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. ABSTRACT

A Generalized set of cénonically conjugate variables
obeying commutation relations in terms of universal constants

isvrépresented in aﬂgroﬁp theoretical formﬁlism; All physical

‘variables can be uniquely expressed in terms of universal

constants in anélogy totheelef's "wormhoié" length and are
tefméd:quantal units. The commutation relations of the
cénoniqally conjugate variables are termed the Generalized
Heiéenberg Relations, two of which are the usual [x, p] 2 4
and [E; t] > A&, The quantal units are manifest in classicéi,

quantum, and relativistic phyéics.
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R A INTRoDucriON'
J. A.AWheeler1 discussed a quantum of length termed the Wheeler
wormhole" 5 —-(Gﬁ/c )1/2 and interpreted it in a topological description of
the space—time manifold., For a more detalled description of Wheeler s geo- .
metrizing procedure, see Appendix A.. He also discusses a quantum of mass,

m = (cﬁ/G)l/ , a quantum of energy, E = (cSAﬁ/G)l/2

, and a quantum of
density;np = c’/G%ﬁ.v»“Earlier,'ﬂM.'Pl'ant:k2 derived the dimensioned
quantities'of length,<time, mass, and temperature in terms of the

universal constants & (Planck's constant), G (uniﬁersal gravitational

constant);?c (velocity of light);::The-quantities Planck introduced were:

T ereHY? . 1;éovx 103 ca, .'  (a)
v;;= (oh/c3HM? - 5.36 x 107 sec, o (1b)
- - (A/e)H? - 2.82 x 107° gm, | i_i l. - (1c)

- i'= 1/k(c 5&7c)1/2 = 3.60 x 10° degrees . R ¢ T

for 1ength;'time, mass, and temperature, respectively. The'values of the
universal constants used in evaluating the Planck,quantities are:

c = 2.99_8"x71010 cm/sec,4ﬁ = 1.055 xlO-27 erg—sec; G=6.673 x 10--8

= : and k =1.34 x 10-16 erg/degree. These values are taken from

'gm—sec 3

the recent ‘work of B. N.vTaylor, W H. Parker,. and D. N, Langenberg on

the theoretical and'experimental implications of the universal constants.
Planck discussed the universality of the expressions in (la), (1b),

(1le), (ld), which results from their unique expression in terms of the

uniyersal constants. The_quantities in (la), (1b), (l¢), (1d) and all

thsical variables, can be uniquely‘ekpreésed_in'terms of universal
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constants,and, in this fotm, ate termed "quantal‘units," The quantal
units are'defined and oiscussed‘in Refs. & and-S}

Table I contains the set of quantal units and their numerical values :
: relevant to the calculationa in this paper. i

The quantal,units obey paited relations asva'set of canonically
conjugate variables expressible'in'terms of non-aero conmutations. Two
“such pair relations are the usual Heisenberg relations, [x, p] 24 and
[E, t] >‘6 Recently a set of Generalized Heisenberg Relations were
: developed‘in'terms of quantal nnits;6 We'considef’tbe pair relations
obeyed by the quantal units‘as'elements of non-Abelian algebras;' The
‘ non—zero.commutation relations,are interpreted as;representing a limit
on Observability of obtainable'nalnes of physical vatiables in the sense
\of the'unceftainty interptetation of the usual Heisenberg relations.

| Heisenberg developed his uncertainty relations, in terms of E, t

and x, p, whlch represents a limit on the simultaneous observability of
canonically conjugate physical variables in relation to the magnitude
of 4. The commutation relations of the non-Abelian elements are
expressed in terms of universal COnstants, combinations of universal
constants and physical variables, expressed in quantal unit form. The
Generalized Set of Heisenberg Relations in terns'of'thevinterdependency_
. of physical variables is interpreted in termsvof.anscale of observability
in physical phenomena which, in part, accounts fd; the comprehension of
various branches of physics. |

This is an extension of the concept recently expressed by Taylor,
Parker, and Langenberg3 in their statement that the 'unlversal constants

are an important link in the chain of phy31cal'theory which binds all
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the diverse branches of physics together." The qﬁan;al units are
uniquely expressed in terms of universal constants and are manifest
in classical, quantum, and relativisticvphysics; See Refs. 5 and 6

for the cosmological aspect of the quantél_units.
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 II. SIX GENERALIZED HEISENBERG RELATIONS
In Ref;'G;‘six Géneralized HeiSenBerg'Relations'ére developed in

terms of pair relations of ‘quantal units and in térms of the ordinary

* form of Qﬁantized variables. Two of these relations are the well-known

Heisenberg xelaﬁions'ahd fqur_are new relations. :Twﬁ distinct quantiza--
tion procedures ére defined;_they é;e denoted priﬁary and secondary.
Priﬁaryvquahtization is»thaﬁvquahﬁization procedure in térms of the
quahtal units and secbndafy‘quahfization is that“qu;htizétion.pr04»
ceduremwhibh ié fhe ordinary‘or‘stéhdard forﬁ ofiqdéntizéfion;';

We hé&e the usual Héiééhﬁéfgwrelétions betﬁéen (L, p) and (f, E)
as indicaﬁéd by ﬁhé ﬁoriébntal affow in,Eq._(Za);"KZB),-: :

——————

u’P]ﬁZﬁ S T (2a) .
[t, Elg 2 € . o « (2)

(Note £ or x is length.) The sub £ on the bféckét dendtes the Genera-

lized Heisenberg Relation in terms of A. As discussed by Bohr the |

canonically conjugate pairs £, p and t, E relate in a quantum medhapicgl'

manner tbvﬁ as a limit on the simultaneous observability of £ and p and

also t aﬁd E. These-relations are termed horizontal relations as the

relations of % to.p and‘t to E (sée arrow in Eq. (25) and (2b)). Six

ﬁaired relations are represented in Eq.(Zg), (2b)1gs indicated-byvthe arfpwé.
_The first pair of new felatiqns are obtéined aé paired relations |

between the diagonal pairs of quantum variableé (indicated by the

diagonal arrows). These pairs are E, % and p,.t‘aﬁd form the relations,
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p, tlz»ﬁ/cz{.f_.A I S | | (3b'.);".

' uging tthQﬁéntal unit formﬁﬁf the physical vaxigblés given in Table I.

We define {‘;E cﬁ andf£°_E‘ﬁ/c,as is dbne in Tabiévl;‘ The commutation

relationé'Befweeﬁ'ﬁne space-likevcbmponent of'abfouf vector ﬁith thé

time-likévcomponent of a four vector is equal tO'{'Or‘fﬁ; Now let us

| look at the third possibility of the‘relation betWeen pairs in Eq. (2a),7

(2b)."w¢ifo;m the veftigal pairs (2, t) and (p;_E); |
In each case; we are,consideri§g one componéﬂévof length L, is an_;' 

isotopic space as 21 = 22 % 23 and similarly fofvamgntum, 1 = P, = p3;f
For tﬁe two pair'relétions r, t) and (p,_E)‘felated by the vertital-,

arrows, we have,

et @D 1/2 41 : ,
[2, t] = 5 *F °GF S _ (48)
[p, E] = /2 F=4F, =4cF I (4b).

‘where F is the quantal fo:éé, F = ¢4/Gfahd'p =fo”is the Quantal power
(see Table I). 7
Also, £ and t and also p and E are related'in Einstein four vector

notation as,

R CNS) ‘ (5a)
2= E) S o (5b)
‘where t is the fourth component of £ and E is the fourth component of p;

See Sec. V for the metric interpretation of the relation (g, t)_énd

(p, E) éé:related to the quantum interpretation of the relation of
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[Q,'t]'and [p, E] in Eq. (4a) and Eq. (4b). We can also write fk, t]
as [xl,‘x4] end [P; E] asi[plf .p'4]ffor'x4‘=_ict_and,p4 Q.i %-E fof
indices running l to 4. S ' :

The same relationship holds for [2, pl =4 and ¢, E] =4 in
Eq. (2a), (2b) and (E, 2] = £ and [p, t] =4 in Eq-. (3a), (3b) and
[2 t] = 4'/p and [p, E] = £b in Eq.v(4a), (4b) for both primary and
secondary quantization

' The primary and secon&ary form of quantiiefion of the‘variables »
2, p, t and E are:given inAEd. (6a), (ob), (6c);:(6d) and Eq. (7a),
(76), (7¢), (74d).

The primary or quantal unit quantized form from Table I gives,

: 1/2 _ .
’L. = (%—-) | R ({F>1/2 | (6a),(6b>
= @m? E= €m0 (60),(6d)
and the seeondary.of ordinary quantized form isvgiuen as,
& i |
Lo = o2 ‘ ~ lp=hk= 4/ - (7a),(7b)
= 4 = | | '
t, =3 AE = hv = Aw ) (7c),(7d)
© met '

where the quantity 2 is the Compton wave lengthvfor a particle of . mass,v
m and t, is the corresponding time, Fo = ZO/c. Eq, (7b), p =4A/X is
the usual DeBroglie momentum and wave length expression and E = Aw is h.
the Einstein quantumenevzl'gyvre_lationT | |

The primary quantization procedufe for the Generalized Heisenbergf.
Relations [E, 2] and [p, t] gives Eq. (3a)_and»(3b). The same results

are obtained for secondary quantization (see Ref. 6). The primary
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quantization proceduré forfthe GeneraiiZéd?Heisenbe:g Relations [4, t]
and [p, E] gives Eq. (4a) and (4b) but the secondary quantized variables .

in the Genéralized,Heisenbérg_Relations give,

'[9'. €] =.:__;_2_ e S »(8a})‘
b, E] = £6h®y . R (8b)

Because of the relation of.éuantéi powerﬂpA=‘cF and the quéntal frequency

w= (F/ibl/z, as p = CF = fuw? the results in qu_(Sg)'and'(Sb) reduce . -

respectivélytto Eq. (4a) and (4b).  The mahner in Which primary and

secondary qﬁéntization are related is discussed in ﬁbre'detéil in'Ref.VG;
More néw'Généralized Heiéenberg Relations are preseﬁted in Sec. IV

: bﬁt before;proceediggvto thése néw.caSes derived by_group fheoreticalv

ﬁethods; le; uS présent'some relatibns preéented by G. N. Le&ig that

also represént specific cases of .the GeneralizedﬁHeisenberg Relations.
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lII; SOME COMMENTS ON G. N. LEWIS' ULTIMATE RATIONAL UNITS

In his - attempt to establish a universal and fundamental set of
| units, G. N. Lewis developed a set of quantities which represent some o
specific examples of the Generalized Heisenberg Relations. G. N. Lewis -
and M. Randall7 developed a set of units termed Ultimate Rational Unlts,be
in which a set of physical quantities are expressed in terms of one
other physical quantity or dimension (in this case length). |

They write:

lsec = 2.99x100% e \ (9a)

: o 371 o g
~} gn = 2.499 x 10 - , SRR | (9b)
l.erg = 2.779 x 10 = (9c)
.lbdeg- = 3.813 3;4 | o ' (9d)

‘The unit of.dimension'of oentimeter is arbitrary but relative magnitudes"
are constant. In Sec., IV, it is demonstrated that Eq. (9a), (9v), (90);,
(94) are specific cases of the Generalized Heisenberg Relations. First,
let us more closely examine G. N; Lewis' units. _These units, like thosev‘e
developed by M. Planckz, are expressible in terms of universal constants;"
In the first case, Eq. (9a), of the relation of the time unit; sec
to the unit of length,.cm; the multiplicative factor or 2.999 x 107 0
¢, the velocity of light (whlch -is not dimensionless) |
From Lewis, t = cX. Actuallyxvelocity is given by ¢ = 4/t so that

the time unit should read,

1 sec =-% 1 -10

m = 55 * 10 em - - (10a)
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or the reciprocal mnltiplicativevfactor of whath.vN 'Lewis'wrotet
In the case of his mass unit to length relation, Eq. (9b) (or the
reciprocal of length), we have,"
) ﬁ 1 l =371 ¢ - . B . '
lemel G g % 10 | (108)
and forvenergy to the reciprocal of length

1 61

1 =1
1 erg = cﬁ‘ E; _.2_779 x 10 pry (lOcl
and‘temperature to the reciprocal ofilength;
g 1 .1 11 L
< ddeg.={ A 3813 cm (10d)

where k is‘the Boltzmann constant.

If one examines dimensionality of the universal ‘constants .and units;
one concludes that the actual result of a conversion of sec, gm, erg, andl
deg into=cmﬂor l(cm.is the reciprocal of what G;-N.rLewis wrote, but |
nevertheless the concept is the same. We have expressed the numerical -
values given in Eq. (9a), (9b), (9c), (9d) from G. N. Lewis in terms
of universal constants, in Eq. (10a), (lOb), (lOc), and (10d).

With this in mind let us proceed and construct 2 new correct set of

"conversion" or multiplicative factors,

=

=22=33x10" a o (11a)

', m=8 1.1, 001 x 107381 (11b).
N c R L -

E= () =" 3=3.60x 10 — (11c) .

| 1 -~ ‘ 11
T—E(cﬁ)—-—-——- I=2.62x10_ @ . (114)
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where_wéiﬁefined 4 =4&/c and €' = & in Table I.

It is noted that Eq. (10b) can be written as o

Com, 2= | - o 2
compared;to;Eq. (3b) which'canabe written as, “ _ | o
ey t] = 4 | . | o (13)

and we see that there'can be more than one vériabie canonical to each
variable. 'Noté'thét it is true that‘ﬁl %'p£ or m‘¥ p(t/2) = p/cvor
P % mc as we‘ﬁould believe. This is true for.oﬁhervphysical'Variables
as éegn in Table V,'which-ié discussed in Sé¢;ﬂIV. 

Aléé; Eq. (lOc):éan be written as, ‘

CE,RI=L o as

. which cérréSponds to Eq. (3a). it.;ppears that tﬁe,G. N. Lewis-rationg# v
~ultimate units are specific caseé Qf the Generalized Heisenbérg Relatioé;§ a
’ We could write a set of.physical variables in terms of cm or l/cm;_‘
ﬁe can aléo do this fér sec or l/sec, etc. for eacﬁ physical variable.

We can set up units suchvthat.each set of physical'variables can
be written in terms of another variable. These relatibns comprise part
of the set of laws of phyéics that are expressed by the group represen-
tation of the Generalized Heisenberg Relations presénted in Sec. IV. :Ih .
the group ;ﬁeoretical'interpfetation, certain laws of physicé-tesqlt

which we term Primary Laws of physics.
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IV. A GROUP THEORETICAL REPRESENTATION OF THE
GENERALIZED HEISENBERG RELATTONS

A} Group Symmetry Principles

We shall now 1ook at a possible group representation in which the
physical variables, in the formvof the quantal units; Table I, form the
elements.of a group. A set of.Generalized Heisenberg'Relations are
represented'in.this manner;, In Refi 6, the pairdrelations of these
quantal»units are'represented'as'the noncommntative elements of a non-ri'
eAbelianvgronp,'the well-known cases'being [2; pl ;iﬂ.and [t, E] > %.

-Prinary Physical LaWB.come about’through group operations on
physicaluvariables expressed:as’quantal nnits.b.Some examples of‘Prinary )
Laws of physics are: F = ma, E %'mcz, p = me, and [%, p] > 4. Primary l
Laws willfappear in our'TablesleIvand IV as we:nill demonstrate. We |
define'Secondary Laws as those laws of physics'wnich do not result in
this manner. 'Secondary Laws follow indirectly from.éroup‘operations on.
pnySical yariables in quantal unit forn. Such laws as the radioactive . .
decay law containing differential and exponential operations are examples
of Secondary Laws. We shall discuss briefly how the Secondary Laws come
about later on in this section. First, ‘let us return to Primary Laws.

The algebra or set of group generators that give rise to Primary
Laws do not contain the elements.of differentiability or exponentiality't
and neither do they contain the respective inverse operations of
integrability or the logarithmic operation. The group generators of
operations that do not involve the above mentioned operations generate

the group we denote as R, the representation of R that we choose which
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involves the’basis vectors and group,generatorslor algebra can be con-

structed isomorphic toAtheysymmetry group so thatla one-to-one mapping
of eachﬂelement can be made:toAa.specific pernntation P, of objects
that will specify the symmetry relations between the physical variables.
The symmetry relations are describable by the permutation of 1nd1ces in
the tensorial representatlon. : |

We can- construct. the generators of a group we denote as 0D, which

contain’ the operations of differentiability, exponentiality, integrability,

and the logarithmic operation which can generate the Secondary Laws.
This group is constructed‘isomorphic to R and'also has the constraints
of the symmetry group; b. Welshall deal only with the &eyelopment of
the Prinary‘Laws of phyaiea in”thé present oaper; '

The space presently considered oenoted, Rs’ wherevthe sub s denotea'h
isomorphisn“to the symnetryﬂgroup[does not eontain the special oberations
of differentiation and integration directly, but,one can see that its |
operations are connected to these operations through the relation of the
princinlefof least action (integral containing‘element dn where n is a
physical variable) which results»in‘the'Heisenberé'Uneertainty.RelationsJ
If we have the Poisson bracket for two,canonicallytconjugate variables
(u, n),-then we can write the principle of'leaat‘action as‘J(Ldn =z
which is an integral expression involving the differential element dn
(see Ref.b6).

Let us_turn our attention to the description of the Group_RS and

its operators.
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B.’ Grouprultiplication Table for the Generaliiedeeisenberg Relations °

‘ Let us first construct the multiplication table for the subgroup of;
| physical variables expressed as quantal units that are mechanical and |
: thermodynamic (see Table I) In Table II we have constructed this
multiplication table which is the table of Generalized Heisenberg Rela-
tions. Ihe‘product of all pair elements 'is formed and the elements are
in~the ouantal unit'form, which of course results:in a product and
division;of universal constantsﬂto variouswekponentsbandzcan therefore
be'written in terms of universal conStants or combinations of universal.'
constants;v These elements'can then in turn be expressed in terms of

the physical variable or vatiables, that the set of universal constants:fv
represent in quantal unit form. When this is done, some of the laws of.
: phy51cs result from the pair relations that are formed Six‘cases of
the Generalized Heisenberg Relations were presented and discussed in
Sec. II. The multlplication tables represent a Generalized Set of.thebf
Heisenberg”Relations.

In Table III we have expreSSed the elements that result from the
multiplication operation, in terms of physical variables or variables
which are equal to the resultantvquantal form in Iable II. Certain laws,}
of physics appear in Table III. Such "simple" laws as ¢p = E (relating‘-:
momentum and kinetic energy)'and F = ma (Newton's second law;of'motion)':
are expressed in Table III, the product (cs p) = E is apparent when orie -
finds.thebresultant_product'of row c and column'pvas being equal to E.
.Also, the product that results from the multiplication of row p and

column c gives E. In an analogous manner, one sees that the product of .
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row m a#d column a, or. row a'an&.column'm;'gives F or F = ma. Some of
the lawsfbf physics that appeér iﬁ Table III appear in one or more forms.

Another form of F = ma can be determiﬁéd from the product of row p,

column a or row g; column p which gives p = cF or pa = cF. Using the

law p =?m¢;“we}ha§e mca = cF or F:='m§.‘ If we u§e (ﬁ, ¢) = E/c or
E = mcz'and'from above cp = E, we then haQe P =;m§ which we used to
obtain F = ma. |

The Eiﬁstein relation E = mc® 1s obtained ffom Table iiI by the

>

resulfant:product.of rowbm, column ¢ or row c, Eolu@n m as mc = E/c
mc2 =EorE-~= mcz. This relétion:also apéeafs.iﬂATéﬁle 1&,' So that
squared. quantities, such as ¢2, can appeér in the iaws'of physics tﬁat
are éxpféssed i; féblés.III and IV ffom tﬁe fofmatiohTof the pfoducﬁ
of pairs of physical variables. |

The s;andard HeiSenbefg Relatidns, (E, t)v=k%wapd «, p) #'ﬁ; appear
in TableﬁIII. These rélgtions apéear as Eqs. (25),:(25) in Sec. II.
Also, théré are two Hgiéehberg-iike relatiéns [m,lﬁj =;£ and [p, t] = 4
where € = 4i/c, which can be derived from G. N. Lewis' units in Eq. (12).

and Eq. (13), respectively. We have the relation [p, t] =4 in Eq. (3b).

-Also, Eq. (3a) [E, 2] = 17 appears in Table III for the product E or %.

Eq. (11b) and Eq. (llc) for [E, 2].= € and [p, t] = 4, as implied by
G. N. Lewis' Ultimate Rational Units, which also appeaf in Table III,
as does Eq. (3a) [E, 2] = £' also deduced from G. N. Lewis' units,

Eq. (14). Asvwe see,'G, N;‘Lewié' work is one small aspect of oursvand,v

- as we mentioned in Sec. III, a géneralized setbof Ultimate Rational.

Units could be constructed by expressing each variable in terms of one
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other. (See starred quantities in Table III. ) This procedure would
result in a table equivalent to. our Table III; Eq. (11a), t = 1/cR is:
again derivable from G. N. Lewis work and also (c, t) = £ appears in
our Table III, and c = 2/t 1s the basic definition of velocity. Con-

sidering‘Eq;,(lldj werhave'T’QI%;(cﬁ) 1 {" ( ) from G. N; Lewis
o ' ' 1/2

units upon substitutionvof the>quantal unit of length, L= (f_) ~into

T = —1- '(cﬁ')' -11-, we have T'= T (eﬁF)l/ 2 Also from' Table I we have the

quantal unit of entropy as S = k (where k is the Boltzmann constant) so

that the product (T k) = (T- S) = (cﬁF)l/Z. This relation appears in

st

Table II. Also, using the quantal unit form of energy from Table I,

k

the G. N Lewis relations appear in our tables.

(cﬁF)l/z, we have T = E-or (T, k) =E. It is clear, then, that all

The 1aws of physics that appear in Table III and/or Table IV are
termed Primary Laws of physics and represent a most fundamental aspect
“of physics. Primary Laws_do not contain explicitly the operation of
differentiation or integration;‘hut-theSe operations can be inplied,
such as.the form ¢ = 2/t or.c = g%, or in the uncertainty principle as
AEAt ziﬁ.. Integration can-be implied by the prineiple of least action
./rpdq as related to ApAq‘Z‘ﬁtin'the uncertainty'principle. Also Primary
Laws do'not contain'exponential’ortlogarithmic operations directly. As
previously,mentioned, these operations are contained in Secondary Laws
only. Those laws of physiCS'which are not'Primary, are termed Secondary.

Letvus look at some more ekamples of the type of Primary Laws that

appear in Tables IT and III. As we ststed previously, in Table II, the

elements are expressed in terms of universal constants and quantal force.
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From fahle l, wecsnbstitntedvphysical variables,vinbthe productcarray,
for their equivalent quantal unit expressions, anc this is thebmanner
in which_Table III was forﬁed. We have seen that'snch laws as F = ma
and E = c2 abnear. Also we have [2, pl > &£ and. [2, m] = 4 and also
(E, t] z'ﬁ and [p, t] = &, and [2, E] = €', Also,<we have seen that

G. N. Leﬁisf Ultimate Rational Units appear ‘in Tahles'II'and III, and
thus they'do express:some Primary Laﬁs of physics._ New Primary Laws

of physics ‘become apparent through examination of these tables. Some
such 1aws are [&, m] =4 and {p, t] = 4,' as canonically conjugate pairs.

From Table IV for the Generalized Reciprocal Heisenberg Relatlons
we have Primary Physics Laws as ¢ = 2/t E =-mc2, F = ma, F = E/L,

F = p/c, p = me, [L, p] >'{ and [t E] >4, which come out of the group
representation of quantal units. (In a sense, the rule: "Good" physical
laws should be simple is an aspect of this_formalism.) Such classical
laws as F = ma or relativistic laws snch‘as E = mcz and quantum laws,
such as (E, t)_= 4 are put on an.equal fcoting in this formalism,

Again from the reciprocal'relations in Table IV, we hare such
Generalized Inverse Heisenberg.Relations as [F, %ﬂ'=-a, [c,-l] = a, and
(p, %) a where a is the acceleration, p is the power, p = cF and p is
the linear momentum. . As stated before, we see that -each physical
variable is canonically conjugate to more than one other physical

variable. We have sets such as in Table V.

C.  Generalized Reciprocal Heisenberg Relations
Since the group operations of the Group RS allow an inverse opera- '

tion, it is possible, from a group theoretical standpoint, to form
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reciprocal relations [u, 1/n]:= C analogous to the conventional
Heisenberg Relations [u, n] = E, discussed previously. The physical
quantities, u and n, are. canonically conJugate to each other and thelr
| uncertainty relation is expressed by the Poisson bracket in terms of a
universal.constant; C, or.a set of universal'constants. |

The "principle of least action,” in the Sommerfeld notation, can
be expressed as u/rudn =" ng where n is' a small inteéer or integer
fraction;- ‘ ' ’ | | | L

'Before_weeinterpret.the'meaningFOf the uncertainty relations in
the reciprocal Heisenberg Relations,'let us define_what is meant in the
usual interpretation'by the‘conventional Heisenberg Relation.

We can write [u, n] =.c as AuAn > ¢ which states that the‘larger
Au, or the greater the'uncertaintyvin H, then the'morelprecisely we-know.
n, where Ay and An'represent'the uncertaintieS"in.u and n, respectivelyr
v.The uncertainties orhlimit of observability is defined in terms of a
constant,bﬁ:(or Planck's constant)., In our notation; z = &,

The Heisenberg theory involves an observer (probe particle) and
observed (target particle) and expresses the essential relation that
the observed system and the observer system which affects the probability
of obtaining a certain value in the observed system.. This is the con-
ventional interpretation of the Heisenberg Relation} Stated briefly for
AuAn 2‘6, the smaller Au is, the larger An will be and vice versa. |

Now let us turn our attention to the reciprocal Heisenberg Relations
which may be expressed as [y, 1/n] = T or Ay 1/n .2 Z. For this expres-.

sion to hold true, there are two possibilities: (1) As Au becomes small
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80 does'An or hoth.can become‘largerr(both can-gc,inithe same direction
of smallfer larger uncertainties). .(2)3The uncertainty in'Auvcan become -
larger as’that in Anibecomes smaller (the reverSe'is not true, that is,
there is a limit imposed by the "greater than" sign such that, for a
fixed uncertainty in Au, the uncertainty, An,,cannqt increase without
limits). | \

In the reciprccal.relations“there is a larger range in value of the
uncertainties in the respective.ﬁalue of two conjugate variables, but

there are still restrictions on observability.

D. Generalized Heisenberg Relations and Physical Law

In Sec. I, the recent atatement of Taylor,»Parker,.and Langenberg3
was quoted'on the»fundamental significance of the universal constants
as a possible unifying eleuent to "bind'togetherﬁ‘the diverse branches
of physics.; Variousvvof ,the,“universal.constants'appear to.be more
prominently'manifest in‘particular'branchesrof phpsics such as classical,'
quantum, and relativistic physics, but the mechanic_:al quantal units
appear to be prominently-manifest in esch cf,these hranches.

The construction of the multiplication tables for canonically
conjugate pairs oquuantal units to form the Generalized Heisenberg
Relations results in laws of physics in classical, quantum, and special
relativistic physics (general relativistic physics contains differentia-
. tion and therefore involves operations in the group, D; see Ref. 4 for
the general relativistic manifestation of the quantal units). The fact
that the Primary Laws of physics come about through group operations on

canonical pairs of quantal units demonstrates that relativistic, quantum,
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and classioél phyoics do have the oame.basic origin!v This origin, it
is hero pfoposed, relateg to a'geometric intetpfeoafion of the épaCe_
time mgnifoid. ~ See Ref. S,fof avmore detailed discussion.

The Pfimaryltéwé of phyoics,.as all laws of oﬁfoios, ropiéoent a
constant ospect io thévmooifoidias a constaht reiatioo,between variable
quanfitiéé”which aro fépreéoofediby mathomatioal oymools. Weotérm B
‘these quantities physical vatiébies.' Thébreéson‘iowé'oan result from
»é'formuiation dependent on universal conétanos iortoét'thoy represent
a fundamental constant aspect‘in’the'manifold that can give rise to the
constancy of physical law. Since the universal constants give rise to
the constaocy in all physitél 15&3;”therefore, tﬁoy unify the various
brancheo'of’physics, for example,iﬁe again have F =vma (classical),

E = mc2 (sPQCiol relativisoic), and [2, pl =& (Quantum mechanical).

It.should be mentioned, olso, laws can contain:universal constants
which feprésent constancy which can be io the form of a "proportionality -
constant;" for example, G in Newtonfé law of univorsal gravitation, buff
the coostahcy of law represents a deeper,éspect of_ﬁature than the
universal constants oé proportionality constanis or coefficients in
algebraic expressions.,

In‘fhe*nextaseotioo,fﬁg discuss a generalized‘geometrizing_pro-
ceduré-and the.development‘of a genefaiizedvmetfic, for the space, in

terms of the quantal units.
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V. GENERALIZED MINROWSKI_SPACES'_
In_ordef to geometrize a force field such as the grsvitational
force field, one must assign a metric to the space.v Minkbwski8
introduced a four dimensionsl geometry for'(f, t). In the case of

(x, t) and (p, E) an invariant relation holds in terms of a metric

- that depends on the constancy of a universal constant, c. We have

the usual special relativistic ekpression,f :

sz = x2 + y2 + 22 - c2t2 ‘ | _ s)

where sz'ls the four vector invariant9 developed as a generalization

v ~of the three space- Pythagorian theorem. In Eq. (15), we denote

s =g 2
1

The usual Einstein four vector invariant fdr'(g, E)vis
given as,

2 2. 2. 2 2

1
X y Tz T2 E

(16) -
The invariant relation in Eq. (15) and Eq. (16) relates to Eq. (Sa),
(5b) relating to the vertically related (arrows) expressions in Eq.
(2a), (Zb)-

Let us demonstrate the manner in which it might be possible to

extend the'coneept:of invariant relations in terms of the velocity of

' light,'c, and other universal constants to a number of physical variables

and a multi—dimensional space. InvMinkowsk_i's,words,8 when he intro-
duced time as the fourth dimension of tnree space, "ﬁobody has ever
nqticed e place except at a time, or a time excent at a place." This
also appears to be ﬁrne of matter and enefgy andZSpace-time, as matter |

and energy can not exist without space-time to exist in and, eonversely
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space—tiﬁe éahnot exist COmplétély devoid.of a matter;ehergy content.
Althoﬁgh:this latter étatg.ié cémmbnly'réféfred tbzés a Vcompléte"_
vacuum{;ifsépﬁears that ;béée—time-déngéins, at éli ﬁiﬁés and 1o¢atidﬁs,

a métter%épergy conﬁent that‘is.détéétéd; in one‘ﬁaﬁifestaﬁion, as

vacuum stété:pblarizatioﬁ.loz.In one éénse,-thié'm3£ter-energy c&ntéht

is also #eferred to as ;he~“Eermiiséa." ~ H. P; Sfapéll discussed some

: : . S |
conceptuél pfobleﬁs of empty spadé. Pfesént and eariy concepis are
presentéé}  | | o
Renef'bescorté (1596-1650); thé French méthemaficiah and phildsophér;

conjectured that there e#istsva geqmétfy of many.dimehsions, where each
dimensioh,is ;epresente&vas a.ﬁﬁhyéiéal‘variable"_suchbas.lengﬁh; time,
Qelocit&, forcé; etc, 'Based'on this éonéept, wé'iﬁffoduce n orthogonal
. dimensions, %here n is the number of physical variaﬁles considered for

a particuiar physical problem. For Table‘VI;vn = 6 for the physical
variabiéé *1;_t’ m, E, and Py '(For yectorialvquahﬁities, 6nly one
~dimension is cpuhtea.)“ _ Thié seﬁ.of variables, considered in the

form éf the following equations in-this sedtion; are X, y, z, t, m, E,

and P> Py’ Pz; then we have n = 12.

In an analogous manner to sl2 and 522 relating variables that are re-

lated by the vertical afrows in Eq, (2a),'(2b),_lét'us develop the invariant

‘expressions for quantities related by the horizontal arrows. From

(2, p) we have,

2 2. 2. 2. ¢ 2 2. 2,
- 83 = x + v  + z o (px + py + Pz') | (17)

where F is the quantal force. This 1s a six dimensional space. From

(t, E) wé'have,
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2

PR 2 = (®py B2 - - (18)

a two dimensional space of 't and E.

- From quantities related by the diagonal arrows we have for (2, E)

'852-=V£2 +’y2 +'zz'~ 15 E2" (19)

and for (p, t)
2 2 2 2 20 2 3 .
8¢ P, * Py +tp, - (F)t o (20)

both of;Which are four dimensional'spéces. New "1ight cone' spaces are
implied by these relatiomships.

Relations between (x, m), (t, m),: (t, p), (m;_E), and (m, p) are

~ given as elements of Table VI. Also included are the metrical elements

for (y, t), (p, E), (x, E), (x, p), (t, E), and (E, p) in Table VI;
these are starred and are from Eq. (l6).thfough Eq. (20) for above and
below diagonal elements. |

We,déﬁote the eleﬁenta, mik’ in Table VI as elements of a matrix,

M, where m_, represent the metrical elements between two physical

ik

variables . (U, n) in the form of the invariant sn2 as,
s 2= ujz +m, .t I | (21)

where ;he.index,‘j, runs from 1 to 3, for three "spacial" dimensions,

- and 1 and k run from 1 to n where n is the number of physical variables

considered. The index, n, on sn2 denotes the relation between a particu-.
lar pair of variaBles for’which the metric, mik’ is being formed.
For each snz, the metrical element can be represented by the sub-

Eq. (15), we have,-

. | 4 9
matrix My to M as for example for 8; s
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- s'1-2' =x" gt et T | - (22)

which can also be written in general relativistic notation as,

2 2 2 S
ds™ = 8y dxu dxv : . | | (23)

where indiées M and v run from 1 to 4 and for uj =.§‘for‘j =1to3 and

nj = t, for j=1, M = guv and.fqr the signature X, = - ict,
1000\
' 0100 - . ' .
- guv “"{oo10 § o T SR (24)

0004/

For each 8. analogous mik's cén be'formed fof;two, four, and six
dimensional épaces or for m, as 2x2, 4x 4,_énd 6 x 6 dimensional
matrices. .

To'fo;m the upper half non;diagdnal elemeﬁfs of:M,vin Table VI; we  _
use the ékéresSion in Eq. (21). . Anothér'equi?élgnt form can be written
as, , o |
L2 2, -1 _2

g2z +

n k| Mk M (25)

where m;i is the inverse matrix of mik, The lower half non—diagénal

elements bf‘M are formed from Eq. (25). The diagonal elements of M are -

unity, for:(u, n) where U = n, and therefore the trace of M,is given by, -
WET - | | . 26)

where n is the number of physical vériables conéidéred on the'dimension—  

élity of M.

E The elements of matrix M in Table VI are ekpféssed in terms of

5,1/2

universal constants c, i, and G, where t = (Gf/c and F = c4/G. It
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is conjectured that the universal constants represent a geometrized con—_

straint on the space-time manifold One example of this constralnt is -

.presented in Refs. 4 - and 5 where the additional constraint of the quantal

units give closed cosmological solutions to Einstein s field equations
The form or "shape" of the universe appears to: result from the constant

constraint of the geometrical interpretation of the universal constantsv’

- and the constant relation between variables in primary and secondary

laws of phy31cs. In Sec IV, some primary laws of physics were presented.
The manner in which the universal constants are manifest in and
unify the four force fields of gravitation, weak interactions, electro-
magnetic interactions. and strong interactions is given in Ref. 13, A
unifying formalism of the four force fields uniquely in terms of universal

constants is pPresented,
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VI. CONCLUSIONS

A set:of Gene;alizéd'Heisénbefg canoﬁiéél Relations haﬁe‘been
devglépéd.énd; in a group theo:étical interpretatibn.in a set of
: multiplicéfion tablés, cértéin laﬁs of physics rééulﬁ which are.tefméd
.Primarerawé of physiés.._Thg‘bhySical variableé vthat f@rm ﬁhe
vcanoniéal rela;ibhs of the Géﬁer#lized.ﬁeisénbéfg_Relationsvafe
expréssed ih quahtal unit form 6: ﬁﬁiduely'iﬁ térmé-of univefsal
constants.

The qUéntal units:érevinféréféted“iﬁ theifipéif relations as
elements Of’non—Abeliaﬁ-algebras,'i}é.;'having.éoﬁmutatibn relations
that afé non—z¢ro, leading fo a'poésible gebmetfic déscfiptién of‘
the spaée-time manifold. |

For each canonical pair a mefric.is assignedland for a gehéralized'
.set of_ﬁériables,a geﬁeralized metric is constructed. vThis discussion
‘is related t6 the earlier ﬁork of Wheelér's-oﬁ3tﬁe topqlogicaivdescrip—
tion bf s#écé-time in termskof variablésgﬁniquéiy expressédvin terms
of'uniﬁgrsél constants. |

The Generélized Heisenbergvﬁelations non—cbmmutation relations in
terms of universal constants, combinations of universal constants and
quantal units is conjéctured to represent é scale.of obéervability'in
the space—~time manifold; This scale of observability may be a unifyiné
description of the various'branches of physics or "areas of compre-
hension."

As:in the recent work of Taylor, Parker and Langenberg, the uni-
versal constants may bind the diverse branches>offphysics together as

earlier‘proposed by Dirac, Gamow, and others. The space-time structure
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includes the matter—energy content and the content of all physical
variableé; in this description, and therefore the content of all

the branches of physics.
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APPENDIX A

Electromagnetic Heisenberg Relations and Metric Spaces

In etder te geemetriteithe electromagnetic field; one must deYelop
a metric'fef.electromagnetie vatiables in the»meﬁner presented in
Sec. V. “Géometfiiationvofvthe electfemagnetic field ié what J. A.
Wheeler attempted to do by introduc1ng the variable 2 = (af/c 3 1/2
termed the Wheeler wormhole" as representing a discqntinuous multi-
cdnnected sttucture in space~time. The gebmetry-of”space-time is
-repreéeﬁtea by a'compiete set of physical variables.ﬁhich can be
repreéehted as a set of "dimensiens.ﬁ This is the_h&pothesis in this
present work, |
Electromagnetic variables are also considered'as representing
dimensienelity in this geometric intetpretation; Thetefore, another
- set of multicomponent vectors such_as the four vectets (x, t) and
(ps E) exist'invOlving electromagnetic and "meehanical"“qﬁantUm
variables.fas denoted in Table I). As we stated before many suchk
relatidns.ekist intereonnecting the quantal units geometricaliy in a
metrical structure in the space-time manifold. Let'us examine the
relation, .
[a, E] ,
(14)
[m, Ql

where a is the acceleration (a three vector), E ié the electric field,

and m is the mass and Q is charge. Note that the "format" of'Eq.'(lA)

L4
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is similar to that of Eq. (2a), (2b), Sec. II. .
Again considering the'éeneralizedv"Heisenberg" relation between
quantities related byvthe;Vertical arrow ﬁe'haVe, :
la,m}=F - = I (24)
the quantaljforcekand the other vertical relations is,

Ee=F o (3A)‘]
as new "four vector" relations with quantal variables where the quantal
electric field E = c /GQ = F/Q and the quantal charge, Q, is considered
to be a universal constant so that Q in quantal unit form is Q.

Let s consider the horizontal relations (horizontal arrows) for -
(a, E). and (m, Q). We have,

1/2'

1/2 '
‘ 20T 2.3
[a, E] =-(° F) Z) - (—“—F—) | | (44)
k4 (Q) \ g2 o
which can be expreseed ae” -
) (a, 6 = (£) : I | (54)

for the quantal density, p = cs/G%ﬁ F /c %’and where € is the permu-

tivity in quantal unit form given as, € = Q /oﬁ = Q ﬁf’

e/ c

o o .1/2 c S
[m, ol - (‘F) Q - (@}—) EER I (68)

'whichrcan be ekpressed as,

1/2 (7A)

. [m’ Q] (€F¢)
where € is the quantal unit of permutivity.

Lastly let's consider the diagonal relations,
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{2502 vz -
= _C_ZQ_) S " (8A)

where one component of a is:considered, and for [E, m], . .

o . \1/2
g ¢ F)
[a, Q1 = Q (7‘)

Cp eeY/2 __(1';_3{’)1/2 R _y : |
S o |
- where one component of E is considered: We Can,eiﬁress [a, Q] as
- o 1/2 | N -
[a, Q] = (%@) ’ , | R : (10A)
and [E, m] as | |
T /2 - -
£, ml = (&) - NCETNY

Again the quantal form of € is used, as € = Qz/{f;rf
Let us.look at some invariant "light cone' relations corresponding
to the electromagnetic Generalized Heisenberg Relations just presénted,:'“

We turn now to the invariant relations such as (vertical relations)-

S . 4 -
2-a%+a’+a?- (514> w2 S (124) -
1 X . y z ¢Q . S
and - _ ‘
| 2 2. 2,2 () 2 i | o |
T,"=E“"+E"+E" |- Q o (134)
2 X y z F2 _ . ' o
For the horizontal reiations, we have for [é, E];"
_ ' ' 2 2 o
2 2 2 2 (Q c ) 2, .2 2 |
Tyt el vatvat - (G (2 +€7+E?) ey

~and for [m, Q]

T’ - n? +¢(£§5) Q- ' - (154)

- For the diagonal relations [a, Q]
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p2aa24 a2y Q2 ._<;_2F_‘_) < . (164)
\?/ | | |

Tt -EP+EPHE 2_:_(—-“ g) m? (174)
o AR < - |
Symmetries become apparent such as for [a, E] in Eq. (4A) and [E m] in -

Eq. (9A). Also [m, Q] in Eq. (6A) and [a, Q] in Eq. (84).

2 v S o
(;—) [a, E] = [E, nl | B (184)
\z) mAd=la, 0w
o2 _ ‘ -
Also, Eds.i(l6A) and,(l?A)dere~related by‘the seme‘set of constants,
\ 1 F . SRR

Wheelerl had attempted to geometrize the electromagnetic field and
derive electric charge from h1s discontinuous topological structure |
describable in terms of the "wormhole" length, 2, where £ represented'
the size of - the diameter of the nouth of.a_wormhole structure in the
space-time manifold. Electrical charge 1is then conJectured to be due
to the emission of field lines from and entering into the mouths of a‘ -
wormhole ‘embedded in-the space. Many such structures would give rise
to virthaliy produced. pairs .of. opp031tely charged particles. This
. formulation of a geometric’ description of the electromagnetic field
briefly described above,'is as developed in analogy to the geometric
"1nterpretation of Einstein's for the grav1tational field but not with

the overwhelming success as in general relativity. It is suggested here
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' that a first step in geometrizing the electromagnetic field is to-

"assign a generallzed metric. in terms of many or all physical varlables'_ff

- relevant to the particular force field to be considered A'method

o
for constructing such a metric has been presented in Sec. V. i
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. TABLE CAPTIONS

Table I. - Unlversal Quantal Units: Physical variablesﬂareouniquely
‘expressed in terms of unlversal constants;f They are also

expressed in. terms of { {', ¢ and the quantal force F

| ‘where we deflne L= {{/c and {' = dﬁ. -

Table II. Generalized Heisenberg Relations. The commutation relatlonscﬂﬁ

: of the physmcal variables in quantal unit form 1nvolve non-’
zero elements,c,lﬁ, F and k which result from the product
of the physical variable. The onantal’force, F, is promi-

- nently manifest in the Generalized Helsenberg Relations and

'simolifies the formalism, - The array is- symmetric about. the

v diagonal so that one-half of. Table II contains all the
information, including the diagonal elements which are

jsquares}of'the,physical qnantities such as 22, t2, m2,
etc. (where m2 = [m, ﬁ]) .Note: .The G, N. Lewis Ultimate

‘Rational Units results -are starred 1n Table I1I and Table 1IV. -

Table IIl, Generalized_Heisenberg Relations and Primary PhySlcs Laws:
| .The elements in Table.II, which are expressed in terms of
universal constants and the qoantal force, are rewritten in.
. terms of thelr,eouivalent physical variaoles; certain‘physi-
- cal laws'result from thisvprocess, forvexample,'mci= E/c or
2

rtE =mc, a = wec, E=QF, L = p and others. These laws are

- termed Primary Laws.
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Table IV. Reciprocal Operations Generalized Heieeﬁberg Relationsvand

) h P#imary Physics . Laws: .The elemenes pffthelreciprocal

.-Generalizea Heieenberg Relations are fpfmed by the canonical
.freduct”ef avvarieble,and.the feciproeeleof another variable.
eAgain, as in Table.iiI,'the resulﬁing'universal coﬁstants

are re—expressed in terms of their quantal unit form.

‘Again PrimaryiLeﬁe ofuphyaide‘resﬁlt.‘ o

..Table V{v Some Genefaiized Canonical Relations:: Some exemples‘of the
- _Generalized direct and reciprocal Heisenberg Relations are
 ugiven in Table V,_ﬁhere,a.variable can bejcanopically conju~
-géte‘to mpre_thap one other variebleleea_also where direcﬁ
: aﬁd inQerse canonical relations euch asv[u, nl] = ¢ or
[ﬁ, l/ﬁ] =& resultAin’the same censtant,ec, for differenﬁ

U and n..

Table VI. Cenefalized Minkdwski Metric: The.metrical elements.in
k.:Table VI are exﬁreese&:in‘terms of the Velocity of light,
c, and the quantal force, F“ The'metrieal element for (E, m)v7f
is exﬁressed in terms of c aﬁd the'quaﬁtel time, t. Note
fthat.stafred eleﬁents are ffom Eq. (16) through‘Ed;'(ZO),

where complemen;ery reciprocal forms are also represented.
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Table I. Universal Quantal Units
Mechanical  Quantal Unit:in Te‘rms_ © . Numerical Value of
Quantal Units of Force, 4 and £'2 Quantal Unitb
12 o an1/2 | - 3
= (—G%) length L = (-g—) 1.60 10_33 cm
c / :
AN : o pl/2 _
t = (-—§  time ¢ = (£) 5.36 x 1074 sec
cﬁ 1/2 \1/2 ‘ S
m = (G—) mass m = (%) 2.82 x 107°  gnm
5,\1/2 e N |
= (“_cc ) ~ enmergy E= (n/? 1.25 x 10'® ergs .
N 3, . 1/2 : N . ‘ : .
p = (%) " . momentum p = v('f,F)l/Z. 4,16 10lo Lol
s . S sec
L=4# angular L=4 1.06 x 10 erg-sec
C momentum ' -
F = /e force F=F 1.22 x 10*°  dynes
c=c velocity = c 3.00 1010v cm/sec ,I )
[ T\L/2 Y | -
a = (%ﬁ') "~ acceleration a= (Tc F) . - 5.72 x 1073 cm/sec’:2
< 59
p= G power p = cF 3.66 x 10°°  dyne gﬁ—c—
o 2 | | 2
G™A
5 2 .
c F 2~93 -
- o density = p = —5— 6.50 x 10 gm/cm
A o 2 . i
5\L/2 1/2 o
W= (%) frequency . w = (%) 1.91 1043 cycles/sec
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‘Table I -Cont."
Thermodynamic v v -Quantal. Unit in- Terms’ - Numerical Value of
Quantal Units = . of Force, 4 and {' . Quantal Unith
| s \1/2 | S | . | _ )
T = —i— (__cEﬁ_) ' temperature I= T];' (4,‘1?)1/2:'- - 3.60 x 1032 ~degrees
s =k entropy s =k 1.34 x 10 erg/degree

The quantal units ‘are expressed in terms of the universal quantal.

force, F

as £ = £/c and {' B cﬁ.,

10-38

In the evaluation of the quantal units, the values of {

gm-cm and L = 3 15 x 10~ 17 erg-cm have been used

= c /G 1, £, and c. - The qu‘antities_‘ £ and L' are defined

3.50 x
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."I‘_able V. Some Generalized Canonical Reil'ations

[.F’ E] a : [P. C] Fo
1, - 1.

[.C,,“é']' =.a o | [E) 'E] = F

oy pl=a lp, §1 = F

.[E_, =l=0r [p, Sl =m

(p, -:;L;] = p (F, %l = nﬁt'-.'(=_=> F = ma)
1, 1,

. [P.,. =l =c (2, 71 -t
1, o 1.

[P,_ Fl=c . [E, p] =t
1 : 1,

[E, 31 =c | [E, 71 =t

: .l _

(2, £1 =7¢c
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Table VI. Gereralized Minkowski Metric

/%2 1/¢2 1/m? 1782 1/p?
; o2 A <
\ ) : 2 F
* o * » B
_‘ ) |
}‘2‘ 1 5-2— c2F -1—2
c F ' |, F
» ' *
¥ ¥ . £ L
A 2 2 2
c e - c c
2 .
R T N
c F St : c
% »
—F—Z- F2 c2 : c2 1
c
» s




LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report. ‘

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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