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A POSSIBLE GROUP THEORETICAL REPRESENTATION OF THE 

GENERALIZED HEISENBERG RELATIONS*. 

E. A. Rauscher 

Lawrence Radiation Laboratory 
University of California 

Berkeley., California 94720 

ABSTRACT 

A Generalized set of canonically conjugate variables 

obeying commutation relations in terms of universal constants 

is represented in a group theoretical formalism. All physical 

variables can be uniquely expressed in terms of universal 

constants in analogy to Wheeler's "wormhole" length and are 

termed quanta! units. The commutation relations of the 

canon±cally conjugate variables are termed the Generalized 

Heisenberg Relations, two of which are the usual [x, p] >4i 

and [E, 	The quantal units are manifest in classical, 

quantum, and relativistic physics. 

S 



I. INTRODUCTION 

J. A. Wheeler' discussed a quantum of length, termed the Wheeler 

"wormhole" X= (0/c3)1s'2 and interpreted it in a topological description of 

the space-time manifold. For amore detailed description of Wheeler's geo- 

metrizing procedure, see Appendix A. He also discusses a quantum of mass, 

1/2 	 5 	1/2 in 	(cn/G) 	, a quantum of energy, E = (c 'fl/c) 	, and a quantum of 

density, p= c5/G. Earlier, N. Planck2  derived the dimensioned 

quantities of length, time, mass, and temperature :j  terms of the 

universal constants dc (Planck's constant), G (universal gravitational 

constant), c (velocity of light). The quantities Planck Introduced were: 

= 	 = 1.60 x 10 	cm 	 (la) 

t = (Ofl/c 5 ) 1"2 	5.36 x 10 	sec, 	 (ib) 

rn 	(c/G) 1"2 = 2.82 x 10 	gm, 	 (ic) 

T = 1/k(c51(/G) 1" 2  = 3 60 x 1032  degrees 	 (id) 

for length, time, mass, and temperature, respectively. The values of the 

universal constants used In evaluating the Planek. quantities are: 

c 	2.998 x 1010 crn/sec, ic = 1.055 x 10 27  erg-sec. G = 6.673 x 10-8  

cm 3 
2 and k = 1.34 x io6 erg/degree. These values are taken from 

gm-sec 	
3 the recent work of B. N. Taylor, W. H. Parker, and D. N. Langenberg on 

the theoretical and experimental implications of the universal constants. 

Planck discussed the universality of the expressions in (la), (lb), 

(le), (ld), which results from their unique expression in terms of the 

universal constants. The quantities in (la), (ib), (ic), (id) and all 

physical variables, can be uniquely expressed in terms of universal 
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constants and, in this form, are termed "quanta! units " The quantal 

units are defined and discussed in Refs 4 and 5 

Table .1 contains the set of quantal units and their numerical values 

relevant to the calculations in this paper.  

The quantal units obey paired relations as a set of canonically 

conjugate variables expressible in terms of non-zero commutations. Two 

such pair.relations are the usual Heisenberg relations, [x, P] 	and 

[E, t] 	Recently a set of Generalized Heisenberg Relations were 

developed in terms of quantal units. 6  We consider the pair relations 

obeyed by the quantal units as elements of non-Abelian algebras. The 

non-zero commutation relations are interpreted as representing a limit 

on observability of obtainable values of physical variables in the sense 

of the uncertainty interpretation of the usual Heisenberg relations. 

Heisenberg developed his uncertainty relations, in terms of E, t 

and x, p, which represents a limit on the simultaneous observability of 

canonically conjugate physical variables in relation to the magnitude 

of sic. The commutation relations of the non-Abeliaxi elements are 

expressed in terms of universal constants, combinations of universal 

constants and physical variables, expressed in quantal unit form. The 

Generalized Set of Heisenberg Relations in terms.of the interdependency 

of physical variables is interpreted in terms of a scale of observability 

in physical phenomena which, in part, accounts for the comprehension of 

various branches of physics. 

This is an extension of the concept recently expressed by Taylor, 

Parker, and Langenberg 3  in their statement that the "universal constants 

are an important link in the chain of physical theory which binds all 
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the diverse branches of physics together." The quantal units are 

uniquely expressed in terms of universal constants and are manifest 

in classical, quantum, and relativistic physics. See Ref s. 5 and 6 

for the cosmological aspect of the quantal units. 
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II SIX GENERALIZED HEISENBERG RELATIONS 

1.10 

	 In Ref. 6, six Generalized Reisenberg Relations are developed in 

terms of pair relations of quantal units and in terms of the ordinary 
lu 

form of quantized variables. Two of these relations are the well-known 

Heisenberg relations and four are new relations. Two distinct quantiza-

tion procedures are defined; they are denoted primary and secondary. 

Primary.quantization is that quantization procedure in terms of the 

quantal units and secondary. quantization is that quantization pro-• 

cedure which is the ordinary or standard form of quantizatlon. 

We have the usual Heisenberg relations between (2, p) and (t, E) 

as indicated by the horizontal arrow in Eq. (2a)', (2b),. 

[L, p] 	 . 	 . 	 (2a) 

.[t, Ej 	~ 4 	. 	 .. 	 ... . 	 . 	 . 	 (2b) 

(Note £ or x is length.) The sub ic on the bracket denotes the Genera-

lized Heisenberg Relation in terms of.& As discussed by Bohr the 

canonically conjugate pairs I, p and t, E relate in a quantum mechanical 

manner to as a limit on the simultaneous observability of £ and p and 

also t and E. These relations are termed horizontal relations as the 

relations of £ to.p and t to E (see arrow in Eq. (2a) and (2b)). Six 

paired., relations are represented in Eq. (2a), (2b) as indicated by the arrows. 

The first pair of new relations are obtained as paired relations 

between the diagonal pairs of quantum variables (indicated by the 

diagonal arrows). These pairs are E, £ and p, .t and form the relations, 
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2: 0ic 	L' 	 (3a) 

[p, t] ?/c E . , 	 (3b) 

using the quantal unit form of the physical variables given in Table I. 

We define P . L#fi and f 4/cas is done in Table I. The commutation 

relations between one space-like component of a four vector with the 

time-like component of a four vector is equal to (or ('. Now let us 

look at the third possibility of the relation between pairs in Eq. (2a), 

(2b). We form the vertical pairs (2, t) and (p, E). 

In each case, we.are considering one component •of. length 2;, is an.. 

isotopic space as k
i2  = £3  and similarly for momentum, p 1  p2  = p3. 

For the two pair relations (2;, t) and (p,  E) related by the vertical 

	

arrows, we have, 	 . 	.. 

• 	 . . 	_____ 1/2 - 
	_ 

[,t]- 	F 	F 	cF 	
•• 	 a 

[ 	] 	.((?()1/2 F =F, = 'cF 	• 	. 	.• 	 • (4b). 

where F is the quantal force, F c 4/G.andp = cF is the quantal power 

• (see Table I). 

Also, 2; and t and also p and E are related in Einstein four vector 

notation as, 

	

X 	/1) 	 / t) 	 5a) 

= (p, E) 	 . 	 (5b) 

where t is the fourth component of £ and E is the fourth component of p. 

See Sec. V for the metric interpretation of the relation (p,, t) and 

(p, E) as related to the quantum interpretation of the relation of 
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[2, tI and [p,  E] in Eq. (4a) and Eq. (4b). We can also write ER, tJ 

as [x1 , x4 ] and [p, E] as [p 1 , p4 1 for 	let and p4  = I 	E for 

indices running 1 to 4. 

The same relationshipholds for [2, p1 =Hand[t, E]='1 in 

Eq. (2a), (2b) and [E, 2] = (' and [p, t] = 	in Eq. (3a), (3b) and 

[R, t] = '/p and [p, E] = 4 in.Eq. (4a), (4b) for both primary and 

secondary quantization. 	 . 	. 

The primary and secondary form of quantization of the variables 

2, p, t and E are given in Eq. (6a), (6b), (6c), (6d) and Eq. (7a), 

(7b), (7c), (7d). 

The primary or quantal unit quantized form from Table.I gives, 

1/2 

= (T) 	 p = (€F)1 2 	 (6a),(6b) 

t. = ((/F) 1'2 	 E = (('F) 1 " 2 	 (6c),(6d) 

and the secondary or ordinary quantized form is given as, 

p = hk.='/X 	 .(7a),(7b) 

to  = 	 .E = hv =w 	 (7c),(7d) 
mc 

where the quantity k is the Compton wave length .f or a particle of mass, 

m and to  is the corresponding time, to  = 20/c. Eq.. (7b), p ='/X is 

the usual DeBroglie momentum and wave length expression and E = -fiw is 

the Einstein quantum energy relation. 

The primary quantizatjon procedure for the Generalized Reisenberg 

Relations [E, 2] and [p, t] gives Eq. (3a) and (3b). The same reéults 

are obtained for secondary quantization (see Ref. 6). The primary 
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quantization procedure, for the Generalized Heisenberg Relations [S, t] 

and [p. , E] gives Eq. (4a) and (4b) but the secondary quantized variables 

in the Generalized Heisenberg Relations give, 

I 

[, t] 	-i 	 . 	. . 	 (8a) 
'Iw 

[p, E] = 
	

(8b) 

Because of the relation of quantal power p = cF and the quantal frequency 

w = (F/)1l'2, as p•= cF =432 the results in Eq. (8a) and (8b) reduce. 

respectively to Eq. (4a) and (4b). The manner in which primary and 

• secondary quantization are related is discussed in more detail in Ref. 6. 

• 

	

	More new Generalized Heisenberg Relations are presented in Sec. IV 

but before'proceeding to these new cases derived by group theoretical 

methods, let us present some relations presented by C. N. Lewis that 

also represent specific cases of the Generalized Heisenberg Relations. 



V 
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III. SOME COMMENTS ON G. N. LEWIS' ULTIMATE RATIONAL. UNITS 

In his attempt to establish a universal and fundamental set of 

units, G. N. Lewis developed a set of quantities which represent some 

specific examples of the Generalized Heisenberg Relations. G. N. Lewis 

and M. Randall 7  developed a set of units termed Ultimate Rational Units, 

In which a set of physical quantities are expressed in terms of one 

other physical quantity or diinenàion (in this case length). 

They write: 	 . . 	. 	. 

l.sec 	2.999 x lO 10 

	

 cm 	 . 	(9a) 

1 gin 	= 2.499 x lO 	- 	 . 	. 	 (9b) 

1 erg 	= 2 779 x 1016 1 (9c) 

1 deg, .=. 3.813 1.. . .. (9d) 

The unit of dimension of centimeter is arbitrary but relative magnitudes 

are constant. In Sec. IV,. it Is demonstrated that Eq. (9a), (9b), (9c), 

(9d) are specific cases of the Generalized Heisenberg Relations. First, 

let us more closely examine G. N. Lewis' units. These units, like those 

developed by M. Planck 2 , are expressible in terms of universal constants. 

In the first case, Eq. (9a), of the relation of the time unit, sec 

to the unit of length, cm; the multiplicative factor or 2.999 x 1010  is 

c, the velocity of light (which Is not dimensionless) 

From Lewis,. t = cL. Actually velocity is given by c = Lit so that 

the time unit should read, 	 . 	. 

1 	1 	-10 1 sec =.- CIII 
= 2.999 x 10 	cm 	. . 	. 	(lOa) 
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or the reciprocal multiplicative factor of what G. N. Lewis wrote 

In the, case of his mass unit to length relation, Eq. (9b) (or the 

reciprocal oflength),'we have,  

1 	-371 1, 	
c cm 	2.499 x 10 	 i 	 (lOb). 

and for energy to the reciprocal of length 

1 erg. = c 	.L_ 	.1 	x io 6 	. . . 	. 	(lOc) 

	

cm 	2.779 	•, cm 

and temperature to the reciprocal of length, . 

	

1., i 	1 	1 1 deg= j cri 	
=. 3.813 -cm  . 	(lOd) 

where k is the Boltzmann constant. 

If one examines dimenslonality of the universal constants and units,. 

one concludes that the actual result of a conversion of sec, gm, erg, and 

deg into cm or 1/cm is the reciprocal of what G. •N. Lewis wrote, but 

nevertheless the concept is the same. We have expressed the numerical 

values given in Eq. (9a), (9b), (9c), (9d) from C. N. Lewis in terms 

of universal constants, in Eq. (10a), (lOb), (lOc), and (lOd). 

With this in mind, let us proceed and construct a new correct set of.  

"conversion" or multiplicative factors, 	. 

t = - 2 = 3.33 x 10 1  cm 	 (ha) 

4 001 x 	 (llb)cm  

	

= (oK) ! =' 	3.60 x  £ 	 cm 

T=()=- 	=2.62x101- 	 . 	(lid)cm 
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where we defined ( '/c and ' = cft in Table I. 

It Is nOted that Eq. (lOb) can be written as 

(12) 

compared to Eq (3b) which can be written as, 

[p, t] = 	 (13) 

and we see that there can be more than one variable canonical to each 

variable. Note that it is true that niL = pt or in = p(t/L) = p/c or 

p = mc as we would believe. This is true for other physical variables 

as seen in Table V, which is discussed In Sec. IV. 

Also, Eq. (lOc) can be written as, 

(E, U = (' 	 (14) 

which corresponds to Eq. (3a). It appears that theG. N. Lewis. rational 

ultimate units are specific cases of the Generalized Heisenberg Relations. 

We could write a set of physical variables in terms of cm or 1/cm; 

we can also do this for sec or 1/sec, etc. for each physical variable. 

We can set up units such that. each set of physicalvàriables can 

be written in terms of another variable. These relations comprise part 

of the set of laws of physics that are expressed by the group represen- 

tation of the Generalized .Heisenberg Relations presented in Sec. IV. In 

the group theoretical interpretation, certain laws of physics result 

which we term Primary Laws of physics. 	. 
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IV A GROUP THEORETICAL REPRESENTATION OF THE 

GENERALIZED HEISENBERG RELATIONS 

A. Group Symmetry Principles 

We shall now look at a possible group representation in which the 

physical variables, in the form of the quantal units, Table I, form the 

elements of a'group. A set of Generalized Heisenberg Relations are 

represented in this manner. In Ref. 6, the pair relations of these 

quantal units are represented as the noncommutative elements of a non-

Abelian group, the well-known cases being [9, p] a and [t, E] 

Primary Physical Laws come about through group operations on 

physical variables expressed as quantal units. Some examples of Primary 

Laws of physics are: F ma, E = mc2 , p = mc, and [2, p] '. Primary 

Laws will appear in our Tables III and IV as we will demonstrate. We 

define Secondary Laws as those laws of physics which do not result in 

this manner. Secondary Laws follow indirectly from group operations on 

physical variables in quantal unit form. Such laws as the radioactive : 

decay law containing differential and expànential operations are examples 

of Secondary Laws. We shall discuss briefly how the Secondary Laws come 

about later on in this section. First, let us return to Primary Laws. 

The algebra or set of group generators that give rise to Primary 

Laws do not contain the elements of differentiability or exponentiality 

and neither do they contain the respective inverse operations of 

integrability or the logarithmic operation. The group generators of 

operations that do not involve the above mentioned operations generate 

the group we denote as R, the representation of R that we choose which 
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involves the basis vectors and group generators or algebra can be con-

structed isomorphic to the symmetry group so that a one-to-one mapping 

of each element can be made to a specific permutation, P, of objects 

that will specify the symmetry relations between the physical variables. 

The symmetry relations are describable by the permutation of indices in 

the tensorial representation. 

We can construct, the generators of a group we denote as 17, which 

contain the operations of differentiability, exponentiality, integrability, 

and the logarithmic operation which can generate the Secondary Laws. 

This group is constructed isomorphic to R and also has the constraints 

of the symmetry group, P. We shall deal only with the development of 

the PrimaryLaws of physics in the present paper. 

• 	The space presently considered denoted, R, where the sub s denotes 

isomorphism to the symmetry group does not contain the special operations 

of differentiation and integration directly, but one can see that its 

operations are connected to these operations through the relation of the 

principle of least action (integral conta±ning element dn where i is a 

physical variable) which results in the L-Ieisenberg Uncertainty Relations. 

If we have the Poisson bracket for two canonically conjugate variables 

•then we can write the principle of least action as fpdTl = 

which is an integral expression involving the differential element d 

(see Ref. 6). 

Let us turn our attention to the description of the Group R and 

its operators. 
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B. 	Group Multiplication Table for the Generalized Heisenberg Relations 

Let us first construct the multiplication table for the subgroup of 

physical variables expressed as quantal units that are mechanical and 

thermodynamic (see Table I) In Table II we have constructed this 

multiplication table which is the table of Generalized Heisenberg Rela-

tions The product of all pair elements is formed and the elements are 

in the quantal unit form, which of course results in a product and 

division of universal constants to various exponents and can therefore 

be written in terms of universal constants or combinations of universal 

constants. These elements can then in turn be expressed in terms of 

the physical variable or variables, that the set of universal constants 

represent in quantal unit form When this is done, some of the laws of 

physics result from the pair relations that are formed Six cases of 

the Generalized Heisenberg Relations were presented and discussed in 

Sec II The multiplication tables represent a Generalized Set of the 

Heisenberg Relations. 

In Table III we have expressed the elements that result from the 

multiplication operation, in terms of physical variables or variables 

which are equal to the resultant quantal form in Table II. Certain laws 

of physics appear in Table III. Such "simple" laws as cp = E (relating 

momentum and kinetic energy) and F = ma (Newton's second law of motion) 

are expressed in Table III, the product (c, p) = E is apparent when one 

finds the resultant product of row c and column p as being equal to E. 

Also, the product that results from the multiplication of row p and 

column c gives E. In an analogous manner, one sees that the product of 
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row m and column a, or. row a and column m, gives F or F = ma. Some of 

the laws of physics that appear in Table III appear in one or more forms. 

Another form of F = ma can be determined from the product of row p, 

column a or row a, column p which gives p = cF or pa = cF Using the 

V  law p = mc, we have mca = eF or F =ma. If we use (m, c) = E/c or 

E = me2  and from above ep = E, we then have p =mc which we used to 

obtain F = ma. 

The Einstein relation E = mc 2  is obtained from Table III by the 

resultant product of row m, column c or row c, column m as mc = E/c = > 

mc2  =E or E = me2 . This relation also appears in Table IV.. So that 

squared quantities, such as c2 , can appear in the laws, of physics that 

are expressed in Tables III and IV from the formation of the product 

of pairs of physical variables. 	 . 

The standard Heisenberg Relations, (E, t) = .1 and (2,, p) 4, appear 

in Table III. These relations appear as Eqs. (2a), (2b) in Sec. II. 

Also, there are two Heisenberg-like relations [m, 9] = ( and [p, t] = 

where 	'/c, which can be derived from G. N. Lewis' units in Eq. (12). 

and Eq. (13)., respectively. We have the relation [p,.t] =' in Eq. (3b). 

Also, Eq. (3a) [E, £] = (' appears in Table III for the product E or 2. 

Eq. (llb.) and Eq. (llc) for [E, k] 	< and [p, t] = ', as implied by 

G. N. Lewis' Ultimate Rational Units, which also 'appear in Table III, 

as does Eq. (3a) [E, 2] = (' also deduced from G. N. Lewis' units, 

Eq. (14), As we see, G. N.. Lewis' work is one small aspect of ours and, 

as we mentioned in Sec. III, a generalized set of Ultimate Rational. 

Units could be constructed by expressing each variable in terms of one 
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other. (See starred quantities in Table III ) This procedure would 

result in a table equivalent to our Table III; Eq. (ha), t = 1/cL is 

again derivable from G. N. Lewis' work and also (c, t) = P. appears in 

our Table III, and cE  Lit is the basic definition of velocity. Con-

sidering Eq (ild) we have T = (cd) = "(f) from G. N Lewis 
1/2 

units upon substitution of the quantal unit of length, L = ( i-) 	into 

T = 	(dr) f, we have T= j. 	
P)L'2. Also from Table I we have the 

quantal unit of entropy as S = k(where k is the Boltzmann constant) so 

that the product (T, k) = (T, S) = (c1F)1l'2. This relation appears in 

Table II. Aiso, using the quantal unit form of energy from Table I, 

E = (cF) "2 , we have T = or (T, k) = E. It isclear, then, that all 

the G. N. Lewis relations appear in our tables. 

The laws of physics that appear in Table III and/or Table IV are 

termed Primary Laws of physics and represent a most fundamental aspect 

of physics Primary Laws do not contain explicitly the operation of 

differentiation or integration, but these operations can be implied, 

dk 
such as the form c = L/t orc = 	, or in the uncertainty principle as dt 

EEEt > 41. Integration can be implied by the principle of least action 

fpdq as related to ipq 2> 4 in the uncertainty principle. Also Primary 

Laws do not contain exponential or logarithmic operation8 directly. As 

previously, mentioned, these operations are contained in Secondary Laws 

only. Those laws of physics which are not Primary, are termed Secondary. 

Let us look at some more examples of the type of Primary Laws that 

appear in Tables II and III. As we stated previously, in Table II, the 

elements are expressed in terms of universal constants and quantal force. 
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From Table I, we substituted physical varIables, in the product array, 

for theIr equivalent quantal unit expressions, and this is the manner 

in which Table III was formed. We have seen that such laws as F = ma 

and E = mc 2  appear. Also we have [L, pJ > 4c and [9., m] = ( and also 

[E, t] 	and [p, t] = (, and [2., E] = €'. Also, we have seen that 

G. N. Lewis' Ultimate Rational Units appear in Tables II and III, and 

thus they do express some Primary Laws of physics. New Primary Laws 

of physics become apparent through examination of these tables. Some 

such laws are [2., m] ='( and [p, t] = as canonically conjugate pairs. 

From Table IV for the Generalized Reciprocal Heisenberg Relations 

we have Primary Physics Laws as c = Lit, E =mc2 , F ma, F 

F = p/c, p = mc, [2., p] > ( and [t, E] > , which come out of the group 

representation of quantal units. (In a sense, the rule: "Good" physical 

laws should be simple is an aspect of this formalism.) Such classical 

laws as F = ma or relativistic laws such as E = mc 2  and quantum laws, 

such as (E, t) = are put on an equal footing in this formalism. 

Again from the reciprocal relations in Table IV, we have such 

1. 	1 Generalized Inverse Heisenberg Relations as [F, -1 = a, [c, -] = a, and 

(p,) = a where a is the acceleration, p is the.power, p = cF and p is 

the linear momentum. As stated before, we see that each physical 

variable is canonically conjugate to more than one other physical 

variable. We have sets such asin Table V. 

C. Generalized Reciprocal Heisenberg Relations 

Since the group operations of the Group R 5  allow an inverse opera-

tion, it is possible, from a group theoretical standpoint, to form 
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reciprocal relations [.i, 1/n] = analogous to the conventional 

Heisenberg Relations [ti, r] = r, discussed previously.. The physical 

quantities, p and r, are canonically conjugate to each other and their 

uncertainty relation is expressed by the Poisson bracket in terms of a 

universal constant, r, or a set of universal constants. 

The "principle of least action," in the Sommerfeld notation, can 

be expressed as fp'dn =nC where n isa small integer or integer 

fraction. 

Before we interpret the meaning of the uncertainty relations in 

the reciprocal Heisenberg Relations, let us define what is meant in the 

usual interpretation by the conventional Heisenberg Relation. 

We can write [ii,  r] = C as ApAq > which states that the larger 

or the greater the uncertainty in .t, then the more precisely we-knQw 

r, where Lp and An represent the uncertainties in i and fl,  respectively. 

The uncertainties or limit of observability is defined in terms of a 

constant, 	(or Planck's constant). In our notation, C = 

The Heisenberg theory involves an observer (probe particle) and 

observed (target particle) and expresses the essential relation that 

the observed system and the observer system which affects the probability 

of obtaining a certain value in the observed system.. This is the con-

ventional interpretation of the Heisenberg Relation. Stated briefly for 

Aii& 	the smaller ii is, the larger An will be and vice versa. 

Now let us turn our attention to the reciprocal Heisenberg Relations 

which may be expressed as [p, l/] C or ip l/ 2: C.  For this expres-

sion to hold true, there are two possibilities: (1) As Ap becomes small 
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so does & or both can become larger (both can go in the same direction 

of small or larger uncertainties). (2) The uncertainty mAp can become 

larger as that in An becomes smaller (the reverse is not true, that is, 

there isa limit :imposed by the "greater than" sign such that, for a 

fixed uncertainty In Ap, the uncertainty, Au,. cannot increase without 

limits). 

In the reciprocal relations there is a larger range in value of the 

uncertainties in the respective value of two conjugate variables, but 

there are still restrictions on observability. 

D. Generalized Heisenberg Relations and Physical Law 

In Sec. I, the recent statement of Taylor, Parker, and Langenberg 3  

was quoted on the fundamental significanceof the universal constants 

as a possible unifying element to "bind together" the diverse branches 

of physics. Various of the universal constants appear to be more 

prominently manifest in particular branches of physics such as classical, 

quantum, and relativistic physics, but the mechanical quantal units 

appear to be prominently manifest in each of these branches. 

The construction of the multiplication tables for canonically 

conjugate pairs of quantal units to form the Generalized Heisenberg 

Relations results in laws of physics in classical, quantum, and.special 

relativistic physics (general relativistic physics contains differentia-

tion and therefore involves operations in the group, V; see Ref. 4 for 

the general relativistic manifestation of the quantal units). The fact 

that the Primary Laws of physics come about through group operations on 

canonical pairs of quantal units demonstrates that relativistic, quantum, 
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and classical physics do have the same basic origin! This origin, it 

is here proposed,, relates  to a geometric interpretation of the space-

time manifold. See Ref. 5 for a more detailed discussion. 

The Primary Laws of physics, as all laws of physics, represent a 

constant aspect in the manifold as a constant relation between variable 

quantities which are represented by mathematical symbols. We.term 

these quantities physical vüiables. The reason laws can result from 

• formulation dependent on universal constants is that they represent 

• fundamental constant aspect in the manifold that can give rise to the 

constancy of physical law. Since the universal constants give rise to 

the constancy in all physical laws, therefore, they unify the various 

branches of physics, for example, we again have F = ma (classical), 

.2 
E = mc (special relativistic), and [2,, p] 2: 	(quantum mechanical). 

Itshould be mentioned, also, laws can contain universal constants 

which represent constancy which can be in the form of a "proportionality' 

constant," for example, G in Newton's law of universal gravitation, but 

the constancy of law represents a deeper aspect of Nature than the 

universal constants as proportionality constants or coefficients in 

algebraic expressions. 

In the. next. section, we discuss a generalized geometrizing pro-

cedure and the development of a generalized metric, for the .space, in 

terms of the quantal units. 
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V. GENERALIZED MINKOWSKI SPACES 

In order to geometrize a force field such as the gravitational 

forcefield, one must assign a metric to the space. Minkowski 8  

introduced a four dimensional geometry for (x, t). In the case of 

(x, t) and (p, E) an invariant relation holds in terms of a metric 

that depends on the constancy of a universal constant, c. We have,  

the usual special relativisticexpression., 

2 	2 	2 	2 	2 2 = x + y + z - ct 	 (15) 

where s 2 is the four vector invariant9  developed as a generalization 

of the three space Pythagorian theorem. In Eq. (15), we denote 

= 	The usual Einstein four vector Invariant for (p,  E) is 

givenas, 

2 	2 	2 	2 	1 	2 

	

s2 = p + p ±p - - E 	 (16) 

The invariant relation in Eq. (15) and Eq. (16) relates to Eq. (5a), 

(5b) relating to the vertically related (arrows) expressions in Eq. 

(2a), (2b). 

Let us demonstrate the manner inwhich it might be possible to 

extend the concept of Invariant relations in terms of the velocity of 

• 

	

	light, c, and other universal constants to a number of physical variables 

and a multi-dimensional space. In Minkowski's words, 8  when he intro-

duced time as the fourth dimension of three space, "Nobody has ever 

noticed a place except at a time, or a time except at a place," This 

also appears to be true of matter and energy and space-time, as matter 

and energy can not exist without space-time to exist in and, èonversely 



space-time cannot exist completely devoid of a matter-energy content 

Although this latter state is commonly referred to as a "complete" 

vacuum,  it appears that space-time contains, at all times and locations, 

a matter-energy content that is detected, in one manifestation, as 

vacuum state polarization. 10  In one sense, this matter-energy content 

is also referred to as the "fermi sea." H. P. Stapp discussed some 

conceptual problems of empty space. Present and early concepts are 

presented. 

Rene' Descorte (1596-1650), the French mathematician and philosopher, 

conjectured that there exists a geometry of many dimensions, where each 

dimension is represented as a "physical variable" such as length, time, 

velocity, force, etc. Based on this concept, we introduce n orthogonal 

dimensions, where n is the number of physical variables considered for 

a particular physical problem. For Table VI, ri .6 for the physical 

variables x1 , t, m. E. and p 1 . (For vectorial quantities, only one 

dimension is counted.) 	This set of variables, considered in the 

form of the following equations in this section, are x, y, z, t, m, E, 

and p, p, p; then we have n = 12. 

In an analogous manner to s 12  and 82 2  relating variables that are re-

lated by the vertical arrows in Eq. (2a), (2b),let us develop the invariant 

expressions for quantities related by the horizontal arrows. From 

(9w, p) we have, 

2 	2 	2. 	2. c2 	2 	2. 	2. 
8 3  = x + r  + z - T 	+ Py  + 'z 	 (17) 

where F is the quantal force. This Is a six dimensional space. From 

(t, E) we have, 
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2 	2 	2 	2 

	

= t - (c F) E 	 . . 	 (18) 

a two dimensional space of .t and E. 	. 

From quantities related by the diagonal arrows we have for (2W, E) 

2 	
+ 

2. 	2 	2 	1 	2. 

	

x 	y + z - -- E  
F 

and for (p, t) 

2 	2 	2' 	2 	2 	2 

	

= p 	+ p + p 	- (F ,) t 	 (20) 

both of which are four dimensional spaces New "light cone" spaces are 

implied by these relationships. 

Relations between (x, m), (t, m), (t, p), (in, E), and (m, p) are 

given as elements of Table VI. Also included are the metrical elements 

for (y, t), (p, E), (x, E), (x, p), (t, E), and (E, p) inTable VI; 

these are starred and are from Eq. (16).through Eq. (20) for above and 

below dágonal elements.  

We denote the elements, mk,  in Table VI as elements of a matrix, 

M, where ifljk  represent the metrical elements between two physical 

variables (.i, n) in the formof the .invariant s 	 as, 

'Sn2 = 	+ mk r2 	 (21) 

where the index, j, runs from 1 to 3, for three "spacial" dimensions, 
V 

and I and k run from 1 to fl where t is the number of physical variables 

considered. The index, n, on a n  denotes the relation between a particu-

lar pair of variables for which the metric, mlk, is being formed. 

For each s 2, the metrical element can be represented by the 'sub- 

matrix m to M as for example for s l  Eq. (15), we have,ik 
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2. 	2 	2 	2 	22 = x +.y .+ z - C .  t 	. 	 . 	. 	(22) 

which can also be written in general relativistic notation as, 12  

ds 	 2 dx dx 2 	 (23)11 

where indices p and v run from 1 to 4 and for p = x for j = 1 to 3 and 

= t, for J = 1, mk = 	and for the signatUre x4 = - ict, 

/1000 

Ioioo 
0010 	 . 	. 	.. 	 . 	(24) 

\000-i 	. 	. 

For each s, analogous mlk's can be formed for two, four, and six 

dimensional spaces or for mk as 2 x 2, 4 x 4, and 6 x 6 dimensional 

matrices. 	. 	. 	 .. . 	... 	 . 

To form the upper half non-diagonal elements of M, in Table VI, we 

use the expression in Eq.. (21). . Another equivalent form can be written 

as, . . . .. . ...... .. 

.2 	2 	-12 
sn• = 	+ mk 	 (25) 

where M is the inverse matrix of mlk. The lower half non-diagonal 

elements of M are formed from Eq. (25). The diagoüal elements of M are 

unity, for (p, fl) where p = T, and therefore the trace of M is given by, 

Mtr = (26) 

where n is the number of physical variables considered on the dimension-

ality of M. . 

The elements of matrix M in Table VI are expressed in terms of 

5 1/ universal constants c, 't, and G, where t = (Gd/c ) 	and F.= c 1G. It 
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is conjectured that the universal constants represent a geometrized con-

straint on the space-time manifold. One example of this constraint is 

presented in Refs. 4 and 5where the additional constraint of the quantal 

units give closed cosmological solutions to Einstein's field equations. 

The form or "shape" of the universe appears to result from the constant 

constraint of the geometrical interpretation of the universal constants 

and the constant relation between variables in primary and secondary 

laws of physics. In Sec IV, some primary laws of physics were presented. 

The manner in whjch the universal constants are manifest in and 

unify the four force fields of gravitation, weak interactions, electro- 

magnetic •nteractjons, and strong interactions is given in Ref. 13. A 

unifying formalism of the four force fields uniquely in terms of universal 

COnstants is presented. 
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VI. CONCLUSIONS 

A set of Generalized Heisenberg canonical Relations have been 

developed and, in a group theoretical interpretation in a set of 

multiplication tables, certain laws of physics result which are termed 

Primary Laws of physics. The physical variables that form the 

canonical relations of the Generalized Heisenbérg Relations are 

expressed in quantal unit form or uniquely in terms of universal 

constants. 

The quantal units are interpreted in their. pair relations as 

elements of non-Abelian algebras, i.e., having commutation relations 

that are non-zero, leading to a possible geometric description of 

the space-time manifold. 

For each canonical pair a metric is assigned and for a generalized 

set of variables a generalized metric is constructed. This discussion 

is related to the earlier work of Wheeler's onthe topological descrip-

tion of space-time in terms of variables uniquely expressed in terms 

of universal constants. 

The Generalized Heisenberg Relations non-coiutation relations in 

terms of universal constants, combinations of universal constants and 

quantal units is conjectured to represent a scale of observability in 

the space-time manifold. This scale of observability may be a unifying 

description of the various branches of physics or "areas of compre- 

hension." 

As in the recent work of Taylor, Parker and Langenberg, the uni-

versal constants may bind the diverse branches of physics together as 

earlier proposed by Dirac, Gamow, and others. The space-time structure 
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APPENDIX A 

Electromagnetic Heisenberg Relations and Metric Spaces 

In order to geometrize.the electromagnetic field, one must develop 

a metric for electromagnetic variables in the manner presented in 

Sec. V. Geometrization of the electromagnetic field is what J. A. 

31/2 Wheeler attempted to do by introducing the variable £ = (irk/c ) 

termed the Wheeler "wonwhole" as representing a discontinuous multi-

connected structure in space-time. The geometry of space-time is 

represented by a complete set of physical variables which can be 

represented as a set of "dimensions." This is the hypothesis in this 

present work 

Electromagnetic variables are also considered as representing 

dimensionality in this geometric interpretation. Therefore, another 

set of multicomponent vectors such as the four vectors (x, t) and 

(p, E) exist involving electromagnetic and "mechanical" quantum 

variables (as denoted in Table I). As we stated before many such 

relations exist interconnecting the quantal units geometrically in a 

metrical structure in the space-time manifold. Let us examine the 

relation,. 	 . 	. 

- 

[a,E] 	. 	 . 	. 	 .. 

X 
[m,Q] 	 .. 

where a is the acceleration(a three vector), E is the electric field, 

and m is the mass and Q is charge. Note that the "format" of Eq. (lA) 
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is similar to that of Eq (2a), (2b), Sec II. 

Again considering the generalized "Reisenberg" relation between 

quantities related by the, vertical arrow we have, 

[a, m] = F 	 (2A) 

the quantal force and the other vertical relations is, 

[E, Q] = F 	 (3A) 

as new "four vector" relations with quantal variables where the quantal. 

electric field E = c4/GQ = F/Q and the quantàl charge, Q, is considered 

to be a universal constant so that Q in quantal unit form is Q .  
Let us consider the horizontal relations (horizontal arrows) for 

(a, E) and (m, Q) 	We have, 

2 1 / 2  
[a, E] = (.2? 	

1/2. 

) 	
= 

(c2F3) 

	
. 	 (4A) 

which can be expressed as 

F '2  
(a, .E) = (._) 	 . 	. 	. 	 (5A) 

for the quantal density, 	 .., 	 . 	 ,. .p ='c 5 2 	2 2 ../G = F Ic and where C is the permu- 

tivity in quantal unit form given as, C = Q2 10 = Q2/(' 

[m, QJ = () l/2Q = (FQ) 1/2 
	

(6A) 

which can be expressed as, 

[m, QJ = (cF)11'2 	 (7A) 

	

where C. is the quantal unit of permutivity. . 	. 

Lastly let's consider the diagonal relations, 
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1/2 	2 2 1/2 
[aQ]Q(C 2 F) 	_(cFQ) 	 .(8A) 

where one component of a is considered, and for [E.,m], 

[E, m] 	
( eF  )1/2 (F3€) 2  . . 	. 	. . 	(9A) 

where one component of E is considered. We can express [a, Q] as 

1/2 cF 
[a, Q] = 	() 	. 	 . . 	. 	. 	. 	(bA) 

and [E, m] as 

1/2 
• 	[E•, ml = (. r) 	• 	• 	 • 	 (114) 

Again the quantal form of e is used, as c = Q2 /'. 

• 	Let us look at some invariant "light cone" relations corresponding 

to the electromagnetic Generalized Heisenberg Relations just presented.. 

We turn now to the invariant relations such as (vertical relations)

4)  
T2=a2+a+a2_(c 	 m2 	 (12A) 1 	x. 	y 	z 

and 	•.• 	. 	 . 

2 	2 	2 	2 	/ 4\ 	2 T 	= E + E + E - 	Q 	. . 	 (13A) 2 	x 	y 	z 	 . 	 . 

For the horizontal relations, we have for [a, E], 	 . 

/\ 
.T2.a2+a2+a2_(Q 2 C 

 2 
J(E 2 ±E 2 +E 2 ) 	 (l4A) 

3 	x 	y 	z 	 x 	y 	z 

and for [m, Q] 

T 4 2: = m2  + 	Q2  . 	 . 	 (15A) 
GQ 

For the diagonal relations [a, QI 
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T2a2+a2+a2_( 	Q2 	 (16A) 5 	x 	y 	z2) 

and for [E, m] 

T 2 =E 2 +E 2 + E 2 _( 	2 	
(17A) 6 	X 

Symmetries become apparent such as for [a, E] in Eq (4A) and [E, m] in 

Eq (9A) 	Also [m, QJ in Eq (6A) and [a, Q] in Eq (8A) 

•/2\ 

I-) [a, E]= [E, m] 	 (18A) 

and 

(s-) [in, QI 	[a, Q} 	 (19A) 

Also, Eqs (16A) and (17A) are related by the same set of constants, 

.(c2 F)
= 	[(a;E)]2 	

(20A) 

Wheeler1  had attempted to geometrize the electromagnetic field and 

derive electric charge from his discontinuous topological structure 

describable in terms of the "wormhole" length, £, wher.e L represented 

the size of the diameter of the mouth of a worinhole structure in the 

space-time manifold. ElectricaL charge is then conjectured to be •due 

to the emission of field.ljnes from and entering into the mouths of a 

wormhole embedded in the space Many such structures would give rise 

to virtually produced pairs of oppositely charged particles This 

formulation of a geometric description of the electromagnetic field, 

briefly described above, is as developed in analogy to the geometric 

interpretation of Einstein's for •the gravitational field, but not with 

the overwhelming success as in general relativity. It is suggested here 
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Table I. Universal QuantalUnjts: Physical variables are.uniquely 

expressed in terms of universal constants. They are also 

• expressed in terms of ', (', c and the, quantal force F. 

where we define (E '/ c and (' 	c. 

Table II Generalized Heisenberg Relations The commutation relations 

of the physical variables in quantal unit form involve non-• 

zero elements •c, ', F and k which.result from the, product 

of the physical variable. The quantal force, F, is promi- 

• nently man1fest in the Generalized Heisenberg Relations and 

simplifies the formalism. The array is syetric about the 

diagonal so that one-half of Table II contains all the 

Information, including the diagonal elements which are 

squares of the physical quantities such as k t 2 , m, 

etc. (where m2  = [m, m]). Note: The G. N. Lewis Ultimate 

Rational Units results are starred in Table II and Table IV. 

Table III. Generalized Heisenberg Relations and Primary Physics Laws: 

The elements in Table II, which are expressed in terms of 

universal constants and the quantal force, are rewritten in 

• terms of their equivalent physical variables; certain• physi-

cal laws result from this process, for example, mc = E/c or.  

E = mc2 , a = wc, E = 2.F, L = pt and others. These laws are 

termed Primary Laws. 
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Table IV. Reciprocal Operations Generalized Heisenberg Relations and 

Primary Physics Laws: The elements of the reciprocal 

Generalized Reisenberg Relations are formed by the canonical 

product of a variable and the reciprocal of another variable. 

Again, as in Table III, the resulting universal constants 

are re-expressed in terms of their quantál unit form. 

Again Primary Laws of physics result. 

Table V. Some Generalized Canonical Relations: Some examples of the 

Generalized direct and reciprocal Heisenberg Relations are 

given In Table V, where a variable can be canonically conju- 

• 	gate to more than one other variable and also where direct 

• 	• 	and inverse canonical relations such as [ji, r] 	or 

[ii, l/r] = it result in the same constant, , for different 

liandfl. 

Table VI. Generalized Minkowski Metric: The metrical elements in 

Table VI are expressed.in terms of the velocity of light, 	• • 

c, and the quantal force, F. The metrical element for (E, m) 

is expressed in terms of c and the quantal time, t. Note 	• 

that starred elements are from Eq. (16). through Eq. (20) • 

where complementary reciprocal forms are also represented. 
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Table I. Universal quanta]. Units 

Mechanical Quàntal Unit in Terms Numerical Value of 
• Quanta]. Units of Force, 	and Quantal unitb 

1/2. 1/2 

(T) = 

 

33 

-_-) 
( Gg 

length £ 
= 

1.60 x 10 cm 

= 
time 

= ()l/2 
10

-44 
 5.36 x sec 

m 
= ( CK  

mass 
1/2 = 

2.82 m 
(~F  )  

x 10 gm 

1/2 
E 

= (—G
!) energy E 1/2 = 1.25 x 

16 
10 ergs 

31/2 

p 
= 

momentum p = 4.16 x 1010 
gm-cm 
sec 

L =. 	. 	 • angular L = 1.06 x 
-27 

10 erg-sec 
momentum 

F = c4 /G force F = F 1.22 x 10 dynes 

c = c velocity c = c 3.00 x 1010  cm/sec 

a.=()hh'2 
acceleration a = 

( c2

) 	 • 	

• 5.72 x 
10::  

cm/sec 

p = p po wer = cF 3.66 xlO dyne 
sec 

• 
• 	P 

7 
= pressure. P 

2 
= 	rr 4.75 x 10114 

2 dyne/cm. 

= 
density 

• = 
F 	

• 6.50 x i093  gm/cm • 

• / 5\1/2 1/2 
• w 

= 	
• frequency • 

= () 1.91 x 10 cycles/sec 



a The quantal units are expressed in terms of the universal quantal 
force,F = c4/G, le, 	and c. The quantities € and ('are defined 
as € 'ic/c and' E cic 

b In the evaluation of the quantal units, the values of ( = 3.50 x 
-38 	 -17: 10 	gm-cm and % 	3.15 x 10 	erg-cm have been used. 
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• 	 . 	 • 	 • 	 Table 	V. Some Generalized Canonical Relations 

• 	 • 	 • 	 [F, 1 
-] = a 	• 

1• 
[p, -] = F 

[c,]=a [E,f]=F 

[p, p] 	= 	a 	• 	• [p, 	= F 	• 

[E,—} • 

• 

p 

1 [p,—] • m • 

• 	 [p, iJ=p [F,]=m(=>F=ma) 

• 	 • 	 • [p, • 	
• =c 

, 	 = • 	 • • 

[p,+]=c [E,.]=t 

c • •  [E, 
• a. T,t 

• 	[J.,-] =c 	• • 	 • 
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Table VI. 	GeÜeralized Minkawski Metric 

i,2 l/t2 	1/m2 tiE2  I/p 2  

2 
X 1 2 

C  
c 4  1 c2  

T 

•2 t 1 
- i- 1 c2  

- 

•2 cF 1 
- 

c F' F' 

2 F2  2  F 2  t 1 
• 4 2 2 2. c c c c 

2 2 • c 2  1 

cF .t C 

2 F 2 2 2 
p - • F • c c 1 

• _________ 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee  or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment  or contract 
with the Commission, or his employment with such contractor. 
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