO'JARES OF ERRORS, SIJS, =, E13.5) 

C 'ALC1!LTI'T'! OF TO'AL VARIATION, OENOM 
OENcM = 
flO 4 	T = 
flE1')N( I) = vnA'rA(j) — YR4R 

LSutI = (DELOEN(II)**2 

4.1 
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= 	NO' 	+ 	)FLrESO( I) 
4 fflftTJf!L 

PI'!T 	4, 

41 (114:, 	?4HTHE 	TOTAL 	VARIATION, 	OENO 4 , 	=, 

C 

	

THr 

E13.5) 

Lc,!mTrN 	THP 	COEFFICIENT 	OF 	OETE 	IATIUN COOFT, 	ANO TE 
C 	CO 	.F;lAT!It 	(Ti 	JCF"JT, 	P 

CnrT 	= 	(nrmm,- 	SUMSO)/flENOM 
p 	= 

.INT 	62, 	COOFT 
42 IOQM.AT 	(H•, 	4?HT'-E 	CflEICIENT 	OF 	flETP.MINATION, CODFT, 	=, 	E13.51 

PfT!T 	'4, 
44 rncM.'T 	LH: 	, 	HTHC 	COPPELATION 	CflErFICIENT, 	P, =, 	E13.5/) 

C THE C AtC1 	!C' 	OF 	T-lE 	STANOAPO 	0EV IAT ION, 	STOEV 
= 	S(VT(S .IMSO/(N 

Pj'\1J 	/+', 	STO\' 
4 f,  1'AT 	L H:, 	32HTHE- 	STANOARP 	OEVIATI(1N, 	STEV, =, 	El? • 5 

(fl: 	T 	, 
( rrJT'Jr 
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APPENDIX IV. 

The Twelve Sets of Examined Data 

FST FIT OF MONOL) GLUCOSE DTA Y)ITA[iIV/Hk X=MG/L 

THE NIJMF1 OF C/TA PoXr.TS = 27 

YDALA 	 X 

3.R000'f:-Ol 
1 .l700uE+00 
I . 3e 00 u E • 00 
I • 1 € 00 U L + 00 
1 .22O0E+0O 
1 .320oE,Oo 
1 .2P0o'E+00 
1.24 00 U E + 00 
,.00OOE-02 

'.loOo'E-Q1 
I .2000uE+oo 
I .10o'f:+00 
1 .?700'E.00 
1 • 3 000 + 00 

000oE-02 
5.60000L-01 
I • I 7OO;E. 00 
1. 1700•EO0 
I .2qOO 1 E.00 

0000 iE-0? 
30000E-o1 

I .2200u.00 
1 .)pOOiE+00 
1 .150oE+U0 
7.00OnE-1 
I .1000E.U0 
I • 3gon.;F,0o 

7 • 00 0 0 E + 00 
3 Ofl 00 Oh + 01 
6 1 00000E+01 
9. 0000 0 L+ 0]. 
I ,l5000E 402 
1 .35000L.02 
1 .50000L+02 
1 ,60000L+02 
I .00000L00 
I • 100 0  Oh • 01 
3,8000.OE • 01 
7 • 300 () CL • 01 

• A 000 of: +01 
I .16000E+02 
2, 00000h+0O 
1 .20000h+ 01 
S • 10000 E • 0 1 
6. 700 0 0 E + Oj 
A • 50 00 L + 01 
I • 00000 h + 0 ( 
1 .00000E+01 
3.00000E01 

• 50000 F + 01 
7 • 00000 F + 0 i 
8,00000L•Oo 
2 • 800 00 h + 0] 
9.00000F"*Ol  



-E 

lIST F IT, OF MC)IOt HA14KT  IOL 

THE NIIMF OF 0010 Po1ETS 

V1)A1 A 

.A000.EO2 
22 00 E' 00 

1.0700 ,F.00 
1 .2O0E'OO 
1.1200:0.06 
4.0000.1-02 
9.50o1-01 
1.25001.00 
1.1200 1*00 
1 .270031*00 
I .03001.00 

1 .2oOo'E.00 
Q • 6(00" 1-01 
1.27 00E'00 

• 0 coo E -02 
I .220001.00 
I .320001.00 
I .190001.00 
R.6000'E-01 
1.2000 E.00 
1 .l500E*0O 
1 .1400o1.0O 
1. 1900 1.00 
1 I00O0E. 00 
1.1300 0 1*00 
I .0000CE00 
7. 0000.1-02 
1 .0000oE.O0 
1 .0100,1*00 

UCRL-19959 

0070 	Y0P I 0=131 A/hi' 	A.h(i/L 

2.000000*00 
3. 200 0 1 F 0 i 
9.0000(1+01 
1.10(001*02 
1. 400 0 01* 02 

000 001.. 00 
300 001.01 

5.000001+01 
050000E*O1 
1 • 00000E*02 
1.230001*02 
I370O0E.02 
1.R0000L.01 
4 • 90000 F. • 01 
7.400001+01 
I • 000001*00 

00 00 OF .01 
•. 000001.01 
7.300001 , 01 
6.00000+00 
1.700001*01 
2. 90 00 Oh. 01 
3.#000E'O1 
4.O0 0 O 1 *O1 

0000 OF • 00 
2. 00 00 OF. • 0 1 
2.900001+01 
1.000001*00 
5.00O00EOO 
1.300001*01 

11151 FIT OF MCJOL) LACTOSE DATA y1)AIAITIV/H0 X.MG/L 

THF NIIMBFR OF OATA POIt15 • 29 

YOA1A 	 A 

7 • 00001-02 
1.9000E-C1 
7.2000 1-01 

1.130001.00 
1.060001400 
1.0500)1*00 
7.000001-02 
4.300011-01 
8.300o : €-C1 
1.030001*00 
I .0900'F•OO 
9.4000E-01 
I .0200E00 
4.0000.31-02 
?.5O001-01 
7. 4 00031-01 
1. • 090001.00 
1. 00 00 • 0 0 
P.60001E-01 
I .000001+00 

.1 • 00000E.00 
4.0000'E-02 

.000001-02 
4. 0000 01-01 
6.100031-01 
8.400001-01 
8.600001-01 
1.060001.00 

0 000 01. + 00 
44 • 000001 * 00 
2.900001+01 
430O00F*01 

0 000 01+ 0 1 
I • 140001.02 
1.370001+ 02 
2.000001* 00 
I .9900('L'Ol 
2.5000(F '01 
9.400001*01 
I • 14000F.*02 
I .24000102 
1 • SS000F.'O? 
1 .000001.00 
8.000001*00 
.3 • 00000 1.0 1 
6.200001.01 
9QO*OOE,0I 
1.100001 4 02 
1.270000.02 
1 .4 4 0 001 *02 
3. 000 0 01+ 00 
4 • 00000 1.00 
1 • o00001+01 
3.000001+01 
5.700001.01 
0 • 000001 •. 01 
I • I 00000+0? 
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11101 FIT OF SI-F1 Fl 	1T0TE UTA 	yDA1A1,1)A'v 	1 0/L 

1141- NIIMlF4 OF CATA PnLt1S 

Y1)AA 

4.2700(.00 	3.940001-.00 
4.2c100F.00 	9.78000.00 
4.2300E.00 	P.24000.00 
4.?cOO (.00 	.Of1OU0(.0O 
4.n3t)0• (.00 	7.900000•Ofl 
4.2?O0 0*00 	7.42000F00 
.1000*00 	4,.600000*00 

3.poo 0*00 	1.2c000t.0O 
4..1500li[•00 	c.52000•00. 
.9700E.00 	4.720000-00 

3.400.E.00 	3.7200u(•00 
3.4000.1.00 	?.7P0001.00 
2.9pOO(.00 	?.35000E•00 
2.00001-.00 	1.99000(*00 

.07001'E.00 	I .31 000LOo 
I .550o'E.00 	0.070001-01 
I .'400f.00 
9.3300.1-01 	4.930001.01 
3.9poOE-01 	4.010001-01 
.900o,o0 	3.1701101-01 
.!00E-.01 	1.94000L-01 

3.o0o,I -01 	I .nl ouOF-oi 
7 .030(-u1 	9.300000-02 
6.60000-(12 	q.?00000-(2 

14F11 FIT OF F4CVTCK ARC'INIr( DA7A 	YIAIA=l,HI- 	o=GM1-lA,L 

1H4 MIMPFP OF OOTA PO1I\TS • 	4 

00010 

.0O0E-01 	5.000001.00 

.125O(.01 	1.000001 4 00 
2.070ouE-01 	2.910001-01 
4.800.11-02 	9.600001-02 

RI-ST Ffl OF NCVTCF TkypIOp,.IANF 1)410 YITATA.1/1IP 	0 GAMMA/1 

THE NIIMRFR OF 11410 P1)11-JO = 

	

01)014 	 0 

• 	 1.2 0 00 1 1-01 	3.000001-01 
1.8600E-01 	5.000001-01 
3.55001-01 	1.00000F.00 
c.4po0 .1E..01 	2.000001.00 
P.200..01 	5. 0000CI.00 

HF:sT FIT OF HINSHFLWIIOD PI-OSPI-IATE IIATA Y[)AA 	/HP 044(IlF/L 

IHF NIJMPFR OF 0414 P011-JO 

	

01)410 	 0 

	

0.1700iE-01 	1.370001-02 

	

9 .3e000l-01 	0.70000E-03 

	

9.20001-01 	358000E-03 

	

4.820001-01 	7.0500(11-04 
2.2#OOoE-01 	• 730001-04 

	

1.440001-01 	3.0200 0 1-04 

-d 

4 
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HST FIT OF 	SCHAEFER C-LDCOSE 	DATA 	YDATA)1V/Hp XOLF/L 

THE 	NIIMRER OF 	DATA POjIT5 	= 	7 

.yn4rA 	 X 

.8000E-03 	.00OOE-O3 
7.8000E-.03 	6.90000E-03 
9.030o'E-03 	1.32000E-02 
2.0100.E-02 	2.790OOf-0 
7.600oiE-02 	.64000-02 
7 .9900'E-02 	1.I170('I-o1 
3.2700E-02 	2 • 790001-01 

FST FIT 	OF 	JOScN 	J() 	DATA 	Y04TAMICR0MQLF5,1,MIN WICROMQLE/L 

THI- 	NtJ1Fp 	OF 	DATA 	PoINTS 	- 1 	 - 

YOAIA 

9.1300E-01 	.45000+00 

°.010Q.E-01 	S.10000&+00 
.130O)E-0I 	4.590OO+00 

9.37000E-01 	4.19000E400 
0 .390OrE-0 1 	3, ,4rOOF+OO 

3. 2500 0f. 00 
.7600E-01 	2,740001.00 

P.920jF-01 	2,37000E.00 
H.300E-01 	1.850001.00 
7.9900E-01 	1.52O0E400 
7.0400E-01 	1.10200E.ou 
5.8000'E-01 	.28000-01 
.790ooE-01 	c.66000I--o1 

?.9ö00E..D1 	4.040001-01 
1.4400)E-01 	2.020001-01 

WST FYI OF 	VAN DER rCNEPT CO (2) 	DATA 	YOATAPFI .P.S. X4TLLIVOL. 	P/ 

THE 	NUMRFR OF DATA POINTS 

YDAIA 	 x 

4.79001+01 	1 .20000EO1 
5.3100,E,o1 	1.320001+01 
'.09O0E01 	1.36000E+O1 
'.020091T•01 	1.62oOflF.0I 
.89oonE.U1 	1.920001+01 

7.3400E.01 	2.050001+01 
9.100E.Ul 	2.560001+01 
9.fl1001 , 01 	2.700001.01 
.000CE+01 	3,07000F.01 

9.42001 , 01 	3.280001.01 
1.001001.02 	3,950001.01 
1.0010)E.02 	4,P5000E+01 
1.0010:)E.02 	5,06000E+01 
1.00100E,02 	7.03000F+01 
1.000001.02 	1.4000E+0 
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HFI 	FIT 	OF 	FJWFRSON 	CO(2) 	DATA 	yIiATAMJCIUL/M!CtflL/Hp 	XMICROhOIL,L 

IHF 	NUMHE P OF 	f)ATA PoItTS 	= 

YDATA 

.4p0otE+u0 i.PsooI:+oo 
9.0500)E.00 

• 7900E+00 431000E40 
1.4730')E.01 5.8E000E+OO 

2.0p500E+01 7.7000flE+OO 
2.09300E01 1.8R00UF01 
2,fg3OuE.01 4,530uf)E+01 
.flq3OE.01 7.82000F •0i 

2.0q30'Ee1 1.?ROflLO? 
?.1000•)E01 1.80040? 

kfST 	FIT, 	WHITTTN(3HAIl 	CC(?) DATA 	YIJATAMjCi0I/MI(0L/4p 	MTrHOMOLF/t 

THIS NUt1FP OF 	lATA PoDTS 	= 

YDATA x 

1e8OOOfE+O1 1100000F+01 
.600E.O1 3.70000F.00 

1.6300iE.O1 3.OflOO'F+00 
2.30000E+00 

1.2oOF,3I 1.70000F , 00 
1.1ooE.O1 l.1000I+0U 
R.flOOjE+OO '.700(1flL-01 

4,30000E-01 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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