
I 

Submitted to Physical Review 
	

UCRL-2 0055 
Prep r mt 

(if 2S19fl 
LfA 	.'ND 

DOCtJ 	1-  Szc?io;i 

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE. 
II. THE NONPLANAR N-LOOP AMPLITUDE 

Michio Kaku and Loh-ping Yu 

September 8, 1970 

AEC Contract No, W-7405-eng-48 

TWO-WEEK LOAN COPY 

This is a Library CIrculating Copy 

which may be borrowed for two weeks. 
for a personal retention copy, call 

Tech. Info. DIvision, Ext. 5545 

0 

CD JAW1 NC L JA1' JflTCN JIJA iC JATCRY 

"1 
\4 JJNi vi 	r 	of CAl 1L':ONilA 	RIY 

)YJ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or repesents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 

University of California. 



-111- 

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE. 

II. THE NONPLANAR N-LOOP AMPLITUDE * 
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ABSTRACT 

Following our previous paper on the planar 

N-loop Veneziano amplitude, we derive the nonpianar 

N-loop formula in this paper. The calculation is 

performed by tracing over both the multiply 

factorized tree and the Sciuto three- 

reggeon vertex functions. 
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I. INTRODUCTION 

• 	 This paper is the second of three articles devoted to calculating 

dual resonance model. In the first all multiloop amplitudes inthe  

paper, 1  we presented the planar N-loop amplitude; we discussed 

at length the principal-axes method, the infinite cancellation technique, 

the KSV interpretation, the Jacobian calculation, and the range of 

• 	 integration. Because the planar and nonpianar loop calculations are 

• 	similar,we 	present the nonplanar amplitudes in this paper without 

many of these details. In the third paper, we will present rules for 

writing down arbitrary planar, nonpianar, overlapping, and nonorientable 

loop amplitudes. 2  

The nonplanar amplitude differs from the planar one in three 

major ways: 

The linear dependence correction is (1 - x) 2  for each loop, 

not (1 - x), where X is themultiplier of each projective transforma-

tion. 
.2 

The factors raised to the 	- 1 power differ slightly, to 

reflect the different quark t.opolor [see (2.26) and (3.13)1. 

There are variables of integration which lie between the 

invariant points of each projective transformation. 
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• 	 II. MULTIPLE FACTORIZATION FORMULATION 

OF NONPLANAR MULTIPLE LOOPS 

As in the previous paper, 1  we first consider the nonpianar 

single-loop3  amplitude, expressed in a general projective frame, and 

then apply the method without modification to the nonpianar multiloop 

diagrams. . 

A. Nonpianar Single-Loop Amplitude 

We, first write .down the following doubly factorized, tree 

formula for the amplitudes corresponding to Fig. i 

G(aa,a ) fq  - 
.S+l. 	 S+1 

x exp 	(aPa (i)l'ki) 

+

(afP(i)Ik.) 

(isa) 	 ' 	(i) 

+ 	 , 	 (2.1) 

where 	. 	 . 

-y 	)(y 	-y.) 
)a(i) = P(a,a-1,a-1,i) 	' a 

	a-i 	+l - 	(2.2a) 
'a+l 	a-1."a 	' 

	

= P(,-1,+l,i). 	 (2.2b) 

Applying the sewing prescriptions 1  on the excited a0,a legs, 

and using the principi-axes technique, 1  we obtain, from Eq. (2.1), the 
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nonpianar single-loop amplitude (Fig. 2); call itFNl(l):

dy  (i) 	fdkaf dt _t(ka)_1 - t) 02a f ( l 1YS±2 )I, 

where 

I = (det]) 	
(EIF!) [GH]n } 	 (2.) 

and 

7 	[II - 

	

LA] 	(. 	 (2.5) 

- [•] 	0 

	

[Gil] 	( 	 (2.6) 
[]TJ 

with 

[I = 	 MP(a+l,-1,a,)M T P(a), 	(2.7a) 

I)  E MT(t 	) 	
(2.7b) 

	

i=O 	 a+1 k 

	

S+l. 	 i 	k. 

fE) = 	 P 	ak 	 (2.70 

	

i=O 	 +l kJ 
(i,) 
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We then calculate Eq. 	(2.4), order by order in 	[GH] matrix, by 

defining the projective operator p. 

Q(x) 	

= 	

1() 	

- 	
1 

tX 

(2.8) 

and the projective operator corresponding to encircling the loop 

R a 	 Q 	
-1 	

a' 
(2 

where 

= 	px) 
 (2.10a) 

l(x) 	
-1 - 	 I (2.10b) 

- 

x) 	= 	p1(i) (2 lOc) 

From Eq. (29), we have two identities 

R(y) 	= (2 ha) 

R(y) 	= 	ya+l 
(2 llb) 

These two identities, Eq. 	(2.11a) and (2.11b), enable us to get the 

U
i 	

II 

	

nvariant points 	of 	Ra• 
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We find, after tedious calculation, the expression for I: 

fT 
n-0 i,jO 

- 	_k•ka 	- 	1_k• • ka  

y. -  

(i,) 

[a - 	R(ya) 	 (212) 

	

- xi) 	 - 

• We also separate out, in the factor 	S+21 of Eq. (2.3), 

all factors containing a'1' and combine them with Eq. (2.12); we 

get, finally, 

S+2 	
(det[]) it 	[ 

- 
n=0 i,j=0 

c r' 	: 	: I1 
k 	

- y 1+1)0tT 	(Yi 

	

(i1 a,) 	 (iy4,a-1 
" 

r k 
cz 
2 

-1 	 l 

) 	

(R(ya) - x1  

{(Ya- xi)(ya) -Y) 

Equation (2.13) continued 
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Equation (2.13) continued 

a-i - 

 _k 

aa - a+ic-i - y)(y 

- 	1 a2 _l 
L a-i - a+i-1 - 	 i 

- a+i-1 - 	 a - 	- YcYc - 
	

.(2.13) 

We now express our final answer in a projectively invariant 

• form by transforming the set of variables (tyay) into the new set 

of variables (X,x1,x2 ). We first extract out all factors containing 

in Eq. (2.3). From Eqs. (2.3) and (2.13), they are 
13 

at 	ta 	
- aolka2 	(R(ya) - x1) 

a 

	

	 - xi)(ya) - 	)j 

-aa - a+i-i - y)(y - +1)1 
a  

- 	
- y1) 	J 

a -1 

a-i - a-a-1 - '+l 	 -Yd (Yc -  

(2.11 .) 

The Jacobian calculation is quite involved, and details can 

be found in Appendix A. We merely quote the result here. In the frame 

x1 	, x2 	0, the.expression(2.I )4) isequal to 

2 -2(k )-i 	 a -1 
- x) x 	a 	

a-i - 	+a+i - 	-1 0 

(2.17) 
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The unique projective generalization of the expression (2.15) 

•  
is exactly similar to that found in the previous 	1 i paper; 	t is 

	

2 ( 	- 	- 	)(y - 
dx 	x 	(1 - x) 	a 	 c c 	a 

(xi_ x2) 

x 
fYai 	 - fl 

[x - R a (3T +i)i 

aol 
[ai 	 1 	

j 	
. 	( 2.16) x  

Now we are ready to write down the nonplanar single-loop 

formula. By combining Eqs. (2.16), (2.13) with (2.3), we obtain the 

final form: 

)-i 
FNL (1) = f d ka f dX X-2 (k a (1 - x) 2  

S +1 

( f "[T"1 dx  
- 	

- 

(x1  - x2 2) 

a-i 

X 	- 

\.. f3l -1) 

C 	 -)a-i( 	 la-i 

)_ga-i - R(y1)](x1 - y+l) 	Ja+i R(y 1 )](x1 -  y 1 ) 

[xi - R(y1)] 	.1 	[xl - R(y1)] 	I 
Equation (2.17) continued 
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Equation (2.17) continuted 

`Off (1 	
( : :)a 

n=1 	 1=0 	 .i,j=0 	n=0 
(ia,) 	 (i,jya,) (n=0,ij) 

-k.•k. 
)( [i1 - 	

1 	, 	 ( 2.17) 

where 

00  

(det[]) 2 = 1(1 - 	 ( 2.18) 

The ordering of y, i=0 1 1,",S+1, i a'P  and x1 ,x2  will now be 

discussed. The variables of the multiply factorized tree, before sewing, 

had the ordering 

It is sufficient to specialize to the frame x 1  = oo, x2  = 0 and 

consider the case 0 < X <1. After sewing, Eq. (2.11)gives the relations 

= Xy +1 <y 1  , 	 (2.19a) 

= 	a+l > 
	

(2.l9b) 

These two relations imply two inequalities similar to Eq. (2.48) of 

Ref. 1: 

x_l  
Ya-1> y1 	

> 
1S+l 	

> . . al > X 

(2.20a) 

a+l > y_1 	-2 	 a+l > X y 1  . 	 (2.20b) 
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Equations (2.20a) and (2.20b) force us to put x1  between y 	 and 

y 1, x2  between 1a-1 and y 1 . Therefore we donclude that the 

ordering is 

	

YO >yl >." >y>x2 >y + > 	>y 1 >X1 >y 1 > 

(2.20c) 

One observes that the nonplanar single-loop formula, Eq. (2.17), 

is essentially the product of two planar single-loop formulas, one with 

external legs outside the loop, and the other with external legs inside 

the loop. The interpretation of various factors is exactly parallel to 

the interpretations discussed in Ref. 1; we will not repeat them here. 

We see that the nonpianar single-loop formula, Eq. (2.17), is 

hardly different from the planar single-loop formula in Ref. 1, and as 

we will see further, the nonpianar N-loop formula again is very similar 

to the nonpianar single-loop formula. 

B. The Nonpianar N-Loop Amplitude 

In this subsectiOn, we 	apply the techniques of the previous 

subsection to the nonplanar multiply factorized tree diagram (Fig. 3). 

Each loop is labeled by two indices, e.g.,the (c) loop is obtained 

by sewing the excited a leg with the p leg. We adopt the convention 

that the first index (e.g., a) of each loop [e.g., the (a) loop] 
Ar 	

corresponds to the complex pareter Xa 

We now write down the 2Nth-factorized tree amplitude corre-

sponding to Fig. 3: 
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G(aa,a; aT,a6;...;aa,a) 	
fr.(Ys+2)-f 

s+l 	 s+1 

	

exp7 	i (aalPa(i)Iki) + 	
(ajP(i)Ik.) 

i=o 	 i=o 

+ 	 (aalPa 	 MTP1(a)IaT) 

(ay) 

• 	 + 	 (aI() MP(-1,-1,) MT  P() Ia8 ) 

() 

+ 	(aP(8) Mp(a+1,-1,a,) M_T P(a) Ia) , 	(2.21) 

where 

= P(a,(x-i-1,a-1,i) , 	 (2.22a) 

• 	 P(i) = P(,-1,+1,i), 	 (2.22b) 

(2.22c p1(i) = P(i,T-'-1,T-1,i), 	 ) 

P8(i) = P(,b-1,5+l,i). 	 (2.22d) 

The sum • 	is over one thdex. from each pair  

	

(} 	
* 

the total number of pairs is N. We will use 	to denote the second 

index in the pair  
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The variable t 	corresponds to the propagator which joins 

the a leg to the leg. We first apply the sewing prescriptions 1  simul-

taneously on the N pairs of excited legs aa 	(a) = 	then. 

we use the principal-axes technique; 1  then we define the project.ive 

operator R 	responsible for circling the (as) loop; then we use 

Eq. (2.11) to facilitate the infinite number of cancellations 5  leading 

to the invariant points x 
CIP Ixap of 
	and finally we obtain the 

nonpianar N-loop amplitude (Fig. 4).: 

	

FNL(N) = f ::11d 	'[[ dt ta(l_ta)a012 

	

f /",I -T 	S+2 ' 
	 (2.23) 

where 

= 	1 

(det[A])2 n=0 - (det[])2 	

,j)) 

	

qI "O  (Yi 	 + (n+1) 	2 

- [Rl a 5r(Yj)) 
n=0 

'+k. k. I- 	

flj 	
(x
(1)1 f 	11)±] 
	)( iL 

[R+ (n) IX(2)) 

	

- 	l a,\ 

iT1M' 
	00 

i=0 * 	n=0 

- 1 

) y1
y 	 r  - 

Equation (2.24) continued 
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Equation (2.24) continued 

	

QI)Tl. 	: 
 [R±I(n,), 

r)=[) 

.1i a -k I (2) 
- [R], a@2) 

• 	X) 
-  

(x)() 

f  

	

(YO, = 	: 	
l (a(i) (a)=() 

a 

	

jR(Ya) - R(y) 
. R(Y) - R(y) i 	

a 

	

- R 
 ~3a (y 	

y - R(Y) 	J 
(2.24) 

Again, separating out all Koba-Nielsen variables 

(a) = 	in 	s+21 in Eq. (2.23) and combining it with I of 

Eq. (2.24), we get 

CO  
l('r f flh. IT 

+ (n) 	
k. k. 
13 

(yi - 

) 

+k  
(__

- [R] 	
((1)) 

	

i 	axa y'Ej 

- [R]x) 

	

n=O i 	6a, (  j (ax)(i6) ((*)) 

Equation (2.25) continued 

FA 
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Equation (2.25) continued 

i~r 
	 a 

~  

-i 
- 1+1) 	

. 

i=O * * 

H 
n=O 

(ix),()=() 

XW 	
-kk 

-
((1) 	(2) 

- [R1 	
((2) 	a y 

'a',xa 	I • a 

- [R±]t,a) 	x 	- [R], XG(4) (a(a'), 
(ax) ( r) 

{(Ya 

- 	
k [R-1  (yCI ) - 

 R -1() R(Ya)R(Y)] - a 

--k 2 -1 

v 
 

(ya-1  - Ya)(a - 1a+j)t_1 	 - 

(a)=t) L 	a-i - a+i-i -. 

a-i 

lx 	I 	a-i - a+i-i - +l 
(a6)=[J 

	Ya )X 	a - 	 - 	 - 	

. 	 (2.25) 

We note that the factors in the last brace in Eq. 

(2.25) are not identical to the analogous factors in the nonpianar single-

loop case, Eq. (2.13). However, in the frame 	= CO, 	 = 0, 
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in which R 	reduces to its multplier X, they are fortunately 

identical , and this is enough for our purpose. We can transform the 

set of variables [t, Ya., 	
(a)=()] into the new set of 

variables {Xa 	x; (a)=()] by performing the same 

calculation as in the one-loop case, i.e. Eqs. (2.14), (2.15), and 

(2.16). Each time we pick out a particular frae x 	 = ,x 	 =0 1  

we find a linear dependence factor (1 
- 
Xa)2 for the (c43) loop, 

and obtain an expression similar to (2.16). We then repeat the calcula-

tion for the (ye) loop, etc. Therefore, on combining Eqs. (2.25), 

(2.23), and (2.16)' , we finally obtain the projectively invariant 

nonplanar N-loop formula: 

FNL (N) I-  VI d1•k f (Ff1 Xa-2(k )-1  

• a 
	(1 

- Xa ) 2  dX  

(a)=f) 

X 

S+1 f 	1 
i=0 	

aj3 a,-T-r' 	(1) (2)2 

(i(,*,a,b,c)) 	
a)=[ •.} 	

() ) aa 

~Tyi_yi +l)O  
* 
-lJ 

Equation (2,26) continued 
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Equation (2.26) continued 

f 	~3a f3 +1 X~p  13+11 	+1-  f3a ~-1 X&O  yf3 -1  
a0-1 	

0 

[x-R(y 1 )] 

'TT1 	(1T1 'T,(yi - IR 
±](n) 

(y 

* 	(a),",(y'6)=() n=0 

r 	: 	 - 

	

- 	 ((m) 

,x 1Tht1r 
n=0 

(ox), (m)t) 

-*kk 
x )  - 	 - [R± ] ' t xa(x  

Xe ) - [R± ] , (4) 	 - [R]t,xa(4) 

(ox)7(y8) 

(2.26) 

where 

(2) 	± 	(1) 	(i) X(2)(1 
- x±  ) 

~ / 	 (2.27) 
z [x 	

- Xa X 	j - x 	
, R ¼Z) = 	 + 	(2) + 	(1) 

z (1 - xci) + X 	X 
- Xa 

and 

1 

(det[z]) 	= 	
- 

	 (2.28) 

(•J 



-16- 	 UCRL-2005 

The ordering of y; X 	x 	can be seen in Eqs. (2.19) and (2.20), 

and the result is shown in Fig. 5. 

The region of integration and periodicities are fully explained 

in the next section [see (3.16)]. 

We se.e that the nonplanar N-loop formula is little different 

from the product of planar ioop formulas. 1  The interpretation of 

various factors in Eq. (2.26) is again parallel to the previous paper.1 
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III. TEE N-LOOP AMPLITUDE IN THE FORMULATION OF SCIUTO 

The nonpianar N-loop amplitude can also be calculated with the 

three-reggeon vertex introduced' by Sciuto. These vertex functions are 

inserted in a scalar muitiperipheral tree,.as shown in Fig. 7.  We insert 

a complete set of intermediate states 	 in the upper portion 

of each loop: 

	

FNL (N) 	Tffd 4 k (O 5a D5a V . V 1  D1 La Da 

,)( 	 D2a via IO)a , 	 (3.1) 

where 

f l 	R -a(ic.)-1 
dx. x.a 	1 	

(1 - 

Lc 
	

° 'b 	Da D 	 D+1 a0)b0-1 

ab 	
e(aIk) e(a,b)+ e(alk) e(a,b) exp(bi- Tt 

1 
	 exp(k.Ia) exp(ic.a) 

ab 	
exp(aIka) exp(a,b) exp(alka)  exp(a,b)  exp(bIrra), 

	

Da 	f1 du u 	(k) 	- u) -c 

[Notice that, for the moment, we have omitted the linear dependence 

correction factor and the (i - 	factor associated with the Sciuto 

vertex.] 
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We will use the identities 

(0 'b 	
ab D 	 'a 	= 

f 1 . 
a

(k )-i 

= 	

du 	a (i 
- 

Ua) -c e (a k + MuX) 

x exp(ak + M u x) exp(_+iIuax) 	 (13.2) 

and 

	

—a 	 + 	* 
(X,.c IWa

b 
 1 0  )b = exp(a 1k + M? a ) 

X exp(alka + M~ x) exp( a tx.). 	 () 

Uáing the techniques given in Ref. 1, we now contract over "a" 

oscillators and find 

FNL (N) = J 	dk  fo 

f II df) dl) U 
ka)1 

- u)
ap 

fs 	 1 1 	(1 - x) 	exr 	(kjlxj +iilkj)? 
P>j 	 J 

e fx l x*) + (x*I[c]!) + ( x I[B]tX*) + (*I[D]i*) 

+ (I[A]Ix) 
+ (x*IF) + (I& 
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w1ere = u M Y8 	M_ •u 	(for a 	< r K 6)
Yb 

= 0 otherwise  

	

= M_T y 6 Ya M u(a 	 6) or 
 Yb 

(5= and i=a) 

0 otherwise., 

Bap,rb  

= 0 otherwise , 

Day6 = M T r a -1 M(a < p K I K 8) 

= 0 otherwise , 

S 
T 	-1 	 -1 

IE) = L u M y y 	I1c) + 
	

u M y y 	k) 

j1 	 jr+1 

- Ua B+l 

IFa) 	M+  yCt 	+ 	
MT 	

+ ka )  
j1 	 j+1 

(a< f3 always) (•v K 6 always). We shall symmetrize as follows: 
I. 

[] = [
A] + [AlT 

[] = [D] + [D]T 

=  T 

	

[c] + [B]. 	 () 
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We now perform the integration over X. Then we get 

FI(N) 	 dü 	 - 	 dk 

(c)=) fo 

X1(l - 

)( (det{]) exp 	 EI (F) [GH]nl 	 (3.6) 

where we have used 

(01 [G] 
	o 

{] 	
[]T 

[H] 
([j] 
	 ) 	, 

[] = [G] - [H]. 	 (3.7) 

At this point, we will find it useful to introduce the following 

projective operator: 

-1 
= aaa 	' 

= C 	 (3.8) 
Pa :yy1(l - ua)  



With this projective operator, we can re-express all matrices as 

follows: 

s+1 

	

IEa ) = 	K P 	y. 1k.), 

j=o 

s+l 

= z K
1  ya  

j=o 

s+l 	(kI 

	

E - (EJ = 	-1 	
•l 	' 

j=O K 	-1 
aa 	j 

(icj 

KYa yj '  

= K P 	a '  r Pur K( )' 

	

= 	 ) 

Ca,y = K 	
P_i. i 	' y rK() 

—T 	 - 	-1 = K P ya y1  K  ( ), 	 ( 3.9) 

	

where K(z) = 1 	K(z)= 
	' K ' 	Notice that we have 



•-22- 	 UCRL-20055 

assumed momentum conservation in order to derive projective relations 

for A, ]D, and C. When expressed in this fashion, all K's in [GH]r 

neatly cancel. (Also: y0 Co , y 1, 
S+l 
 0.) 

If we assume momentum conservation among the k's, then we can 

contract over harmOnic oscillator states and projectively manipulate 

these expressions: 

I) 	=  2 
 

[y - R y1]l3 

aj3=( 

-k k .. 
l(F[]TlE) =11 	I 	I 	- R R1y1] 1 J 

etc. (3.10) 

Notice that we have imposed conservation of momentum everywhere, which 

allows us to ignore "residue" terms which arise from binomial contrac- 

m 	
fl 

tions, i.e., (M+ )nm 	(1 	) - 1. One disturbing fact is that 

andy are not the invariant points of R 	(as was found earlier).
13  

When the binomial "residue terms" are added in, we get an infinite set 

of cancellations, 7  which replaces ya and y with the invariant points
13  

of R. (The cancellation is exactly as in the planar case, and hence 

is not presented here.) 	We merely state the result: 

4 
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eXP 	exp, 	(F[] 

=l( . iT[.  1.1TI 	- (R±)) w ) 2 iJ 

n=O (a)•..()=( 1 ) i,j=O 

ij if nO 

	

-a) 
 -k2 () - 	

4k  () )4k 2 	 -k.k. 

 
ya 

(3.11) 

where 	(2) 

(1) 
X 

and 	w. 
1 

R 	(z1 	
(i)

), 	z1 	xa, U13

X(2) 

yi 	if 

= invariant point, 

= invariant point. 

Now that we have all the tools to derive the answer, we are 

ready to put in all (1 - z)R factors (appearing in each Sciuto vertex) 

and the linear dependence correction, 6  

(

l (1 - xa) u X 1  x1 -c 

-71 - Xa+l)(l - x 1 ) 
(3.12) 
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The linear dependence correction to nonpianar and overlapping 

loops is a simple c-nunther. 6  The planar loops, however, have modified 

propagators. We have 

L (N) = 	fdk f dua 	
(ka)-1 

  

_a(k) S 
	1 

	

ua -) C(1 - xa 	
a 

) 	

i2 

 jr 
dx x 	

1 

(1 - x1Y°(i - Ua) ' 	- 	I 	Xa±l x) -c 

e f 	(kjIx+iIk 	e((EI  (I) 
[]1 ()} 

= f 	dk 	 dw(dwdwbdw)' dX 

• ,x ' X(")2 L1 	- - r1 i 2r' 
n=0 i,j=0 

j,a 

	

/ 	+ (n) 	
Y,) 
\2kikj

Cr 

S+l 	 a -1 

X ( Wa  - Wb)(Wb - w)(w 	 . - w)(w. - w1) 0 

1=0 

	

	 (a)=t) 

Equation (3.13) continued 
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Equation (3.13) continued 

- 

(2)2 	

(i) 	 0 

	

I(x 	
w)(w1-R(w1)) 

x(l) -R (w 1 ))(x ~ ' ) -R (w 

where we have: 

(i) co 	 (2) 

	

x 	w 	R 	(z1 ), 	z1  

(2) 	 —oo 	 (1) 
xa 	E Wa 	Ra(z2) 	z2 Xa 

2 	 2 1 

-2+ 	
( 

X 	multiplier of 	
= a 	- -

up 

where 

Tr(R ) 

= [det( a)] 2  , 

= 

wa , Wb and w = fixed points, 

(xaXa+l• .,x,u) 

= 

- 	 2( 
- xa)Da 	

, 	 (3. 1 ) 
a y(l 

- 
t)3  t 
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where %13  a 1 - tai - 
UCO - 	

and 	= ta (i - ta )D 

• 

p 	a (1' 
a 	ua(1 - II 

-1 
R 	yaaa 

(Notice that P 	changes by a factor of 1 - xa when the (i - 

Sciuto factor is correctly inserted; notice also that t 	is defined 

implicitly: 

 
xc3  

-1 
=y t 	)•• 

When the calculation is actually performed, the region of integration 

is actually larger than what was found earlier (e.'g.,the multiplier,  

ranges from 0 taco). As in the planar case, we take the branch where 

the multilier is between zero and one. (When the multiplier is equal 

to one, the invariant points are equal to each other.) 

We recover the usual single-loop nonplanar amplitude if we let 

U 	= (0,1), 	[ } = (a), [) = ( n), R 	X 

• 	 (2) 	• 	(1) 
W 	 0 a  = xa = , xa 	= w = ±00, Wb = W+i = 1, 

(1) ( 2 ) 
U2 = ( X 	 co<W 1cW2 	<Wa+1<X  CO 

 = 0 <,
UO 
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Conveniently, we find that the cyclic ordering of the Koba-Nielsen 

variables mimics the ordering in Fig. 3 if we let w and w be the 

invariant points. 

We are free to move external lines past loops, as required by 

rubber band duality, because 

w 1 < w K •. K W .' w K ' 	w K R (w 1 ) 

and 

w K 
w -1 < 	

W 	<W - w K ••. < w~1  K R (w i < w. 

Notice that variables trapped between wa  and w always remain 

trapped, while variables located between the invariant •points of 

different, adjacent loops are free to move past these points. 

(In the planar case, no variables are allowed between wa 

and 

In studying these periodicity properties, we will find it 

convenient to move these latter lines completely away from the region 

occupied by the invariant points. A simple renumbering yields 

(wa  <w1 •.. K w1  
	

W0 	
:: 	

1 	 •.. K wa+l 	w). 

(Notice that the factors in the braces in (3.15) change slightly, 

depending on the quark topology.) 

Since the operator R 	 flips these latter lines across the 

(as) loop, the operator (R•••Ra)  flips these lines completely 

around the diagram. The regions occupied by these ?T rotatedt lines are 

disjoint from previously rotated lines. As we rotate these lines an 
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infinite number of times, they asymptotically approach the invariant 

points 	(l) and x (2) of (R ... R)* These points x 	and 

(2) separate the region occupied by the invariant points from the 

region occupied by these rotated lines. Likewise, the lines lying 

between Wa and w are rotated by the action of R 	We summarize 

these statements as follows: 

Ra"R(wo) K•W1 < w K •.. < 	< 

w <w 1  < •.. < 
	+l 	R 0 (w 1 ) K 	... 	K w < 

w_i 	.. <w 	K R(w1) <Wa L.x(')].  

We subtract.out periodicities by constraining one variable in each set 

to lie between y and R(y0 ), where y0  is arbitrary, i.e. 

•R(y) < w <y0 < 

and 

IWO <y 	w 1 	R(Y 1 )] for each (as) in (). Notice the 

complete symmetry between the R's and (R...R) , meaning that 

the distinction between outer and inner quark loops disappears. In 

each case, external lines belonging to each quark loop are confined to 

lie between.the invariant points of that loop. (In the planar case, 

we only have outer quark lines, i.e., the lines between w and Wa are 

missing.) 

These constraints are enough to determine U 1  uniquely. (All 

multipliers range from 0 to 1, but now they are no longer independent.) 

We understand that Prof. C. Lovelace and Dr. V. Alessandrini 

have obtained similar results.1 
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APPENDIX A. THE JACOBIAN CALCULATION 

We show how the variables t,ya,y in the expression 

are eliminated, and. transformed into the variables X,x 1 ,x2  in Eq. (2.15). 

H 

	

	We first find aset ofidentities that relate tYaY to X,x 1 ,x2 .
D.  

Using Eqs. (2.8), (2.9), (2.10), and (2.2), we can express, the projective 

operator R, defined in Eq. (2.9) as 

R1( 	
- z(y - ay 1 ) - 	- (,+i y 1  a) 	

(A i) 
z(1 _a) + (aya+i_ya ) 

with 

- 	t 	 a a 	 t=ad 	 (A.2a) 

d 	 - 	- 	
(A 2b) 

- a-i+i - 	-1 

OP comparison of Eq. (A.l) with the standard form in Ret. 1, we find 

the set of identities 

(1 - a) = £(i - x), 	 (A.2c) 

- ay 1  = 2(x2  - Xx1 ), 	 (A 2d) 

-1 
aya+l - 	= £(x0X 	- x1 ), 	 (A.2e) 

• 	
- Ya+l+la = tx1x2 (1 - x), 	 (A.2f) 

£ 	
[a(Ya_a+i+i - 
	(A.2g) 

L 	(x1x2) 	J 
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From Eqs. (A.2d) and (A.2e), we can derIve the identity 

-1 

CX22xx1Xx1
a 	

(A.3a) 
(22 - X x1  

+ a+1(\ -1 
xX -x1  

With the further identities 

y1(x2 - x1x) - x1x2(i - x) 

	

y +1 	y +1(1 - x) + x 2 X - x1 	 (A.3b) 

y = R1( 	
) - Ya+1(X2 - x 1  X ) - x1x2(i - x) 

	

a a+1 	 / (A.3c) 
- X ) + xX - x1  

z(x 	X±x) x x(1X±) 
R (z) = 	 - 	

(A.3d) z(1 - x±) + x2X -+  - x1  

	

(z)r X2 	
(A.3e) R(z) - 	 1 

-1 

	

R(y)-x 	 H (y) - x 

	

aa 	1 	 2 
(Y CI -  x1 )[R(y) -  y] = 	- R a(y](y 	--- 	 A.3f 

one then can show that the expression (2.14) is equal to 

ya  ,y ) -1110--k 
2 	

d)2 	 a0-1 
12 (x,x1,x7 a 	

a a 
-d 	 a-i 

(. 

) [R
1(y) - x1][R(y) - x2]1 a JabbccYa) 

- x1)(y, - x2) 	
( 
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Now we specialize to the frame x 1  =oo, x2
= 0 Then R 	X 	and 

= 	y, = 1, ye 
= x21 

 so that 

- 

-1 
a+1 

x1X 

a Xy+1, 

-3 	a+l • 	
(A.5) 

Hence the eression (A.) reduces to 

dX 	1]2][J] 	 a-1 
- 	 - 

xl o 

-2(k ) ~i 	d'2 x 	x 	a 	 . 	 (A.6) 

£dX 

The calculation of the Jacobian factor 

(t,y ,y 
) 

J 	
a 	 A 

- 	

x,x1x2) 

is rather complicated. Fortunately, it gives 

£2d 	(i - x)2 • 	 (A.8) 

(a-d) 2 	x3  

Proof. From Eq. (A.2a), taking derivatives of t with respect to X, 

x1,x2  and using Eq. (A.2b), we get 
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= 	d  

	

(a - d)2 ô,x
1 ,x2 ) •• 	 (A.9) 

In deriving Eq. (A.9),  we have used the theorem that the determinant 

vanishes when two rows are identical. We nowuse Eq. (A.3a)to take 

derivatives of a with respect to X,x1,x2  and evaluate in the frame 

x1  =co, x2 = 0; we get 

ax 
- 

- 	d 	
. 	+l - a+1 x ) 	

10 
(a - d) 	

+l + a+l 

x1  

We then calculate, from Eqs. (A.3b), (A.3c), the derivatives of 

with respect to x1 ,x2  (evaluate in the frame x =00.1 x2  = 0), we 

finally get 
-1 	2 

(1 - x)2 1(y 1  - X 	a+i 	 dI 	(1 - 

- (a - cl) 2 	X3 	
[ 	

x12  X2 	- (a - d 

Q.E.D. 	(A.n) 

Substituting Eq. (A.11) in Eq. (A.6), we obtain Eq. (2.17): 

2 -2(k )-i 	 a0-1 
dX[dx1][dx[(l - ) x 	a 	 - x 	 - x y1)] 
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FIGtE CAPTIONS 

Fig 1 Doubly factorized tree diagram (nonpianar) 

Fig. 2, Nonpianar single-loop diagram. 

Fig. 3. 2Nth-Factorized tree diagram. 

Fig. 4. Noriplanar N-loop diagram (rubber-band). 

Fig. 5 Ordering of the S + 2 variables y, i = 0,1,",S+i, 

i 	 and x 	x,  

Fig. 6. Ordering of the externailegs y.'s relative to the loops. 

There is no yi between any two adjacent loops. 

Fig. 7. Nonpianar configuration via Sciuto vertex. 
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