Submitted to Physical Review

RECZIVE

WAVIRERCE

D

- RADIATION! LLSORATORY

NQY 1 8 197F

LIBRARY AND
DOCUMENTS SECTION

UCRIL-20054

el

Preprint -

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE

I. PLANAR N-LOOP AMPLITUDE

Michio Kaku and Loh-ping Yu
August 13, 1970

AEC Contract No. W-7405-eng-48

s

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.
For a personal retention copy, call

‘Tech. Info. Division, Ext. 5545

~

LAWRENCE RADIATION ILLABORATORY
,_‘IUNIVERSITY of CALIFORNIA BERKELEY

$500¢2-T¥UDN



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employeés, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any

_ information, apparatus, product, or process disclosed, or represents that its use would not
infringe prlvatcly owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regcnts of the
University of Cahforma




-iii- UCRL-2005k4

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE
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I. PLANAR N-LOOP AMPLITUDE

Michio Kaku and Loh—ping Yu
Lawrence Radiation Labdratory

University of California
Berkeley, California 9k720

Auvgust 13, 1970

ABSTRACT
We present the planaf multiloop formula in the
dual resonance model. Both the multiple factorization

formulation and the Sciuto three-reggeon formulation

are given in this paper.
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I. INTRODUCTION
After the planar single-~loop amplitudel in the dual resonance
model had been‘fbund, the nonplaﬁar single-loqp amplitudez'ﬁas soon
calculated. To complete thé unitarization program of the dual amplitﬁde,
we fequire the calculation of the multiloop diagfams. In this series
of papers,‘we'will present the results for théplanar, nohplanar, and
overlapping multiléop am?litudes. Iﬁ thié baper we calculate the

3.

planar-loop‘amplitﬁdes both from the multiply factorized trec;h and

ifrom the Sciuto three-reggeon’vertex.5

The final form of_the N-loop planar amplitude will be expressed

6 ‘The

in & projectively invariant manner via Koba-Nielsen variables.
first derivation has the advantage of being projectivel& invariant froh
the start;.the secoﬁd calculation, ﬁowever, exhibits projective invariance
only when all traces are performed.

Remarkably, thejN;loop plahar amplitude exhibits much of the
same structure as.tﬁe originél singlé—loop amplitude. Indeed, arguing
from projective invariance and the dual diagrams of KSV, Mandelstam
was able to predict the eséential features of the N-loop amplifude.

The oriéinal ideas of KSV assume a particularly iﬁﬁuitive and
pleasing form when reexpressed in the language of projective transforma-
tions; In their paper, an M-point N-loop amplitude is repreéenﬁed by an
M-sided polygon enclosing N intérnal points; differeﬁt triangulatioﬁs
of the dual diagram yield the vérious terms in the integrand of tﬁé

Veneziano amplitude. In the single-loop amplitude, there are an infinite

number of triangulations which circle about the internal point.
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Therefore, it is not surprising to find in thevintegrand such factors

as

. r 7515 | | o
(v; - wvy) ) (1.1)
r=1
where k represents the external momenta and y the various Koba-
Nielsen Vvariables ‘of ihtegration. Though w 'is" a c-numbéer variable,
it can be seen to be & special case of an arbitrary projective trans-
formation. If, for exa.mple , an arbitrary progectlve tra.nsformatlon is

performed upon the y's, then the true character of w as a progectlve

operator is easily seen:

-k k. -kvk
i l (v; - wryj) oot (R lRy - RRv'R lRy y +9
i,d : i,J . : :
o - 1, L=, 5Fy pu r— K%y
= | Ry, - RTRRT) ) o (vy; - Qv;) J,(1.2)
i’j ‘ i,d ’ .
where
z ki' = O; ZKJ = 0, -ii = Ryi’ (x.3)
i 3 . . .
q - ma’l, | (1.4) "
and _ )
Az + B v
R(z) = === "AD - BC £ 0 . _ , (1.5)

Cz +D’
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If we wish to write our amplitude: in projectively invariant

form, we mﬁst therefore replace w by a hore general ‘prdjective

transformation .Q. One might expect, therefore, that sinée there is

one pfojective transformation representing.the’éingle'lobp, there might

be N;'projective transformations fof' N loops. Different combinations

of these N projective operators, raised to various pbWers, would
then represent the different»paths a line can make through the N

points of the dual diagram. We are led, therefore, to consider the

- -k{kj .
i I (yl - Ryj) ’ (1-6)
1,3 '

where R represents\the fotality of products one can construct out of

integrand
{R}

N-projective opgrators Riﬂ and their pbwers.

Likewise, the singularity stfucture for the N-léop amplitude
can be cohsidered a natural generalization of the.single-loop case.
Since the singularity of the single loop is expressed entirely in terms
of w, one would like to express w as an invariant associated with

the projective transformation Q. This may be done by simply defining

w as the ratio of the eigenvalues of Q. Furthermore, all operators

Q' related to Q byba similarity transformation have eigenvalues
whose ratio is equal to w or its inverse.
At this point, a small digression on projective transformations

will® prove beheficial, especially when the singularity structure is

“analyzed in detail. Many of the definitions used in this paper are

taken - . from Ford's Automorphic Functions.,7




) o UCRL-2005k

The parametrization of a projective operator R in terms of -

A, B, C, and D -is simple but clumsy; a much more convenient parametri-

v

zation can be found if one expresses R in terms of its two "invariant

points" x, and xe.-and its "multiplier” Xge With these variables,

we can express. R quite elegantly:

R(z) = z', - (1.7)
z' - % 1 %X , -
z' - X% = XR ’z-xe ’ (1.8)

R(x) = x,  R(xy) = x, | (1.9)

Quite simply;"we see that ﬁ' is the multiplier of Q. There

are several identities that. will . prove useful for our discussion:

Xaq = Xere , ‘  (1.10)

' XR = X ,” | , (1.11)

(R")

R = z(x2 - xlXR) - xlxa(l - Xﬁ) , (o)

z(1l - XR) +'(x2XR - xl)

X

0 <X <1 : Rm(Zl) 5 zy # X))

(1.13)
R (z

X5 Z, # X5

5)

The multiplier is most easily found by taking the trace of R

(all matrices shall have unit determinant):
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Tr| . = TrTR = —=——x F & . . (1.14)
: . 21 . . . - 2
o X, = (AD - BC)
.Then
S (DRE ' 2 i" (.I)R(q)l-zé - al*v).% E | , o _
% - - N

Projective transformations are readily categorized by the’

“value of the multiplier:

R is hyperbolic if X, is real -and #1 | (XR > 0),
R is parabolic if X is real and =1, :

| - | (.16)
R is elliptic if [xR| =1 and X #1;°

R is.loxodromic if Xﬁ is complex and none of the above.

' Using these identities, we can show that the singularity of the

_single léop.resembles the closed paths one can make around the internal

poiht_of the dual diagram: R L ‘
: | | (1 - XRn)'h =/rﬁl -X ]'u. (1.17)
; ' R) '
n=1 n=l ( _ _

Starting wifh this intuitive approach, Mandelstam has conjectured

that. the singularity of the N-loop amplitude is simply

(1 - XR")-A’ _ -(1.18)
R} |

where R now represents the totality of closed paths one can maké

‘around. N  ‘or fewer internal.points of the dual diagram. Notice that -
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fhis function contains the product of single loop.divergences”as a
subset. |

With this projective approach to higher loop amplitudes, oﬁe
can also‘easily choose the most convenient set of variables. Since
theré are M - 3 + 5N variables of integration inan M-point N-loop
amplitude, one expects to have one variable for each of the: M-scalar

external lines. We choose the multiplier and the two invariant point

S

as the variables for each loop for a total of 3N variables. Finally,

three of these variables are fixed.
, ‘ 8
By using the methods outlined in a previous paper, linear
. dependencies will be subtracted out and found to give a correction
factor of ' ‘ '
l [(l - X)) | | | S (1.1
o _

a={)

9)

(where «o ranges over all the N-loop indices [;CJ) when the calcula-

9

tion is performed with Sciuto vertices. . The projected propagator is

used in the calculation with the multiply factorized tree, with ident

results. We now present the N-loop amplitude,

S+l -
: dhka-/r k[ﬁhﬂf/dxa ! ‘ dwi(dwadwbdwc) 1
=L} Cu =X} v, i=0
-ak, )-1 /,,]/ L 2 SH |
B , b +y(n)
X x 2 a-x)| |a-x) ’[\T vy - @)
{qQ) n=0 i,j=0 :
- (if, 0413 3#8,8+1)
(i#j if n=0)

‘Equation (1.20) continued

ical

K

Y
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Equation (1.20) continued.

W )(W' - W )(w - wa)
S+L o T-o. ’
(Wywl WY+2)[WY 1 Rr(wvwe)] 0
(wi— 1+l (W 3 wr%l [w -R (ﬁ -
T+ Y+2
1#[1 §(+l £-1) .
(1.20)
1.2 : . .
where Oy.= =5 M, Wo,o = Wy, (wa, b’wc) = fixed points,
(£} = set of all loop indices = {a,B,7,***,0},
W, = invariant point of R, R (z ),z zy £w LA
W, = invariant point of R (z ), Z, #
:{Q} = set of all closed paths,

- (Rr" )ég) =_(Ra*a1-RBi) = set of all open paths (where ... means all possible

combinations of n - 2 R's such that no R e?gr appears
next to R-l).
This amplitude is formed by joining.  the factorized legs in Fig. 4 in

pairé, such that o and « +vl are joined.

Remarkably, the cyelic ordering>of the Koba-Nielsen variables |

mimics the ordering of Fig. 4, if we associate the invariant points

wd and Wd+l with the ath and o + lst factorized legs.

If we ignore linear dependénces, theh we find the following

cyclic ordering (see Fig. 6a):
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. = - . . <L e ' - . e ’ ’ . .
U, (wd SYy1 SV = SWo SV SV, 5» _ A
—_ Wg+2 hS Wo'+l = w0° -2 wOH-é Y o+1 = WCX)’A ¥
whefe U = (0,1) for each loop,
2 (@) = (1) |
(wa = Xy, W Xy ). | (1.21)

The external line variables are interspersed among the invariant points,
except that no lines occur between o and a +1 (otherwise, we would
have a nonplanar diagram).

We recover the single loop diagram if we let

{5{} = {Ot), Ra = XO!’ Wa+2- = Wa = l,_
Wa=Wb=o, Wa+l=Wc=oo,

Uy, = (0,1), U, = (0 = W, S W l S Wy o S0t
<w < Wy EVWS+1 < eee < wd+5 < a+2 =1).

When linear dependences are added, we find rigid constraints on U,
which allow periodicities, as demanded'by duality. In fact, the ’

conditions are rigid enough to determine U entirely in terms of U2

1
(though all multipliers still range from zero to one, they are no
longer independent). In stﬁdying periodieities, it is more convenient
to move all external line variables awey from the invarient points, so
that all invariant points'lie together. This rearranging of external
lines is always possible, because the « + 2nd line (which liee to the
left of o +1 and «) can flip to the right of a +1 and «a by
duality. [Mathematically, this corresponds to the following:

S W, W <w_ <R (W’ ThlS flipping of external line

a+2 = Va1 = o+l - o - +2) ]
variables past loops is simply a consequence of "rubber band" duality.
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Now that all external line variables are outside the region

occupied by the invariant points, we find that a simple reordering

yields
U = ( Vg4 S Wg S TTT S W S Wy S Wy
, SWe St S w3+1 R Sy S Ws+l)
(See Fig. 6b); x(g) Yo xél) = ) Since the actlon of ‘R, flips

Vo1 :

lines across the gﬁh loop's invariant points, the action of

' RaRB"“R_Cr is to flip lines across all loops, until we regain the

original‘ofdering (i.e., we have rotated the external line variables

360°). It has been shown that the invariant points-'x(l) and x(g)

of the product ‘(RaRB-t-RG)—l -1lie outside the region occupied by the

invariant points of the individual R's, and hence vx(l) and x(g)

divide the external line variables from the invariant points:

Uy [x 31<Wsi TIW S W S X S SV
(1)
s e < - .
= S ¥ay1 SV S Vg SV x0T

It can be shown'that the region occupied by the original external line

variables Wi(i =0 to S + 1) and the regions occupied by

N e s ' .
‘(RGRB"'RG) ﬂwi) are disjoint (n # 0). As n »w (-») we merely.

approach the point x(l)[x(?)]. Therefore; we can subtract the periodic-
ities due to these disjoint regions by integrating over only one of ‘themn,

i.e., 1ntegrate one of the variables from Yo to RaR <+ <R (yo), where

2)

yo lies between x( ) and x( . In summary, we find
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_ (1) < cw <@
Up = Doy %77 S RRgee R (Wg) SWgyy SWg <00t s <X
SVl SV Sttt SWayy SWe S Wy S wd]
and

(2);

[RRg™* Ro(¥g) Wy < v <%

[Notice that the factor in the orace in (1.20) changes to reflect

the different topology &s wevmove external lines away from loops;] Givén
the above cyclic ordering, we have also shown‘that applicétions of ,Ra
to the various lines does not produce a variable which lies between the

B+l B

graphs do not degenerate to nonpianar ones). If linear dependences were

invariant points Y and w_ of a different loop (i.e., planar

not taken into account, we would have had the simple cyclic ordering in
(1.21). -

Iﬁ a later paper, we will show that multiloop amplitudes with a
different Quark topology differ only in the arrangémenf of invariant
points (i;e;, the nonplanar graph has exterﬁal line variables between

the invariant points of the same loop).
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.II.  MULTIPLE FACTORIZATION_FCRMULATION OF THE
PLANAR.MﬁLTILOOP AMPLITUDE |
‘fn o?der to get the loop ;mplitude from the‘mﬁltiply fdétorized
tree,u wé neéd (a)_prescriptions for joining two excited legs and
&b) the.pfincipal-axeé'method.. We will discuss these two subjects in
detail by considering the planar.Single—loop diagram.. The prescriptions
and‘the method used in the single-loop case are applicable withoﬁt |

modifications to the multiloop case.

A. The Sewing Prescriptions for Two Excited Legs

' 10
We adopt the notations of Kikkawa and Sato. They define

kl ki kl
lk ) = Xy I, ~“Is°°° )
12 o2 32
1a) = (e ays agtyeee),
M), = @B - & O Y,
() = 0Ny, = @2 ("),
CMb)nm = amﬁ’
(a]x = x|a) = Z i 2
n=1
(alx|p) = z anxnﬁﬁ,
n=l
(aIXMtyM¥?|b) =§ :ar‘xxn,(Mt)nmym,(Mi—)mkvzk'bk‘ : ()

n,m,k=1
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In the Appendix A, we give useful identities used in this paper.

Let us start from the twice-factorized tree obtained in Ref.l

(Fig. 1),

|G§§§( > a+l a+1 .jqu(dy Sy

S+1

X O glem(e® Iy (a2) |85 + Z (8% p, (1) 1k)

(i#a,a+l)
o+l
Z (= |Pa+1<l>lki> % e
1%a,a+l)
where
| V.-V, )F g = y)
pa(i) = p(O[,Ct+l,Ot-l,i) = (yOC _ayl )%;l — yl):
' : Mol a-1’ VYo i
. . pa(a + 2)
Py (i) = pl@+1, q, a * 2 i) = NI

and the symbol {Y

tree containing S + 2 scalar legs, i.e.

S+1

(¥g .} = (v, - yb)(yb v ), - ¥y) l l(y -

i,j=0

(1#3)

St 030k, 55 )1 2T |
X (v; - v ) i+l (y -y
i i+l i+2

i=0

-——k .k
J

2
Pt
% ?k1+l

2

(2.2)

(2.3a) -

S+2] is the ordinary Koba-Nielsen integrand for the

(2.4)

A
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where VgV Y are any three fixed points of the set {yo,yl,~°‘ys+l].

The ordering of the yi's is

yl Z yj, if 1< j' ' : (2°5)
a+1

' - _ o+ .
We have to join  the a  leg with the a leg to get the

planar Single-loop amplitude.l We observe that the éoherent states

_ . L :
lx a) and |x a+l> are defined in exactly the same way.  Thus, in
a v

Jjoining the a&+’ leg to the aa+l leg in Eq. (2.2), or, in taking the

trace of Eq. (2.2), we should take |A a) = | a+l>' Although ana(ana+)
+ , .a a ‘
and az+l (az+l ) are two commuting operators defined on two disjointed

' Hilbert spaces, they actually describe identical states (Fig. 1). More

explicitly, in taking the trace'of‘Eq. (2.2), we carry out the following
procedures:
(a) Insert Gross and Schwarz's9 spurion-free propagator to the

right of (n a‘ state and integrate over dhka;'i.e., insert the

.a
expressionll

ae, (k) D(k,) alk,) Fi) alk)

‘ 1 ' -2(k )-1 + -k )-1 S Al(k )-1
fdukaf a(g=) o) @ - t)A ( _a) (et - 8) o
| o |

% k) (2.6)

L . '[’(koc)'l 915K, R t - 1\R +
fd ka[ dt t (L -1t) | _t- Q(ka)(—T—) Q (—ka)
o ' _

K o, @D
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where ’
| | 1, 2
sy) = % * ey
w _
o+«
R = ZE; n an ey ,
n=1 '
‘ ' o+ o+ | a
a(k,) = exp(a” |k,) : exp(a” M- 1la™) :
o ik, T oy o |
Q' (-k) = : exp(a” |M_~ - Ifa”) : exp(a lka), (2.8)
and the expressions (2.6) or (2.7) to be placed to the right of the
state  (n al' From Eqs. (2.7) and ( 2.8) it can be shown that
o
(r oI () D) ok )P (x,) al,)
1, i 2 -
: ~b\K )-l . o, ~145k _ ‘ :
: : o Ly O o * v T __ T Q
= at t (1-1%) (Olexpl(n "y, - K IM_ —la )l
a
0 : .
(2.9)

(b) Replace the notations aq*|, (aq+l| in Eq. (2.2) by the complex

% - .
paranmeters xa, xa+l’ i.e.,
a+ * Tt
(7] = O - Kl g0
o+l '
(8‘ ‘ - (xa.fll'

(2.10a)

(2.10‘0') |

Equation (2.10a) is suggested from Eq. (2.9). It is obtained by

commuting (ézf

annihilating on the vacuun.

in Eq. (2.9) to the rightmost of Eq. (2.2) and
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I a+l ka =-eka+l and then integrate over the

complex )\ plane, i.e., insert the integral

[d'_\—}-g—)d‘%)exp(-(x*h)}. | o ~ (2.11)

After performing the above steps (a), (b), (c), we get the

planar single-loop amplitude (Fig. 2); call it FPL(1):

where

with

B S G L E SR TSy (g |
FEL(;) = |dk, dt (1 - ﬁ) dy. (Ys+2
' 0

(2.12)
ka. = -ka‘_;l, and -
1= |4 X)dﬂ—-)expt -( D GlE)),
V’ (2.13)
Y ’é M-T>t‘?.l pa(a +2), Y' = M_T T E T . - (2.1ka)
sl |
;) = Y v opy)lxy), |  (2.1km)
s - | ,
(ifo,0+1)
) S+1
Ig) = Z oz+l(l)'k) k),
1#a,a+l)
S+1 : . ,
- Z Ot+1(l) |k )+ +l( + 2)' a+l) + pa"'l(a)lka)’
(1£a,a+l)
S+l k | |
= Z pl @ || x ) | (2.1kc)

=0 CLa + 2. ka+l3
(i#x:a"'l) : '
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We have kept the sum of'moménta.équal to zero in Eq.i(2.14¢).
Equation (2.13) would have been a siﬁple Gaussian;infegral'if
Y were ac numbér, as was the case when we neglected the spurion
problem. However, how Y is an infinite-dimensional ﬁatrix in the
oscillator indices m ‘and n, so we have to evalute Eq. (2.13) by the
12 ‘

principal-axes method.

B. The Pr1nc1pal-Axes Method

We write Eq. (2. 15) as

o [1]- [T |>;)
exP (>‘-|:(7‘-
( ) (1] - [¥] 0 | %)
(El l\)
" ~(2.15)
(7| Ix*)
‘We regard lx) -as a two-component vector; each component

| %)

itself is an infinite dimensional vector defined in the harmonic
oscillator space. To perfo?m the integrations over A and A%, Qe
imagine ourseives'to have gone to the principal axes of the first
matrix in Eq. (2.15), called the A matrix. Then_the A matrix becomes
diagonal and we can do the intégfations o?er x*,x' explicitly,>since
both integrals . are simple Gaussian intégrals. After having done the

A, A% integrations, we can imagine ourselves gging back to the original

axes of the A matrix. Thus the integral of Eq. (2.15) gives the result

| L NN
I = 1 exp(=((x], 1 , 2.16)
(det[al)2 - 2<( |_(FDIZT |F) o |

-
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where

m -ty
[a] = ’ = [¢] - [H], (2.17a)
o [1] - [¥] o A S |

| o 51 |
(6] = - 'J'o“ S | o (2.170)
oy *O '[Y]Tv : B _ :
(g}l = { [Y]’ ’ . PR : o - (2.17¢)
_ [Y] 0 A ' - -
(gH] | = (::o [Y]T‘:). : ' : (2.174)

We can formally expand the metrix T%J as a power series in the [GH]

matrix

1
2T = TeTTH Z [G?‘] el

(1] Y]
[g] + [GH] [G] +oeee
[1] [y1t

(2.18)

Hence Eq. (2.16) becomes

1
2 s ]
(det[A])? ————T exXp(3 ;E% (KE! (FW)[GH <:’ :) (2.19a)

-—-;——tzeib {}E]fﬁ + (E|Y|F) + (E|Y2|F) + ;-{} . . (2.19v)
(det[al)2 | R

H .
I

il
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We now need to calculate Eq. (2.19b), order by order, in the [GH]

T
matrix. Some useful identities are
_ v o ¥
Mx[k) = (1 -x)|k) - k), | - (2.20a)
T . X | '
M x]ki) = (x - l)|ki), ~ : ) (2.20b)
1 . .
zYx|ki) = Z —T—|ki), (Z 1_<i=o) , _ (2.21a)
. ‘ i N - = 1 . )
i i £x : ' : :
AZYTx|ki) - Z 81 - x)|k), (L k=0), | (2.21b)
i T i | :
where
£ = p(a+2)—te . (2.22)
S o t -1
Equations (2.21a) and (2.21b) suggest that we can define oné
projective operator. Q: |
-1,y 1 1 , ' '
CTx) = —A, Q) - —EA— . - (2.23)
' : 1 - = £f(1 - =) :
fx b4
This pfojective 0perator enables us to obtain the nth-order term in the
[GH] matrix. To see this, we express |E), |F), Y|F), YTIE) in terms
of the projective operator Qf. From Egs. (2.14), (2.21), and (2.23),
we have . |
v S+1
|F) = Z gt —1 Ik, ) (2.24a)

i=0
(ifo,0+1)
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, s o
|E) = E: Pyl @ o s (2.24p)
- i=0 o +24d|k e
(ifo,01) o+l
S+l o ,
N -1 - 1 '
YIF) = Eg; Q Q (é5;3137;)|ki), | (?.25&)
(i;éa,a+l) ‘
S+l K, |
PlB) = Y - = k) (2.250)
1=0 i k
1
(ifa,a+l) \P [ a ] | o
’ i o+l a + 2

We can thus represent the [GH] matrix of Eq. (2.17d4) as an operator

acting on the vector <l :F)j) . From Egs. ( 2.17d), (2.24), and (2.25)
: E) | ’

we get
. [Y] o\ Q) o (5.56)
GH = = ' . 2.2
op 0 [yt o "l’j'_— :
- { :
It is easily checked that the GH operator defined on the new
‘ |F)l . |F) -
vector = [gH] has @& form identical to Eq. . .
), ~ \IE) |
(2.26). "It follows that - S
-n
n Q () o ‘ v :
[GH] = \ . . (2.27)
op 1
0 n 1
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Hence, from Egs. (2.19a), (2.27), and (2.24), the nth-order term is

-
i

. . ' F)
o |
o = exp §<(E|,(FD[GH]n <
| |E)
S+l - ' ¥ kK5 0,041)
40 ~=1 n+l o
= Vi " Pai1 @ Py | Vg ' , (2.28)
i,3=0 ~ :
(i,jfo,a+1) ' Yoo
where
~ . 1
p,.(1) = ~ = plo,a+l,a+2,i). - (2.29)
a&l‘v‘ pa+li15 | -

In obtaining Eq. (2.28), we have used the fact that
Z” ki = Z kj = ka + ka+l = 0.
i 4 v

to move the operator

Rd+l’ Q  to the y:j side. The conservatlon‘of

momenta guarantees the projective invariance of Eg. (2.28).
We can define the projective operator R, which will be inter-

preted as the projeétive operator for going around the loop, as

1

R = Pot1 Q Pos1® : (2.30)
We have

R(y,,,) = Ygus (2.31a)

R(Yy0) = Yy (2.%1b)

hence Eq. (2.28) becomes

-
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- R | : —
i,3=0 C 0 i=0 yi—-v"R, )
(1,3;&1,0&1) S (i;éoc,oc+l o

Tﬁus»Eq (2 19) gives

- | © . :?’Ll;;" O kk,
I - f[\r 1 ‘ ,/] | [ T, - Bl )y b9
R (det[&])’ | (det[A) | o |

n=0 i,j=0
o (1,3kna1)
S+l { (y )1 —k_i.ka o
X /ﬂ — L (2.33)

)
1;405,a+l) . ;

In order to express our singl.'efloop answer in a manif»“e>stlyn
projéctively invariant form; i«re rieea té e@ressﬂthe Koba-Nielsen
-variables y s sl associated w1th thé exc1ted legs of the original
tree, and the Chan variables t- assocmted w1th the ‘sewed propagator,
in terms of the invariant 'points 'xl‘,x'g and the multipller X of the
‘projective operator R. As defined in Egs. V'(l.7)to (.13), we have

.x2,' Zl 74 Xl; B (2.3)48.)

Bl

O<X<1:Rh°(zl)

RT(zy) = xp, z;f,# X5 . " (2:3k0)
ot e ey 3

R(z) =

The explicit 'fOrm'°70f'~'the.va,'i-'iabijes. X35 xé, and X corfespondihg
to the projective generator R, defined in Eq. (2.30), can be found by

using the identity
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3-1 (z) = y. - Vo " Va4
o+l T Ya 2 SV S v
1 - z(oul_ | a+2>
Yo 7 Va2
to.e ress R:= ~ Q as
] xp = Posl pa+l

| R(Z)

Z[y Voo Vear )1, +1(ya+1 a)] Wean Vo

UCRL-20050

+17 a+2) Y o+l (x+2 (y o+l y )

2l (Vo™ a+1) 20y, +1'ya)]+ya+l(ya+1_ya+2)+x1+2

(Vg1 Vo)

If we compare Eq. (2.37) with the standard form, Eq. (2.3%5), we obtain

a8 set of identities

- .
a = g1 t=3T4d-
i .= (¥ - Yo-1) Wy ™ Y1)
T o ~ 9y ), = Yy0)
o+l a-1/"a a+2’
- 2
7 = a(ya a+l)(yoz+2 yoz+l)
X(xl - x2)
(1-a) = 2(1-X),
y. - ay X, - x.X
o " g Xo T
- - - )
T o
Yol = YouYowe® = X¥p%o(d - 2)e

(2.38a)

.(2.58b)
(2.38¢)
(2.38d)

(L-JSG)

(2.38f) -

This set of identities enables us to compute the Jé.cobian factor
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a(tyy Y ) : 3
_ o’ o+l A
J = ?(X:lexz) : ’ : » . (2039)

In'Appendix II, we perform the calculation. The result (in the frame

=0) is

X = oo,

1 X

J = ———‘1—5(1-x)~. N (2.40)
(a - &) o '
In order to go from the set of variables (t, a’ya+l) to the
new set of variables (X,xl,xg), we also need to separate out all factors
confaining the varlables Vgr Vgup I -{YS+2} in Eq. (2.12). From

Eq. (2.4), we have

: : -k, -k

S+l -%ki'kj S+l v, - Y i o S+l 0y-1
(Yg,n) = T (v; - yj) ‘ ‘ ————-—yi = ‘ ‘(yi-yiﬂ)

i,3=0 : i=0 : i=0

(i;ej ) (ifo,a+l) - (ifa-1,0,0+1)
i,jfo,0+ls , ,
2
=3k, -1

-0y1 (ycx-l' 3 yoz)(y<:4+l - yoz+:2)

k (ya ) yOHl) (Vg - ar2) Vg - Yo1)

o.-1
N° G,

- Ty - Y, - vy)) +(2:8)

x [(ya - yoz+2)(yoz-l " Yan

Now we can extract out all factors involving t, Vo Vo1 in Eq. (2.12).

From Eq. (2.12) and (2.41), they are
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- o, -3k 2 (v, - )(. - ) -%kag—l
at ay. dy. . (—5) 07 a1 [ Vo = You-1'Waue ™ Va1
a Vo't -1 T - 8) WOy - Youo! Woe1 - ya+l)
-0 =1 a.-1 a. -1
(0] 0 0
X (Vg = You1) Wy - Yguo)  Uge = Yau1)
X (v, - ¥y - v ) e - v - (2.42)
For simplicity, we choose the frame
'y =Y = X, = o, y.b= X2 = O, yc = ya+2 .=> 1. | . (2.&5)

a Yo+l 1

This is the frame in which the BHS' and ABG' planar single-loop formula
is expressed; in this frame, the projective operator R reduces to its
multiplier X. In the frame of Eq. (2.43), we have, from Egs. (2.38)

and (2.31),

Vo, = Waeor O (2.m)
a > X, - | | (2.1lb)
a4 - = %fl . (2.4ke)

Substituting Eqs. (2.44), (2.4%), and (2.40) in the expression (2.42), we
find that (2.42) is equal to-

-2(k_)-1 ay-1

ax{ax 1[ax,] X TR -nE -y, T (2.)

where [dxl],[dx?] means X,,X, &re not to be integrated over. The
factor (1 - X) in Eq. (2.45) is the famous linear dependence |
correction factorl to the planar loop amplitude. We emphasize here that,

though we obtain this factor (1 - X) in a particular .frame, the factor
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is actually framefindependent, since it is one minus the multiplier of
" the projéctivé operator. This fact énable§ us to find £he'similar linear-
dependence correction factors for the N-loop éase.
We finally combine Egs. (2.12), (2.%3), (2.k1), and (2.&_5), thus
obtaining the pianar singieéloop formuia (in the frame Xy = ®, X, = 0,
Yosp = 1) (Fig. 3)

. o eg(x )1 ‘
FPL(1) = fdukaf ax X <°‘)‘ (1 - X)

o ﬂ dy, lay, oz+2”dx1][dx ](x ~ Youe) Ogap = %) (%5 = %)

i
. (ifo,0+1)
) T 8L . \
(vg = v50) 0y = )70 -y )
1=0 :
(ifasl,a)
i Y, 0 1
y ﬂ (v; = ¥5.) (?( Yeo1) ERTINT |
. 1#a+l a) S ‘ | '
S+l S+l o ——k k.
X [y. - X" sl I, (2.48)
| n~-m i,3=0 SR -
. 1,1.(1,oc+l) - (n=0,i#J)

(i,j;éa,oul)',

where {yo,yl,o--ya_l,xg,xl, a+2’b'°ys+l} is the new set of Koba-

Nielsen variables lying on a unit c¢ircle. The ordering is

i X = w0, . . (g‘ur?)
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~From Eq. (2. 38a, b), one -can show13 that 0 <X <1 (strlctly less than

w

unity), hence we have the important 1nequa11ty

<--'<y

x2<""XV+2—a-1iyo¢-9— +2 2 a-1 =

(2.48)
Now we would like to go to a general frame Vo =@ Yy =1

v. =0 1in Eq. (2.46). We note the only factor in Eq. (2.&6) which

The unique

Changes when the projective framé is changed is X -y
‘ 14,15

a-l)‘

" generalization of this factor to a general projective frame is

G - %) o (51 = V) g = Rg,0)]
o-1 Ix) - R{y, a+27]v
_ () = V) (0p = ¥gp) = X(xp - Youp) (%1 = ¥gy)
- B - (x, - x 7 - _ :
A (2.49)
One can easily check that Eq. (2.49) together with l l(yi - yi;l)

is invariant under infinitesimal préjective transformation (all variatclies
appear either twice or not at all), and in the case X) = oy Xy = 0,
(2.49) reduces to (ya-l - X).
Hence the planar single-loop amplitude, expressed in a general

projective frame, has the form (Fig. 3)
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- ST ¢'55 S L
| FPL(1) = J'duka f ax X U (1-x)
Es . . -, . 0 . -

S+l

ay, axyax Loy, 1y, 8y )0y, - )0y - ¥, - ¥,)

a

1ﬁa b,

XJ S+l a+l » ‘ ‘ - ’ ‘
(y RE: +1)(x x1> (%, 2)[ya-1'R(ya+2)]/[Xl‘R(yme)] |

(1,éoc+l a)
| a
S+l 0
(y ) ol (® - Vo) ooy - R(Ypu0) ) ! "f‘};"l
X Vil TTx, - Rgap—— | || (aetla])?
(1%a+l OL) ‘ : A | -
S+1 -k -k +w S+1 __kl kJ ’
X | | v, - &y , (2.50)
» n=-co  1i,j= » :
1;éoc,a+1) (n=0,1#j) - - .
' (1,3740‘,0“”1)
where the;ordering is
Vool S0 S Vs SVqup SX¥ SXp SV SVgp T SV T
and xl,kg are.the two invariant points of R; X is the multiplier
of R, S :
“’“ ’ ‘ ) R(z) = Z(xi(l__ )flzi :_ xleEl i) ’ a - (2.51)
: X) + X, X
b7
andl6

v (detI[A])u—% =‘v!v. ‘(1 - xn)'z*v. : . - (2.52)
. n=i ' o ' ‘ )
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‘ IIi. _ PLANAR N-LOOP AMPLITUDE
To obta.ln the planar N- loop amplltude, weé . consider the tree wnh
2N 'éxcite‘d legs, as shown in Fig. 4. We label e}ach :adga.cent pair of ‘
excited l.egs by Yy and -y(;_'_l, which are ;aisso‘ciated with the « loop.
We can dir_.ecﬁvly_ write down the @_\I;th-'-fa.ctorized'tree vamplitudel% éorre—

sponding '_ to Fig. b,

§Y))<as) fﬁay (YS+2}e>cp D izo (a¥|p (1) |1;)
Qa g 1=
'(iiéaxa"‘l)
| S+l‘ )
. Z (“*llpa+l<1>|k)
(o,0m)

. .32E Z _[(aa|pa(s)M;1'>(af1%e+1,a,B)M_.Tpa(dv)|8~B>‘

a,B
(ofp)
| L
+ a+ l +l B+1)M p(a;B,a+l B+1)M pB+l a+l)l ]
Z <a°‘lp <B+1)M p(0H1,8,0,B+1M_ 1a>6,,1(<>z)|a5“':L ;o (3.1)
a,s ' .

where, depending on the dots, we . have

pa(‘i). = pla,o+l,a-1,i),
. o Bge) .
Pa+1(1) = __p(a+l,oz,oz+2,1) = 5‘;1—)——', v (3.2)
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and when «Q = B, the last term becomes%

(o712, (B+LIM_p(0r+1,8,0, 841 )M_"By 1 () [8P™) > (a¥[p(a2) [a¥™). (3.3)

In Eq. (3.1) we have distinguished the a® set from the ao't set,
since aa will be réplﬁcédbby Ay, and a9t by Ay

-We now appiy the sewing prescripﬁiéns (a),(b),(c) of Sec. IT A
to Eq. (3;1)_and simﬁltaneously joih the N péirs of excited legs. We

make, in Eq. (3.1), the replacements

. . |
TR . T o
(@] = 04 kal[M- T - l} ’

Ogls I G

where ta is the propagator variables associated with the o« loop. We

insert the expression, in Eq. (3. l),

‘ e
- ’ -l+§k
J’ /l'j g(k ) l(l - ta).cxo ?
a_{i] a={ o

Py 8 1 -
X —-—> dl==) ewmi- /  OGhy)r (3.5)
aixy V27 VE) L
where theb éymbol () denotes the collection of all labelings of Koba- .

Nielsen variables associated with the -N loops.',WE_then get the planar

N-loop amplitude denoted by FPL(N): .
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f /l\’r -Z(k )-1
FPL(N) ' (L -t )
[a—(s/} ,

a={ZL")}

X / T]/dyi(YS+2}I ,

where

d

f '
b OglE)) + 3 E ) [0%[Bhg 108 + Ol 5100
i - ’ o,B= . i s : . o

{
(of8)
o,B= '
and
t
T ‘o -
Y' o= M
a - ta -1
S+1
7)) = Z v o (D)lky) 5
A A 1;éoc,a+l) |
S+l i ki -
IEa) = Z Pl o k, s
. i=0
(i) B 21Ky
D = Y'p (B)M plotl,s+l,o,8)M p (Q)Y'Y, D=0
ag o _ ’ P1e2) - Pg 8’ oo s

1, 2
1+
2ka

(3.6)

[(x&*lFa)

N ) .
-_\—/;> . éXP {-GT%‘J(KO‘I?\O‘) ;

.7

(_5-8)

(5.98)

(3.9b)

(3.10a)
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.

=]
I

. T —
Pa+l(6+l )M_P(G’B)a”'lyﬁ"'l)M_ p6+l(a+l)’ AOO, 0, (3.10b)

Ko}
il

. ' T |
¥ P, (B+1)M p(a+l,B,a,8+1)M_ paﬂ(a), o = Yipo(at2).

(3.10c)

el
il

For notational conveniénce, we introduce N-dimensional vectors

in the loop number space by defining .

(lFa)) |FB)"NIFU)>’ 0 <R < KO v <S4,

lE) =

B) = (&), [25),0e+ %)),

|Z\;) = (I?‘-a), 5|>\B.),"“|>\0)))

9 = (s b (5.11)

Then Eq. (3.7) becomes

+ 2D + 3G IEI ) + T3, (3.12)

iﬁ -e@{-(b*bv + (A*[F) + (AIE)

where lE)é IE) are N-dimensional vectoré in the loop-number space and
each of these N components itself is an infinite-dimensional vector in
the- harmonic oscillator space. Similarly, [A], [D], [C] are NX N
matrices in the loop-number space and each matrix element itself is
w y o dimensional matrix in the,harmoﬁic oscillator space.

Analogoﬁs to the single-loop case of Eqé. (2.15) through (2.19),

we can easily obtain the [A], [cH] matrices by writing Eq. (3.12) as
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o

. _ . : _ .
A¥ N 1 -[A] (z] - [cl
% exp 3((%%(2&*0( - 5

[r] - [c] -[D]

1=‘[d‘%

m (&| <m | f
~ . - (3.13)
|,>¢*) (F| IA%) I

Hence
-[E] ] - T\ o
(Al = _ o s (3.14)
' [z] - [c] -[D] .
, [c1 [D] .
[GH] = _ .7 (3.15)
(Al [c]
and

I =

F) :
Z((EI,(FD[GH] (:;) . (3.6)

.
(det[al)? o)

We have thus compieted the multiple-factorization formulation of unitary
closed multiloops. ~This formulation can easily be extended to nonplanar
and overlapping multiloops.

We ﬁow carry out the calculation of the individual te;ms'in the
exponent of Eq. (3.16). We first separate out all Koba-Nielsen variables

associated with the N loops in Eq. (3.9a) and (3.9b):
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(3.170)

> (3.19)

R ' B 7| k
7)) = Z YRy () + Z YoPo [B + 1] K B >
EE o €S R SS |
- (e |
BT | i K,
_ ‘ —l' ) . 1 ) .
- Zo L % { ? } ka) > (3:172)
i B - 6 + 1 k
X, L) p=(X) | (Bfr) | "B+
S+L - . : | ; | llii
. , , »
|Ey) m Z Z Posy (O F 2 o1 )5
VIC SR CANN-Sr ¢ BN PO L P
\ | T () 1B
where
-1 1 S | 1
Q (x) = —3 -7 Qa(x) = T - .
1 - Ott' _ C%__o‘._l_>cl-_]:)
. o . a T < (3.18)
The zero-order term can be obtained from Eq. (3.17):
I, 2 exp((E|F)]
S+1 B | ' V5
- TT l | (L,;} s
i,J=0 Q,B,T=
i,3= {a( X1 | B ()
-1 ) 7RL,e,e ] M, v a0 ]
| v o
=1 A~ \
T Py Py (7L -
- a "
L +_ 2] (r;&;x)l
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where ka + kOH‘l = k_ + kB"‘l = kY +ka+l .= ; ki = g k., = O)

and

~

. . 1 .
pa+l(l) = m p(O!,OHl,OHEI,l) . ) (3.20)

In obtaining Eq. (3.19), we have used Egs. (2.20) and ( 2.21). We also
use the fact that the sum of momenta is zero to move all operators to the
. side.
yJ
We can define the projective operator that corresponds to going

‘around the @-loop as

1A -1 Al -1 ,
By(%) = By "QpRui (X)s By T(x) = By Ry (%) (3.21)
We have
RNY) = v | |  (3.22a)
107 yOﬁ = ya+2) . ‘ .
R —l( ) P (5 22b)
o Yo+l - yk_x+l’ * :
and, from Eq. (3.17),
) S+1 i ki
| B ~ -1 _
5 = ) BB 8 | K , (3.23a)
' i=0 B + 1 k .
AL, K)o (afp)| "B+l
ro1 ] 5
| S+1 a » |
lE,) = Z Pl | X * 2| L3 . (3.23b)
i=0 B ' kB
i;éf(;\/,s(ﬂ] w1l K
B hods) | B2
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With Egs. (3.21), (3.22), and (3.23) we can simplify Eq. (3.19) to read

S+l __kl X
1o = 4ol by -y (y)} E
a=(Z} 1,30
i,j#['&f,iﬂ}

. \ -k, °k
"rs+l ¥s R(y)l Ply, -rv)| * ¢
' ‘II ._y, ‘_

hd - ‘?"5=',[3<] 1= yi o () J (afp) "

17“%:
k_*k
X Vg o ) Yae1 ~ By yup) TR
Vg - t<ym> Yo - Ry ()
o)
lia%
Vg = BoylVg) g - Yy o'k ),
X Vo " Yy Vg - Bol¥y) (5.24)

TprL o ,a ( B?éa) .

To calculate the first-order term, we note

|F) [C1|F) + [D]|E) ), |
[GH] ) = ( | ) : (3.25)
lE) (£]]5) + [C17|E) IE), |

Hence we need to calculate the four quantities

©r), [Bllg), (EE), (ElE) . , (3.20)

We observe that these four quantities are the only possibl'e ways that
the state IZ\‘*) can contract with the state |%), both in the loop-

number space and in the harmonic ‘oscillator space. We therefore expect
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" .in all higher orders. (This observation is also true for the nonplanar

and overlapping multiloop case.) This can be checked by examining the

higher-order expansion of Eq. (3.16). We calculate these four elements

by using the identities of Egs. (2.20) and (2.21) and get, from (3.23)

and (3.10),

+xj
~—
1!

"o 5

lF.) =

%§>I

-&B B).

S+1 i ' k

i —
Z Qa'.l 0(%) §B+l RB_l_ Y ‘ k., , (3.272)
;:%Z’,37+1} o } (8#1)| *ra
S+l ' : B ké
14X, +1) B x v
| (L/pg (B + 2 )|
"+ L pr) (3.270)
S+l o e k; :
:E: 0§g) §ﬁ+1 Ra'l v & ), (@), (5.27¢)
3 L) R
| Ky
S+1
2: ol%) S B
ap R gL |(afp) ,(3.274)
i=0 ) ’ k )
14, L+1) , P K
Q(L/pg,y (B *+2 )
_ . |
LY+ (er)
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where summation over B,Y is understood, and

N plemee))
o) = pyle +1)|1 - — | oMz =x,  (5.280)
ETE )
(é) | : p(OH-l,l.B-l-l,Ot,.B). (2) o
OO‘B (x) = pOC(B) 1- 1 ' K OOQ (x) = 0, (3.28b)
RO |
o o[ peeeten) (3)(x) =
050 () = By (e4) |2 - — |, =0 (.280)
1- pB+lia+l$i - .
o p(a+l,B,O!,B+l)' : ' _ -
ol () = py (@) |1 - — oMy —x.  (3.280)
L- pBla+i$xb

By using the identities involving the cross ratios in the Appendix A,

it is easy to check that we have

1 ~
éB) B+l( )

%

Oég) 5+l(x) a+l(x)’

(h)

Pa(x)) |

Py (X)) '

pB(X)

il

B () = a+1<x)¥ - (3.29)
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where 5 (x) = - ) (x),= 1 . Of
B D.(x)’ B+l pB+le$ ’

P
Oéé) = Po ﬁéil ’
q;g) = D, 56-1 ’
Oég) = Pa+l géil’
% = Taaf |  (3.30)

. Substituting Eq. (3.30) in Eq. (3.27) and using the identity

BT = TR B () =oiaG, C(3e31)

and the definitions for R ¥,

R = R0 =5, @y By (0, BT = B 4, ),

a
(3.21) -
we get . -
S+l r i ki'
cC . |F) = E: 5 .rRTrR7Y] v K
aB'p a+l "o B Y s
i=0" y+1 k
14, ) (B#£N| v+
N K,
S+l 5 | x
D _|E.) = .. R 1Tr N (o)
og'BY T a+l "o Bl +2 kB+l ‘ ’
1=0
14X, L) v Ey
L7+ Mpdn)| e

Equation (3.32) continued
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" Equation ( 3.3%2) continued.

S+l | S SN
Rpls) = ). Fa B T kr) (078)
. i=0 Y+ 1 k. .
' 14X, Z) BAT) | 1+’
-y .
1
- S+1 o B8 5
~ T ' o
CaB IEB) = Z pOt+l RB B + 2 A k6+l . 1(3'3‘)
st | “r
i ) |
’ KIS (V%) kr+l//

In Eq. (3.32), summation over B,Y 1is understood..
It isﬂnOW'stréightforward to calculate the first-order term.

From Eq. (3.25) and (3.32), we get

~ -l -i-
IF); = Z Z Py By Ry Y kT>
| WK (Bly-) Al e
8 K |
~ . -1 B
¥ Z 5 R TR , (3.33a)
a+l o B
5 - [B ’ 2} k6+l> |
() - o

| -8+l | | i." | ki
IEOt)l = Z Z Dol B [ Y] kY>

2, ) (Bl " e lra?
y k) ( '>V
D, R [ ] : (3330
= o Pl k6+l> | -
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|F)

We observe that the first-order vector ~1 differs from the zero-
|E),
| |E) S
order vector essentially only by the insertion of the
®)/ |

+
operator R_-. This, in fact, is a general feature for all higher-

B .

order caléulation.' To see this, we again represent the GH matrix as

|F)
From Egs. (3.15), (3.25),
|E)

(5 23), and (3.32), we see that the operator is

~an operator acting on the Vector (:

— — A ‘ -l/\—l V N l l .

. ¢ D -pa+lRa p8+l( )B poc+lRoc #R3p3+l( )B

w1l o= | - o - (ofB)
[GH]aB = = .
- T SN | : R
Ay Poi1Pei1( g Po B B+l( )
(ofe)
(3.34)

Again, this GH-operator representation can be used for.the vector

|E), |E)
) = [onl” .
|§)n ‘ N . 1)

The remarkable feature about this GH-operator representation is that

+
[GH] can be found by inserting RY?RBt---RGT (total number of R-'s

is n - l) in Eq. (3.34). i.e.,
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t]n-l T

where [R¥]" =R * RX'---Rat (total number = n - 1), with the
restriction that ' in products R 'R~lR , . Now we
a’;( - G4

can dlrectly obtain the nth-order result by sandwiching Eq. (3.35)

between

- 7))
. s and :
[CERR ()
EQEHFD[mﬂ (: j)
|E)
-3k, ok,
i I [yi - [3-]a61(yj)} | »_J

Lf i,Jj=0
i,34{a,a+1 )
’ . © y-k. -k
_ S+1 : +-n+1 i A
. . _ [Ri-]n"—l( ) .
a,,8,0={Z} i=0 Lyi ag a+l’ | (BIN)
| A&, L+1) |
_ki.kx
y; - [R JqﬁnRx(y "o
v. - [R¥1_"y.)
* B » (B#X)')
T in+l . +.n+l v -%kB.
X Vg - [R7le () Vg - (RT3, )
1 ot n+1
. G,B,“‘,S,)\_zﬁx"} yB - [Ri]gg (yk-f'l) yB+]. - [R ]055 (y}\.) ;éCX

,. Bfary
NED

-k -k

Ny Ve - Bl B () g - [BY00,) PN
Vg - R () Ygu1 " [R+]a6 R, (v,)

)

Equation (3.36) continued
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Equation (5.56).continued
,,  : C . . . =ik ek
R0,) - R RG) v - B | P _—
: " 3.3
Ry(vy) - RSN) v, - RS R, () ((f
where n > 1.

We note in Eq. (3.3%6) that the .ka
different orders.
of cancellations in the terms involving ¥y

points Rx+w( ) of the projective operators R, .

operator occurs in
This is necessary to facilitate the infinite number
which lead to the invariant

In Appendix C we

vrShOW'hOW the cancellations actually lead to the invariant points.

By combining terms of all orders from Egs.

and(A2.5,6), we thus obtain

I = 1 '!m‘ I = /]”“\\"’[/
= — L ® ———T
~(det[a])? - (det[al)? ).

(3.16), (3.24), (3.36),

n=0 a, e+ ,p=(K} n=0
HL, L)
' Lk -k
X ;- EEAG)) ‘ i ’HW
'°’1B)X— } =0 1i,j=0
T,
-k, 'k 541
g 2 Tl ) xﬁﬂ’ e
n+l (l) Y. -y,
vy, - (x>77) V&) i-o i o
- J (8#1) & 120, )

- e ) 1, (1)
X TNI [ I (eT [Ri]ggl(x?l))
h=0 - [R7gg (7

G,"';ﬁﬁ,k={§f}

Equation (3.37) continued
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Bquation (3.37) continued
' 2k °k

xg)f'ﬁqasbia)

atp
(5£x
(1) 1) | ke
X - Y y - X . ) o
v e cy R | (3.37)
~ S RGN 1) (2) ’ B
%Pl P (o) |
where Rir =~I and X(l) x(2) are the two invariant points of R i,
ad - ’ A J A v P . ‘ >\,‘ . -7,
(1) _ 5 - _ (2)
x)\ - R)\ (Zl) = y)\,'i'l’ l # x
2 : 1 ) ‘
x>(\‘ ) = R)\W(ze), o 7, #xf\ ) ) | (3.38)-

We note that all factors in Eq.. (3.37) which contain the

variable y,, @ = {;Lp.} are cancelled by similar factors in ‘{YS+2]’.
Eq. (3.6) |
| S+1 '%ki.kj
o) = g - Ry - VI, - ) vy - vy) |
v . :J"O ‘
:jié(;\{ ;f"’l]
.k .
S+1 1 o N
(1) k'oz'.ka
X : (xy 7 = ¥
a={X cx ‘ : _
i;é{ ;;(,f+

Equation (3.39) continued
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Equation (3.39) continued
| | 1k -k

/. R A TTS““ e
( [68) Y (2)~ . vy - ¥55)
0,p=(X) | Fa = ¥e) 0y = %5 D (o) 1=0
| o i,
(n=0, 1#3)

» -ik °a o -1k ° Ly 2
[ | (v, -7, @ @M oy) 00 O -xH)y e

o=}

X @y ) i C(3.39)

where we choose the ordering v > yj if i < j. By combining Eq.

(3.37) with (3.39), we get

. | - oo' S+1
(o )T - — 2 /‘\/r ’H
TE (aele)” 6=X) Ior 1,3=0
. }Ji‘éz :('*'l}

(n=0,1i£j)

1k,

k.,
)( by; - [RT 1, ( ;) 1l

-k. *k

. 1755
/’YMN““"IJ ® S+l v - [Rt]aBn(xﬁz)) _
1 n, (1)
. - N vy - [R=1_“(x77) |
3By A= 02/} 0] :3¥%\/ i_*_l B by (B;é)\.)
‘ -%ka-kx
Tyl o™
' + n 2
Oy veey8,8,0=(Z} n=0 (2) 5 (x (l)) xél) - [R7] (xi )
| )
_ 7 . , , , 5o,
L SR 1 2
S+1 . 1 B
’l ' (v; - "' ! [(y% ; 0100 - Xé ) ] >
1+l ' {1
| (x =y, )Ty = )
1%—[,2/+lé(} O{{i’} a a-1’' Va2 Yo

Equation (3.40) continued
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R a.-1 a,-1 -a -1
%o oy 0 (e ) O G -y 0 G, )
)( ¥y = ¥ - ¥y) ~ (3.40)

We note that the last factor in the brace { } of Eq. (3.40)
is identical (except for the product sign ,1~,1/ ) to those factors
in the single-loop case, Egs. (2 41) and (2. %5§, which are cancelled
when we transform from the set of variables (ta,ya,ya+l) to the new
set of variables [X, (l) (2)] [where- Xa,xél),xé?)' are the multiplier
and the two invariant points of the projective operator Ra corresponding
to going around the « loop].

In ctrict analogy to fhe single-loop case of Egs. (2.&1) through
(2.4s5), (2.#6), (2.&9), and (2.50), we can choose the particular frame
NCOI X(z) o,

a(t a+l)
a B(X ,x(l);x(g))

Y

o = 1 and compute the Jacobian factor

 for the alloop. We then eliminate t YoVl

in favor of X ,x(l), (2) ,and we obtain the frame-independent. linear

dependence correction factor (1 - Xd). We can then go back to a

general frame [see Egs. (2.46), (2.49), and (2.50)]; and, in particular,
’ (1) _ (@) _ -

to the frame .xB = o, x6 = 0, yB+2 = 1, where f refers to the

B loop (B # @). Again, in this frame we can compute the Jacobian

PR o(t,,y )
factor JB = L B,(§;*ﬁ%%j and eliminate tB,yB,yB+l in favor of
prp 7%

XB,xél),xée); so obtaining the linear dependence correction factor

1 - XB) for the B loop. Since the overall Jacobian factor for N loops is
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a(t Yy ’y +l’ B ﬁ’yﬁ+l’ '°.) -
3%, ,x(17 () x x(;),x(g) )

)a B’ 2

TT Mty VyVga) ] ! |
- omoris 1 o (5:4)

o= {Z] a(xoz’x %y ) L a=txZ}

thus the overall linear dependence corréction factor for N loops' is

] @ -x), | | | (3.42)
a=(L) ‘
~ where Xa is the multiplier of the projective dperaﬁor Ra going
around the o 16op.

We now put everything bbgether by combining Eqs. (3.6), (3.k0),

and (3.42), and we finally get the planar N-loop formula (Fig. 5), .

- N —T -2(k )-1
FPL(N) = f ‘ d’k, X, X, (L - xa)
o=(Z ) o={HK) |

S+1 ‘ :
a; él)dxég)[dya][dyb][dyc](ya—yb)(yb-yc)(yc-ya)

# a=(X)
)( .lafﬂ}

Slﬂl (¥;-¥5 1) l I (X(E) (l) o (xa -;ﬂ_ Iy R0, Vo))
i+l [ él ~ (y +2)]

1#€z'+l Zf]
X ,Ti%/( y )ao ﬁ (thtl) Vo) o1 - Ry (Vap) ! _.O
Vi = Yi4
| l;%f <} l a0 [x((xl) - Ry (Vo)
i 1,

Equation (3.43) continued
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Equation (3.43) continued

x 1

- _ I
(det [Al)?

o S+1

(IR

all a,p,---=(L) n=0 1,3=0

L (n:O,i#j)

Vi

)< 1 - [Ri] (xil)) o )

(B#n)

n
aB

i=0
i, L 1)

1,346 ,L+1}

Xél)- [Ri]agn(X§l)) «(2) (& an(X£2)) TE o

UCRL~-2005L

£ n _%ki'kj
| o) - B, )

-ix .k

U FOrE RO A

B ad

n(x(2)) S

A

(3.43)

a)

where ya;yb,yc are any three fixed variables of the set of. § + 2

variables {?i,iﬁ{;(,;f+l}, i = 0,1,++°8+1; x

(1),xé2);a={;f}}' The

(04

ordering of these S + 2 Koba-Nielsen variables is shown in Fig. (6a).

e + . . '
The projective operator Ra-, which corresponds to going around the

a loop, is defined by its multiplier Xd, and its two invariant points

L1 (2),
a o ¢

f ts) - z[xég) - xél)]Xai‘ - xél) xég)(l - Xai) .
o z(1 - Xat) + xé?) X.ai~ - xél)

The notation [R*] represents

n
apg
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+] n

- = i—.iAo- i‘
[R'OzB -RO‘R)\ Rﬁ,

with total number of [a k,--oB} equal to nj in the particular case in
. : 0
which = *
] n =0, [R ]aB

' ;i ;%,, or R;%Réi,. The dlvergent factor (det [A]) z will be

- 1. It is 1mp11ed that X 4 7' in product

shown in the Sciuto three-reggeon formulatlon to give

(det (A1)~ 3 TT(l - X ) : (3.41)

(R}

~where (R} denotes thevprojeétive groﬁp elements‘genératgd by Rai,
= f&f}, i.e., it contains terms like RainRBim;“f*a,B,'f' = [;(};
and n,m,+c+ = 0,1,°*°c.,. .The symbols Xﬁ; denote multifliers of the
projective group elements. » |
We see that the pianar N-ioop formula, Eq. (3.4%3), is hardly'
different from the planar single-loop fofmula, Eq; (2.50). We interpret
varioué factoré in Eq. (3.42) as follows:

(1) The volume element and the factors before (detv[A])f%,
together w1th /T_1/{y - y. -_kl.kJ, is projectively invariant. It is
symmetrical w1th respect to the (S +2 - 2N) external legs and also
symmetrical with respect to the N lbops. |

(2) The factor (yi - [Rf]ag (y )}-_kl kJ rdéscribes all "lires"
connecting the external yi”leg w1th'the external_ yjbleg and which go
round the N loops a total number of n times (in either direction).

The restriction that ;(’£<§f' in the product %Z/%;}/ or %;}%zuimplies

that a line does not go successively round the same loop in opposite
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directions. The n = O component describes the line connecting'the
external legs vi with yj without surrounding any of the N loops.

(3) The factor

Y -k, -k
v - [Rt]asn(x£2)) oA
y, - R M|
ag x)\. (Bib\-)

describes all "lines" connecting the external s 'leg with the center
points x£l>,x£2) of the )\ loop and which go round the loops a total
of n times. The final loop surrounded must ﬁot be the A\ loop.

(4) The last factor in Eq. (3.43)

, ; ' -3k -k
) - A )

Xél) ) [Ri]ocan(}%(\gy) Xég) ) [Rt]asn(xf\l)) ok ,
| (a;éx

describes the "lines" connecting the g8 loop with the ) loop, and going
round the loops a total of n times. The first loop surrounded must
not be the g loop, the last must nét be the x/loop. The n = 0.
component descriﬁés the lines directly connecting'thg B'loop with the
A loop without going around any of the other N - 2 loops [and the
(s + 2 - 2N) eiternal legs].

(5) The divergent determinant factor, Eq. (3.4k4), describes all
"closed lines" going around the N loops. The lines are not distin-
guished by their overall directions or by the point at which they begin.

To conclude, we see that we have a mathematically exact expres-

sion for the "rubber-band" (or fish-net) model with any number of holes

cut in it. Our planar N-loop formula is manifestly projectively
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-invariant, symmetrical with respect to the N loops and the § + 2 - 2N
17 t

external'séalar legs, and hence, manifestly dual. The extension o)

nonplanar, overlapping or nonorientable (or both)'Nhloopvdiagrams,is.straight—
forward. In fact, we can almost guess the exact formula for them,
although the details of the proof will be mathematically more complicated.

They will,bé given in the subsequent paper(s). .
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IV. THE N-LOOP AMPLITUDE- IN THE FORMALISM OF:SCIUTO

Thepcalculation of the N-loop amplitude via Sciuto three-
'reggeon vertex fﬁnctiohs parallels the previous calculation, exoept
that duallty and proaectlve inveriance are not obtained until the end.

The sequence of manlpulatlons w1ll be as follows we firet
1nsert one set of 1ntermed1ate states }x >(Nul in the upper portlon
of each loop, we then notice that the resulting amplltude consists of
the vacuum expectatlon value of a product of propagators and vertlces
(which now depend. on %1) by contractlng over these propagators and
modified vertices, we will mix the various A\'s, thereby obtaining a
Gaussian integral much like before; finally, we.perform the integra; by
~ going to the principal axes. |

In writing the amplitude; we shall express the base line ofr
operators in terms of "a" operators, - "ot operators will
denote the upper portion of each loop. Into an ordinary multiperipheral

tree, we shall insert N loops, each denoted by L (see Fig. 7,

FPL(N) = (Cla Vas DsdS Vi’l Di‘l V§+2 -1.)<Z+2 %
x bV -1 Dz_l AR od,, | (h.1)
where |
1 = (ol Wﬁi Zﬂ D Wopa !0y

Wa+l

aba

il

expl(k,,[a") + (a"[0), * (ngap P

X,exp[(ka+l‘a) + (alv)_1,

Equation (4.2) continued
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Equa.tion"‘(l}.E) continued

»exp[(ka|a+) + (é+rb¥)_] ?Xp[(na[b+) + (ga]a) + (a[b+)+],

aba.
i + '
v,o = exp(kla’) exp(k;la) ,
ol , 2
. R_-a(xn, )-1
i _ _ S -3 i - -c 2y -1 2 1 2
Dy # dx; x4 (1 Xi)_’o‘(“i)“eﬂi’zm’
0
k,, Ko (k.2)

(Notice that we have dropped all harmgnic oscillatqr indices. Also,
linear dépéndences'and the (1 - z)R-a factors have been omitted, since
~they will become critical énly at a later stage of our work. )

We now insert coherent states and contract over """ operators:

+1 o+l an. . '
(0, Wopg Pa Do |>‘a><>‘alwzbalo>b

1 .
= du,, exp{(a+]ka+l) + (a+|M+q1|N1)}
0
X exp{‘(alkml) + (all"l_udl>\o‘)'}DZf+l exp((a’]k ) + (a+lM,|>\&‘) ]

. ' | ~o¢(ka2)-l
X exl(alk) + @M, exl(ny,lu lng) = Gyl v,

X @-u)™®  (h3)

We shall find it very convenient to redefine  our momenta:
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o) = P 2 iglg)
k<')z+l) = Ikoc+l) +M-ua[>‘a)’
B = Is) +ub)
k) = 'v k) + M, [N,
%), |k)) = Jx,)  if ifa or a+1 ,
vl = exp(Ei|a+) égp(ii'la). ' ' v'(u..h)

In the new notation, our amplitude reads

| /g N ) 4
FPL(N) = | |/ du jd-a— =)/ a*
oc:[afl} 4[0 * VE)[ .\[5> ;
.-a(kag)_l _‘C, . |
X [u, (1 - u,)  exp-(3X,) ]
X [e@{(”aﬁlual)‘a) - (“otlx&é)_}j, ol vaLS ba.sf"v 0,7 llog (4.5)

a "a 'a
[{Sf} represents'the set of all lobp indices.] Notice now that the
vertices vz+l and V;a contain the loop variables.
(A

It is now & simple matter to contract over the "a" oscillators,

_thereby leaving a pure c-number expression:

S

2 2 = ll
a

««:V D"V
aa a

S 1 —Ol(n.g)-l . S '
T wgm 2@ o) G, 1), 6)

i=2 10 i>j

- =8
T = (0], v,0 D 0),
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. 3 , .
T ' = -l = - = = . i
where Xj+l,i =Y YJ- EERRZ —“ﬂl_! Xp» ¥, E 1, Vo = 0. It is not
hard to separate the coefficients of A\, AN¥, etc.:

T = exp Z (k3|x3+l ilk’ =
i>5 - a,p={J}

expg (1o Ay 12,)

¢ OgllBglIAg) + Ol 1he1Ing) + (31110

s | | |
X /l-\‘rex-p (>\Y|EY) + ()“?]FY) ‘ l exp{(k. ng+l llkj) , (_4.7)

1=(Z} i>j
where
-1 .
[AOtB] = u, My a1 Va1 My Ug (Ol > B), = 0O otherwise,
T .
[Baﬁ] = u, My, B M (a >p), = 0 otherwise,
' ' v -1 .
[C_OtB] = M+ ¥y y3+1 M_(a- >pB), = 0 otherwise,
. -1 ' -
[DOtB] = M, ¥, yB M_(a > B), = O otherwise,
o} S ,
_ T -1 -1
&) = Z uy MD v vy Ik Z Uy M, V5 V5 [y
j:l j=a+2
L I“ourl)
a-1
- L4 -l
T = Y w, v vy z My vy ) =) (4.8)
=1 , J=o+l

We shall symmetrize these matrices as follows:
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[A] = ([a] + (a1%y, (8] = (1] + [01%), [C] - ([B] + 17y, . 9)

As before, we now can perform the integration via the principal-axes

method:

2

2Eultgl)

Ix,) %)\
+ (&lE) )
|22 Ing)
fﬂ/expuk ESNER) - (aet [41)7 exp{%((gl(wmrl

i>3
IE) | \ .
) exp{(k |x3+1 kDL . , (k.10)
|F) .
where ‘
: y -[_A'] [1]1 - [C]
[a]l = ( = [c] - [H],
" [1] - c1t -[D] | ~
where

[G]

/0 1N\ [R]  [T]
( , m o= :
1 O | : €1t (D]
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NoWﬂthét the integrations have been perforﬁéd, we are at the
‘stage where the projective transformations Ra must be chosen. When
the matrices contained in [A] are contracted oﬂ ‘E) and |E), the
action is equivalent to a projective transfqrmatién because of the
action of ‘M+ and M_. Once the projective transformations Ra have
been identified, it is a simple task to reformulate [A] - entirely in
terﬁs of these operators. Fortunately, as we shall see in the section
concerning the singularity structure of the N-loop amplitude, the choice
for the projecﬁive transformation is almost forced on us:
: 1 o+l
R = Yy : ' ¥

syt (4.11)

At this point, we mention that the contraction of the binomial

matrices M+ and M upon variables leaves a residue term in the

following fashion:
Mx|k) = ([1-x] - [1D)]K). (k.12)

The extra "L" left over from the contraction with M_ shall

be called the residue term. Though it plays & critical role later in

the paper, we shall drop all residue terms for the present. When such

terms are dropped, it is not hard to reexpress [A] entirely in terms
of R and an auxiliary operator K which shall vanish at the end of

the calculation:
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| |E): e | IE) |
((E.] (FD (2]t < > _ Z (@.I _V(ED[HG}m ( >
D, w0 | NIp)

w S+1 | '
= N
e -1 -
r=0 VO{;B)Y,8=[X} iej,,e,m=l Kyd Iy K B"y -13«—. ,
G m T e
(L£r+1)
(m#)
. ; r
- 1 -1 -1 -1 .1
//KBaya v ET() KBy, VeBs \
7( \ o 1 -1 1
K - K
y 'lyYK-l( ) y. ly.B
B B Y875
-1
/By Vi) | - ,
X ) | (k.13)
-1 -
where K(z) = 1 - %, K1 (z) =7 f = KL ;é% . (Notice that B and K

operate to the right.)
Though awkward in appearance, this combination of R's and
K's simplifies immensely when the contractions afe actually performed.
Fortunately, [HG] retains the same form regardless éf the order of
the expansion, which guarantees that the K's will vanish in the nth-order

calculation if they vanish for the first. The second-order matrix,'for

example, is
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[HG]O‘B’Y@ =

e
(ofo, 0#7) .
s
(7, v45)

At this point, when the contractions over all indices are about
to be performed, we shall make ouf second simplifying assumption: by

dropping all loop momenta terms;-we shall restore conservation of

momentum. (As we shall later see, our two assumptions will cancel each
other.).. By restoring conservation of momentum, we are allowed to

-make pfojective'transformationSvat Will;
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RN T T ey,
(&l &) ( > - Z Z (kjl—i"%%g)

|F) a={(L1 1,3 i'a
-1 -
. K yy.
+ (k] O”Yl —x;)
Tl 1
5. L
oo Y
P _  | . ckk /2o
— (Kyoz__lyi - KBy lyj) oY
(L} 1,3
_ ., -k.k /2
X (& :-Ll _Klyayl ) Y
By Yj |
g N L KR/ L -kyk /2
= /¢ l ‘ (v; - YBYy ¥y) ¥y - YoBAy Vi)
ca=) 1,5 _

(Notice that we have'summéd over all ‘harmohnic oscillator statés, and
have projectively manipulated the contents of the parentheses because

momentum is conserved among the k's.) Though we have exhibited only

the zeroth-order calculation explicitly, the higher-order contractions

proceed in exactly the same manner, yielding terms such as

.
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] o kK, /2 L okk e
/{\u—/( »{u]j(yi - RqBBYj) i v(yi.' Roﬁg lyj) ?}J | ﬁa]

-k.k./2 k k. /2

X -"a Ry) Ty, -R'LR 7 S (R T

(a #p if 'Rd and RB-1 are juxfaposed).‘ In general, all terms may

- be expressed simply as

TT /Tmr/ ﬂ( (R )(m) 5 kikj/g : | (4.15)
a,B= ( ,J . m=0 . : . ' : :
‘<Again,v R> and R-} are never- juxtaposed; also, . i % J 'when. m = 0.)
Notice that we‘have almost derived the predicted result. .
In our haste to derive the above result;'we'have negleéted

several critical factors, which we shall now investigate:

(1) vWe_have neglected'all'terms associated with the loop momenta ih
£) and |F) | |

(2) We have negleétedréll residue ferms cémiﬁg from contractions
.over M+ and M_.,

S
(3) We have neglected the term exp( z: [k |x. |k )]

1>
(4) The variables associated with k., and k +1 (the loop momenta)

J+l i

are not the 1nvar1ant points of the projective transformation R
' In short, there are an infinite number of terms which do not
agree with the result found in the pfevious calculation with the N-

factorized tree. -But, as we shall see, all these infinite deviations
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canéel in\a most fortunate manner, term for term, ﬁntil only‘the
invariant points are left.

| vThough the results of the cancellation are quite elegant, the
details afe quite tedious and involved, especially since several types
of cancellations occur within each larger one. Since the details are
presented in the Appendik, only a short outline of the procedure |
is presented here.

The caﬁcellations occur.because the.residue terms, which occur

only with loop momenta, mimic the ofiginal main term when all contractions

are performed, except that the residue terms occur with one less power

of R than the main term, and they occur with the opposite-signed

exponent. In other words, for every expression containing n R's,

Stl K,k /2
1%

g = Rfige - RY) o o (k-16)
i,Jj=1 '
we have a series of residue terms of degree n -:l which occur with

only loop momenta and with an exponent equal in magnitude but opposite

in sign:
S+1 ,

17

i=1 T={}

: +k.k_/2
vy “RBgeRy) T . (k.17)

In general, terms involving the loop momentum factors occurring
in the main term of order n cancel with the residue terms arising from

‘the n + lst-order main term. This cancellation is exact, to all

orders, and for an arbitrary number of loops. We are left with one
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uncancelled—termvinvolving‘ R#, wheré n approaches‘infinity; It
tufns out.in”fact.that the variable Yy ‘(whiéh is 323 the invariant
" point of Rd):becomes replaced by Rafya, where n,'aﬁproachéé infinity.
In the limit,’however, this expression becomes arbitrarily close to the
invariant,point. (We_femark hére thaf a.secénd series of cancellations
occurs When‘the R's are projécfively mo?ed from one side of the
expression to the Other.v'ﬁetails are left.to'thé‘Appendik.)

:1Th6ugh the details are quite involved, the answer'is'quite

elegant:

s o EN
() Gyl sl oo (@l @) & < > j

i>j IE)
*© S+l o o Kk,
= ' (Wi'“(Rt)ég) Wj> 1
m=0 i,J=
x,p= } (‘i%Q,OHl)
(j%B,B"’l
(m=0,1#j

X} (-v.) v | » | (.18)
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where - W, =¥, (i #0a, a+1)
Yo T 'xég) = Ram(zi)’i 2y # Vo
Vol = Xcgl) = Ra—m(zéjl ..ZE ? Yo
.RGB - SGB‘ if m = O.

Now that. the final answer is within reach, we remark thaﬁnthe
total effect of linear dependences upon the N-loop planaf amplitude is

wto modify 91+1’_

1 2

R-a(n_, 4 )-1 '
o o+l’ T -C
Do ™ dxa+l Forl (1 - %)
0] ' o
R (419)
o TaHlt T 04 o}
So actual;y, whenever %a+l appears, what is rgally meant is Xy41?
where
)_{' = XOt+l(l - th+l) (l{. 20)
Q-+l {1 - xa+l[l - uaxl - xa)]} '

The choice for the propagator variables is displayed in Fig. 7 ;
notice that all (1 - z)R factors coming from the Sciuto vertex have

been added in explicitly. Thus whenever x appears during the

o+l

contraction over oscillator states (as in or in >Ra), it should

Yo

be replaced by X ... Also, u, should be replaced by ua(l - Xa)

as in Fig. 7.
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In summary, we find’

YFPL(N) = ﬂf .\/->
X [._ O | (x*D [A] < > ((El (Fl) <
%) )7

dk

X a0 - %) ¢ -
Jo
| o )
)(' (1 -u) a(ﬂa+2) [ - X ] ot
| a 1 el - uaTl x.)J
. S 1 ’-Ot(nig)-l e
i dx; *; 1 -x)
i=2 | Jo
X l I expl (islx5, 5 1%) | | (4.21)
1>J v
| w -
. - -8
j' i a*i f ﬁde f i ‘ dw, 9
a= {;/} R, p=X) P Ry i=2
’b -~ ' -a(k 2)-1 |
‘ (l-XR)/r'(l'X‘R?)-h'! l X P )
A o={L} ¢ (®) : e=(L) P

| Equation (M;EE) continued
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Equation (4.22) continued
g f[-If’ - -k.k./2
. ] [w, - (Ri)(n) w,l *td
)( . 1 i ag " J 4
| n=0 1i,j=0 a,6=(Z)

(ia,a+1) -

(54p,8+1) ¥

(n:O,i%j

7< ':/I~1/' (Wi - i)
i=0
DAY, (-1, (K1)

e

) R ()]

ot a1

2

w-1) " Yd+2)~(xcgcl) - Wa-l)} 2
J

[xél) - Ra(wa—l)]

b 1 . (wo'— Wi)(wl - wS+l)(wS+l'
< S+1

i=0 a={X)
\ (14, (K1, )
e = 4 (0)
where Wy = ® = W (R )an = By
wl = 1,
Yo = O
{R} = set of all closed loops,
+y(n)
(R—)aa = set of all open loops,.
_ (2 (1)
Vo= % Yowr T %

(k.22)

(see next section for
the determinant

calculation)

‘ (1) '
! l (wy = wy) /Iﬁ‘d([(Ra<wa-1)-wa+2]<%a 'Xég))e(xél)'wd-l)]

/
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We have made use of the following identities:

el o o N |
Ra (zl) = Vo = Yo ¥aal X1 7 # Wa+1 ’
-0 ) . B . .
(22) = Voul T Vg ¥ %2 7 Wy

»a
_ - u (1 - X )x +i , '
M T-x +l)[l wlg -1 - % ))]’

> ) ) ' -
Yo Yol XR Yo 1'(1 X ) x +1( 4], wa_)

ava 10 T - (- x,Q -1 -x >)1 (1 - x,,)

and
(Wd+1 - wd+2)(w XR (w a+1 a-l)(wa - WJ%é)
- '[Ba(woc-l) - ka+2]( Y Wa%l)(wa' -“woz-l)v
. o [ - R (w l)]
= uoz..(‘l - xoz)(l - xa+1) all(l - "a+1)—l (l___,',;"”c );l(l )-l'.

o - xOH—E

The value of the multiplier, unfortunatél&} lies between O

and «. But because of the relationship

(2)
X - Yo %
g €9)
we see immediately that the invariant points are equal when XR = 1.

[0

It is not hard to-shew that the invariant points are strictlqurdered

in the regions 0 < XR <1 and ,i <-xR, < w, but they héve reverse
a .
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orderings in thes’é regions. Beca.us.e the imaginary part of the arplitude
remains uncﬁénged if we discard part ofv the region of integration, we
shaj.l adopt the branch. where O ‘< )(Ra < 1l. The region R2 is the same
as in the previous section; Rl is determined implicitly by conditions
on the w;s (all X's 1lie 5etween O and 1).
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V. SINGULARITY STRUCTURE OF THE N-LOOP AMPLITUDE
Iﬁ'the Introduction, the language of projective transformations
was employed to great advantages; particularly impértant was the fact
that multiﬁlication by w in the single loop corresponds to a projective
transforﬁation that has been diagdnalized. The factor w appearing in
the singularity of the single loop can be seen to be projectively
invariant once we see that W’IiS actually the "multiplier" of the

original transformation R:

T‘r_a-wn) /]Ta-)cR) 'Hu-xn NCRY
n=1 '

In a sensé, there is a singularity factor for each of the closed paths
one can make around the interior point of the dual diagram. Since the
N-loop amplitude contains N projective transfqrmations;'Mandelstam

has conjectured that its singularity is simply

- x};)"l‘,, | - (5:2)
R} ’

where R represents the set of all distinct products.one can form from
N projective transformations and their powers, i.e., there is a
' separate éingularity for each of the infinitely mény topologically
distinet closed paths thfough N interior poinﬁs of the dual diagram.

The word "distinct" demands considerable clarification.
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Notice that in the single-loop emplitude terms like w_l do
noﬁfoccur,wmeaningvthat the direction one takes around this interior
point does not matter. Second, notice that the point at which one
' decides to'enter the closed loop makes no difference, meaning that we

mustn't overcount by including both P1P2P5 and P5P1P2. These two .

properties are guaranteed by the properties of theAmultiplier itself:

1]
>

X

-1’ . OSXSJ—; (5-‘,)

Xoq = Xgpr | | o (5.4)
Simply étated, one mustn't include inverses of previously counted terms,
‘and one mustn't include their cyélic permutations. o

| A transformatién R belongs fo the eQﬁivalence cléss of Q
if R has a decomposition given by cyclic per;utations onkthe

decomposition of P or inverses of such cyclic permutations.

Clearly, the singularity struéture can now be given as

. /I\j(l-vg)fh, | -~ (5.9)

" where (P} 1is taken over different equivaience classes.

Unfortunately, present mathematical techniques are not powerful
enough to prove this conjecture to all orders? Instead, a poWer
expansion will be made on both the determinant and the multiplier to

show their exact equivalence to fourth order.

-«
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Fortunately, there is a small class of determinants}which can

be diagonalized and shown to have this structure. More complicated

determinants, however, must be power expanded.

Consider the case where N = 1,

L -
det™2[a] = det™i(1 - uaM i

det” (1 - uMMx M )

-1 » 1 o+l
det 1- udM- 1l -x M+ l-x
4 , a+1 o+l

b’y + 1 - x -

. . - u .\
det'l - = 1 M a+l o M
o+l a+1

det™ 1'(1-x+l(l-u)> ( uog{?ﬁ-ug

u. X '
det™ {1 - - ol M ) | (5.6)
flox . (1-uw)l® ¥ '
o+l . [04

'But, as we shall show,

where

n=1

d;at'l(l - xM+) = ‘ l(l - yn)'u,

=[1-2x+(1- u$)%](2x)‘l. | N (5.7)

Now we let

1-x .(1-u)
0, = oL I(x . "~ (5.8)
o (ua %a+l)



b R UCRL-2005i+

‘But . X
% -24_¥<I>R.(<i>1§2-h)? L
X, o o g . o . S L (5,9)
Therefore_k'
det™ [a] =" 1 -x ny-h, | | (5.10)
n=1 . a " i o

In other words, the correspondence between the determinant calculation
and the expansion of the multiplier is so close that one can write down |
the relationship by inspection. As an added bonus, we see that the

projective transformation is almost determined:

‘ - ' "1 -X
. 1 - xa+l(l.— ua) o+l
= " T b d R = .
T (ua x:a+l)§-- e 1 x_ .(1-u))
o | | ol T

(5.11)

An obvious.generaliéation of this.operator to the‘Nfloop‘caSe has been
'émployed‘throughout the previous calculation.

[(Now we hust prove the statement made earlier concerning the
deteiminant of M+. This statement is most readily proved by proceeding

backwards, that is, by assuming that the answer has the form

det_l(l' -y) = /rT(l - yn)'l+

n=1

_ A o
(where y & ¥ 5nm)' (5.12)
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Now we make similarity transformations:

get(l - ) det(l - MM ) = det[l - (1 - y)M (1 -y )'J'

- det[ii S ()] = de_t[l - T (y)u T

- _aet[l'- M_T('Y)M‘] = det[1 - (1 L y) M, (5 }L y) 1

- det[l - < M, ] . (5.13)
(1 +79)° |

where we have used

M =1, M+ =MM .. | ‘ (5.14)
Therefore
n\k4 : ' ,
det(1 - ) ="|| QL-7) - (5.15).
o - n=1
if
% .
y = 1-2x igﬁl - hx) for 0<y<1l QED.} (5.16)

Now that the single loop has been shown to have this projective
character, we - proceed to»thé N-loop case, whose determinant is too
. complicated to diagonalize. Instead, we shall power expand the

determinant:

. Tr (A . )
det(l - A) = exp '-.Z ——(—-—l . (5.17)
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This is easily proven if A is first assumed to be diagonal; a
similarity transformation generalizes it for the arbitrary‘case.
Simultaneously, we shall make an expahsion of the postulated:
singularity and show that there is almost a ggg-gg-égg correspondence
between these two expression. |
One‘last mathemetical prerequisite and then the calculation will
begin: we still haven't shown how to take the trace of an'arbitrary :
number of binomial matrices. This last remaining tool is.obtaihed if
one first understands hOW'to.trace over one ‘M+; induction will give
us the trace over an arbitrarily large number of ﬁ+fs. There are
several ways of tracing Q&er M+, the easiest being to simply identify

the power expansion as that of the square root:

: Z ., ; ' g _
Tr(uM+) = Z ;L Igln_-ll: = = 12-' (ﬁ% - l) for 0 _<_ u _(_ 1 .
SENRITTE
n=t . R ~ (5.18)

We can reduce an nth-order trace to n - l.'by using the fact that

M, = MM :

Tr(alM+a2M+°--anM+)

~-a a a -a
1 2 n-1 . n

= Tr M M M M -
l-al +1-al+ +1—an +;L a

In general, we find

Tr(alM+a2M+---anM+) = %(—(——-l——'r -1 ' (5.19)
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whefe

‘n
g
v i | |

u = i=1 _

- - n n . n
1 - Zai * Z eijaiaj - E e_ijkaiajak 4 eee 2
1=l 1,3=1 {3,621
€ 44 .eeep = L AF ip>dp +2(p>g), (i -1 #£n-1)
11‘1215. lk P lq | | . 1 ,

= O otherwise.
For example, for n = 4, we have the following nonzero ¢€'s:
‘ (61152153;§u5613)€2h)-

Now we have all the mathematical tools to evaluate all traces

to all orders. For future reference, we exhibit the matrices explicitly:

[Clog = uon+yo-zJJ;1yBM+I

[K]as = o1 Vauy = Vs -lM+uBys+l-(yB+l " V1)t ,

[BJCXB = yﬁ(yB - ya);l-M+ya(ya - yB)-l, for (a £ 8),
Ot e

Now we are ready to compare (5.17) with a subclass of terms
found in the singularity generated by one transformation R (which in

turn may be decomposed):
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’151/}1 fiXRé)‘ - flfT/K{ET/‘ex$)(;X§nm =C{fT’;Xp_;EI§%f;;ﬁ;

o : . o .
l B ’ - . . ' :
= I , exp (- 5m ————EB————I =17 (5x21)

(e = - u)2 4 -

m=1 . m
R T
where .
1 1 ' , . ‘

xR2 + X ? = 0 - _ ' o (5.22)_

The close similarity between (5.17) and (5.21) allows one to establish

a one-to-one correspondence between the two. We shall now take the

first trace and derive the. first term in the expansion of the singularity:l8

e (2] n o [[EjT]

- -1
Tr 2: (uaM+xa+l M )
a=1

-1

I :
R =
|...l
O
i
._l

(l - hw )?
where
Y1
Wa = 2 .
[1 - on+1(l - ua)]

(We have adopted the convention of summing all Greek indices from 1 to n

for convenience.) But

13
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\ Tr R, 1-x,,(1- u)

@R = - —=r = -

2
o (det Ra) _ (ua a+l)
Therefore _ :
n ' )
. R : :
T - L o -y — ,
Tr([€]) = 2: 5 ?g—jyirzsg -1) = E:J—' X (5.23)
' a=1 RG a=1 o '

. N | » . ,
(we see that v, 2 = QR). The process can be continued indefinitely.

a
(1) 3 w=(E1%)
n
1 Tr(u M M u M M )
=3 a+ya+y(3+8 +yf3+y
o,p=1 '
. n g , ' :
1 E 1 \
a,p=1 (l - WaB)- .
where |
-1 -1
- B Tp
o " T, 1 e
@ (L - vy =¥ = Yya¥p " Vpia YU T yeya+1yaye+1)
Tr(RolR@)

(1') @ =

ByRs [det(RR,) 12

1 -X

= (y o e X+ B+l) : Ir 3, (j

1 -;x (1-uw)/
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-1 v —
=1 - Yo Va1 ~ Yp+1¥a ol B+l( - Yy )(l -u )]

1
2

)( ( uauaxcx+lxa +1 )

Therefore.
< S| | e
| ,§1¥XRO[R =4!H252____§1¢—)‘12‘—_1=. z o B2
a,ﬁ?l . ' B a,B: ROLRB o ’
11) %—Tr.([C]B)
n . )
1 -1 -1 -1
- 3 g - Tr(u My Y M UMy Gy Mu My Ly M)
Ol,S,Y= : ' .
n / r : : |
_ § %{ 1 %-1, o (5.25)
A8, 7= (l ) ,hWaBT) V : |
where
W . u_u.u "Lyt Y-l
agr = Yals o e YooY+ v

-1

-1 -1
x (l - ua - uB - uY - ya+lYB - y8+lyY Y"‘ly + u u, +u.u

ap BY
-1

-1 -1 -1 -1
% T Y Yeer T YV T Y eYan MRS LS
| -1
* yYy ay 5+1y*r+l

l -1 -1 |2
T Y eYa Y v T YotsYy T Y 5yyyoc+1y3+lyr+l)



-81- ' o UCRL-2005k

Tr(R R R ) ’ . 1
Ir') R bR = - OlR@ - % = (u 4 Tot+l +1 T+l) -
RBaRy ldet(R R R )]T? @ p P
+ o *g41
X Tr yayY |
Lo =x, (1 -u, ), L oxg (1= ug)
g 1 -X
R
X y6 yT< ‘
o Nt Y+l U )
: . 1 )
- [+ 320 (1 - w)% ¥y Yl = g ) Yofany
+ X ( -u ) y - X ‘ -1 - X y -1
o T+1 ¥e¥e+1% a?s T FraY o
-1
B+ly6 Y iy ufs ra+1¥p+l Y+l) £
Therefore ' :
n o | n o A
Z %__ lXRaXiRY _ L) éRaRﬁRY_ .
- R R Z | o) - )7
0,B, =1 agr a’_B’Y= 7 ( ROtRBRY :
= 3 m((E7); (5.26)
and also v
n . n R R R
L xRaRﬁRYRS } N 735 N
T - = LB xS
sPs T, 0= XRC‘RBRYRS | Q,B, 7, 0=1 (® RC(RBRYRSY

- L o(iErh.
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It is not hard to verify

: 1
Tr([A][D]) E -1
Q,p=1 B :
(of8) |
and
. ’ X'R R -1
Tr([A][DI[C]) = T .ain - -1 )
e
BEY
(o) '

Though only one of the fburth-order multipliers has been
éhecked for the n-loopvcase, all such terms have been explicitly
checked in the double-loop amplitude. .Because of therclose'similarity
between our original double-loop result and ﬁhe arbitrary case, we can

immediately establish the nature of all fourth—order'terms;

XRaReRvRa-‘l

e ([C1(CIAIT]| - T T
~[X} - XRGRBRYRS
a;é aé -
and )
o . Xgglzp -l
rr [(EI[B)(RI(B]) - > T _iﬁ _is - -
' a,B,7,5=(X } s By
(odp, B, 45, 840) |
Also

| T R rr ]'R -
(TR - >  TTY T
| ST RRRY lRﬁ
(B#T,040)
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1

Notice that>the sﬁmmaﬁién convéhtions aséﬁre us that no R and. R
are e?er‘juxtaposéd.‘ -

When' a caréful‘study_sf:fhe coefficienté is'-made, all terms .
expeéted to appéﬁr.in é‘foﬁrth-orderLcalculafion_do, in facﬁ, appear.
The absencé-éf‘terms for bbth',RRRfl qndi:RR-lR-l . indicates that
double céunting-within the'Same.eQuiVaience class:does not appear.

Several obvious generalizations are possible when calculating

terms to higher orders, but will not be presented for - lack of a

rigorous-justificaﬁion. Unfortunatély, we do not know'of any rigorous

3

way of profing the result for all‘orderé;' In passing, we mention that

the determihant calcuidtion has'been performed in several different
chfigurations; éll diéplay,the predicted result. Of particular intereét,
however, are the diagréms whereby the trace over one or more loops is
possible béfore'one goés to the principle axis. In the.amplitude
represented by Fig. 85, where the tface ovér the central loop is
perfofmed-first, several infinite classes of terms have been identified.
With the help of Dr. J. Scherk, the singularity for the double tadﬁole

amplitude of Fig. 8b has also been shown to have the conjectured

behavior for an even wider class of terms.
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APPENDICES
A. Useful Identities

We list useful identities involving cross ratios:

Poy,zv) = EHESM, (a.1)
1 - 'P(X,Y:erw)l = ‘P(.X’ZJY).W)’ . : (A-E)
. . ) | (A.3)
W = X,¥,¥9,2), )
P(X:Y)Z)W) P(x,y’uyz) = P(X:Y:U,W)’ | (A.4)
P(X)Y;Z:W) = P(y,x)w:z) = P(Z)W;X:Y) = P(W)Z}‘yyx): (4.5)
1 - )
P(x,y,2,w) = T . (A.6)
. 3 X, W,Z,¥

We also list identities involving M,:

MM~ = M, | - | (4:7)
M+M_T - M_, : ‘ ' (A;S)
MM = My, VV(A-9)
MxM_ = 1 % =M, - i T (A.10)
X /

M = (1 - )M — o | | RECSEY
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N
1

M —1M
-3

Mt L

1
M %

(1 - x)') = “;

M_T(l - x),

z M, (formally),

M, (formally),

UCRL-20054

(A.lé)

(A.13)
(A.1k4)
(A.15)

(a.16)
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: B.' Jacobian Calculation‘

(6,5, +1)
we show how to compute the, Jacobian factor J = SE %X
J l’

2)
from the set of identities Egs. (2.38) and (2.3l); We list them here:

vo=rgTa : - ' _ . (B.1)
d = ‘( )(y -y ’ . : (B.2)
. Ya-1’Va 7 Ya+2) S _
. . Y ya“l"l x2x - X ) ) ‘
N7 *y, -——_——- ‘ ‘
. a+l a+2 x2X xl
v, - G ) - Fgup(® 2?{ *1 i; ; xlz El - X) (5.4)
- @+t yoz+2 FXph T Xy

From Eq. (B.l), we get

. (a _ d)2 E(X,xl’xg)v L . v» | . : .

where we have used the theorem that, 1f two rows - are 1dent1cal .then
the.determ;nant is zero. We now take derlvatlves of a, Eq. (B 3), with

respect to>”X,xl,x2 ‘and evaluate the Jacoblan.ln the frame xl = oo,

Xy = 0, Yy,p =15 we get (ya+l = xl)



- -87-  UCRL-2005k

%, dy
& X,
J=_,...-_d_.§ N o ~ (B.6)
: o+l a+1
axl 6x2

We then use Eq. (B.4) to take derivatives of ¥, Wwith fespect'to X,

~and evaluate the result in the frame X; =@y X5 = Q; we get Eq. (2.40):
’ ) : S B
J = — (1 - X). . , ‘ . (B.7)
(a —id) . S ’ )

In passing, we note that the method we have ﬁséd for the
calculation of the Jacobian can also be used for the nonplanar case.

We will show this in subsequent paper(s).
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C.  Elimination of {;:*,

We show how the infinite number bf cancellations involving Yy
beautifully occur in the reasoning which leads from Eq. (3.36) to
Eq. (3.37). We first consider -the factors raised to the power

-k, °k in Eq. (3.36). They can be written as

| +qn+1 rnd n
n -0+ : . n
y. - [R-1 (v y. - [R*]_(y.)
1 v - [Ri]g;l(yx)

Il

Fn+L ] ngt
by - FR-]GB (¥x+1>}(a¥x) vy - Bl RO,

-1 -1
s B (
¥y - [Rt]aen(yx)

v,)

4+
yi - (R ]a A

e
{y; - [R]o‘B R%(yk)}

i 1 v, - [Rilggl(yx)
= +n+l hon
vy - RIS 0o ey Y1 = Bilag &)

-1, -1
y, - [R* . R T°(y,) SR
X . (c.1)

+, n -1
vy - [R],s R (yx)

A

Hence the infinite product over n gives
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I(ez) = f[5>( 1(e) ;:’]:21/ e 1 : 1
| n=0 " o Uy - [Ri]g;l(y BTN v; - v,)

AL (B#N)
+ N+l :
_-_x Lim v, - R, ( y,)
1 4
i © [Rk]aB By )

_ = 1 , 1
= T AR

=0 {3’ - [R ]n+ (Yx+l) (Bék) | Vi yx‘

X ﬁlm (v, i]N+l(y )}(B u-) L N (0.2)

But the last factor in Eq. (C.2) can be written as

N+1 N R
;(yi - (yx)}(s%x) ly; - [R* Jog Rx(yx)}(ﬁ¥x)
+-N-1 2 : '... NM M oo
Xy = [R5 R ) g sy by - (B 10s By STV
)( {y; - R;N+l(yx)} s (c.3)
where we ha,ve used (j 74 z in the product R{Z E&} As N - o,

it is clear that either (N - M) 5, or M must tend to o, in Eq.
(2)

(c.3). If M tends to infinify,the expression RXM(VX) becomes x"7,

which is one of the invariant ?oints of Rx. If (N - M) tends to
dinfinity, it can be shown' that [r* ] (z) is independent of z. We
may therefore set Z equal to x( ) in this caSe; Thé'expression

Eq. (C.3) is thus equal to



-90- ' - UCRL-2005k

l l (v, - ;[Ri’,]aan(xﬁ)))(sm : o L (c.)

n=0
The second invariant.point of Rx is yx;l [see Eq. (3.22b)}; let us
denote it xil) ( = Rx_w(z), z.¥ x£2)); Combining Egs. (c.h4) ﬁith
(C.E), we get the desired-result,. |

'.‘ 0 ' +1 D (2) |
r(e8) _ TT i e ) L . (c.5)

Vot - tR‘-’1§gl<x§”> Vi 9 . |

Slmllar arguments can be applled to the factors raised to the
power (-kB'kx) in Eq. (3.36), called this factor I(zz) We get

[(88) _TTIISM) o TT
n=0 . n=0
xég) - [R ]a8 (X(Q)) (l) _ [Ri]n+l( (l))
@) 5y (2) Tnil &)
xB - [r¥ ] ( X ) B - [R- ] ( N ) A
(87&)
((l) y)(x()-y) '
i B . (c.6)
X (2) ey
(y -y, (x )
(B#AN)

The cancellation process, which occurs between loop momenta
terms and binomial residue terms, is now carried out with the

second method, which uses Sciuto three-reggeon vertices.
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The calculation, beginning with the first term in the expahsion

of (4.13), is straightforward:

1]

[elle) |

KBaYa']ng[kg)- | (c.7)
O"B={

Obviously, these contractions can be continued indefinitely.

The end result is quite élegantﬁ
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[T (mI~ /IE) S+1 41 £,)
( i )( > - Z (51"
™1 (e1t |E) o i=0 IF,)

(3¢o+1 (1%0)

_ Z Z 1 <|ﬁu>>’ ;C.S)

u=( LY, (L1 v {st} (&€ 1+1 IF,) /s
(n#o+1)
where
1{13otyo[lyﬁK"l KBona_lys %
(H] =
-1 1 -1 1
K SR} K = S
Ya Y8 Yo Y8%8 K
and -
ITE') = KBy 1y 0x.)»
j’o o 373
- -1 -
IF)g = K ¥y |k5) (c.9)

(Notice that [H) is the operator reformulation of [H]T.)
At this point, we easily see the cancellations occurring
between nth- and n - lst- order terms involving loop momenta.

In the limit as n goes to infinity, terms involving external

momenta accumulate all possible combinations of n R's or less. The

loop momenta terms, however, contain only combinations of exactly n R's.
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The loop momenta terms, as shown in the argument leading to

(A§ﬁ4),tend to a definite limit if we invoke the theorem in Ford.
: ' ' n
Either (a) the combination of n R's contains a factor Ra © at the

is lérge, in which case we‘approach the invariant point,
n .
or (b) it does not contain a factor Ra 0 at the end, in which case

end, where o

we can replace the argument by the invariant point, since such a term
is insensitive to changes in the argument. We can combine the loop
momenta terms, which now contain the invariant points, with the

. external momenta terms (only the term lim R in(

n— o

z) escapes this

recombination):

o /EN /BN = s+ | “1E1)
. ~’ . d

3 )- Ty wr

m=0 (51 [c1% F)./ m=0 j=0 |Fj)

(j#0,0+1)

lE2) |
= > s (c.10)
o l'fg,ﬂ) g

(o}

where
, _ -1
lEj)c = KBoycv wjjkj)’
1)y = Ky k),
'and |
v o=y, (14 XL,
wa = Xéf) = Raw(zl), Zl%Xél):

1l

W ;;cgl) = R ™(3,), 7, # x(2),
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* Notice that the first set of cancellations was accomplished
before the summatioh over all oscillator states was taken. The second
set'of'cancellations occurs whenVWe examine terms like

 -k.k,/2
_ (niy2 13
[y; - (B7) Wyl 7
The previous cancellation insures that Wj contains the invariant
_ points; ¥y however, does not. If we shift (RJ‘F)n from one side of
the equation to the other, we find expressions like 'Ra(w) and Ra'l(O)
(o and O are introduced to cOmplefe‘the momentum conservation in ki)'
Let Rl and R, represent the totality of combinations of R's

~in the expansion. Then we have:

S+ . lEj)

=
e,y Y omm (o
m=0 j=0 fF) /s
- (3#£0,0+1) J
L S+1 A" W, |k.)
. . lpo d ' J
- (1D, )
. j=0 K_l lkJ)
(j#o,0+1) R200 5
| k., /2
: ‘ -1 e
= ‘ . ‘ . (Kyp yj-KRlpGWz)
0,0=(X} 1,3,4=0
B ¢i/2%%
ido+
(z#g,c+l)_
-1 1 -1 1 'kikz/2
I e L Faa
Jo ¥io 0

Equation (C.11) continued
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Equation. (C.11) continued

1 k kz/Q
= (Rlcfpy,) Z)
Py G={¥} 1i,J,£=0
gj¥p)
i¥p+l)
(p#0,0+L)

k .k /2 ' -k .k, /2
-1 0+1%2 -1 -1 i
K (Byg(0) =) B (RogeBa¥o Vi = ¥y)

} _ -k k,/2
X (Rog By, Hw) - w,) O

eop p 5 (c.ll)

-1 : .
But Ra(oo) =y, end Ra" (O): Vo1 ATherefore, we see that a series
of counterterms appears with one less degree than Rl or R2, making
'possible a second set of cancellations. After all cancellations are

performed, we arrive at the desired result:

s ," lE) |
/r‘l/ezxp[(kj|xJ+l 1|k )} exp{-((E| (FI) [A] < >

1> IF)

-k.k,/2
- (R )g;) J 1

Equation (C.12) continued
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o /S‘ii/ Kk,
X ‘ ( -yj ) .
. i>3 o

. ) _ - : -k .._ ' '
l ;l LGy = ) O - ) @ T Yka-ﬂ |
=X} | | S

- UCRL-2005k

(c.12)
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‘Although Y+DQ’fDQ is not gauge-invariant, nevertheless our
2

factorized trees with dots on opposite sides of the excited leg

.

are related to each other by the twist opérator. ﬁence.there is

. no ambiguity arising from the gauge invariance.

This was suggested by Professor Mandelstam.
We can solve X 1in terms of t (in the frame Yol = X) =

X, =0, ¥ = 1); from Eq. (2.38a,b,c), we get

2 o+l

X = 3T - %) 1+ [1 -4 -1t)t Yd_l]

1

2.

The minus branch gives 0 < X < 1, whereas thé plus branéh gives
lE'Xioo.

This was demonstrated by Professor Mandelstam.

This factor also comes out naturally, if we neglect the spurious

problem. iIn this case,

X

tPoc(A+2) = tP(q,0+1l,0-1,0+2)

(g = Y1) Ugan = Yaso)

- b4
(ya - yoz+2)Tyoz+l yoz-l7

t




16.

17.

18.
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a.-1

and X, =¥ X5 = ya;vhence from the factor (1 - t) 0 one

-1 a+l’
geté this factor.
The detérminant calculation: is given in the Sciutovthreeareggeon
formulation. | |
M. Kaku and Loh-ping Yu, Uﬁitérization of the Dual Resonance
Amplitude. 1I. Nonpianéf N-Loop Amplitude, Lawrence Radiation
Labbrétbry Repdrt'UCRL-20055, to be issued;"

We hafé adopted the streamlined notation of combining all terms
appearing in [A] into four distinct factors by repeated use of
the formal identities given in Appendix A. Thus, many of the
maﬁipulations presented here are only formal,.since the argumeﬁt
often becomes larger than bne, and hence the expression doesn't
coh?efge. Each step can be rigorously verifie@, however, if one
@vdids these formal identities and considers the various values

of the argument separately.
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FIGURE CAPTIONS
DoublyAfaétorizéd tree diagram.

Planar single-loop diagram; t, Yo Yy

are three variables
a+l ,

 associated with the loop}

Planar single-ldop diagram; Xy 5 x25

and X are the two
invariant points and the multiplier of the projective operator
R that goes arbund the loop. We assign X, X, fo the-center
of theiloop. -

The gyﬁh-féctorized tree diagram.

Planar N-loop diagram. It is a rubber band with N holes cut
in it.

(a) The ordering of y, and xél), xée), o= ().

(b) Symmetrical ordering of y; and x(l), xég), a =)

a
(1), (&)

in which =x ére the two invariant points of

the projective operator ROBB Y"°.
Planar N-loop diagram. -Propagator variables are given explicitly.
(a) ‘Several infinite classes of singular terms can be isolated
by analyzing this diagram.

(b) An even larger class of singﬁlarities can be isolated in

the double'tadpole amplitude.
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Fig. 8a
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Fig. 8b
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A Makes any warranty or representation, expressed or implied, W1th
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report. ’

As used in the above, "person acting on behalf of the Commission”
~ includes any employee or contractor of the Commission, or employee of

such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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