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• 	
ABS:.CT, 

The aim of this paper is the representation of the theory of nuclear 

matter using the technique of many-body Green functions. We have utilized the 

functional method to derive the relevant systems of equations, for the Green's 

functions The analytic properties of the Green's functions and related 

quantities are given and used to obtain• the final set s  of equations for the 

nuclear matter problem so avoiding the use of thermodynic Green's functions. 

Results:achieved to date are shortly described in the last chapter. Brueckner 

theory and allied methods are not further discussed, since these are sufficiently 

known. • 

ir 

On leave from the Sektion Physik der Universitt Munich, Munich, Germany. 
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• 	. 	. . . 	II.. T1OY OF .EEN 'S FUNCTIONS. 

• 	 We treat the fermion system within, the scope of the so-called Green 

functions (Ab .65), which ar .ethe:.repro'duction of the vacuum expectation values 

of a time-ordered operator product in field theory. One, can conceive of them 

• 	as quantum-mechanical generalizations of the distribution functions of 

statistical.mechanjcs (Gr 52). A knowledge of them is sufficient for the 

description of the system.' We use the following definition of Green functions: 

g(a1 	a, a 	a') = (_
j)fl (o T a

1 	a' 	I 	(II 1) 

Here lPa  and 	are the Heisenberg annihilatlon'and creation ope'ators, 

respectively, of a fermion with the quantum number set at the time 

ta (a: 	c, t). 1.0 ) is t'he ground state, normalized to unity, of the N- 

fermion system with the energy E(N). Due to the Heisenberg equ.ations of motion 

the G-functions 'fulfill the following equation of motion (with two-body forces) 

H 

aa.-.a;a...a) 

a1 a+1 ) g(a1  a2 .. .aa++l; 	
++ +i(aa 	lvi a...aa 1 n+l 1 	nn+L 

= 	1 6(a1 , a.) g(a2 .. .a; al ...aLl 	 (11,2) 

• 	• 	• 	• •'l 	• 	 • 	• 	' 	• 	•• 	 ••• 

We employ,. until , further notIce, the convention according to which summation 

or integration, respectively, is to be carried out over all doubly occuring • • 

* 
The upper index "plus" has the effect that the time argument is shifted by an 

infinitesimal omikron. 
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indices. The Schroedinger operator s and the generalized ant:symnmetric two-

body potential v is defined by: 

(al si a ) : 	+i j— (a, a ' ) + (t 	t ' ) (cii hi a ' ) 	; 	 (11.3) 

(a1a2  v aa) : = (t 	- ti ' ) (t 	ta2) (t '  - t') *1< a1a2  v 

1a2 1 vi a2a )•• 	. 	 ( ii.) 

h is the single particle part of the hamiltonian. The coupled system of equations 

(11.2) is equivalent to functional equations (Ka 62, Ma 59). One requires, limiting 

oneself to one and two-body operators, only the.two and four.-point functions 

respectively. Instead of these quantities it is more convenient, in many 

cases, to introduce equivalently the effective single particle potential (al V1 a '  ) 

("irreducible mass operator") and the effective scattering amplitude ( ("reducible 

vertex part"): 

-i (a1a2  v ala2  ) g(44, 	= ( a1 I v a1  ) g(.a, 4) , ( II. 5) 

g(a1a, 4a) = g(a1 , 4) g(a2 , a) - g(a1 , a) g(a2 , 4) 

	

• +1 {g(a, b1 ) g(a2 , b) (bbI 	b1h2  ) g(b2 , a). g(b1 , 4)j 	(11.6) 

With the help of the functional method (Ka 62, No .1, Br 63, No 61), and using 

a "normal" source function, one obtains the following exact system of equations 
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(ajva ' )_2i(abvab ' )g(b,b) 

	

.+ (ab VI cb) ga '  c) g(b ' , d) (cdly 	ad ) g(d ' , b) 	, (11.7) 

( ala2 I ii ala2 )  = 12 (a1bl vi a1b2.) + 	l2I vi 

g(c, c1 ) g(c, c2 ) (c 1c2 	a1b> +2i (a1c2  v bc 	g(c ) 	, c) 

g(c, c2) : 	2c1 Y a1c ) + 	 2 

S(cLiyi ae 
i (a1c I 	c 1c > g(c1 , c1 ) g(c, 	• 	

1 2 	1 2 	g(e2 , c 2 )j 	(I.8) 
g(b2 , b2 ) 

1 6(a2 , b2 ). 	b2) ig(b2 , .d2 ) g(d, 	(d2a2 1 6 d2a2 )} 

g(a, a ' ) 	-(al (s +v)- I a' 	. 	 (11.9) 

At present there is no possibility of solving such a coupled system of 

functional equations. Naturally many approximations may be obtained from this 

system of equations - e. g ., Hartree-Fock approximation, bubble approximation, 

ladder approximation and so on - which can be also obtained by partial 

sunimations of perturbation theory. One only needs to cancel suitable terms 

on the right hand side of (11.8), e.g., the ladder approximation follows by a 

consideration of. the first two terms alone. One can also create new approx-

imations by forming the functional derivative 	 in a known approximation. The 

linear approximation for (11.8) does not it self take into account all two-

body correlations (We 66). 

The standard Brueckner approximation is obtainable by taking into 

account only the first two terms in the first bracket of (11.8) and neglect of 

I 
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III. I'iABTISCHWflGERAPPnOXIMATIoNS 

A somewhat.more judicious inethodof setting up approximation equations 

is given, in our estimation, by the method of MartIn and Schwinger (Ma 59), 

which permits the consid.eratjon of two-, three-, four-body correlations, etc 

in a systematic way. The coupled system of equations (11.2) is equivalent to 

the following functional equation: 

• '2, 	 _____ 
{- (a1 I s a) ô(a1) +1 (a1 a2  

11. 

 I vi a3a2 6
' (a) 6(a2 ) 	(a3 ) 

	

_fli(ai ) 1 	Gtfl,YJ = 0  

where 

00 rl(a) ... fl(a1 ) 

	

G[fl, ri] = 1 + 	 g(a1 	a, a1 	a) 

' (a) 	fl'(a') 	
(iii 2) 

rj and r are annormal source functions (anti-commutable) With help of the 

functional equation one can decouple approximately the original, coupled system 

of equations for the G-functions, by consideration of correlations up to the 

desired order, and satisfying the functional.equation.up to the corresponding 

orders in fl and Tj 	In the j-th order of approximation one obtains 	= 0) 

/ 	 I 	 r)(a1 
	£ )...r(a ) 

	

n ]1t• exp. 	 al...aL) 

• 

(j) 	 r (a ). .. YJ (a 

	

-g 	(a1...a, a1...aZ 	• • • 	 (111.3) 
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The upper index indicates the order of the approximation (mexim).l included 

correlation). 	() (a1....a,4....4) is constructed from the g 	(a....a, aj...a) 

according to the prescription for the (&-i)-th approximation (a ni < ) 	In the 

j-th approximation the factorization of the (2j + 2)-point function is as 

follows: 

g( 	(a1 	aj1 4 	a 1 ) = 	II 
1+22 . .ini  = j+i) k1 

(a ...a )_a ' ...a ' )) 

Here we have g 	g 	- g), A and A are the antisetrization operators 

with respect to the unprimed and primed variables The first order agrees with 

the Hartrec-Fock theory. Consideration of two-body correlatiors yields: 

- (a1  s a3 	g (2.) (a3 , a1 ) + (a1a
'  2  v a3a2  ) g (2)  (a3a2, a:a2) 

	

= 5(a1 , a;) . 	 (111.5) 

(2) 	I I 

- 	s a3 ) 
	(a3a2 , a1a2 ) = 

i (aa I V1 aa3 	g() (a2) 	9(2) (aa3  44) 
- 2i ( a1aI vi aa3 ) jg(2) (a

n , 4) g(2) 
 (a2a3 , a4) g(2) (c )4  4) 

(2) 	 I  
g 	(a2a3 , a2a3) 
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Upon inversion of the Schroedinger operator (-s g 	= 1; with 	we label 
* 

the two-point functions with no iwo-body interaction) one gets: 

(2) 	 (2) 	' 	( a) g 	(a1a2 , a1a2 ) .= 	(g 	(a1 , a) g 	(a2 , a3 ) - g 	(a1 , a3 ) g 	(a2 , a 

	

(aa3 I 	I aa3) 	g(2) (aa3  aa) 

-' (aa3  j v aa3 ) 

	

(2) 	 (o) 	' 	 A(2) g 	(a,a2 ) (g 	(a1 , a) g 	(a3a2 , a1a2 ) 

(0) 	' 	(2) 

	

• 	-g. 	2' a) g 	(a a 3 , 1  a a 12 )) + g 	iaa1 ) 

• çg(0) (al, a) 	(a3a 	a3a) 

(a) 	(2) 	 ' ' 	(2) -g 	2' a14 ) 	(a3a1 , a3a2 )) + g 	a14 , a3 ) 

	

(a) 	' 	( 2) 
(a3a2 , a2a1 ) 

_g(0) (a2
,  a) (2) (a3al, aa))J 	 (III 7) 

Or respectively: 

* 
Boundary conditions are necessary for inversion. In our. case the inversion is 

possible if, for example, one requires periodic boundary conditions for the space 
coordinates. The following condition is sufficient with respect to the time 
coordinates: 

liin 

which.may be interpreted 
(Mi 57). For grand cano: 
interval, so that unique 

g (t1 ...t, t..t ' ) =0, 	1<&n; 

as the Instability of the particle-or hole-propagation 
aical ensembles the time interval is the antiperiodicity 
inversion is guaranteed. 
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42) (a
1a2 , 4a) 	i g (2) Cal, 

T) g(2) (a 
	a) (aa3  V a1a3) € (2) (aa3  aa) 

-2i 9(2) (a 	a) (aa 	vi aa3) {g(2) (au, a) 

42) 	 ' 	( 2) '. 	(2) 

	

(a?3, a3a1 ) + g 	(an, a1 ) g 	(a2a3 , a 2a3 ) 

H 	 +1 	2)  (aa3aa) ( aaivi a 4 a3 ) 	(aa2 ala2)} 

(".8) 

Comparison of the corresponding equatibn for the reducible vertex part shows 

that (111.8) is correct in the. linear order with respect to y (We 66). 

According to the complicated structure of the equations one has treated in the 

G-function approach only twbody correlations. Further all dynamic two-body 

correlations have been neglecte& which are not simultaneously connected with the 

potential, a procedure, which appears to be justified by the Jlartree-Fock-

structure of the four-point function outside the "healing distance". According 

to this selection principle equations (111.7) and (111.8) give: 

g(a1a
23  aa) = g(a1 , 4)g(a2 , a) - g(a1 , a) g(a2 , a)  11 

+ A(a1a2 , aa) (a3al vi aa3  > g(aa3 , aia)  

in which the following both possibilities for A occur (AC0_  and 

approximation): 
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A. 01) (ala2, 4a) : 
=21.9

(0). (al
,  4) g(01) (a2, a) •g(0) (al, a) 

• 	 (0) 

	

g 	
(a2 , 4)J) 	(111.10) 

. 

A 	(a1a2 , a1a2 ) : = 1 g 	(a1 , a1 ) g 	(a2 , a2 ) 	 (111.11) 

The A(h1)_approximation is identical with the so-called ladder approximation. 

One can also include the last term in (111.6) in an. approximate way, if one 

inserts in it the two-point function g '  in the Hartree-Fock approximation. 

One obtains (Ka 61): 	• 	 • . 	 • 

(HF1) 	• 	' ' 	i 	up'. 	. 	' 	(m'i) 	 • 
A. 	(a1a2 , •a1a2 ): = 	• g 	(a1,a1 ) g 	(a2 , a2 ) 

	

- 	(a1a) g1  (ad, 4)} 	(111.12) 

If one inverts SXS, and considers only the correlations connected with the 

potential, one gets the simplest approximation (Pu 61): 	 . 

A °°  (a1a2 , aa):. 	j g(o) (, 4) g(0) 
 (a2 , a) 	. 	(111.13) 

p. 

S 
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IV. EQUATIONS FOR THE 1JUCLEAR MATTER PROBLEM 

Relations (11.5) and(III.9) suggest introduction of the so-called 

T-matrix by:. 

(a1a2IvIaa ) g(atlatv 	= (a1a2ITIaa ) g (a,a[) g(a.,a) 	(Iv 1) 

Upon transition to energy representation and use of the energy con;ervatijn, one 

obtains the following system of equations for. the approximations (111.9) ._ (111.13) 

(6)_6b): = 	£ 	s)): 	 . 	. 

( 1a2IT ' 	(E)Ia) = 2 

+ 	l2'l2> 	,, ,, 	(E) 	 (F)I ) 	( 	2) 
12 	 . 

) = - 	fdet { e16 'OE (IT( 13 ) ( c+c )I a t )g(E')}, (Iv 3) 

ot I(h+v 	(c))I)} 	() = 60ta' 	, 	. 	( iv.) 

where the propagator in the particle-particle channel is defined by: 

= 	fdE; {9 	+ E;) g ( 	6y}(J) . 	.. 

The bracket in (IV5) is to be interpreted according to (iii.io) - ( 111.13). 

Since the potential works instantaneously, we have, due to the structure of the 

approximations used. (E: = C + C 

1 	.2 
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I. 	 (ij)., 
'c a. T 	 , 	 c ') a.'cO 	= 

1 2 	a1  a2 	a2  1 2 

S(EE') 	cicL2IT(1j) (E)lcc) 	
(iv 6) 

27-r

Accoring to the usual assumptions about nuclear matter the two-point function 

is independent of spin and isospin. We can thus assume that the two-point func- 

tion is diagonal with respect to momentum, spin and isospin (g(e) = 5 g(c)) 

If we use H- jiN as the hamiltonian (p isthe chemical potential), the following 

holds true for, the exact two -point function: 

= 	 l ip 	H + p + E0(N) + jOY1 	Io > 

+ (oI(c+ H p - E0 	Y (N) 	jO 1 	10) 	. 	 (fl.T) 

From this, because of the integrability of the imaginary part,a spectrai repré- 

* 
sentation for the.two-point function follows (Mi 57) 

+00 

A(c) 
g (z) 

= f d.c 	_ 	, z complex 	 (Iv 8) 

00 

The spectral function A (A 0fAa.(c) dc = i) is determined uniquely by the 

imaginary part of g (0(x 	O,5 (1 
+ 

 

A(c) = 	g {O(-c) 1M g(c) - 0(c) Im g(c)} 	 (w 9) 

The two-poiñt function acoring to (IV. 7) is given in the physical range by 
I 

the following relation: 

	

= 0(c) 	(c .+ ±0) + ®(-c) g(c - 10) 	. 	 (iv.io) 

* 
The functions distinguished by a tilde () 

are analytical functions of the argu- 

ment z for Im z ~ 0. 
**Superconductivity is not assumed (Ma 63). 
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From 

	

()= (zh + 	- 	 (111.11) 

and i.sing the properties of g and A, respectively, one obtains a spectral 

representation for the effective single particle potential as well (Lu 61) 

(r 	0; v 	real): a0  

(Z) 	
+ f dF- F(c) 

(Iv 12) 

with 

v 	= v (z) 	 (Iv 13)ao 

The imaginary part of 	(c +iO) = Re 	(c)- r (c)) is determied by the 

single particle strength function: 

27r A(c) 	+ io) - 'a (c -iO)) 

- 	 a 	 (Iv.i) 

	

(.- h + 	- Re 	(e))2 + r(c) 
a 	 a 

(Iv5) can, with the help of (iV.8) and (iv.io), be expressed by the spectral 

function A. If one now introduces the function A for complex arguments in 

• 	anology to (iV.8), one gets (A a i 	= aaivAa 

f dw{A ( + w) A 

	

f z 	
( - 

	

(O( + w) 0 ( - w) -0 (- 	- w) 0 (w - ))} 	(Iv 15) 
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S:Lnce the second integral is real and integrable, K possesses analytical pro-

prties analogous to tboe of g and v. One gets: 

(z) = 
	

(.
ui) ( + 10) 	( - iO) 	•(.16) 

From (Iv.2) the function T can be deiermined by means of A 

• 	 (z)Jcj) = 2 	l2al2) 	. 

+ 	• {(.a12IvI12) 
4j) (z) 	(zaj ) } 	(W.l7) 

which determines the mass operator for complex arguments: 

i. • 	(z) = - 	fdct e1C'0 E(aI (z+')ja) g (') . 	(iv.18) 

From the integral equation for T it follows that T is anetytic outside of 

the real axis, with the possible exception of. poles. PossibJe poles are zero 

points of 1 - vA. . Tpossesses no complex. poles in the A-approximation 

(Pu 61);*  we will assume this to be true for the other appro:imations; other- 

wise, the following equations should be corrected for the poke terms. Applying 

Chauchy's theorem one obtains: 	. 	 . . 
S 

See also Ref. (Ma 63). 	 . . 	. 
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(z) - 	(()i) (o + iO) + 	 - o)) 

1 f - 	
- 	

i) 	
= 	

(c' 	o) 	0 	(Iv 19) 

From ( 11.5), (iv..i) and (I.3) we have for the effective single particle potential 

in the physical range; 

va 	() = - 
	

dc' e16' 	E 	(ij) (c') X . 
 

ij 
(I(0(6+) 	(c + E' 	210) + 0(-c-c')T 	(c + c' - 2iO))t 	>} 

	

= - 

	
dC' 	Ef° dc" 

00 	 A' 	" 
+ f d6" 6'-6"+iO 

[(aJ{ff- (p 	
+ 

13) 
(E + io) - 	( E - o)) EEE1+2iO  

10) +(ij.( 	- iO))} 	J , 	(. 20) 

in which the second expression was obtained by use of (Iv8), (IV.lO), and 

(IV.19). Complex integration leads to: 
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v(ij) (c) = [ f dc' 	(c') (cI{(O(c+c') 	(c-s-e'+2io) 

+ 0 (-c-c')T 	(c+6 1 -2i0)} 0 (-c') 

	

1 (ii)(E+1o) -(E-iO) }Jc3> 	 (Iv 21) 

or 

= E
f 

dC' 	(6') 	 (z + c')kx) 

+ 	(c'-z) ((1J)( 6  + iO)_'(c'_io))Ia> } , ( IV 22) 

respectively. (IV.19)and (Iv.22.) can also be verified by the method of thermo-

dynamic G-functions (Bec 66) 	(Iv ii) and (iv 22) make up the system of equat ons 

to be solved, , A and. A being.defined by (IV.11), (IV.12), and (IV.15). 

Making use of translation invariance of the system, one gets the fol-

lowing system of equations (n characterizes the spin and isospin, 

a: = p,n;h1): 

= 2 (pvp') 	 IVICI 

(+ , 	, z) (q(P,z)p' I 	(iv 23) 
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3( 1,z) 	fdj J de' 2  

(?12 
z+et)1122 	, > 

12' 

i 	-(i 	) 	 —( 	 ) 
~ 	g 	2' 	E -z) 	

2 	n'I(T 	
J

+ iO) 12' 

- 	 1J)(+ 	
- 	 o)) 	jl2 	

' 	 , (w 2) 

where 

= (z 	- 	 (1i)()+ M)r'  (IV. 25) , 

A(hi)(P,C) =(1J)(, 	c + 10) 	13)(, 	C - iO) , (IV. 26) 

A(1J)(p1p2,Z) 

=f dc1dc 	
{1'12'2x 

- 0(-c) e(-€2 ))J 	. (Iv.27) 

Maay approximations treated up to the present 	with exception of that of the 

Hartree-Fock-theory - have the disadvantage that they are not thermodynamically 

consistent (Ba 62, Re 63) which means that the determination of the equilibrium 

data by the different allowed methods leads to differing results. This has been 

examined more closely and quantitatively in the so-called 	A(00)_approximation 

by Puff and Reynolds (Re 63, Ga 69). 	Therefore we. think, one must choose the 

(1') 	 * 
A 	-approximation 	because it fulfills ,as does the Hartree-Fock approximation, 

* 
In the following the upper index is left out. 
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the so-called Baymcondtio±i (Ba 62), i.e., the irreducible mass operator can 

be represented as the functional derivative of a functional according to the 

two-point function: 

(avIb) = 	 ( 	28) 

(00) 	(01) 	 (HF1) 

	

This guarantees, in contrast to the A 	-, A 	-, and - A 	-approximation, 

thermodynamic consistency and preservation of the conservation laws Fixation 

of equilibrium data by means of various relations (e.g., pressure p =0; 

E = pN; E/N = minimum) leads to the same result which, however, is not guaranteed 

in the other approximations (Hug 58). 

The following holds for the self-binding system of nuclear matter 

f dF-3 
	+ 	

A 	 IV.29) 

in which the density p is given by 

P 	
E 	

(2) 	.L de A(p,C) 	 (111.30) 

The chemical potential ji ( single particle energy at the Fermi Surface) is 

according to.the Hugenholtz-van Hove-theorem (Hug 58) equal to the average binding 

energy per nucleon. The Luttinger theorem,(Lu 61) being valid, one gets: 

2 
PF  p 	- + Re V 	

F'° 	
E/N 	. 	 (111.31) 
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This means, since we have to do with a selfbinding system and the Baym condition 
E 
O 
 (pF) 

is fulfilled, 11(pF) must intersect the function 	 at its minimum (pressure 

equal to zero), and this point fixes the data of nuclear thatter. 

The single particle width is defined with the help of solutions of the 

approximate "eigenvalue equation" (s. (I\T.114)) of the single particle energies: 

2 

Re v (p, c() - ) = o 	, 	 ( Iv 32) 

thatis 

= F(, 	(p) 	p) 	. 	 (Iv.33) 

The A- and the A-approximation have the disadvantage as against the 

(oo) (01) A 	- and A 	-approximations, that the spectral .function in the relevant 

negative energy-range is no longer represented by a 5-function (I' 0) or, 

otherwise expressed, the particle-particle propagator and the T-matrix possesses 

for negative frequencies a cut. Thus there is no energy-momentum relation. The 

independent particle model holds true only approximately. • This renders the 

numerical calculations more complicated. 
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V. RESULTS MID DISCtJSI0N 

The system of equatiQns (Iv 23) - (Iv 27) has been solved selfconsis-

tently for several approximations Due to the complicated structure of the 

equations one has mainly restricted oneself to separable potentials acting in 

relative S-states only. The details can be found in Ref.. We 71. It turns 

out--as expected-that only for the •. 	-approximation. a unique determination 

of the equilibrium data was possible. Also the Luttinger condition for the single 

particle widths was fulfilled in this approximation (Weg 68). 

The obtained results for the nuclear matter problem are given in the 

table. The agreement with the experimental dat is poor, this being probably 

primarily due to the use of separable potentials, which have mostly a low repul-

sive force. Secondarily one has neglected the higher partial waves. Further-

more one should take into account contributions of three-particle correlation 

(Be 65, Da 66, Pe.67, Bh 67). 
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This report was prOpared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any in formation, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



1.9 

to 
	

C) 
 

tri 

I 
	

t-1 


