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I, Iptroduction

Graphical methods for the appréximate solution of the equations of
motion of a charged particle in a magnetic field are useful in many applications
where‘an-analytic solution presents formidable difficulties. This paper presents-
several methods for obtaining plane trajectories thru a given magnetic field by
means of finite step procedures, These methods represent a compromise between
desired accuracy and simplicity of application in practice. They will be
described in Section II. An evaluation of the stepwise and cumulative errors
incurred in tﬁeir use will bé presented in Sections III and IV.

The equatioﬁ of motion for a charged particle moving in a magnetic field

is

d_ mr = e [if x H(;3:] R m = mov (1)

dt c - _ | 71 _ v2/c§

where m, 1is the rest mass and e the charge of the particle, f? is the
position vector, ';"\ the velocity of the charge;, v = ’?' s and H(?) is
the magnetic field strength at the particle'é poéition°

Ef the motion is restricted to a plane, the vector equation (1) may be

expressed in rectangular coordinates
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L)

e/c yH_ (x,7) (2a)

R

my - efc x sz (x; ¥) . ‘ (2b)

11

or more conveniently in intrinsic coordinates

1 = e H(D o | (3a)
Q(;) mve '

.A .
v = Irl = const. (3b)

P o

-where e (?) is the magnitude of the radius of curvature of the trajectory at
? and H(—;) is the component of the magnetic field strength at ? normal to
the plane of motion. Since the ac‘ce_leration is always perpendicular to the-
direction of motion, no work is done on the particle, and hence no kinetic-energy -
_‘i‘s imparted to it. Therefore mv is a constant of the motion and ﬁ?.é is
sixhply a proportionality factor relating the magnetic field strength to the '
curvature of the path. |

Fixing a system of polar coordinates in the plane, the path of a particle

is given analytically by the solution

r = f|Q ro,(gg ) of the differential equation for the radius
' de
%

of curvature, e ; of a plane curve,

2)3/2
dr - or42(ar) - 1 v () W
dez r de Q(r’ o)r dae e

where e(r, ©) 1is related to the magnetic field by equation (3a).
Provided e (r, ©) is not too small compared to the desired path length,

nor too rapidly varying, one may hope to obtain a satisfactory approximate path



UCRL-1997
=3=
-using finite arcs of circles and appropriate local values of curvature, together -
with-stepwise corrections for position and direction of the endpoints of these
arecs,
'In“thewmethods to be described;, we shall assume that a magnetic field
~plot is-available, having lines of cénstant field strength which -are-separated
by distances small compared to the radii of curvature involved in the problem.-
tir“our”purpose, we shall think of the lines as calibrated directly in units of

: Ve
‘length, 1.e., corresponding to the radius of curvature %—ﬁ o

IT. Plotting Methods

A. Direct Mgthod

Since this method involves no corrections for either position or
direction, it is the simplest to apply. However, it will be shown that the
error accumulated in its ﬁse makes it too inexact for most applications,

(a) Description of Procedure (see Fig. 1).

The initial conditions for plotting a trajectory are an initial

position Pl And velocity for the charged particle. The latter includes an
initial direction of motion,.represented by a unit vector gi,'and the magnitude

-
v ' = mv , which as previously noted is a

of the particle's momentum, m.)
constant of the motion. A knowledge of mv then allows the field to be directly
calibrated in terms of the radius of curvature (4 (;) at each point.
The plotting pro¢edufe is as follows:
(1) At P, , the normal to ;; is constructed.
(2) Along this normal a distance € = RQ(P)) is laid off from
Py to locate a point G,.
(3) With C, as center and ei as radius, an arc is swung thru
an angle ,f 10 intersecting the next field line at the‘point
P, The tangent to this arc at P, gives the new direction vector,

*‘
Na,
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The procedure is then repeated with the new quantities P, , _1?2 R

fzgcz,and fzp

B. Method with Compensation for Directional Error.

The initial position, P; ;, and direction _rg‘ ; together with mv -
-must be specified as in Method A,
(a) Description of Prodecure (see Fig. 2).
(1) At P, the normal to —x?i is constructed,
(2) Along this normal a distance QIE R (Py) 1is laid off
from Py to locate a point Cy- '
(3) Wiﬁh C1 as center and €1 as rédius, an arc is swung
thru an angle f 1s intersecting the next field line a.t.-
the point on _ _
(4) Angle E | is bisected and the bisector is extended thru Gy .
(5) Wlth P, as center and €2 e (Py) as radius an arc is
swung, cutting this bisector at C,.
(6) The corrected direction '3}2’ is perpendicular to ;2?)2 at
.P, , and the procedure continues with steps v(l), and (2)

already accomplished,

. €. Method with Compensation for Directional and PositionalvErrors. ,
The preliminary specificaf.ion of P1 R -'?1 ; and mv is th_e émne as
ifx the preceding methods,
(a:) Description of Procedure (see Fig. 3).
(1) at P, the normal to ;‘;_ is constructed.
(2) Along this normal a distance el = e(Pl) is laid off

from Pl to locate a point €.
|



~ UCRL-1997
w5

4 .
a '

II. C. (3) With Cj ‘as center and €@, as radius, an arc is swung thru an
angle El’ intersecting the next field line at the point 5;.
"(b,)x, Angle fl is bisected and the.bisector is extended thru Cj.

Let T, designate the point of intersection of the bisectorj[ and

- VLD 2
1 1.8TC o l'sl_:;-:vrpe ot b«r N ; i &
at 2t s By seais 9IB ect arbroon 1sioe 7 S2ev s §ti¢ SERARE 3 W M Y100
(5) Along this bisector a distance 62 §1) I is lald off from ,
& WILB 2L u o D e ML
“;(ﬂ30=?1"»t° locate‘g'gegnt 02°fJuiua v nmvie af Mty fioom oerT

(6) wWith C, as center and e(sl) as radius an arc is swung from Ty, .

(2) intersecting the next field line at P5, which Wl];l be ne&ar Slo
\ . M g

(Note Q(S )= Q) = (’2) |
do el enoldibaost THESINE oW VO Pesasmsish af ros dulor aBf.ofiiey 247

This same arc is then continued to the next field line to
23 berluy 45 w0 e

reaccomplish step (3) and the procedure is repeated beginning

(=) with step (4). ' B R g = (0 - o)

i m

III. Evaluation of the Stepwise Error. .
iv) U\J ned - ) I.‘?

Tt will now be shown that the methods considered above a.ge partlcular

cases of a general method involving two parameters s °{ and . The stepwise

Vu batemeb e dusy sdemizonqgqe oid vice Lol
error will then be evaluated for this method. 94

Kg”‘Wit.h initial point P; and center of curvature C; giveffg}Tfl is

defined as the angle subtended at Cy by the arc of radius ?1 from P, to

LER LI snnod o hw fo\.« o vj’)"f'd’.ﬁ

the next field l:.neo The angles P Cl— Tl = rc( 51 o e:r,xd Py Cl Vl = @ 31
-are then determined as in Figure L, where 0( and @ are two chosen numbers,
The new center of curvature 532 is constructed to lie on line ‘Tl le 5 &

Lo . S .- . ' 1 Ny , -1 -

distance e2 from the Point Vy. By proper choice of 0{ and F , this method

is seen to. be identical with Methods A, B, or C; as shown in Table 1.
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To determine the error incurred by the nt‘h application of the above
‘procedure, the approximate paths wiil be compared at points P Pn ny with

the exact path at the corresponding points Qj Qm-l . The latter are.defined

m—

to be the intersections of the exact path with the lines C, P, and Cpy Py >
respectively.

For this purpose the polar coordinates are chosen with origin at Cn

and the © = O axis along C, P,. (cf. Fig. 5).

The exact path is given by a solution to equation (4), which is denoted
by
R = R(®) . (5)
This particular solution is determined by two initial conditions which

“may be expressed as

R(8 = 0)

1]
f=o}

where R, = Cp Q, ' (6)

GE) - ~ "

Similarly the approximate path is denoted by

r = r{8) ‘ (8)

subject to the initial conditions

r(0) = en' - where en = C, P, | (9)
d i 4 ) :
...I,) = 0 , by choice of coordinates. (10)

A quantity An+l = 'Pm-l Qm—l is now defined, which is a measure of

the error.incurred after n steps. Likewise (_.P ntl is a measure of the error
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in direction after n steps.

The problem now is to evaluate A ndl and ‘Pm—l in terms of An’ (Ijn
and Fn, the angle characterizing the n'th step. This will determine the
positional and directional errors incurred by the n'th step,

To accomplish this purpose, the coordinates of the endpoint Pn A of

the approximate path are first obtained.

Referring to Fig. 4 the angle P C P

n+l _hS ,and the distance- Cn C

n+4l
is denoted by x. (For convenience subscripts 1 and 2 are used in place of n,
n+1 and omitted entirely where they are unneccessary for pﬁrposes of distinction,)
Applying the law of cosines to triangles {02 Cq vl% and {02 Cy Pzg s
the following equa.tions result '

2

02
(2

Since 8, and P, 1lie on a line of constant e 5 the following

2 2 :
f)l'f‘x-l-zelx cos(#uﬁ)F | (11)

2 r2+ x2+- 2rx cos (h - )f | - (12)

relation is satisfied also

er dr + eﬁ de '=4 fr(el -r) 4—(’9(1 - h)§ -

. where '?r “:" %}9 ee —— 3@

Equations (11), (12), and (13) are now solved simultaneously for x, h,

(13)

and r.

Setting 92" Ql = 2 in _(11) s

2€lx008(°§?@)f :2(2914'2)-::2 | (14)
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“whence, ‘to terms of order f s the solution is
3 ,
x = A+ o(§) (15)

Setting r - Ql+ w 1in equation (12), substituting for (’2 from

equation (11), and rearranging

2w Ql-l— w2+ é(el+ w) x cos (h -¢ )} -2Q1xcos (°f~-P‘)F' - 0.,

. (16)
~_Assuming ‘wNO('fg'), and neglecting terms /\JO(ES)
. 52<1=%_)(h-@)<hf@-zer>§2+ o§’) an
N ,
so the assumption that w NO(EB) is justified, since
A = ez"’ el = Q(sl)" Q(Pl)
.ﬁfi"*'"-...“ 2 3
' = @ +C F+2C B - € +oE)
2 ¥ 3 4
= Rkt %.?169? %) | (1)
' 3. 2 4 : 5
w = 3 -8)h .+ (3 - 29) g €le§ +(§ elee - Q 19')}} +_o(}. ) .
o Ql : , (19)
. | 3 _.,,‘_f":
Since w = r - el = 0(§ ) it follows from Eq. (13) that
h = 1ff-o(§2) W | (20)

2 5
and the terms of O(E ) contribute to w only in terms =, O(E ). So

finally, the values of r and © at P, are
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' . L3 _Qz Lk 5
I €l+§(1-@)(1+@-2q)[€m§1—(?_2;99 ﬁe)fj-l-o(})
(21)

| ; | |
0 = }’1 = §l+ og ) . (22)

¢l may be evaluated easily (see figure k) using the law of sines applied

to triangle C, Cl P,

sin (h - of)F = sin ) | (23)
€, x |
| ok
or sin § = A sin (1 - )% + o(F )
(R +A |
80 | L
=4 -4 ) @-%)F tof)
el Pl
2 @ 2 3 A
g = __el_(lw() Lemg + (20 - _g_lg)g J+ o(f )
1

1 2
(24)
Having evaluated r, 6, and @, the quéntities related to the approximate
path,vthe next step is to obtain the coordinates of Q2 s the endpoint of the
exact path.
So now an expression for R(6) , the radius vector of the exact path is
obtained in terms of quantities evaluated at © = 0. To do this a Taylor's

expansion in powers of © is made,
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OO

| (n) n | o
R(6) = Z R (0) 6_ - (25)
5 n! v

where R(n) (0)

an$62

de
t6=0

" To satisfy the initial conditions (6), (7)

V0 2 e ra . 2P0 - eta)my =g

(26)

(n)

n
The remaining coefficients R "(0) in (25) can be evaluated in terms

‘6f the magnetic field and its derivatives measured at Pl by use of Eq. (4)

2 : 2 3/2
2 1 2
@ arae® L @)
whence, to first order in (A + £)
(2) 2 e +A 2
R (0) - R(0) - R(0) - 911—41 - (M 1)
' ?(O) : . €>1' + Al élr
2
= -8,a-0 )toAtE) . , (27)
1r »

‘ L N (3
Similarly, by differentiating (4), expressions for R (O), and

R(h)(O) are obtained _
R(B)(O) = 0, Tt oA 4—6) | (28)
2
%) - S2Q, L OAtE) . @)

e
B
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In the above expressions the following definitions-have been used.

Qe —
or ele - %ﬁé)
e 2
' (30)
2
and . =3¢
168 —a—ez)
. P
Substituting (26) - (29) into series (25), there results
At E | N
R(El) = Ql t 1. l§ - %A - e )Fl 19 Fl +' 4<ngg - 2;_1;'9_)§1
+ S R(fl) . (31)
This remainder term is of the order
3 5 2 2 29
SrE) ~o[A+EIE +EH @ +ENF | L (32)
Differentiating (31) to obtain 4R
A e g’ e
%%) | = & -40a- elr)E1+ 2 % El u % (€166 "é— %10 )51"'8 R'§)
=T S 1
(33)
’ _whére
Srr mo[<4+a)§'+§ (A +e,)§] (34)

Now actually the polar angle Q C Q of the endpoint Q, is not
I\ 1 2

}l but some almost equal angle Yll‘ From figure 5, it is clear that.
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sin (6-1) = sin(e -+ &)

Al r
which may be written
A b |
G-Q;_}Bsinfé"'O(E) . (35)

r

‘ 2 .
since ¢»~O(E ) from Eq. (24).

Making use of Eq. (22)

3
h = §l+o(§) : (36)
' 3 6
Furthermore, since G—YI - O(E ) , cos (9—»?2) = 1+Q(f )
and
- 2 2
A2 = (By+r, - 2Ryry, cos(0-1))
2
=z ((By = r2)_ + 2 R, r, (1L - cos (& -N ))
_ 6
= R2 - r2+ O( E )
Referring to Egqs. (21) and (31), the final expression for A2 emerges
| ' 2
,Az = Al-\- él §1 -3 Al(l -€0F%, (37)

© ,
+3 % 5, [1 -31-8)a+ g - 2&»()]

Py B4 | o
Fk (Ruge- 22005 i-ca-par g-20]
l .

tolater¥+ P+ +eHg"].
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To obtain the eipression for the change in the directional error

incurred by this step, it may be noted from the construction (cf. Fig., 5) that

- ,..=1
'ijz = tan = ( ﬁ—(;z'“ (7{1)) (¢1 - 91 + "21)
(38)
‘or using definition (26) for thernext boundary condition,
5 - (€2+A Jtan (})2 ' (39)

which must be evaluated neglectlng terms ~ 0 [f -+ (A + E;)f + A J

| Slnce 8 - Yz s O(A E ) from (35), (24), it can be neglected.

Further since ‘IUZ ~ 0(§ +£_ + AE s A | may be neglected and tan ?2 x 992

’ E2 g 62% g (el+ eZI.G §l)-su2

and from (31), (33) and (24), this may be written

82 (61 ~1'elef '3 {[é‘l A (1 - )’§1+%€19512

I\

| 2 3
+ %(elee”-'ez—;fle)fl} -1-%)

, 2 2 3
x [elefl + (%;,ee - %ie )fl ]lg

or
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2
E = & -4 a- €08 +El~§_1efl‘/' 26 ¥, [1 - 20 - )..7
| 1 |

3 ' .
t 3¢ R1e6 - é—elez)fl [l - 30 - ).] t 30, € 513 [1- 20 )]

1

tofd+erE + e+ +eNs]. (10)

It is clear that Eqs. (37) and (4LO) represent general expressions for
An +1 and 5n+1 in terms of An’ En and field quantities measured at P_.
From these expressions one may infer the optimum values of the parameters
& and @ and get a measure of the directional and positional errors incurred
.iﬁ a single application of the procedure. Further, by solving these simultaneous
difference equations, expressions for the errors accumulated after n steps may
be obtained.
To first evaluate the stepwise errors, it will be assumed that “Ll ,
and E%; aré both zero, i.e., that we are starting with a precise knowledge

of the 'init'i‘al position and directio_n of motion of the cﬁarged particle,

Then the equations (37) and (40) reduce to

| 31 | b
A, %Qle_?l ]_1-3(1-6)(1+@-2~)]ﬁ' o(§ )
' (41)

RS | 2 3

= 1 [1 -2(1 - ] 0 ).

g = 16,5 (L -9 )+ o(%) (42)
It is seen that the positional error A starts building up as a

third order effect whereas the directional error £ - starts in as a second _

order effect. Furthermore from (37) it is seen that even if the coefficient
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of JE ’ in (hl) were adjusted to be zero, so that A starts in as a fourth
~order "effect; the presence of the E-l fl term will almost immediately
predominate as a third order effect, which will grow more rapidly than that due
to the 2?3 term., Therefore, it is most important to adjust c( to remove the

-gecond order term in (42) .
1-21-9f) =0 giving o = Y2 . (43)
3 | 3 ‘
With this choice the coefficient of _I-‘ in (41) is then minimized.
1- 3@(1 - 8) - minimm at é-= 1/2 .
Unfortunately this minimum is not zero, since the roots of the equation
1-3@(1-@) = 0 (44)
are both complex.
It is also seen that (3 (1-f) is symmetric about =12,
so that methods in which 5 = 1/2 :-é( will give the same amount of
cancellation and hence are essentially equivalent,

The findings of this last investigation into the initially incurred

stepwise error are given in Table 2 for the three methods previously described,

IV. Evaluation of the Cumulative Error

The purpose of this seqtion is to investigate the systematic error
accumulated after n-steps. The res‘ults obtained will give some information as to
the applicability of the methods to a given problem.

Those interested primarily in the general limits of precision of the
plotting methods will find the'rgsults summarized in Tables 3 to 4 and

in the finél paragraphs of this section.
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The evaluation of the cumulatiire error involves the solution of the

set of simultaneous equations (37) and (L;O), which may be written in the form

An+l = (1“an)An+.bn Eh*.fn.
(45)
e"n-l'l = (L+ecy) &) -4y An+ &n
wh‘ere 5
. .3
a, = 31 - ¢, §, +oE) | - (46)
: 3

by = §,FTo(f) | (47)

,
e, = Soo o) (48)

6. °

o2

a T @-e ) F 4 o) | (19)

H
11

3
2 T2 [1-3(1-\6)(11—(3—2‘();1(’@‘511‘

) B 2 L 5
; 512[1- 6(1 -8+ B - 2] (fne_e-P%.,ene )8, HoE )

(50)
2 .

g7 3[1-20 -7)] e e +g% [-3a-0] (e, -ei €0)

n

+ %[1 : 21 —Of)]?nr PHG} § i+ O(EA) :

(51)
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To solve (45), &, is first eliminated giving

i

[b - n+1 bn-rl(l.’_cr;)]A.n-l-l - bn-l—l i(l u cn)(]‘ B a1'1)

]A + [ nfnl = Pagp1(l+ en)fyt dobyyg gn] |

| . (52)
§+o(g3) 5 ap = vo(gz) ; c = O(E) ; d = 0(})?

e o Q(EB)' : 5 O(EZ)

choqsing all § n's equal to a fixed § , and combining urikriowri_t.erms s

(E+EA_,, = [z+c+@ o] dne [1+c+zrn]A
K § “_fn-i-l - At ety + St <‘;n_‘_‘,

. ' 2 2 2
where qnflo(f)’@n: O(E), ¥y = 0(£) R SHSO(f) are

unevaluated terms of order indicated. Setting h, = f 8n and rearranging.
L] v ]
Dogo = Cont 8041 - At ot SDAF [1,0 - W+ et bngtd, |

(54)

] [ t

_ 2 _ 2 b 5
MR SR EEE LR SRR

which may be expressed as

b,z Attt A A -t 4+ 4tLA,,

" (55)
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where c, = cn+@n; /(n__f—: hn+5n +€nfn; )n Eﬁ;_“‘;:o(gz)

' 2
- In equation (55) An is an unknown quantity of order j and will
‘hereafter be assumed to be a constant parameter ,2
"The equation (_55) will first be solved neglecting ) and then-the-
AA“t*erm“will -be treated as a perturbation, with ) as the expansion parameter.
A = A% A% APy kA(k)
n n n n + l
(56)

Upon substituting this expansion in (55) and equating equal powers of A

(0) © . .
A7 =4 +a+te ) [An_l -A_, - fn-2] e +L
o (0)
(57 °)
A (D) (1) (1) (0)
An = A + 1+ cn 2 [ An 2 ]+An«=2
' (571
(k) (k) ' (k) (k) ] (k 1)
An - A n-1 1+ cn_72) [An-l A
| (57,
(0)
The equation (57 ) must be solved first. Separating the f-dependence
explicitly,
(0) n-1 (0) (58)
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(0

(0) ; L(0) (0)
‘;rn = zn=-l + 1 + ?n=2') [)[nnl B Zn-»Z ]+ [nZ

Substituting
(0) n=2 (0) (0) (0)
A =2 h /(i and B, = A,

i=1
and equating coefficients of the 4

(0) v (0)
B T (Iten 2By 5 + 6n—2,i

Calling S, , = 1+ ¢, , , the solution of (60) is

0 i>n-2

(0)

ni

= 1 . i=n-2

n-
7731+1sk ign-2
(0)

The values of B,

W (0 0
conditions A( ) = 0 and A](_) = 0.
- )

0 0
Since A.f(d) = Afﬁ{’i-}— Br(li)

© _ = (0
A>n:"L Z Bki

=j42
whence
(0 n-1 n-2 n k-2
A s E v T 4|t 3=
n i=1 i=1 ‘ k=i+3 J=i41

(0)

- A1

(59)

(60)

(61)

for i 2 n -2 follow from the boundary

(62)

(63)

(64)
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or
(0) n-1 n-2 n-2 k
A =25t @[1-{—2 @@ . sj_)
n i= i =]__ I k=i+1 j:i +l
| (65)
n-1 n=2
= 2 £, + > /J_l-l— S; 41T 8541 Sip 0t 1+1°°°Sn-2J
(0) (1)
ir s . i btained. First, introduci th
Having ZSh 44311 1svnext obtaine irst, introducing the
notation.
ne B
iy 8 = St 8408 aFeee S 1S40 oo Sy .
from (57') follows immediately, comparing with (57Q»)-and (65)
(1) n-2 n-2 (0)
An - E [11'0”_1 (s):‘A,i (67)
So formally the solution can be expressed
) (='o)
' >, &) (°()
A =2 A AT - A7 '+ Z
o =0 ' =1
' ' (68)
where (0) n-1 n-2 -2
A7 - T o+ L [1+0,®
m T 33 1 qg i i+l j (69°)
(k+1) n-2 J (k)
. =E[l+°1+1(s) A s k20

UCRL-1997
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As a special case,where a simpler expression for A n may be obtained,

‘consider f, 1 s oS as constants; then

©0) _ ‘ (70)

0 e . "

A = -1+ L [ 5 (S-nz-wl)-(n—z)J

n S-1.{ -1

(1) B2, peld 1-2 \
- S e-l - 1)f [ S (S - 1) - (i-2

o 71:1( _ ){(1 )_"'51[5-1( ) - (1-2) g

i
i}—‘
w
i
[
|._J
—~———
Mz
]
D
'J
T
o]
1
w
|
[ )
+
n I
[ N
Il—‘
.
-y
+
~~
[}
UJ
*
r
| R |

s-1 s-1

+ (n-z>_£i_2_Z-_;_§£ i[f-_l_:}un-z)[ e+ 4 <-_s_+2>]

Performing the sums
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A(l)= i'_l_{ 1 [na-z-(n-l)s#—sn_l][f__é]
s-1

n g s%2sa)?

y 1 ("™ =] [t Ls-2)
* 5" (s-1) [ Il (S~1)2]

4+ (n-2) _ A ( -2 {(n—l)(n-@ [f -X_]
2 S-

5(s-1)2 -1

(s-1)" 5§-1 ~Si(s£-1)2

+(n-2)[-f+ ng_-_z_%:{_'_ L g 7 J §

and collecting terms

AP s [s“’l= (n-1)(n-2)s” + (n-1)(n-3)S - gn-B)gn-z)] f
2 2

n s - 1)3

“n-1 n-2 2 :
4 1 [(n—h)S - (n-1)S 4 S (n-1)(n-2) - (n-1)(n-4)S
(s-1)" ~ 2

_'__ (n-3)(n-4) ],e
2
resubstituting S = 1 + ¢ and regrouping terms
(1) n-1 2.
A = 1 [(l+c) - 1= (n-1)c = (n-1)(n=2)c :,fv
n » ' 2!

c

ne2 . -
+ 1 [[(n—h)c-,- 3] (14¢) + 34 2(n-1)e 4 (n-1)(n-2)c ]/z
ok 2

(71)
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In evaluating the summation above the following relations have been used.

n
% zk = zn-ﬂ-l - z‘z : (72)
kz z2 -1
n n
> kzk = zd z_ zk 1 [ nzn+2 - (n+l)zn+l+ z] .
k=1 dz kel (2-1)2
. (73)

Equations (70) and (71) provide an upper limit for the cumulative

error if f, £ , and S are set equal to the upper bounds of fn’ £ and

n?

S,, respectively for a given problem.

n

These limits have been evaluated for the three plotting methods A, B,
and C in Tables 3 and 4. The results are tabulated for three different step
sizes and total path angles. The two tables correspond to two types of magnetic
field,

It should be emphasized that these results represent an upper limit

on the cumulative error and do not take into account the effects of variations
in f,, c,s and /@n from step to step,

The effects of variations in the parameters may be illustrated by the

following comparison.

Let . f/e = l:,xlOmS : I/Q = 1x10°'5 : = 10”2;

& = 1 waich corresponds to method C with l 1 &H‘ < 1

T 50
)

;_l__ d H } é 1. Comparing Case I: {c = ol} with Case II
H '

J o

I II
i c = .l cos (nﬂ/zo)z at nf 30, one finds A~ 2~ .03 and é’ ~,01 .

e Q
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Thus it is seen that a variation in the parameters will tend to diminish °
"“the “error quite appreciably.

‘Tables 3 and 4 show:

1. -Method A is too inexact for most applications.,

2, Methods B and C give approximately the same dégree of accuracy,
especially for values of © corresponding to a large fraction of a full
revolution in path.

In the above treatment, no account has been taken of random errors
incurred in the application of the plotting brocedure. But from Eq. (65), it
is seen'that a random error in position will give no contribution to
A:!éo), nor will a directional error on the average. So if the approximate
path is found in practice to be reproducible, the random errors may be safely
disregarded.

At this point, the authors wish to express their appreciation to
Dr, David L. Judd for many helpful discussions throughout the course of this
work. This work was performed under the auspices of the Atomic Energy

Commission,
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TABLE 1
Method =~ B
A 1 1
B 1/2 1
TABLE 2

Method a 5
B | 1/6 | o
c 1/24 o

3
A, = ap ELFO(EY

2. 3
€ = v +o(§) .

UCRL-1997
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TABLE 3

Cumulative error for a magnetic field such that | 1 JH , < 1 ;
H

o ©

< 1, where ‘6 is the local polar angle defined in

2
1 52 H
H g e
Section III,

= ste

Hethod (_radiansg)-angle [A(O)/e ]e—ng [2 A(l)/e ] 6=n ¥ [A'(i)_%il_) G-nf

e=102 201 300 e=102 2ol 300 ) e=102 201 300
A
.3 5 5 R W | 1
.1 05 .2 >.2 004 04 .05 3
003 002 007 02 » —.Ooolé» -0003 e02 a07 02
(We have assumed 2 = 52'2) _
B
03 .02 .06 ol 002 .02 .02 .08
o
.1 .003  .007 .02  .0005 .00L »54/ .003 .01 .03
c
03 .009 .03 .08 - .0004 .008 .05 01 Rel o1

o1 .001 004 .01 .,0002 .002 .01 .001 .006 .02+
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TABLE L
Cumulative error for a magnetic field such that [ _l_'a__l £ 3 ;
2
1 Jd_H < 10 , where © is the local polar angle defined in Section III,
H 9 92 : .
ste -angle

Method (radians)

[(O)/f’]

6:n§

|24

Vel

o]

n§
6=1.2 2,1 3.0 6=1.2 2.1 3.0 6z1.2 2.1 3.0

A .3 .5

ol 03

.03 ol
B

03 ol

ol 02 L2 .003 .02

.03 003 .03 o5 .0005 .007 003 0L
¢

93 008 0006 009

ol 02 .2 .0007 .02 02

.03 002 .03 o »0001 .003 .002 2Ol




Fig, 1

BEFORE STEP(I)

"AFTER STEP (1)

AFTER STEP (2).

AFTER STEP (3) -
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(d)

(a), (b), (c) same as Fig. 1

(f)

Fig, 2



(g)

(a), {b), (c) same as Fig. 1

(d), (e) same as Fig. 2 when P2
is changed to S1

AFTER STEP (S)

AFTER STEP (6)
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