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UNITARIZATION OF THE DUAL BESONANCE AMPLITUDE 
* 

I. PLANAR N-LOOP AMPLITUDE 

Michio Kaku and Loh-ping Yu 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 94720 

August 13, 1970 

ABSTRACT 

We present the planar multiloop formula in the 

dual resonance model. Both the multiple factorization 

formulation and the Sciuto three-reggeon formulation 

are given in this paper. 

V .  
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I. INTRODUCTION 

After the planar single-loop amplitude 1  in the dual resonance 

4 	 model had been found, the nonpianar single-loop amplitude 2  was soon 

calculated. To complete the unitarization program of the dual amplitude, 

we require the calculation of the multiloop diagrams. In this series 

of papers, we will present the results for theplanar, nonpianar, and 

overlapping multiloop amplitudes. In this paper we calculate the 

plana-loop amplitudes 3 	both from the multiply factorized tree and 

from the Sciuto three-reggeon vertex. 5  

The final form of the N-loop planar amplitude will  be expressed 

in a projectively invariant manner via Koba-Nielsen variables. 6  The 

first derivation has the advantage of being projectively invariant from 

the start; the second calculation, however, exhibits projective invariance 

only when all traces are performed. 

Remarkably, the N-loop planar amplitude exhibits much of the 

same structure as the original single-loop amplitude. Indeed, arguing 

from projective invariance and the dual diagrams of KSV, Mandelstam 

was able to predict the essential features of the N-loop amplitude. 

The original ideas of KSV assume a particularly intuitive and 

pleasing form when reexpressed in the language of projective transforma-

tions0 In their paper, an N-point N-loop amplitude is represented by an 

M-sided polygon enclosing N internal points; different triangulations 

of the dual diagram yield the various terms in the integrand of the 

Veneziano amplitude. In the single-loop amplitude, there are an infinite 

number of triangulations which circle about the internal point. 
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Therefore, it is not surprising to find, in the integrand such factors 

as 

• ,rl' 	 -k.k. 
r 	13 

(y - w  

r=l 

where k represents the external momenta and y the various Koba-

Nielsen variables of integration. Though w is .  a c-number variable, 

it can be seen to be.a special case of an arbitrary projective trans-

formation. If, for example, an arbitrary projective transformation is 

performedupon the y's, then the true character of w as a projective 

operator is easily seen: 

- 	
k'k3 = 
	

- RWrRY) k.k3 

	

1,3 	 . 1,3. 

-kk. 	 -kk. 

	

= 
' 	

[1_ - 	
= 

i,j 	 i,j 

where 

k. = 0, 	k = 0, y i 	
Ryi (1.3) 

Q = RwR1 , 	 (1.4) 

and 

R(z)= 	, 	AD - BC 0  
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If we wish to write our amplitude. in projectively invariant 

form, we must therefore replace w by a more general projective 

transformation Q. One might expect, thereforethat since there is 

one projective transformation representing the single loop, there might 

be N projective transformations for ,  N loops. Different combinations 

of these N projective operators, raised to various powers, would 

then represent the different paths a line can make through the N 

points of the dual diagram. We are led, therefore, to consider the 

integránd 

-k.•k. 

11''r1( 	Yj) 13, 
[RI i,j 

(1.6) 

where R represents the totality of products one can construct out of 

N-projective operators F1  and their powers. 

Likewise, the singularity structure for the N-loop amplitude 

can be considered a natural generalization of the.single-loop case. 

Since the singularity of the single loop is expressed entirely in terms 

of w, one would like to express w as an invariant associated with 

the projective transformation Q. This may be done by simply defining 

w as the ratio of the eigenvalues of Q. Furthermore, all operators 

Q' related to Q by a similarity transformation have eigenvalues 
Ail 

whose ratio is equal to w or its inverse. 

At this point, a small digression on projective transformations 

will prove beneficial, especially when the singularity structure is 

analyzed in detail. Many  of the definitions used in this paper are 

taken. 	from Ford's Automorphic Functions. 7 	 . 	 . 
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The parametrization of a projective operator R in terms of 

A, B, C, and D is simple but clumsy; a much more convenient parametri-

zation can be found if one expresses R in terms of its two "invariant 

points" x1  andx2  and its "multiplier" XR. With these variables, 

we can express. R quite elegantly: 

R(z) = z',  

x1 	-1 	l = 	
- 
	 (1.8) 

R(x1) = x1 , 	R(x2 ) = x2 . 

Quite simply, we see that w is the multiplier of Q. There 

are severalidentities that. will prove useful for our discussion: 

XRQ 
= 	x, (1.10) 

= 	X 

z(x 	_xX)_xx(l-XR) 
R(z) 

= 	z(1 - X) + (x2X 	x1) 
1.12 

O<XR<l : 	R(Z1 ) 	= 	x21  z1 x1 , 

(i. 13) 

R(z2) = 	x1 , z2 	x2 . 

The multiplier is most easily found by taking the trace of 	R 

(all matrices shall have unit determinant): 
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0'\ 

	

Tr( 	 = TrR 	
A+D 	 (1.1)-i-) 

	

(AD - BC ) 	
R 

Then 

1 

.XR 	 - 2 
 

Projective transformations are readily categorized by the 

value of the multiplier: 

R is hyperbolic if XR  is realand 	1 (x >0), 

R is parabolic if X, is real and = 1, 
(1.16) 

R is elliptic if IXr(I = 1 and XR lç 

R is loxodromic if XR  is complex and none ofthe above. 

Using these identities, we can show that the singularity of the 

single loop resembles the closed paths One can make around the internal 

point of the dual diagram: 

00  - 	 IT, - x 	1. 	 (1.17) 

n=i. 	 n=1 

Starting with this intuitive approach, Mandelstam has conjectured 

that the singularity of the N -loop amplitude is simply 

- 

CR) 	 . 

	

where 	now represents the totality of closed paths one can make 

around N or fewer internal points of the dualdiagram. Notice that 
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this function contains the product of single loop divergences as a 

subset. 

With this projective approach to higher loop amplitudes, one 

can also easily choose the most convenient set of variables. Since 

there are M - 3 + 3N variables of integration inanM-point N-loop 

amplitude, one expects to have one variable for each of the M-scalar 

external lines. We choose the multiplier and the two invariant points 

as the variables for each loop for a total of 3N variables. Finally, 

three of these variables are fixed. 

By using the methods outlined in a previous paper, linear 

dependencies will be subtracted out and found to give a correction 

factor of 

XRa) 

	
(1.19) 

(where cx ranges over all the N-loop indices () 
when the calcula-

tion is performed with Sciuto vertices. The projected propagator 9  is 

used in the calculation with the multiply factorized tree, with identical 

results. We now present the N-loop amplitude, 

S +1 

f 	dk f •U dX f 'Ui dw. (dwdwbdw ) -1 

00  
x -  x)(l - 	 - (R)w)' 

[Q) 	 n=o i,j=O 

(ij if n=O) 

Equation (1.20) continued 
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Equation (1.20) continued. 

(w - wb)(wb - w)(w - w 

(w- w11 ) 0 	(w w1)2 [(w
1_w 2 )(w 1- R(w12) ] 11_a 0  

i,+l,-1) 
T=() 	 L 	

- R1(w 2 )i 

(1.20) 

where a0 .= - m, w 2  =w0, (w,wb,wC) = fixed points, 

C) = set of all loop indices = 

invariant point of R.= Ra°°(zi),zi 

Wa+l = invariant point of Ra  = Ra (z2)z2 

(Q3. = set of all closed paths, 

= (Ra± ••R) = set of all open paths (where •.. means all possible 

combinations, of n - 2 R's such that no R ever appears 

next to R 1 ). 

This amplitude is formed by joining, the factorized legs in Fig. l. in 

pairs, such that a and a + 1 are joined. 

Remarkably, the cyclic ordering of the Koba-Nielsen variables 

mimics the ordering of Fig. 1,  if we associate the invariant points 

w and w 1  with the ath and a + 1st factorized legs. 

If we ignore linear dependences, then we find the following 

cyclic ordering (see Fig. .6a): 
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• U2 = (W 	Wa_i K 	 W0  K w1  

<w 	<w 	<w...<w 	cw 
- a~2 - 0~1 - a - a+2 - a+i - a ' 

where U1  = (0,1) for each ioop, 

(2) 
Wa_ X )Wa+l_ a  06 

(1.21) 

The external line variables are interspersed among the invariant points, 

except that no lines occur between a and a + 1 (otherwise, we would 

have a nonpianar diagram). 

We recover the single loop diagram if we let 

(') 	(a), 	Ra = X.1 wa+2=wa=l, 

W=Wb=O Wa+l=Wc = 	 - 

U1  = (0,1) )  U2  = (0 = Wa K wa_i K  Wa2 

W1  <W0  <W 1  K •.. K W 3  W 2  

When linear depèndences are added, we find rigid constraints on U2  

which allow periodicities, as demanded by duality. In fact, the 

conditions are rigid enough to determine U1  entirely in terms of U2  

(though all multipliers still range from zero to one, they are no 

longer independent). In studying periodicities, it is more convenient 

to move all external line variables away from the invariant points, So 

that all invariant points lie together. This rearranging of external 

lines is always possible, because the a + 2nd line (which lies to the 

left of a + 1 and a) can flip to the right of a + 1 and a by 

duality. [Mathematically, this corresponds to the following: 

a+2 wa+l W 	Wa+l W KRa(wa+2)l This flipping of external line 

variables past loops is simply a consequence of "rubber band" duality. 
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Now that all external line variables are outside the region 

occupied by the invariant points, we find that a simple reordering 

yields 

U2 	(w1< w 	•.. < w1  <w0  <w 1  

<w <••• <w Kw <w 	<w <w ). - - 	- +l - - a+l - a - S+l 

(See Fig. 6b); x 2) 	Wa 	() 	 wa+i•) Since the action of R flips 

lines across the ath loopt s  invariant points, the action of 

RaR°°•R is to flip lines across all loops, until we regain the 

original ordering (i.e., we have rotated the external line variables 

3600). It has been shown that theinvarlant points 	and x (2) 

of the product (RaR••R) 	lie outside the region occupied by the 

invariant points of the individual Rts, and hence x 	and 

divide the external line variables fromthe invariant points: 

(1) 	 ' 	(2) U2  = x 	 <w 1 w 

•• <w 	< w <w 1  

It can be shown that the region occupied by the original external line 

variables w.(i = 0 to S + 1) and the regions occupied by 

(RR...R)nl(.W.) are disjoint (n 	0). As n - 	(-aD) we merely 

approach the point x(1)[x(2)]. Thereforei we can subtract the jeriodic-

ities due to these disjoint regions by integrating over only one of them, 

i.e., integrate one of the variables from y0  to RaR  .R(y0 ), where 

y0  lies between x 	and x (2) In summary, we find 
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U2 = [W <x 	<RR(w) < w 1  w < 	w0 < (2 ) 

<.w 	<w <... <w 	<w <w 	<w ] - +1— a— 	- +1— - a+l— a 

and 

[RaR•f•Ra(yo)< WO <0 

!:Notice that the factor in the :.rc' in (1.20) changes to reflect 

the different topology as we move external lines away from loops.] Given 

the above cyclic ordering, we have also shown that applications of 

to the various lines does not produce a variable which lies between the 

invariant points w 1  and w of a different loop (i.e., planar 

graphs do not degenerate to nonplanar ones). If linear dependences were 

not taken into account, we would have had the simple cyclic ordering in 

(1.21). 

In a later paper, we will show that inultiloop amplitudes with a 

different quark topology differ only in the arrangement of invariant 

points (i.e., the nonpianar graph has external line variables between 

the invariant points of the same loop). 
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II. MULTIPLE FACTORIZATION FORMULATION OF THE 

PLANAR MULTILOOP AMPLITUDE 

• 	In order to get the ioop amplitude from the multiply factorized 

tree, we need 	(a) prescriptions for joining two excited legs and 

(b) the principal-axes method. We will discuss these two subjects in 

detail by considering the planar single-loop diagram. The prescriptions 

and the method used in the single-loop case are applicable without 

modifications to the multiloop case. 

A. The Sewing Prescriptions for Two Excited Legs, 

We adopt the notations of Kikkawa and Sato) 0  They define 

7k. 	k. 	k. 
I 	\ 	f 	1 	1 	1 

= t —i —i' —i' 

	

1 	 \12 2 2  3 2 

N N N Ia) = (a1 ,a2 ,a3 ,"), 

(M) 	= (M~T) 	= (fl) 	n (ffl )  

(M) 	= (MT) 	
= 	

()m 
 (), 

(M) 	= 
Mn 

 Onm 	 • 

00 

(aIx = xla) 
= n=l 	

a, 

00 

(alxlb) 
= l 

ax  ul , b 

00 

(aJ xM 	
= > 	ax(M) Ym(M+)  z k bk. 	 (2.1) 

n,rn,k=1 
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In the Appendix A, we give useful identities used in this paper. 

Let us start from the twice-factorized tree obtained in Ref.4 

(Fig. 1), 

aa
aa+1 =fdYi(s+2) 

I 
X 	I exp 	aa. I pa 2 ) I a) + 
	

(a 	a ( i) k.) 
aa  

s+1 ,  
+l + 	(aa  I pa+i(1)ki)  

i=o 	 a 

(ih,a+l) 

where 

(2.2) 

(y - y 	)(y 	- y.) - 	a 	a-la-i-i 	1 
p (i) = p(a,a-i-1,a-1,i) 	 - ir 	 - v 	

.3a 
a 	 ' c a-i-i 	"a-i' a 	i 

+ 2) 
= p(a + 1, a, a + 2, i) 

 

and the symbol tS+21 is the ordinary Koba-Nielsen integrand for the 

tree containing S ± 2 scalar legs, i.e., 

S+l 	-1kk 

- 	 - 	 - 	
- 	

j 2 1  

i,j=O 

2  -a04(k.+k 1 )-1 

X 	 - yi+i) 	 TT( - •+2  

i=o 	 i=O 



-15- 
	 UCRL-2OO5 

where y a y  b y
c  are any three fixed points of the set 

The ordering of the y's is 

y. > y, if i 	j. 	 (2.3) 

• 
We have to join the a leg w 	

a+l 
ith the a 	leg to get the 

planar single-loop amplitude. 1  We observe that the coherent states 

7 	and IX 	are defined in exactly the same way. 	Thus, in 

joining the a 	leg to the aa leg in Eq. (2.2), or, in taking the 

trace of Eq. (2.2), we should take 	
l 	

a Although a(a) 
a   

a+l 	a-i-i 
and am  (am  ) are two commuting operators defined on two disjointed 

Hilbert spaàes, they actually describe identical states (Fig. i). More 

explicitly, in taking the trace of Eq. (2.2), we carry out the following 

procedures: 

(a) Insert Gross and Schwarz's 9  spurion-free propagator to the 

right of 	state and integrate over d'ka i.e., insert the 

expression11 	 - 

- fdkf+(ka) D(ka) (k)ka) (k) 

= rd4ka f dt( 	
£(k) 	

- t)(a)( t )R(1 - 

cl(k) (2.6) 

= fd 4 

fo1 

dt t_ 
	 t k)_l - )oa 	(ka)(t -_l)R (_ka) 

' tR c(k), 
	 (2.7) 
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where 

£(ka) = a0 + tkce  

CO 

R 	n 

= exp(aIka) : exp(alM_ - I I aa) 

= : exp(aIM_T IIaa) : exp(aika) ,  

and the expressions (2.6) or(2.7) to be placed to the right of the 

state 	<x a 	From Eqs. (2.7) and ( 2.8) it can be shown that 

D(ka) (ka )P(ka) c(ka ) 

	

= 101  at 	a(l - ) 0 7a(0exp(( 	- kaIM_T 
t 

(2.9) 

(b) Replace the notations (aa+t, (a a+l l in Eq. (2.2) by the complex 

parameters Xa Xa+1 

* 	T t 
(a I - ( 	- kllM 	1 	

(2.10a) 

(ahl 	 (2.10b) 

Equation (2.10a) is suggested. from Eq. (2.9). It is obtained- by 

commuting (a a I in Eq. (2.9) to the rightmost of Eq. (2.2) and 

annihilating on the vacuum. 
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(c) Set Ix) = 	k 	 and then integrate over the 

complex xplane, •i.e., insert the integral 

	

dl 	dIL 	exp(-( 	 (211) 

After performing the above steps (a), (b), (c),. we get the 

planar single-loop amplitude (Fig. 2); call it FPL(l): 

FPL(1) =d 4 k 
CX 
f dt  t_ta)_1(l - t)02afYcY)I 

(2.12) 

where ka = -k 1 , and 

I = 

 

fdIdIe((X*k) + (x*JYJ) +(x*l) + ( IE)), 
2 	 (2.13) 

with 

Y 	M_T 	1 pa(a + 2), 	Y' 	MT 	, 	 (2.14a) 

S+1 

IF 	i' p(i)k), 	 (2.14b) 

(i,a+l) 

S+l 

IE) 	pa+i( 1 )I ci ) - 

(ia,cx--1) 

S+1 

	

= 	Pa+i(l)lki) +I a+i 	+ 2)1k 1 ) + 

(ia,a+1) 

S+l 	i 	k. 

Pa+l[a 2ik ) 

	

(2 ic) 

a+1 
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We have kept the sum of momenta equal to zero in Eq. (2.14c). 

Equation (2.13) would have been a simple Gaussian integral if 

Y were a c number, as was the case when we neglected the spurion 

problem. However, now Y is an infinite-dimensional matrix in the 

oscillator indices m and n, so we have to evalute Eq. (2.13) by the 

12 
principal-axes method. 

B. The Principal-Axes Method 

We write Eq. (2.13) as 

I = 

 

fdldJ)efr(xL(x*D( : 	

CIJ CYJ) ( 

f(EI o\/''\3 
+ 

\o (Fj,/  

We regard 	 as a two-component vector; each component 

itself is an infinite dimensional vector defined in the harmonic 

oscillator space. To perform the integrations over ?. and X, we 

imagine ourselves to have gone to the principal axes of the first 

matrix in Eq. (2.15), called the A matrix. Then the A matrix becomes 

diagonal and we can do the integrations over 	explicitly, since 

both integrals.are simple Gaussian integrals. After having done the 

x,)* integrations, we can imagine ourselves going back to the original 

axes of the A matrix. Thus the integral of Eq. (2.15) gives the result 

C 5'\ 
= 	y exp<(EI,(FI). j. 	I , 	 (2.16) 

(det[A]) 	 IF)) 
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where 

I 

1 
[G] - [Hi, 	(2.17a) 

o 

	

Io 	[i] 
0 

= 

	

	 , 	 (2.i) 
[II  

([Y] 

[y] T 

= 

	

	 )•, 	 (2.17c) 
 0 / 

	

Y] 	0 

	

/[

0 	[] 
[GHI = 	 T 	

(2.17d) 
J 

	

We can formally expand the matrix 	as a power series in the [GH] 

matrix 

00 

	

1 1 	Vr 	iflr 

T2T T 
 [G] - [H] = 	

LGHJ LG 

n=0 

° 	[I] 	
(Y] 
	 2 

= ( 	 ) 	+ 	 [G] + [ GH] [G] + •.. 

	

\\.[I] 	oj 	0 	
[]T 

(2.18) 

Hence Eq. (2.16) becomes 

: 	
= 	

exp 	((El, (Fl)[GH1 n ()J 	(2 
(det[])  

= 	rexpf(EIF) + (EIYIF) + (EIY2 IF) + ". 	( 2.19b) 
(det[t])2 	LI 
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We now need to calculate Eq. (2.19b), order by order, in the [GH] 

matrix. Some useful identities are 

MxIk.) = (i - x)k.) - Ik), 	 (2.20a) 

	

MTxIk±) 
= ( 

X 	
(2.20b) 

	

Th 	 - 

• 	Y 	
1 	

( 	k=O) , 	 (2.21a) 

fx 

yTxIk) = 	- x)Ik), 	( 	k.=O), 	 (2.21b) 

where 

• 	f 	p(a + 2)t 
t 
 1 . 	 (2.22) 

Equations (2.21a) and (2.21b) suggest that we can define one 

projective operator Q: 

Q'(x) 	
1 	

, 	Q(x) 	
1 	

(2.23) 
f(l--) 	 0 

	

fx 	 x 

This projective operator enables us to obtain the nth-order term in the 

	

[GH] matrix. To see this, we express 	E), IF), YIF), IT E) in terms 

	

of the projective operator 	From Eqs. (2.114), (2.21), and (2.23), 

we have 

S +1 

IF) = 

	

	Q_l pa+iCjk1) 	 (2.214a) 

1=0 
(iLa,a+i) 
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s+i r ± 1Z 	p
a+, 

IE) = 	 a 
 j k1 ) 

i=O 	 a+2 
(i,a+1) 

s+1 

YIF) 	 Q 1 	Q 1(J  1k1 ), 

S+1 	 k. 
T 	 1 

Y I E 	

(a+' 	21 ) 

k1 

 [a + 

(2.2)#b) 

(2.25a) 

(2.25b) 

We can thus represent the [Gil] matrix of Eq. (2.17d) as an operator 

acting on the vector ( l 	. From Eqs. ( 2.17d), (2.24), and (2.25) 
\jE)) 

weget 

° 
	C

(.)
[GH]0 	 [y]T)= 
	 11 ) 	

• 	(2.26) 

It is easily checked that the Gil operator defined on the new 

(IF)\ 
vector ( 	) 	[Gil] 	) has a form identical to Eq. 

\ IE)1 J 	\[E)J 

(2.26). 	t follows that 

1Qfl() 	0 

= ( 	 1 	
(2.27) 

0 ni 
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Hence, from Eqs. (2.19a), (2.27), and (2.24), the nth-order term is 

[12
n

i 	e((EI,(Fl)[GH] (') 

s+i 	 y. 	•k:(k[il} 

=a+i y 	
(2.28) 

I ;j -O 
(i 1 j,a+1) 	 a-i2 

where 

,(i) 	 = p(a,a+1,a+2,i). 	 (2.29) 

In obtaining Eq. (2.28), we have used the fact that 

k. = Vk. = k -i-k -i- 
	= 0. a ai 

to move the operatora-i-1' Q to the 	side. The conservation of 

momenta guarantees the projective invariance of Eq. (2.28). 

We can defiie the projective operator R, which will be inter-

preted as the projective operator for going around the loop, as 

"-1 	" R 	a+i (2.30) 

We have 

R(Ya+i) = 
	

(2.31a) 

R(y2) = 

hence Eq. (2.28) becomes 
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In 	
- Rfl+l(yj)) lj -rr 	

- Rfl (y)  -k'k 

ij-O 	
- 	I 	- 	

( 2.32) 
i-O 	L '• 
	 - 

Thus Eq (2 19) gives 

 

	

'F I = (det[]) 	 = (det[A])* 	
[yl - Rl(y3)J1 k 

n=O i,j=O 

s• +1 	r i 1 	Ui 	(Y )  

In order to express our single-loop answer in a manifestly 

projectively invariant form, we need to express the Koba-Nielsen 

variables a'a+l 
 assocIated with the excited legs of the original 

tree, and the Chan variables t associated with the sewed propagator, 

in terms of the invariant points x 1,x and the multiplier X of the 

projective operator R. As defined in Eqs (1.)to(1.13), we have 

0 K X K 1 : R(z1 ) =x2 , 	z1  x1 	 (2.3a) 

= 	, 	, x2 , 	 (23b) 

	

z(x -xX)-xx(i-X). 	: 

Rz = 	z(l-X)+(x2X-x1) 	
23) 

The expiicitfbrmofthevariables x 1, x2 , and X corresponding 

to the projective generator R, defined in Eq. (2.30), can be found by 

using the identity 
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aa+1 
pa+i(z) = 	

- -. 	
-_Ya+2) 

 

aT a+2 

"-1 
to express R a+i a+1 

as 

R(z) 

= Z[Y a2a+i 'Ya aa+1 a 1 	a+1c 

z[(ya+2_y(X+1)_f(ya+l_Y) ]+Ya1(Ya+1Ya+2 )•Ya+2f a+1 Ya )  

If we compare Eq. (237) with the standra form, Eq. (2.35), we obtain 

a set of Identities 

a 	tid, 	t=ad 	
(2.38a) 

	

- a-ia 	a+i) 	, 	 (2.38b) 

a+i - a-ia - 

£ 	
( Ya - a+1a+2 	a+i 	, 	 (2.38c) 

x(x1 -x2 ) 

(1 - a) = 2(1 - x), 	 (2.38d) 

ya  -aya+l 	'x2  x 1  X 
= 	 , 	 (2.38e) 

	

aya+2  - a+1 	
x2X - x1  

	

yc?ra+l - ya+lYa+2a = x1x2 (1 - a). 	 (2.38f) 

This set of identities enables us to compute the Jacobian factor 
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y (t,,y 	) 
- 	a a-i-i 

'l'2 

In Appendix II, we perform the calculation. Th result (in the fiame 

x1 =, x2 =O) is 

= 	d 	(i - x) . 	 (2.40) 
(a - a) 2  

In order to go from the set of variables 	 to the 

new set of variables (X,x1,x2 ) 1 
 we also need to separate out all factors 

conaining the variables a' a+l in ts+2 
 in Eq. (2.12). From 

Eq. (2.4), we have 

S+l 	 . 	
S+l 	 _kika Sii 

= 	

- 	 2k k3  

13 0 	 1 0 	 1 0 

\i,ja,a+lI 

I
aa~l a+2 

a - a+1 	[a - a+2a-1 

0  - a+2a-1 
- 

a+1 	-  bb - cc - 	

.(2.41) 

Now we can extract out all factors involving t, y a 
 , ya.-i-i in Eq. (2.12). 

From Eq. (2.12) and (2.41), they are 
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1 2 

1 	I"' - a-1a+2 	a+i 	
-1 

dt dYc: d.y1( - 	 t(1 - t) 	- ya+2 	1 - 

-a-i 	a- i 	 a-i 

X 	- a+i 	cx - a+2 	a-i - 

X 	a - bb 	cc - Ya)} 	
(2.2) 

For simplicity, we choose the frame 

a 	a+i 
= 	=001 	b 	

2 	c = a+2 7 1. 	1 
(2.) 

This is the frame in which the BHS1  and ABG1  planar single-loop formula 

is expressed; in this frame, the projective operator R reduces to its 

multiplier X. In the frame of Eq. (2.43), we have, from Eqs. (2.38) 

and (2.31), 

a - X 

XYa i 
a - 	i-x 

(2 .4i.a) 

(2.'ib) 

(2. 14c) 

Substituting Eqs. (2.4), (2.4), and (2.40) in the expression (2. 2 2), we 

find that (2)42) is equal to 

-2(k 	 cr0-1 
a 	(1 - x)(x - ga-]) 	

, 	 (2. 1 )) 

where 	 means x1 ,X2  are not to be integrated over. The 

factor (1 - x) in Eq. (2, 145) is the famous linear dependence 

correction factor1  to the planar loop amplitude. We emphasize here that, 

though we obtain this factor (i - x) in a particular frame, the factor 
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is actually frame-independent, since it is one minus the multiplier of 

• the projective operator. This fact enables us to find the similar linear-

dependence correction factors for the N-loop case. 

We finally combine Eqs. (2.12), (2.33), (2.).1), and (2)5), thus 

obtaining the planar single-loop formula (in the frame x = , 	= 0, 

= i) (Fig. 
) 

FPL(l) = fd kf
1 	

a (1 - x) 

dYi[dya+2][][(2](xi 	a+2+2 
- x2 )(x2  - x1 ) 

S±1 

TT (. - 
y11 )(x1  - 	

- 'a-i) 

s+l 
	
010 	 a 

x 	- 	

(x - a-i 0 
	

(det[A]) 

(ia~l,a)

,ff 	ly{:c: 	5i k 	
- xny]21 

k 	
(2 6) 

(i,a+1) 	
(i,j,a+l), 

where 	 is the new set of Koba- 

Nielsen variables lying on a unit circle. The ordering is 

0 - X2 
< a-1 ya-2 	• <Ya+2 <x1  = 	. 	 • (2i) 
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From Eq 	(2 38a,b), one can shoW13  that 0 <x < 1 (strictly less than 

unity), hence we have the important inequality 

X2 	•• 	a+2 ia-i 	a-2 	Ya±2 XY1 

Now we would like to go to a general frame y a = ' 	= 

y = 0 in Eq. (2.46). We note the only factor in Eq. (2.46) which 

changes when the projective frame is changed is (X - 	3). The unique 

generalization of this factor to a general projective frame 	
14.915 ' 

(x1 - 
a+2 Ta-1 - R(ya+2) ]  

a-i - x) 
	

[x1  - R(y 2J] 

(x1  - •Ya+2)(X2 - cx-i - 
X(x2  - y2)(x1 - 

= 	..' 

(2).9) 

One can easily check that Eq. (2.9) together with 	 y1  - 
ia,a+l 

is invariant under infinitesimal projective transformation (all var'iies 

appear either twice or not at all'), and in the case x = oo, x = O 

Eq. (2. 1 9) reduces to 	a-i 	x). 

Hence the planar single-loop amplitude, expressed in a general 

projective frame, has the form (Fig. 3) 



-27- 	 UCRL-2005 14 

( f1• 	- 
FPL(1) 	d ka I 	dX X 	a (i - x) 

s+l .  

dy •i 	21 	abca - 	
- c)( 	- 

i=0 
,. (ia,b,c 

v I \.a,a+1) 
s+' 

J 	(y i yii)(x2 _xl )2(xl Ya+2 )[Yal R(Ya+2 )]/[X1_R(Ya+2 )] 

(ix+l,a) 

a0 	- ä+2a-1 - R(Ya+2)]l0 f 	1 
i ( 	- 	+) 	[xi - R a+2 

z
2)k,k 	

[y - 	
k 	

(2.50) 

i=0 	 n=- 
(ia,a+1) 	 (n=o,ij) 

(i,jLa,a+i) 

where the ordering is 

and x1,x2  are the two invariant points of R; X is the multiplier 

of R, 

- 	z(x2 - x1X) - x1x2 (l _ - x) 
R(z) 	z(1 -x).+• x2X- 

 

16 and 
00 1 

(det[])' =11i - x') 	 (2.52) 



III.. PLANAR N -LOOP AMPLITUDE 

To obtain the planar. N-loop amplitude, wëconsider the tree with 

2N excited legs, as shown in Fig. 14•  We label each adjacent pair of 

excited legs by ya 
 and 

 a+1' 
 which areassociated with the a loop. 

We can directly write down the 2Nth-factorized tree amplitude corre-

sponding to Fig. 1. 	 . 

6+1 

	

G(a's) = 

fT 	

Y S+2)exp 	

[ 	

(aalpa(i)tk) 

a+l 	. 

+ 
 E  (a 	IPa+i(1)11c1) 

i=O 
(5Io ) a4-1)  

+ 

	

• 	(c) 

+ 

	

+ 	(aa Ipa(6+l)Mp(a+l,,a, ~l)M Tp l (a)Ia l ) , 

where, depending on the dots, we have 	. 

= p(a,a+1,a-1,i), 	 . 

p (a+2) 
= p(a+l,a,a+2,i) 

= pa(i) •' 

(3.1) 

(41 

(3.2) 
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and when a = , the last term becomes 1  

(aa Ipa(+l)Mp(a+l,,cx,+l)M Tp +l(a)I:) 	(aaIpa(a+2)Ial) ( 3) 

In Eq. (3.1) we have distinguished the aa set from the a 	set, 

. 	 . 

since a a will be replaced by 	and a
a+l 
 by xa. 

We now apply the sewing prescriptions (a),(b),(c) of Sec. II A 

to Eq. (3.1) and simultaneously join the N pairs of excited legs. We 

make, in Eq. (3.1), the replacements - 

- kJ[M t 

(aI 	(I 	 . 	(•) 

where ta  is the propagator variables associated with the a loop. We 

insert the expression, in Eq. (.1) 

ftldaf 	Jdta 	a(l - ta 

a 	

)O2a 

J=[) 	0 a=( 3 

f d) d) 

where the symbol [) denotes the collection of all labelings of Koba-

Nielsen variables associated with the N loops. We. then get the planar 

N-loop amplitude denoted by FPL(N): 
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FPL(N) = ffaf 	
dta 	 - 

0 a=(Z') 

dy f f 8+2 1 , 	 ( 3.6) 

where 

I = f xp a) 	e(X* !xa ) + [(x * IF) 

	

( aa ) 	 I (I a k) + ( a I a J)] 

(ak)  

>_•(XIak4 , 	( 3.7) 

J 
and 

Y = MT ta 
	

(3.8) 

s+]_ 

	

= 	Y pa (i)Ik.) , 	 (3.9a) 

(ia,a+1) 

I 	k. 

	

IE) = 	 a k 	 (3.9b) 

2 k lJ 

Da  = 	 D 	0, 	(3.10a) on 
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= p a+l 
	 0, (.iob) 

14 
	

(3.ioc) 

For notational convenience, we introduce N-dimensional vectOrs 

in the ioop number space by defining 

I) 	(IFa ) ,  I)"IFa)) 
	

O<aKK ... <o< ... <S+l, 

l) E 	Ea) lE),."IE)), 

Cr 

	 (3.11) 

Then Eq. (3.7) becomes 

f d.) 	) e(x*Jx) + (x*F) + 

+ 	*I[]j*) +[]) + (*I[]j)), 	 (3.12) 

where )E), IF) are N-dimensional vectors in the loop-number space and 

each of these N components itself is an infinite-dimensional vector in 

the harmonic oscillator space. Similarly, [A], [D], [C] are NX N 

matrices in the loop-number space and each matrix element itself is 

x co dimensional matrix in the harmonic oscillator space. 

Analogous to the single-loop case of Eqs. (2.15) through (2.19), 

we can easily obtain the [], [Gil] matrices by writing Eq. (3.12) as 
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I 
= f d) d)  

	

(k)\ 	f(El 	o 	x) 
X ( 	I 	+ 	( 	 I (3.13) 

\o 	(I) \Jx*)J 

Hence 

CETI [
c  -i 	-D 	

- (3.i).i.) 
- 	 ] 

	

([] 	[] 
[GIi] = 	 T 	

(3.15) 

\[Xi [ .]J 
and 

= (det[]) 	
exp 	((I,(I)EGHn ()} . 	(3.16), 

We have thus completed the multiple-factorization formulation of unitary 

closed multiloops. This formulation can easily be extended to nonplanar 

and overlapping multiloops. 

We now carry out the calculation of the individual terms in the 

exponent of Eq. (3.16). We first separate out all Koba-Nielsen variables 

associated with the N loops in Eq. (3.9a) and (3.9b): 
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s+1 

= Y~P", + 	YcP.[ :i) 
a) 

s+1 

	

• 	 a 	a 
[ 	 ] 	

,(3.17a) 

i=O
i[,+1} 	

+ 1 

s+1 	
i 

lEa) 	

T
=

a+1 a 	 (.i'i) 

+ 1 	k 
(,a) 

where 

-1 	 1 	 (x) 	___________________ Q 	(x) = 	 Q 	= 
t-1' 	a 	

( 

t  

	

1 
- tx 	 t - i) 	XJ (3.18) 

The zero-order term can be obtained from Eq. (3.17): 

10 	exp((El;F)) 

Ty 	
y 13 TTT'1 

1 

-k 	.k 
[ i,,+1] Lj,i,r+1,a,a+1] 

I 
-1 " 

a aa+i 
y + 1 	 ' (3.19) 

a 

a+2(y) 
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where ka  +k 1  = k 	13k~1 = k1+ kr+i 	k = 	k = 0, 

and 

= p(i) 	
p(a,a+1,a+2,i). 	 (3.20) 

In obtaining Eq. (3.19), we have used Eqs. (2.20) and ( 2.21). We also 
use the fact that the sum of momenta is zero to move all operators to the 

y. side. 

We can define the projective operator that corresponds to going 

around the a-loop as 

Ra (x) =  paa l(x) 	Ra(x) 	 (3.21) 

Wehave 

R 	Tcz) = Ya+2 	
(3.22a) 

R 	a+1 = ya+l' 	
(3.22b) 

and, from Eq. (3.17), 

S+l 	 I 	 k. 

= 	 + R' 
[ 	

, 	 (3.23a) 

+ 1
(ak) kBlJ 

I i ] 
I E) = 

 s+1 	

a+i 	a + 2 I 

I 

k. 
1 

k 
a 

k a+1 

k 1  

(3.23b) 
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With Eqs. (3.21), (3.22), and (3.23) we can simplify Eq. (3.19) to read 

s+1 

Io 	 cyi - 

i,j=O 

-k..k 	 -k.•k 

L 	i;Ra±Y;±iJ   (aJ
Yi 

R(Y)J 
1 a

J~e 

I y 	R(y1) • 

- R(y11) 	+i - 

r 	 1-kk 
- R(Yg) 	+l - a 	a f3 	 (3.24) )( 	

< 	- a 	+l - R(Y)J 

To calculate the first-order term, we note 

fIt) \ 	{•]j) + [ ] E) 

[GHI( 	
) = 	 . 	

(3.25) 

Hence we need to calculate the four quantities 

[•] I) 	[] 	[] I) 	(t[] 	 ( 3.26) 

We observe that these four quantities are the only possible ways that 

the state Ix*) can contract with the state I?), both in the loop-

number space and in the harmonic oscillator space. We therefore expect 
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that there are no more than these four elements that need to be calculated 

in all higher orders. (This observation is also true for the nonpianar 

and overlapping multiloop case.) This can be checked by examining the 

higher-order expansion of Eq. (3.16). We calculate these four elements 

by using the identities of Eqs. (2.20) and (2.21) and get, from (3.23) 

and (3.10), 

IF 	
=

(') 
B+l R1 L 1 ] 	) 

, (.27a) 

	

( 	

k 
) 	

1+1 

k. 
S-i-). 	 k1 

E) 

= 	

%1 	

r 	k~1  (ak) 

I 
QB(1/p+l + 2 	) 

k r+J/ 

- 	 I 

	

I + 1 (r) 	(3.27b) 

S+l 	 i 1 

= 
. 	 0c) 	+l R1 L 	i 	k1  ) 	(crn), (3.27c) 

i=0 	 1 + 1 () 1k 1J 

S +1 
- 

- L. a 
i =0 
i •c_/, '+i) 

1 
:i 

+ 2 	) 

I + 1 

k\ 

+1 1(a,) ,(3.27d) 

k r  
1+1/ 

J) 
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where summation over 	p ,r 	is understood, and 

o1(x) 	= + 1) 
I 	(a+1,,+1) p 
1 

- 

0 ( l) (x)  = x, 	(3.28a) 
1 

L 	- 

'2) (x) 	= 1 , 
2 

O 	(x) = 0, 	(3.28b) 
- 1 

1 
- p(a)x 

( 	 ) (x) 	= pa+i( ~1) 
r 	p(a,,a+l,-i-1) 

	

( 	 ) 

	

O 	(x) 
Cda  

= 0, 	(3.28c) 

• 
- 

 

L 	
p+1(a-f-1)x 

(4) O 	(x) = 	
•' 

p(a+i,,a,+1) 	
• 

o 	(x) = X . 	(328d) 
ap  

- 
1 

1 
- 

p(a+1)x 

By using the identities involving the cross ratios in the Appendix A, 

it is easy to check that we have 

• 	(1) 
ao 0 p1(x) 	= a' 

O 
00 

p(x) 	= a'' 

= 

0 p (x) 	= pa+i(x) 
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where p W pp(x)' 	1(x) = p~1(x) . Or, 

(i) - 

- 

(2) 
a 

- 	
"-1 

- cx+l PP +1' 

	

= p 1 p 	 (o) 

substituting Eq. (3.30) inEq. (3.27) and usingthe identity 

p 	(x) = p 	(i), 	p 1 (x) = p +1 (), 	 (3.31 ) 

and the definitions for R 
a' 

+ 	 -1 	' 	 -1 	"-1 	-1 R (x) R(x) 	a % a+i' R (x) 
= a+1 % 

(3.21) 

we get 

	

s+i 	 i k. 

Ca  IF) = 	a+1 R 	R1 	I 	I k1  

	

i=0 	 Li + 1 () 1k 1J 
i [_, '+1) 

Ii 

	

S+1 	 I 	I 
lia~

I  
1E 	= 	 a+i Ra 	L + 2 

i=0 1 ki / 
r + 1Jj k1+1/ 

Equation (3.32) continued 
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Equation ( 3.32) continued. 

s+l 	 IIc 

= 	
a+i 	 i 1 	Ic1) (ak) 

i=O 	 i+i1 	Ic 

	

- r) 	+l• 

i 	Ic. 
1 

=p+ R p + 2 	k 	 . 

+ 1 	 / I 	
(r) 

Ic 
 

In Eq. (3.32), summation over p,r is understood. 

It is now straightforward to calculate the first-order term. 

From Eq. (3.27) and (3.32), we get 

S+l  E 	E P^U +1 a D 
R R  [ 1 

?;,- 	I + lJ()  k1+1 

ko  
+ 	P̂ a+i R 1  R 	

± 2] k:l 	
(3.35a) 

(a) 

1 	 . s+l 	 Ic  

lEa)1 = 	 a+I R [ 
1  1 

i=O
(, 	

Li + lJ(1)  k1  
+') 	

1J 

+ 	a+i R L 21 Ic:i) 	

(. 33b) 
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We observe that the first-order vector f 	differs from the zero- 

order vector ( 	) essentially only by the insertion of the 

operator R. This, in fact, is a general feature for all higher-

order calculation. To see this, we again represent the GH matrix as 

(1F 
an operator acting on the vector 	 . From Eqs. (3.15), (3.25), 

\IE) 
(5.23), and (3.2), we. see that the op'rator is 

-1 	-1 
Pa+iRa Rp 1 ( )\ 

(ak) 

-1 
a~l'9+l 

) 

(3.314) 

Again, this Gil-operator representation can be used forthe vector 

7I) 
L 	) 	= [GH]( 

\ I)/ 	 \ I) 

The remarkable feature about this GH-operator representation is that 

[GRIn can be found by inserting R 1±E ••R 
Cy 
t  (total number of R±t s  

is n - i) in Eq. (3.314). i.e., 

/cD 

[GH]a 
= I 

Pa+iRa  P +i ( ) 

"-1 
\ 	a+1+l 
\ (ak) 
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ca 

ca 
Pli  

Pri 

Uj 

co 

ca 

ca 

Pri 

PCI 

(10 
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where 	 R ± R 	R 	(total number n - i), with th e  

restriction that ( L" in products 	 or 	 Now we 

can directly obtain the nth-ord.er result by sandwiching Eq. (.5) 

between 

((Eal,(FaI) 	and 	
(JE 

I) 
In exp 	

() 

= 1__ LY 
'- 

j,j=O 
i,j1Ia,a~l 

x 

 

TTOO 

	

, 	

y. - [R±]11+1(y) 1k. •k?. 

CO  
- 

L 	 J 

[y 	
- [R±]\(y) 

ctp 

k. 
lx 

yi - (x,-) 

± n+1 1  
[R 

± n+l 	\I 4k.k 

± 	
(Y R  ±1fl+1, 

- 	 x' da 

I.  
- [R±]a 	Rx(yx) y ~1 - [R±]a6 

x 	
'I-y P 	

[R± 1 y1 - [R±]a 	Rx(Yx)j 

) a 

Equation (3.36) continued 
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Equation (3.36) continued 

	

• 	---kk 2 I R(y) - [R±] 	R() 	y - ER -+  ] 
n-1  
6 	

, (.6) ab 

R(y) - [R]() 	y - {R±]' R(y) 

where n > l. 

We note in Eq. (3.36) that the •R 	operator occurs in 

different orders. This is necessary to facilitate the infinite number 

of cancellations in the terms involving y which lead to the invariant 

pbints R7 °° ( ) of the projective operators R. In Appendix C we 

show how the cancellations actually lead to the invariant points. 

By combining terms of all orders from.Eqs. (3.16), (3.24), (3.36), 

and(A2.5,6), we thus obtain 

= 	ffI- (det[A]) 	
n 	

(det[])2 a,••,=C) n=O 

-bk. .k. 
x (y - [R±1L(y)) 	1 

YO i,j=o 

-E 	

-k.k 	

fyi 
yyki•ka 

a=() 
 

aiIT6X=)'[O ç 
	: 

 [R.' U3  (XX  

Equation (3.37) continued 
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Equation (3.37) continued 

(2) 	1R 	n'(2) 	
2 

L 	'cth'x ' 
X (1) - [R± ]a (x 2) • All ) 

(a 

, 	 - 	

- 	
k 

a 	() 

±0 	 (1) (2) 
where 	I, and x '.  ,x

%  
are the two invariant points of R i.e ' 

(1) 	- 	 (2) 
= R 	(z1) = 1x+l' 	i x 

42) 
= R(z2) , 	 2 	

(1) 	 (3.38) 

We note that all factors in Eq.. (.y) which contain the 

variable  Ya a = [i.) are cancelled by similar factors in 

Eq.(3.6) 

-- c 	c - 	
- 	2kik 

i,j=0 

S+l 	
Yi YaTr 	y 	( 1)

[

• k 

c )  - 
i=O 	 i X& 

Equation (3.39) continued 



FA 
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Equation (3.39) continued 

( 7) : 	 (2)-- 	T~
;Y 

: :) 	
(yl 	i+l 

(x 	

(n=O,ij) 

2 	 1 	2 
-k -1 (1) 	aolka 	(1) - 

k -1 

- a-i 	(xa 	 - x 

a0~4k 2  

X (x 	
- a-i 	, a+2 - a 

a 
(3.39) 

where we choose the ordering y. > y. if i < j. By combining Eq. 

(3.37) with  (3.39), we get 

(Ys+2)I 
= (dt[]) .  7i, n=O i,j=O 

(n=O,i/j) 

X i 

[
O r 	: 

(A) 

00 

a[JT) 	{: 	• 	= 
(a 

Yi 
- 

Y+)0{
Xa 	

a-1a+2 

 - a1a+2 - 

Equation (3.0) continued 
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a-i 	 a-i 	 -a-i 

	

)( (xa - ga-i) 	a+ - 	(xa 	 a 

1X ( 	- 	- 	 ( 3.40) 

We note that the last factor in the brace 	I ofEq. (3.40) 

is identical (except for the product sign 	) to those factors 

in the single-loop case, Eqs. (2.41) and (2.42), which are cancelled 

when we transform from the set of variables (tayaYa+i) to the new 

set of variables[Xa x ) x 2) 1 [where xa,x l) ,x 2)  are the multiplier 

and the two invariant points of the projective operator R. corresponding 

to going around the a loop]. 

In strict analogy to the single-loop case of Eqs. (2. 1 1) through 

(2.45), (2. 1 6), (2.49), and (2.50), we can choose the particular frame 

(i) 	(2) 
Xa 	X 	= o 1a+2 1 and compute the Jacobian factor 

(t,y,y 	) 

	

a (l)(2) 	
for the a loop. We then eliminate ta Ya Ya+1 

(xx 	x ) 

in favor of Xa,x ),x2),and we obtain the frame-independent linear 

dependence correction factor (i - Xa)• We can then go back to a 

general frame [see Eqs. (2. 1 6), (2.119), and (2.50)1; and, in particular, 

to the frame 	(l) = , 	
(2) = o y 	 = 1, where 	refers to the0+2 

loop ( 

	

	a). Again, in this frame we can compute the Jacobian 

(t,y,y 1 ) 
factor J= (2) and eliminate 	 in favor of 

" 	, 	,x 

(1) (2)  ,x , so obtaining the linear dependence correction factor 

(1 - x) for the loop. Since the overall Jacobian factor for N loops is 
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- 	
t,y,y 1,tY, 1 , 	) 

J 
= 

(f-( (taYYi) 	
(3.1) 

	

(X 	a. X  

thus the overall linear dependence correction factor for N loops is 

- x.), 	 (3.2) 

where X is the multiplier of the projective operator Ra  going 

around the a loop. 

We now put everything together by combining Eqs. (3.6), (3.14.0), 

and (3.42), andwe finally get the planar N-loop formula (Fig. 5), 

FPL(N) 

= 	

d4kf
dX x2a(L 

- Xa ) 

S +l 

dyi  5d,~,(1)dx( 	V a][dyb]rd'vc](Ya-yb)(Yb-y, ~ )(y,~
-Ya) 

i=0 
ia,b c 
[,+i) 

ff ii+l TT(2)(l)2
1a+2)a-laa+21 

i=0 	 a=(') 	 Xa 
- a a+2 

i±l,)  

fl 	a 

x  
i=0  

{ 1)
cx+2 a-i - Rd(Ya±2) 

[x 	_Ra(Ya+2)l 	J 
Equation (3.43) continued 
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Equation (3.4) continued 

y 	1 

1(det [A]) 2  

TT7 	(yi - [ R±]afl(yj))21i 
all a,13,•••=[)  n=0 	i,j=0 

(n=O,ij) 

- ER:](x2))] -k.k 

ix  
1=0 	

y.-[R] 	(x 	). CIO 
i,+1) 	

(x) 

[[R:: 	
: 	: 	

6} 	

, 

where y a'b'c 
 are any three fixed variables of the set of, S + 2 

variables 	 i = 0,1,°s+1; x1),x2);a=(). The 

ordering of these S + 2 Koba-Nielsen variables is shown in Fig. (6a). 

The projective operator R, which corresponds to going around the 

a loop, is defined by its multiplier Xa, and its two invariant points 

x ' x ( 2 ) :  
a' a 

zEx 
(2) 	(1) 	+. 	(1) 	(2 )( - 

Ra±  ( z) 	
a 	

x a Xa  - X 	X 1 - xa 	 a 

	

(2) 	+ 	(1) z (1 - Xa±) + Xa Xa  - X 	
-d 

± n 
The notation ER 	represents 
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Ra±R•••R 

with total number of (a,x, ... ) equal to n; in the particular case in 

qJich n = 0, [R±]a O  I. It is implied that 	" in product 

	

or 	 The divergent factor (et [])2  will be 

shown in the Sciuto three-reggeon formulation to give 

	

(det 	= 	(l 	x 	 (3.) 

t) 

where () denotes the projective group elements generated by R a  

a = (J, i.e, it contains terms like Ra±m .;a,,.y = 13  

and = 	 The symbols X 	denote multipliers of the 

projective group elements. 

We see that the planar N-loop formula, Eq. (3.43),  is hardly 

different from the planar single-loop formula, Eq. (2.50). We interpret 

various factors in Eq. (.42) as follows: 
1 

The volume element and the factors before (det[]) 2 , 

-1k..k. 
together with 	J 	ty. - y.J 

2 1 	is projectively invariant. it is 
1 	3 13 

symmetrical with respect to the (S + 2 - 2N) external legs and also 

symmetrical with respect to the N loops. 
-bk. .k 

The factor (y. 	
[] n(y)) 	1 . describes all ttlires" 

connecting the external y
i  leg with the external y  leg and which go 

round the N loops a total number of n times (in either 'direction). 

The restriction that 	 in the product RR) or 1)R,implies 

that a line does not go successively round the same loop in opposite 
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directions. The n = 0 component describes the line connecting the 

external legs 3r with y without surrounding any of the N loops. 

The factor 

rR±1 n 1  (2) 	1 7. 
Yi  - L J 	X'. jCo  

y. - ER-
+ 
 ]a

n ( (1) 
x 	) 

describes all "lines" connecting the external y leg with the center 

points (1)(2) of the 7'. loop and which go round the loops a total 

of a times. The final loop surrounded must not be the . loop. 

The last factor in Eq. (3.43) 

i 

 

X (l)  	
[R] n((l) 	x (2) 	

[Ri] 
fl( 

x
(2))1 2 x 

I 	- 	aö 	X 	
'. 

- ER] n
( (2) ) 	(2) - [Ri ] 	(x)j aE 

describes the "lines" connecting the p loop with the 7'. loop, and going 

round the loops a total of n times. The first loop surrounded must 

not be the loop, the last must not be the x loop. The n = 0 

component describes the lines directly connecting the loop with the 

7'. loop without going around any of the other N - 2 loops [and the 

(S + 2- 2N) external legs]. 

The divergent determinant factor, Eq. (3.44), describes all 

"closed lines" going around the N loops. The lines are not distin-

guished by their overall directions or by the point at which they begin. 

To conclude, we see that we have a mathematically exact expres-

sion for the "rubber-band" (or fish-net) model with any number of holes 

cut in it. Our planar N-loop formula is manifestly projectively 
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• 	• invariant, symmetrical with respect to the N loops and the S + 2 - 2N 

external scalar legs, and hence, manifestly dual. The extension 17  to 

nonpianar, overlapping or nonorientable (or both) N-loop diagrams is straight-

forward. In fact, we can almost guess the exact formula for them, 

although the details of the proof will be mathematically more complicated. 

They will be given in the subsequent paper(s). 
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IV. THE N-LOOP AMPLITUDE IN THE FORNALISM OF SCIUTO 

The calculation of the N-loop amplitude via SciUtO three-

reggeon vertex functions parallels the previous calculation, except 

that duality and projective invariance are not obtained until the end. 

The sequence of manipulations will be as followS we first 

insert one set of intermediate states tXat in the upper portion 

of each loop; we then notice that the resulting amplitude 'consiStS of 

the vacuum expectation value of a product of propagatorS and vertices 

(which now depend on 	by contracting over these propagators and 

modified vertices, we will mix the various 	
s, thereby obtaining a 

Gaussian integral much like before; finally, we perform the integral 
by 

going to the principal axes. 

In writing the amplitude, we shall express the base line of 

operators in terms of at 	
' 	operators will 

operators, 	 "  

denote the upper portion of each loop. Into an ordinary multiperiphera] 

loops, each denoted by La (see Fig. 7), 
tree, we shall insert N 

 

FPL(N) = Ko V S D 	D1 
•• 	+2. Da+2  La 

a a a 	a 	a 	a 

	

X D a  V 1  D1 
 .. . V  D V1Oa 	

(.i) 

where 

La (o 	a+l  
b 	aba 

D -1  
a 

D 
a 
b 	aba 

aba 
exp[(k ~1 Ia) + (aib)+ + ( a+1l b ) ]  

)( exp[(k +l Ia) + (aib) ],  
Equatiofl (Ii..2) continued 

a  
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Equation (4.2) continued 

	

ba 	e[(kaIa) + (aIb) ]  e[( a Ib) + (ka la) + (aIb) + 1 , 

	

Va1 	e(k.la) e(k.Ia), 

	

Da1 	
X_i2)_1(i - 	, 	

( 2 ) 	2 - 	
rn2, 

k 	-k 1 . 	 (4.2) 

(Notice that we have dropped all harmonic oscillator indices. Also, 

linear dependences and the (1 - 	factors have been omitted, since 

they will become critical only at a later stage of our work.) 

We now insert coherent states and contract over "b't operators: 

<°'b VV  aba  D 1  Db a (XaIba IO)b 

1 

= To dua  expf(at ka+i ) + (aIM+ua Ixa )) 

exp((alka+i ) + (aIM UaI.a)'}Daa+l exp((a
+ 
 Ika) + (a+ IMJ?)) 

-CO 2)_i 

	

X exp((alka) + (aIM+ I)) ecp((ita+iIuaIa) - 	a I? 	ua 	
a 

ua )_ C • 	( 4.3) 

We shall find it very convenient to redefine our momenta: 
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ka±i) 	k 1) + M, ua 

1k 	) + M u Ix 

	

'a±l 	a+l 	-a a' 

	

U a ) 	1k) + 

	

I) 	Ika) + M± I 7 ), 

!) E 1k.) 	if I 	a or a+ 1 

	

-1 	 - + 

	

V 	exp(k.Ia ) exp(k. 
-t a). (4.4) 

In the new notation, our amplitude reads 

FPL (N) = 

	

du  f d l%a  ) fd )f d4k:rl 
-a(k 2)_i 

)( [ua 	
a 	

(1 - ua)_c][exp_(xIxa)] 

X [e[(a+iluaI) - ak 	(°Ia aS  aa2Da2Vau1045) 

[) represents the set of all loop indices.] Notice now that the 

+l - 	 — vertices V 	and V a contain the loop variables. a 	a 

It is now a simple matter to contract over the "a" oscillators, 

thereby leaving a pure c-number expression: 

T 	 DS. ! •V 2D 2 VaI)a 	
S 

'J JO 	
(1 - x) 	exp 	(i.tx.+.i) 	(4.6) 
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• 	 -1 

	

where
' 	 . 	

X, 1 	= 0. It is not 

hard to separate the coefficients of %X , xx, etc.: 
- 	 fs 
T 	expS 	(k!x. +1i Ik 	• 	 ex(xa t{Aa ]I) 

i>j 
 

+ (I[Ba ] l) +  

X 	 + (x;lF1)1x4k1 Ixj+1j Ikj 4, 

i>j 

where 

• 	[Aa ] =  ua 	a+l 	M u (a> ), = 0 otherwise, 

(1 .7) 

[B] = ua MTYa+i y1  M(a > ), = 0 otherwise, 

	

[c] = 	a 	M(a > ), = 0 otherwise, 

[Da] = M ya 	M(a > ), = 0 otherwise, 

	

I E) = 	U MT a
~l j -1 k.) + 	Ua M 	y 1  I k.) 

j=l 	 j=a-1-2 

+ uaIiTa+i) 

	

IFa ) = 	M+  yC, 
	+ 	MT Yj  1a 1 1kj ) I a 8 ) 

j=l 	 j=a+1 

We shall symmetrize these matrices as follOws: 
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[] = ([A] + [A]T), 	[] = ([D] + ED] T), 	[l = ([B] + 

As before, we now can perform the integration via the principal-axes 

method: 

Tfdl " d) 

= 
dl%a 
	f) e{I(*l) 	 V  

() + ((

E  (F 

= (det [A])—P eç([]' 

V 	
()Je[(kjlxj±1,j(kj)), 	

V 	

V 	
(.io) 

where 

[] = 	 ) 	[ G] - [H], 

[1] - 
	

[] / 	
V 	

V 

where 

I/o 
1'\\ 	 // 	[•] 

[G] = ( 	 ) 	, 	[H] = 

\i 0/' 	 \[]T [] 
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Now that the integrations have been performed, we are at the 

•stage where the projective transformations Ra must be chosen. When 

the matrices contained in [] 
are contracted on IE) and IF), the 

action is equivalent to a projective transformation because of the 

action of 	and M. Once the projective transformations R have 

been identified, it is a simple task to reformulate [A] entirely in 

terms of these operators. Fortunately, as we shall see in the section 

concerning the singularity structure of the N-loop amplitude, the choice 

for the projective transformation is almost forced on us: 

• 	
-1 

Ra = a 	
_Xa+l(l - u)2 

= yB a ' 

	
(4.11) 

At this point, we mention that the contraction of the binomial 

matrices M and M upon variables leaves a residue term in the 

following fashion: 

MxIk) = ([i - x] - [ il)Ii). 	 .12) 

• 	 The extra tT j t  left over from the contraction with M shall 

be called the residue term. Though it plays a critical role later in 

the paper, we shall drop all residue terms for the present. When such 

terms are dropped, it is not hard to reexpress [A] entirely in terms 

of R and an auxiliary operator K which shall vanish at the end of 

the calculation: 
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00 	
( 

	

((E (Fl) [A] 1 	 ((F

=

(E[HG 

	

( IF) 	m=O 	 l,) 

((k1 

K1  

	

r=O a,,y,8=f) i,j,t,m=1 \a 	B y-1 
(r) 	(ix) 	 j .  
(cz) (j+l) 

(y+l) 
(m ) 

-1-1 ( ) 

1 	1 	 1 	1 	- 	
I 

) 

K 

7KB1 -1y 
i 

Ik) 

\ -1 	-1 	
)". K 	m k) 

(. 13) 

where K(z) = 1 - , K1(z) = 1 	' K 1 	. (Notice that B and K 

operate to the right.) 

Though awkward in appearance, this combination of R's and 

K's simplifies immensely when the contractions are actually performed. 

Fortunately, [HG] retains the same form regardless of the order of 

the expansion, which guarantees that the KS will vanish in the nth-order 

calculation if they vanish for the first. The second-order matrix, for 

example, is 



4 
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[ HG ] Th = 

, a, T 

(a,ay) 

(a,r) 
(L,v) 

(T#y, v) 

KB1yBY1y1 	}aYTBTYTYIBr 

+ KBy Y0Bay y1K  i + K 	
-1 	-i 	•-1 1 

y yB7 yB5  

K1 	
1 	

K1 
• 	yyBy 1y1K 	 yyBy 1yB 1  

+ K1 	
I 	 '+. K1 	

• 	1 	
/ 

\ 	
y1yB1yy1J(1  

At this point, when the cOntractions over all indices are about 

to be performed, we shall make our second simplifying assumption: by 

dropping all loop momenta terms, we shall restore conservation of 

momentum. (As we shall later see, our two assumptions will cancel each 

other.) 	By restoring conservation of momentum, we are allowed to 

make projective transformations at will: 
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((F(I) 	

S1E)) = 	

(k 	 Ik) 

I) 	a=1() i,j 	KYiYa 

+(k( 1 	Ik) 

BYi 

-k.k./2 
(Kya-  - 	aj 	

1 3 

13 

1 	
-1 -k.k./2 

)C (K 	 - K ai 

B a  Yj  

	

yaaj)h3 	
- 

a=() i,j 

(Notice that we have summed over all harmonic oscillator states, and 

have projectively manipulated the contents of the parentheses because 

momentum is conserved among the k's.) Though we have exhibited only 

the zeroth-order calculation explicitly, the higher-order contractions 

proceed in exactly the same manner, yielding terms such as 
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/ 	 -kk/2 	 -kk/2 

	

(yi - RRY.) 
1 	

RaR'Yj) 
1 3 

i,j 

-kk/2 	 -kk/2 

13 (y - Ra'RY) 
1 	

(y - RaRy) 
1 	

(4.14) 

(a 	if R and R 1  are juxtaposed).' In general; all terms may 

be expressed simply as 

	

(Y 
 -i- (R) 	

yk.k./2 	

() 
i,j 	m=O 

(Again, R and R 	are never juxtaposed; also, i j when m 0.) 

Notice that we have almost derived the predicted result. 

In our haste to derive the above result, we have neglected. 

several critical factors, which we shall now investigate: 

We have neglected all terms associated with the loop momenta in 

E) and IF). 

We have neglected all residue terms coming from contractions 

over M and M. 
S 

() We have neglected the term exp( 7  [kIx. +1 .1k.)] 
i>j 

4) The variables associated with ka  and k 1  (the loop momenta) 

are not the invariant points of the projective transformation R. 

In short, there are an infinite number of terms which do not 

agree with the result found in the previous calculation with the N-

factorized tree. •But, as we shall see, all these infinite deviations 
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cancel in a most fortunate manner, term for term, until only the 

invariant points are left. 

Though the results of the cancellation are quite elegant, the 

details are quite tedious and involved, especially since several ty-pes 

of cancellations occur within each larger one. Since the details are 

presented in the Appendix, only a short outline of the procedure 

is presented here. 

The cancellations occur because the.residue terms, which occur 

only with loop momenta, mimic the original main term when all contractiOns 

are performed, except that the residue terms occur with one less power 

of R than the main term, and they occur with the opposite-signed 

exponent. In other words, for every expression containing n R's, 

-k.k./2 

/ I 	I 
 

(Y 	
1 3(4.16) 

i,j=l 

we have a series of residue terms of degree n - 1 which occur with 

only loop momenta and with an exponent equal in magnitude but opposite 

in sign: 

S+l, ,r-'---' 

1T f I 	- RR•.RyT) 1 T 

In general, terms involving the loop momentum factors occurring 

in the main term of order n cancel with the residue terms arising from 

the n + 1st-order main term. This cancellation is exact, to all 

orders, and for an arbitrary number of loops. We are left with one 
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uncancelledterm involving RTl, where r approaches infinity. it 

turns out in fact that the variable ya 
 (which is not the invariant 

point of Ra) 'becomes replaced by Raa, where n approaches infinity. 

In 'the limit, however, this expression becomes arbitrarily close to the 

invariant point. (We remark here that a second series of cancellations 

occurs when the R's are projéctively moved from one side of the 

expression to the other. Details are left to the Appendix.) 

Though the details are qui-te involved, the answer is quite 

elegant: 

S 	 71E)\l 

	

exp( 	Ix+1,1Ik1)) e-((EI (LI) [A] 

i>j 	 I.) 	j 
)-k k /2 

m=O 	i 

( ? 	+1) 
(m=O,ij) 

-kk /2 

a - wai)(wa - a+l() 	

a a+l 

-k.k. 

7( 
 

	

T 	(-) 1 
	 (L..i8) 

i>j 	 " 
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where : 	w 	y1 , 

X) 	a0°(zi), 	Zi 

- 00  (i) 
Wa+1 	 R 	(z2 )

1 
 z2 wa 

if m=O. 

Now that the final answer is within reach, we remark that the 

total effect of linear dependences upon the N-loop planar amplitude is 

to modify D 1 : 

1 	 2 	
'- 

fo 
i - 

D1 
.a+ 	l - 

l - x[lua(l - 	
. 	 (.19) 

So actually, whenever Xa+l appears, what is really meant is 

where 

xa-1- (l-x 	) - 	 l 	a+1 

X1 = (1_Xa+i[l_Ua(l_Xa)]J . 
	 . 20 

The choice for the propagator variables is displayed in Fig. 7 ; 

notice that all (1 - 	factors coming from the Sciuto vertex have 

been added in explicitly. Thus whenever Xa+l appears during the 

contraction over oscillator states (as in a+l  or in 	
it should 

be replaced by x 1 . Also, ua  should be replaced by ua (l - xa ) 

as in Fig. 7. 
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In summary, we find. 

FPL(N) = ft f a) d)fd'ka 

X e 	 (I) [] (IX
a)) + 	

(iI) 
(Ia))] 

k) 

x fl du(u(1 - x)) 	 - 

ua) 	
a+2 

 [ 	

1 - Xa+l 	 1 
1 - x1[1 - ua(1 - xa)] I 

 f sfo1 ci 	

(2)1 - 

x1Y 

e[(kj1x+iIki)] 	 (.21) 

= {Idkf fu: d\  fR 2} 
j ) CI 	

XR a(k 2 )-
l} 

Equation (1.22) continued. 
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Equation (4.22) continued 

n=O i,j=O 
(ihz,a+1) 

(n=O,ij) 

[w. - 	

]:kikj/21 

Tf
w2)@ 	- W

(w. 
- 	

- Ra (wa i) ] 
 Wi.+l) 	 [x(l) 

	
2

06 

(w0  - w1)(w1 
- 	

w)[x' - Ra (wa i) ]  

Tr (w. - w.) 

	I I VW 
 U
-

1 
)-w 

 a+2 (XO' -X~ 	
(x a  v  a-

1 

(L.22) 

where 	W == 	 (R 

w1  = 1, 

ws+l = 0, 

() = set of all closed loops, 

(R±) 	= set of all open loops,. 

(2) 	 (1) 
W=X 	

, Wa+i =Xa 

(see next section for 

the determinant 

calculation) 
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We have made use of the following identities: 

- 	-1 
R 

00 
 (z1) 	= a 

X 1  X 1 , 	ZJ  

Ra(z2) 	= cx X
+1 
	z2  W 

u(l -xa)xi 

XR = .(1.- xa+i)[1 - X 1 Q. -i ua(l - xa))i '  

(w,wl,XR) 	 - xa) x 1 (w 1  W.) 

(xaXi)Ua)[1 
- X(l - ua(1 - x))]2(l - xi) 

and 

(w1 	(.wct - w) - 	(w1 - W1)(w - w
a+2) 

[Ra(wa i) I W2](W - wa+i)(w(, - wa i) 

[ Wa - Ra(wa i)J 

-1-1 	 -1 	-1 
ua(i - xa)(l - x +1) ya_i( 1  - xai) 	xa) (1 xa+2) 

The value of the multiplier, unfortunately, lies between 0 

and 00 •  But because of the relationship 

•  
y 	x 

(2) 
- 

= 

we see immediately that the invariant points are equal when XR = 1. 
a 

It is not hard to show that the invariant points are strictly ordered 

in the regions 0< 1 and 1 < XR  < 00, but they have reverse 
a 	 a 
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orderings in these regions. Because the imaginary part of the an?plitude 

remains unchanged if we discard part of the region of integration, we 

shall adopt the branch where 0 <K 1. The region R2  is the same 
a 

as in the previous section; R is determined implicitly by conditions 

on the w's (all X's lie between 0 and 1). 
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V. SINGULARITY STRUCTURE OF THE N-LOOP AMPLITUDE 

In the Introduction, the language of projective transformations 

was employed to great advantage; particularly important was the fact 

that multiplication by w in the single loop corresponds to a projective 

transformation that has been diagonalized. The factor w appearing in 

the singularity of the single loop can be seen to be projectively 

invariant once we see that w is actually the "multiplier' t  of the 

original transformation t(: 

00  - 	
=(l - X . Y. 

In a sense, there is a singularity factorfor each of the closed paths 

one can make around the interior point of the dual diagram. Since the 

N-loop amplitude contains N projective transformations, Mandelstain 

has conjectured that its singularity is simply 

il
l- 

	 (5.2) 

where B represents the set of all distinct products one can form from 

N projective transformations and their powers, i.e., there is a 

separate singularity for each of the infinitely many topologically 

distinct closed paths through N interior points of the dual diagram. 

The word "distinct" demands considerable clarification. 
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Notice that in the single-loop amplitude terms like w 1  do 

notoccur,meaning that the direction one takes around this interior 

point does not matter. Second, notice that the point at which one 

decides to enter the closed loop makes no difference, meaning that we 

mustn't overcount by including both P 1  P  2  P 3 
and PP1P2 . These two 

properties are guaranteed by the properties of the multiplier itself: 

X 1 , 	O<X<l,  
P 

XpQ  = XQp . 	 (5) 

Simply stated, one mustn't include inverses of previously counted terms, 

and one mustn't include their cyclic permutations. 

A transformation R belongs to the equivalenc.e class of Q 

if H has a decomposition given by cyclic permutations on the 

decomposition of P or inverses of such cyclic permutations. 

Clearly, the singularity structure can now be given as 

if (1 	 (5.5) 

(J 

where (P) is taken over different equivalence classes. 

	

Unfortunately, present mathematical techniques are not powerful 
	

ii 

enough to prove this conjecture to all ordersP Instead, a power 

expansion will be made on both the determinant and the multiplier to 

show their exact equivalence to fourth order. 
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Fortunately, there is a small class of determinants which can 

be d.iagonalized and showr to have this structure. More complicated 

determinants, however, must be power expanded. 

Consider the case where N = 1, 

det2[] = det(l - u Txa+iM) 

= det(l - uMx1M) 

= det 	- 	
1 X1 M 
	

_xa+i) 

7-x u 

	

= det 1  ( 1 - 	M 	a-i-i a 

'\ 
 

1 X-i1 + l_Xa+l 

= det 	l 
	- ua)) M+G - x(1 - 77) 

	

U+l

= det_1 l - 	ua 	
2 ( 6) 

- 	L 	rlxa+1 (1_ua) 	+J 

But, as we shall show, 

00 

det(l - 	= 	- 

where 	 1 

	

y = [1 - 2x ± (i - 1 x)](2x)* 	 () 

Now we let 

	

= 1 - X1(1 _ua) 	
(.8) 

(ua x1) 
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But 
2 	 2 

- 2 ± 0R 
( R 	

-
4)2 

a 	 a 

Therefore 

(5.9) 
S 

00 

det 	[] 

= 
	a 

In other words, the correspondence between the determinant calculation 

and the expansion of the multiplier is so close that one can write down 

the relationship by inspection. As an added bonus, we see that the 

projective transformation is almost determined: 

1 
- 
x(l 

- ua) 	 11 	Xa+l 

Ra 
= 	a Xal 	

= 	

1 X~1 
- ua ) 

(5.11) 

An obvious generalization of this operator to the N-loop case has been 

employed throughout the previous calculation. 

(Now we must prove the statement made earlier concerning the 

determinant of M+.  This statement is most readily proved by proceeding •  

backwards, that is, by assuming that the answer has the form 

00 

det(l 
- 
y) =(i 

- yfl ) 4 

(where y 	
yfl 	 (7.12) 
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Now we make similarity transfOrmations: 

det(l - y) = 	det(l - MyM) 	det[l - (1 - y)M C 	i 
= 	det[l - (-y)MJ 	= 	det[1 _T(_y)T 

= 	det[1 - MT(y)M] 	= 	det[l - 
(Y-Y+ 

-Y) M+(1 

= 	det[l - ( 	2 	M+  1 (5.13) 

where we have used 

= 1 	M+ = MMT ,. (5.14) 

Therefore 

det(i - 	= 	(i - (s is) 

if 

= 1 - 2x 	- 4x)7 	for 0 <y < 1 D.} (.16) 
2 

Now that the single loop has been shown to have this projective 

character, we proceed to the N-loop case, whose determinant is too 

complicated to diagonalize. 	Instead, we shall power expand the 

determinant: 

I CO 

det(l - A) = exp 	
____ 

(7 17) 1 
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This is easily proven if A is first assumed to be diagonal; a 	 0 

similarity transformation generalizes it for the arbitrary cas'e. 

Simultaneously, we shall make an expansion of the postulated 

singularity and show that there is almost a one-to-one correspondence 

between these two expression. . . 

One last mathematical prerequisite and then the calculation will 

begin: we still haven't shown how to take the trace of an arbitrary 

number of binomialmatrices. This last remaining tool is obtained if 

one first understands how to trace over one M + ; induction will give 

us the trace over an arbitrarily large number of M ~
's. There are 

several ways of tracing over M, the easiest being to simply identify 

the power expansion as that of the square root: 

00 

Tr(u) = 	
u2n-l) = 	

((1 	- 

1) for 
00 
 <u 

n=l  

We can reduce an nth-order trace to n - 1 by using the fact that 

M = MMT :  

Tr(a1M+a2M.a n + M ) 

= Tr(i 1 M~ 2a1  M;"M a1 M 1a) 

In general, we find 

Tr(a1Ma2M. .aM) 
= 	((l  _1 u)* - 	

(5.19) 
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where 

ff a. 
U 	 n 	n 	 n 

i- 	V € a a 	 E aa.a + 
L....i 	 .ijk i jk 

L 	i=l 	i,j=l 	 i,j,k=l 

'112'3"k = 1 if i > iq  + 2 (p  >), 	•'k -il  n -  1), 

= 0 otherwise. 

For example, for n = 	we have the following nonzero €'s: 

Now we have all the mathematical tools to evaluate all traces 

to all orders. For future reference, we exhibit the matrices explicitly: 

[1 	= 

- 

[A]a =ucxya+i(Ya+i- y +1 ) -1  Muy+1(y+1 - a+l) 1  

— 	 -1 	 -1 
[Dla 	y(Y - 	 - y) , for (a 

• 	 =My 1yMu 	 (5. 20) 

Now we are ready to compare (5.17) with a subclass of terms 

found in the singularity generated by one transformation R (which in 

turn may be decomposed): 



• . 
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00  00 	

- 

) n )  = 

P 	
e( nm) 

= 	
m(1- 

n=l 	 n=l m=l 	 m=l 

00 

=exp

[c 
Rm 

 

where 

X2 + XR 	= 	 . (5.22) 

The close similarity between (5.17) and (5.21) allows one to establish 

a one-to-one correspondence between the two. We shall now take the 

first trace and derive the. first term in the expansion of the singuiarity:18 

= Tr {[CITJ 	 . 	 ,. 

= T.r(u ~xa  M) 

'' 	r 
- 	

1.  
- L 2[(1) 	j a=1 . 	 a 

• where 	 . 

ux +l 	 • 

w = 
a 	[1 xa  (i ua )] +l'  

(We have adopted the convention of summing all Greek indices from 1 to n 

for convenience.) But 
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Tr Ra 	1 - x1(1 
- ua ) 

- 	
R 

= (det Ra) 2 	(ua X 1  ) 

Therefore 

Tr ( [a]) 
= 

 z 	-7 - 1 = 
	

(5 . 23)  

1 
(we see that wa 2 = 	)• 	The process can be continued, indefinitely. 

I) 	Tr([C1 ) 

n 

Tr( M •-1 M UM = 2 	Ua+Ya+iY ++Y +iY M a+ ) 

= 	
(i 	

- 

where 
-1 -1 

UUYaYYiY+i 
w 	= -1 	-1  

(1 Ua - U 
- 1a+l - 	 + uu ± yya+1yr +1 ) 

Tr(RR) 
(" 	

= [det(R)] 

1 

= (uauxa+ix ~i)4fr 
( 	 Xa+11 - U) 

-x 1 	1 	\ -11 x 	
(1 - 
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+ x x 	(i - ua)(i - up )] 

(uauxa+ix +i)• 

Therefore. 

= 	 I 	 {

RR 	

- 	

T([C] 	(5.24) 

RaR 

II) 	Tr([7]3) 	 . 

n 

= 	 Tr 

= >n 
	 (5.25) 

a,,r=I 
 

where 

-1  
= 

(1 
- Ua - U - U1 

- 	

- 	 - 	 ia + uau  + uui  

+ UiUa + UTl + UYaY1 + U 	+ 

-i -i 
+ Yyya3+lYI+l 

+ a pya+lyy+l - uauui 
- yay~yyya+lyD+lyy+l 



	

S. 

	
UCRL- 2005 1l 

Tr(RR) 	 1 

RRR1 = det(RaR:Ri) ] = (u
u uixa iX +iXi+i) 

YYa  

ua

:1( 

/1 _x1+1  

\i -x1+1 (i - u1) 

	

-1 	 -1 
= [1 + 	- ux11y1y 	+y1(i - u)yaxa+iYi 

+ x11  (1 - ui)yX +iYa  - X1Ya3T 	x-r+lyyyct  

-x+1yy] (UaUUyXa+iX 1x1+1 ) - 

Therefore 

>n = 	

{YRI - 1 

a 	a,,i=1 	RaRRT  

= 	. Tr([C] 3 ) ; 	 ( 5.26) 

and also 

)L. 	 n 	I 	RRB 
-1 1  	

'cç 	i 
 j 	

aR 
I 

8 	
- 	

I - 
 4) 2  

	

= 	Tr([C]). 
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It is not hard to verify 

Tr([][]) = > 

(ak) 

and 

i XRRR 

([ 	

1 

TrA][D][C]) = 1 7 	
I 

  XRar 
(I) 
(ar) 

Though only one of the fourth-order multipliers has been 

checked for the n-loop case, all such terms have been explicitly 

checked in the double-loop amplitude. Because of the close similarity 

between our original double-loop result and the arbitrary case, we can 

immediately establish the nature of all fourth-order terms: 

Tr.[[][][]{]] =>
R  

1 

and 

Tr.[[A][D][A][]D]i  
8=1 I 	 c3 	T 

(a,I,I8,Ea) 

Also 

XR  I ar 

(r,a) 



Notice that the summation conventions assure us that no R and 

are ever juxtaposed. 

When a careful study of the coefficients is - made, all terms 

expected to appear in a fourth-order calculation do, in fact, appear. 

The absence of terms for both RRR 1  and RR 1R 1  indicates that 

double counting within the same equivalence class does not appear. 

Several: obvious generalizations are possible when calculating 

terms to higher orders, but will not be presented for lack of a 

rigorous justification. Unfortunately, we do not know of any rigorous 

way of proving the result for all orders. 1  In passing, we mention that 

the determinant calculation has been performed in several different 

configurations; all display the predictedresult. Of particular interest, 

however, are the diagrams whereby the trace over one or more loops is 

possible before one goes to the principle axis. In the amplitude 

represented by Fig. 8a, where the trace over the central loop is 

performed first, several infinite classes of terms have been identified. 

With the help of Dr. J. Scherk, the singularity for the double tadpole 

amplitude of Fig. 8b has also been shown to have the conjectured 

behavior for an even wider class of terms. 
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APPENDICES 

A. Useful Identities 

We list useful identities involving cross ratios: 

	

- 	 - 

P(x,y,z,w) = (x 
	w) 

	

tx - 	- z) ' 

1 - P(x,y,z,w) = p(x ) z,y,w), 

1 ) = P(x,y,w,z), 
P(x,y,z,w  

P(x,y,z,w) p(x,y,u,z) = 

p(x,y,z,w) = P(y,x,w,z) = P(z,,x,y) =p(w,z,y,x), 

P(x,y,z,w) 

P(x,w,z,y) 

We also list identities involving I4: 

MMT = M
+, 

MMT = 

MM = 

m+xm = 1 1 M+ 1 i ,  

MxM =. (1 - x)M 1 - 

(A .1) 

 

 

(A. ) 

 

 

 

 

 

(A.lo) 

(A.l1) 



-.85 - 

= M 	iMT(lx), 

1-- 
x 

MxM_ = 	M~ (formally), 

MTXM_ = 	M (formally), 

MxI) 	(1 - x)l) - 

1 
M_ T xl) = 	l) 

1-- x 
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B. Jacobian Calculation 

ô(t,y ,y 	) 
We show how to compute the Jacobian factor J = 	

a 

2 

from the set of identities Eqs. (2 38) and (2 i) We list them here 

t (El) 

	

-a-la 	a+l 

a+l - cx-i(a - a+2) 

- xX 
ya  +y a+lx -x 

a = 	 -x 

	

x2 	,X 	
B.3 

y +y a+l 	a+2 x2X - x 

a+22 - 
x1X) - x1x2 (1 - X) 

= R(Ya+2) = 	
a+21 - x) + x2X - x1 	

(B 4) 

From Eq (B i), we get 

d _________ 

= (a - d)2 	
(X,x1,x2) 	

(B.5) 

where we have used the theorem that, if two rows are identical, then 

the determinant is zero. We now take derivatives of a, Eq. (B.3), with 

respect to X,x1,x2  and evaluate the Jacobian in the frame x 1  = 

X2  = O 	a+2 = 1; we get (Ya+i = x1) 
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2 	 (B.6) 
(a-d) 

C)ya 	a-1-1 
ax1 	ax2  

We then use Eq. (B.li-) to take derivatives of y with respect to 

and evaluate the result in the frame x1  = , x2  = 0; we get Eq. (2.40): 

= 	d 	
2 (i - x). 	 (B.7) 

(a-d) 

in passing, we note that the methoq we have used for the 

calculation of the Jacobian can also be used for the nonpianar case. 

We will show this in subsequent paper(s). 
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C. Elimination of 

We show how the infinite number of cancellations involving ya 

beautifully occur in the reasoning which leads from Eq. (3.56) to 

Eq. (3.37). We first consider the factors raised to the power 

-k1 k in Eq. 	 They can be written as 

f
+n+l 	 ±

(e2) 	
Y1 - ER]a  (i,) 	 - ER 	R(y) 

n 	
- 	- 	

) () 	
i - [R](y) 	

(,-) 

I 	+n+1 
- 	 __________ j y - 

ER] (y7)
013  

- 	 n+1 	 1 	+ n + 
[y1 - [R -

+ 
 ] 	

L1 - [
R ]  a R(y) 

	

- [R±] 	R1() 	
Cy. 	[R] 	R(y) )  X. 	- 	j 	

1  

	

• 	 r 	+n+l 
i  - [R-] 

	

- 	 ) 

(y - ER ±n+l 
	

yi - [R -+  ] n  (5) 

	

• 	f 1  - [R] 1  R(y) 	
. 	(C.l) 

A 	ty 	[R± ]a  Rx l (Yx ) J 

Hence the infinite product over n gives 
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00 

1 (e2) 	 (e2) 	

TO (yi - [R](Yx+l))( 	
- 

y - 
urn 	I - 

a 
N-900 	 NE_i 

1' 
1• 	___ 

- 	 I + 1n+1 ( 	13r. - y 

00 

n=O 	I 	" x+1 (=;.) L 

- [R ]' (Y?)J ( x,_) 	. 	 (c.2) 

But the last factor in Eq. (c.2) can be written as 

(y1 - [R]a , (Yx))() (r1 - ER ± 
	N 

X [y1 - [R] 	R2(Y)}(x)"(Yj - ER±]M RM(y))() 

	

? Cy1 - R'(Y)) , 	 (c.3) 

where we have used 	 in the product R R 	s N 

it is clear that either (N - M) -co, or lvi. must tend to co, in Eq. 

(c.3). If M tends to infinity,the expression R M(yx) becomes 
42), 

which is one of the invariant points of R.  If (N - M) tends to 

infinity, it can be shown 7  that [R±]M(z) is independent of .z. We 

may therefore set z equal to 42) In this case. The expression 

Eq. (c.3) is thus equal to 

C 



-90- 	 UCRL-20O5 

- 	
. 	 (c.) 

of  

The second invariant point of R is y 	[see Eq. (3.22b)]; let us 

denote it 	( 
= 	 z j 

42)). Combining Eqs. (c.4) with 

(C.2), we get the desired result, 

= tr 	: : :~ } 	

YXI .  

Similar arguments can be applied to the factors raised to the 

powe' (_k.k) in Eq. (.36), called this factor I22). We get 

E 411'22) 
 

2) 
- 
[R±]fl(2)) 	(1) - [R±]tl±l((l)) 

(1) 
- [Ri] n

( (2) ) 	(2) - [R±]n+1(X1)) 
a8 x 

(x
(1) 

 - 

y(x(1) 
- 	

(C.6) 

(y 
(2) 	

xx 
(1))f 

- 	 - 	

(x) 

The cancellation process, which occurs between loop momenta 

terms and binomial residue terms, is now carried out with the 

second method, which uses Sciuto three-reggeon vertices. 
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The calculation, beginning with the first term in the expansion 

of (4.13), is straightforward: 

[1 E) _____ 	U M 1 
 yMu - Ik) 

j=O 	 1 - 
j+l 

s+1 	
V 

ujk.) 

ati V 

 - a,={) 4 	i - - 
j+1  1 	-1 1-y 1y. 

k) 

Ce -1 
1,- 

s+i 
-1 	-1 = 	 KBaya yBy yj  k) 

a,=(} j=O 
j+l 

KByyIk) 	V 	
(c.7) 

Obviously, these contractions can be continued indefinitely. 

The end result is quite elegant: 
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\[] 

=() 
(a+1 

7IEY'\ 	s+]- 	s+1  

E)Y) = 	( - 
IF) 	j=0 	1=0 	\jF) 

(jLai-i) 	(icJ) 	 a  

[ff 	 (c.8) 

v=LJ, (' )+1 	 \SN 1v)Ia 
(v.a) 

where 

	

-1 	-1 	 -1 

7 KBYc: yK 	 aYa KB 13 

[] 	I 
K 	 K -1 	1 	 -1 	1 

\ 

and 

- 	= KBay 1  a  YjIkj) 

KY'Ik) 	. 	 (c.9) 

(Notice that [] is the operator reformulation of [HIT.) 

At this point, we easily see the cancellations occurring 

between nth- and n - 1st- order terms involving loop momenta. 

In the limit as n goes to infinity, terms involving external 

momenta accumulate all possible combinations of n Rs or less. The 

loop momenta terms, however, contain onJ,y combinations of exactly n R's. 
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The loop momenta terms, as shown in the aigument leading to 

(A3.4), tend to a definite limit if we invoke the theorem in Ford. 

° Either (a) the combination of n R'S contains a factor R 	at the 

end, where n0  is 1rge, in which case we approach the invariant point, 

or (b) it does not contain a factor Ha°  at the end, in which case 

we can replace the argument by the invariant point, since such a term 

is insensitive to changes in the argument. We can combine the loop 

momenta terms, which now contain the invariant points, with the 

external momenta terms (only the term urn R'(z) escapes this 
fl-D 

recombination): 

	

7fl [] \rn /'I)\ 	 7IE) 

	

To) 	
cg:m 	

(3 

m=O 	[Dl [C] 	\ IF) 	m=O j=O 	 \JF'.) 	a 

	

Al 	 (ja,a+l) 

7) \ 
(c.uo) 

where 

Cj 	 KBoYa'wJkj) 

K 'Yawj*Ikj), 

and 

y 	(i 

X ) 	R(z1), 	1  

	

(i)= R(z2), 2 	xa 
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Notice that the first set of cancellations was accomplished 

before the summation over all oscillator states was taken. The second 

set of cancellations occurs when we examine terms like 

	

 
Iy - () w 	

1 3 
./2 
 

The previous cancellation insures that w contains the invariant 

points; y, however, does not. If we shift (R '  from one side of 

the equation to the other, we find expressions like Ra(co) and R(o) 

(oo and 0 are introduced, to complete the momentum conservation in k). 

Let R and R2  represent the totality of combinations of R's 

in the expansion. Then we have 

00 	 71E?.) 

((Fl (El) 	
[]m ( 

	

_3 

m=0 j=0 	 \.JF'.) 

	

(j,a+i) 	3 

S +1 

('j (E) 	
( 	K' k.) 
	

) 
(jcr,a-1) 	 R2  

= 	 1  
(l 	- 	ipaw)  

p,a=fI ' J i,j,=0 
(jp) 
(ip +1) 

/-1 	 -1 i 
_______ - K 	

2pCF 

Equation (c.ii) continued 
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Equation (c.ii) continued 

= 	 (Ry - w2) 

i,j,2=O 
(jp) 
(ip+1) 
(po,c1+1) 

2
k k 

2 
 /2 	 -k.k/2 

lap(R(0) - .w) +l 	(RBY 1Y. - w2) 1 £ 

- - 	 .-kk/2 

)( 

 

(R2ap 	w2) p 2 	
(c.ii) 

But Ra (oo) = 	and Ra(0) = 1al Therefore, we see that a series 

of counterterms appears with one less degree than R or R 2 , making 

possible a second set of cancellations. After all cancellations are 

performed, we arrive at the desired result: 

xP((k.Ix. 1 .tk.)) eEI (LI) {]l 
i>j 	 I.) 

(. - (R±)W)i3/ 

m= 	c,=') 

(m=O,ij) 

Equation (c.12) continued 
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(_ -k 

I(y - 	 - w11)(y1w11)] 	
+1 

-k.k. 

/ 	
1 3 

1>3 

(c.12) 
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Amati, M. Lebellac, and D. Olive, CERN preprint. 

K. Kikkawa and H. Sato, University of Tokyo preprint UT-36, March 

1970 - 

Although f Df 1Q is not gauge-invariant, nevertheless our 

factorized, trees with dots on opposite sides of the excited leg 

are related to each other by the twist operator. Hence there is 

no ambiguity arising from the gauge invariance. 

This was suggested by Professor Mandeistarn. 

We can solve X in terms of t (in the frame y 	 = x1  

= o 	= 1); from Eq. (2.38a,b,c), we get 

X =
2(1- t) 	

[1 - 4(1 - t)t a-1 

The minus branch gives 0 < X < 1, whereas the plus branch gives 

1<X<oo. 

This was demonstrated by Professor Mandeistam. 

This factor also comes out naturally, if we neglect the spurious 

problem. In this case, 

x = 'tPa(A+2) 	tp(ct,a+l,a-1,a+2) 

- -) +l - 

= 	
- a+2a+l - a-i ' 
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a-i 
and x1 = a+1' x2 

=C6 
hence from the factor (i - t) 	one 

gets this factor. 

The determinant calculation: is given in the Sciuto three-reggeon 

formulation. 

M. Kaku and Loh-ping Yu, Unitarization of the Dual Resonance 

Amplitude. II. Nonplanar N-Loop Amplitude, Lawrence Radiation 

Laboratory Report UCRL-20055, to be issued. 

We have adopted the streamlined notation of combining all terms 

appearing in [] into four distinct factors by repeated use of 

the formal identities given in AppendixA. Thus, many of the 

manipulations presented here are only formal, since the argument 

often becomes larger than one, and hence the expression doesn't 

converge. Each step can be rigorously verified, however, if one 

avoids these formal identities and considers the various values 

of the argument separately. 

PI 
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FIGURE CAPTIONS 

Fig. 1. Doubly factorized tree diagram. 

Fig. 2. Planar single-loop diagram; t, 1
a a+l are three variables 

associated with the loop. 

Fig. 3. Planar single-loop diagram; x1 , x2, and X are the two 

invariant points and the multiplier of the projective operator 

R that goes around the loop. We assign x, x2  to the •center 

of the loop. 

Fig. 4. The 2Nth-factorized tree diagram. 

Fig. 5. Planar N-loop diagram. It is a rubber band with N holes cut 

in it. 

Fig. 6. (a) The ordering of y. and x (i) 	(2) a = 

(b) Symmetrical ordering of yi  and x (i) 	(2) a = [) 

in which 	(2) are the two invariant points of 

the projective operator RRR1 ". 	 - 

Fig. 7. Planar N-loop diagram. Propagator variables are given explicitly. 

Fig. 8. (a) Several infinite classes of singular terms can be isolated 

by analyzing this diagram. 

(b) An even larger class of singularities can be isolated in 

the double tadpole amplitude. 
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XBL 708-3653 
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Fig. 8a 

XBL708 -3648 



Fig. 8b 

XBL708-3649 

2 



i r r' a i Kin-ri r' r 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or con tractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such con tractor. 



Cz 

I 
p 
0 


