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 ABSTRACT
Alfvén waves barallel to a uniform mégﬁefic field
in,a;uniform-but aniéqtropic plasma ére studied in ‘the CGL
" and guiding-center models. Exact solution§ are foﬁnd in
the stable and unstaﬁle cases. When the plﬁsmg is stable,
ari arbitrarily largé éénstant amplitude perturﬁation
pefpendicular to the uniform field can prdpagate without,
distortion parallel to the uniform field. The exact
nonlinear behavior of an‘unstable éircularly polariied
Alfvén mode is obtained: growth of a finité_pértuf-

bation is quenched in a finite time, and decay begins

€

immediafely.
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| I.-A' INTRODUCTION -

Energy conservatlon prevents the 1ndef1n1te grouth of a llnearly
unstable plasma wave. Nonllnear effects, such as wave-particle and
.wave—wavefinteractions, ultlmately limit. the amplltude of modes that’.
'rdncrease exponentially wlthrtime in linear theory. H

‘This mode quenching problem rarely yields analytic. solutions in
81mple ‘closed form, and 1nsmght " regarding wave-~ saturatlon processes
is acquired with difficulty. Except in. special cases, even the quallta-
tive properties are unknbwn: For example, does the plasma approach the
saturated state of maximum wave energy asymptotlcally as t — o, Or
does saturatlon occur in a finlte time? If the latter holds, does the
. quenched state represent a stable conflguratlon, or w1ll further evolutlon
':occur?

In preparatlon for a more detalled nonlinear analy51s of low-
frequency waves, it was dlscovered that the circularly polarlzed Alfvén
wave oriented parallel to a uniform magnetic field in a uniform
anisotropic plasma‘is an exact solution of both the Chew-Goldberger-

Low (CGL) equatlonsl and the guiding-center (GC) equatlons. 253 Yhen

an excess of pressure parallel to the magnetic field makes such a wave
unstable, it is known as the "flrehose" or "garden-hose instability.
By use of elementary analytical methods, the nonlinear quenching of
this unstable wave can be solved exactly in either model, thus providing

perhaps the first simple and complete solution of the nonlinear growth

. of a plasma wave, rigorous w1th1n the llmltatlons of the GC equations.
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In what follows we will consider Alfvén waves in an 1nf1n1te,

uniform plasma in a uniform magnetic field go.

The veloc1ty distribution
will in general be anlsotroplc. |

The firehose mode has already been studied in- such a plasma by
quasilinear techniques.uré'i The Vlasov equatlon carried to second
order in the perturbation shows that the unstable waves,blnitially'
growing due to ae excess of pressﬁre parallel to ‘go

the particle diétribution,,causingvthe_perallel pressure to decrease

, react back on

and theAperpendieular pressﬁre to increase as long as‘eny waves are
growing; ﬁhe”growth rate is made smaller by-the;relafive decreese Of.
pafallel pressure, and wave growth is thus self?quenehed. An explicit
examination',ef_this process has not appeared in tﬁe'litereture.
‘The'CGiymodel was chosen for this paper primarlly for the

siﬁplicityAinherent iﬁ a fluid description end because to lowest order
1t predicts the same nonlinear behavior of Alfvén waves as the Vlasov
eqqatlon.: In Appendix A the earlier quas111near results are general1zed .
to arbitrery 'k by carrylng the CGL equations to seeond order in the
Weveiperturbation. (Of course, finite ion-gyroradihs.effects.must be
; appended to the CGL equations to correctly predict growth rates for _
small wavelengths ) This calculation verifies that, at least to second
order, thevCGL model agrees with the more complete kinetic description.
It was thus deemed a reasenable model for this isvestigafion
.despite'the.approximatiens implicit in it. , |

'_ The Alfvén modes that' exactly solve the CGL model also satisfy
vwithout approximation the hore widely recognized GC equations. Moreover, -

the GC solutioh has the property that the heat-flow tensor, which is
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'as an example of a "simple wave" of classical fluid theory.
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arbitra;ily dippped in deriving the CGL equations, vanishes, prbviding;
further justifﬁgafion f@rvthe suitability of the CGL equations to this
study.’ |

| Section IT trgéfé exact Alfvén'ﬁave solutioﬁs in the CGL model.
In Sec. ITA a magnetié'pértufbation perpendicular to: the uniféi@ field
of constant, but arﬁitrarily large; amblitude is showh‘to be an
exact solution of the.CGL,equations pfdvided_ fhe‘usual Aifvénvwave
stabiliﬁy criterion, Eé. (19), is satisfied. 'Suchiwaves propagate
without distortion ﬁérallel to- B, at the generalized Alfvén velocity,

~0
given by Eq. (16). Figure 1 illustrates exampies of this wave. The

'constant-amplitude Alfvén wave'inbthe CGL model has been: briefly treated

7

In Sec. IIB a circularly polarized Alfvén wave with k parallel

to B, is studied. This mode reduces the CGL model to the simple

“Egs. (12), (13), (20),land (23) through (27), which are derived without -

any approximations. The mode does not propagate. The magnetic field

has a helical structure consisting of EO and a compbnent perpendicular

to B, of signed amplitude ‘ﬁ (t), as shown in Fig. 2. The time

evolution of ’é (t) is easily obtained from the energy Eq. (24): . j(t)

"can be viewed as the displacement of a classical particle moﬁing in the

potential @(16), which is sketched in Fig. 3 for various initial plasﬁa::
conditions. If the stability criterion (19) holds, '5 (t) o_scillates"
between positive and negétive values with an amplitude-dependent “
frequency, which approaches the Alfvén frequency in the small-amplitude

limit.
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- If_thg Alfﬁéh stabiliﬁ& eriterion (19) is not satisfied, three
épecial cases cén oécur, depenaing on the particular bdundarj conditions
" assumed for thé piaéma.  The uéual,initial condition assumed:for plasma
ihstability studiés.corresponds to Fig. “3(c), in whichb _.'
p“(O) > pl(o) + Bég/hn, and the initial perturbation amplitude "é and
its time‘derivétive 'é. are émall and positive.' Thélamplitude grows
exponentially af first, then more slowly; it reaches a maximum value in
.a finite time and'imﬁediately décreaseé;iultimately decreaéing to zero :
eXponentially;j This demonstrates°that ﬁave quenching occurs in a finite .
time and is followed by immediste decay. If the initial conditions
correspond tdxthe situation in Fig. ;5(d),,thé wave,amplitude oscillates
.(nogsinusoidallY), never passingithrough zero. If £he ihitial conditions -
correspond:té”Fig. 3(b), the wave amplitude oscilléfeé nonsinusoidally.and’
passes_-through Zero twice‘each,period.
Section IIT shows that identical results ére ébtained fro; the
GC équations.-
In Sec. IV the exact results of Secs. IT and TII sre discussed. -
It is noted that the cbnétanfhampiitude wave may Be an important low-
ffequency‘phenomenon in the solar wind. The circularly polarized
firehose‘mode is related to -the quasilinear ﬁhedry&76,of the Alfvén
instability. Qualitati%e features of the nonlinear evolution of the
‘circularly polarized firehose modé are compared with characteristics

of other unstable waves.
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)

IT. PARALLEL ALVEN WAVES IN THE CGL MODEL

The CGL equationsvorfdoublé adiabatic equations arel’B'

dp/dt .:-:vv,;;JV'E, | -(..l)

pdu/dt =1'.-‘§7"-%+(v-;x B) X B/ , | “('2)‘

'ag/at - vx (gx B), (3)
d(Plp-lB-l),/dt'» = % o (+)
a(pp%?)/at = o, - | )
VB: 0, . ST - ®

po= ‘pl(£ - BB) + p“Bﬁ,v

pA = P" = p-‘L,’ . (8)
The usual notation for the convective derivative, d/dt = (3/0t + u-v),
has been used. In these equations B denotes the magnitude of the total
magnetic field B.

We assume that the unperturbed stéte'consists of a uniform
plasma in a uniform and constant magnetic field EO‘ Choose a

Cartesian coordinate system with 2z axis parallel to 20'

~All plasma waves discussed in Secs. II and III are assumed.to

have the following space-time dependence:8
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u = u(z,t), (92)
B - §O+ b(z,t), | , - - (90)
E;§o- = 0, (%)
b = |g(z',t)| ="b(§); | | o (9€)
b = py(8), 17f S (9)
A e
o = constant. " | o (9h)

Note that the only spatial depéndence is through the variable 2z, hence
the name parallel Alfvén waves.
Without any approximetion, use of properties’ (9) reduces the

'CGL Egs. (1) through (8) to the simple system

Sg/at

= B, du/dz, _ : S N v‘ (10)

. pag/ét = -(BO/B?)(pA - BQ/hn)ag/az, | , ' (11)-11
5 (8)/p,(0) = B(£)/B(0), | = (12)
Cp /e (0) = B0)/%(8). - (1)

" Equations (10) and (11) can be combined to give & wave

equation for E:
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}agh/atg = -o_l(BO/B)g(pA.-‘B?/hﬂ)aeg/azg. | (ig)

Equation (1k) canlbéfﬁreated by a separation of variables:
technique, but, due to its nonlinearity; ﬁarticular solutions cannot be
superposed to give more-géﬁéial.oﬂes. Guided by solutions of thé |
linearized plasma equgfiqns, we iﬁvestigaté two classes of solutions
of Egs. (10) thrqughv(lH)L7L N

| A. Cons%ant:ﬁmplitude Sol@tibns‘ih the CGL Model

‘Assume b(t) is constant in'ti@e}: Eéﬁatibﬁs,(lQ) and (13)

imply_that py and ?L are also‘constant;l‘With b =.b b(z,t),

Eq. (14) reduces to
328/51-,2’ e CRYC | @)
where the generaiizéd Alfvéﬁ velbcity ‘V, is given by
Vo= 0By (E ) - b, | . (26)

and is also constant.

The general solution of the simple wave Eg. (15) is

N

b = X cos o(z - vt) + ¥ sin o(z - Vt), ' (17)

where E has been chosen perpendicular to §O in'&ccbr@gnce with

Eq. (9d), and 6(+) is any twice differentiable real function.

For example, if 0(x) cc tanh(kx), then for |z - Vt| >> kL

the direction of b is nearly constent, whereas when [z - vt < k-l,

b rotates. The total magnetic'field is essentially uniform where
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1

z - V&| > k and is slanted with respect to the B Tdirébtidn-in

20

~ this region. The field lines twist in the vicinity of z =Vt 50

. 0

that the total field B always makes the same angle with B,. The
approximate shapes of the field lines for 6(x) = r tanh(kx),

>®(x) = 51/2 tanh(kx);vand e(x) = (7n/2)éxp[-(kx)2] are Shown in Fig. l‘

(a), (b), and (é),‘respectively. In the CGL moael. the field structures

shown propagate w1thout dlstortlon at veloc1ty V. parallel to EO'

'The propagatlng 1nterface at zZ = Vt where the 1nterest1ng field

behavior occurs, has been llkened to a shock front mOV1ng through a
unlform plasma. The helical structure of Flg 2 results 1f @(x) = kx.
The fluid velocity u 1s_obta1ned from‘Eq. (lO):
u(z,t) = -(V/By)b(z,t). = o - (18)
- Since ‘E must be real, V must be real, i.ed,
v' 2 h' ' ' , ) R
By < Py + B / Ty : o (19)

which is the well-known stability criterion for Alfvén waves.
In summary, Eqs. (16) through (18) and (9a) through (%h)

constitute an exact solution of the full nonlinear CGL equations when

the stability criterion (19) is satisfied. The solution is a wave of

arbitrary; but constant amplitude, propagating without distortion at

the Alfvén velocity IVI, parallel or antiparallel to go.

field E' always makes the same angle with gof and has the same

orientation throughouf each plane z = constant.

The total o
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B. Solutions with'Timerarying Amplitudes in the CGL Model
We next considei solutiéns of Egs. (10) through (1) in which
the wave émplitude can vafy with time.
Since Eq. (9) assumes that the wave amplitude is indepehdent of

z, we'write
b(zt) - B () 52, | (20

where 25 (t) repreSents an amplitude'ﬁhatm may assume.pOSitivé or
;negative values. Substitution of this trial solution into Eq.  (14)

gives

(dgﬁ /dt2)b- = =p 1(130/13)2(pA - B /hn)’f dab/dz .
Separating thisvequation into parts dependent on z and t,

respectively, we find
a®6/az® = X | _ (21)
and

&5 /dt2 = »kzp—l(BO/B)z(pA - Bg/lhr)z . 3 (22)

In order that b have finite components, the constant k must -

be real, and Eq. (21) gives:
g(z) = % cos(kz + 8) + ¥ sin(kz + 8). (23)

Thus the magnetic field has a helical structure with axis parallel to
§O as shown in Fig. 2. 1In what follows we assume-the wavelength
large compared'with.the.ionigyroradiusrtO'preserve”theZValidity of the

CGL model.
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An energy-like equation for if(t) can be obtained by
o ! ' '
multiplying Eq. (22) by - Z , using Egs. (12) and (13) to carry out
the resulﬁing elementary infegrations. Thus we find

Py P

147+ o) = K, - - (2w)
where K is a constant and

obh) = K B 'pi.;'.tp|-!.(0)_[B(O)/B]e * 2p_L(O)V[]‘3/B(O)]V + B2 /lx .

(25)
The dependence of ® on '6 is through B:j
B = (1302" + .62)2. _ _ | - & (26)
From Egs. (10), (11), (26), and (23) we find
u(z,t) = (kBO)’-lﬂ [X éin(};z +8) - ¥ cos(kz + 6.).]., (27)

Equé.tions .(12)Vand (13) specify p_L(t) and p"(t)_.
If Eq. (18) is multiplied by p(kBO)-2, and Egs. (12), (13),

and (27) are used to simpli'fy the result, .we obtain;

12 1. o 2 |

S p ut(t) + 3 py(t) +p)(t) + B (£)/8x = K'. | (28)

| .

This is the energy equation for the combined syste'm'of plasma and wave
with the obvious physical interpretations: % pu2 ' represeﬁts the plasma'.»'»
translational energy densitx, _ %‘-p“ is the thermal energy density

, paral_lél to E, is the thermal energy density perpehdicula.r to B,

B
“and B2/8n is the total energy density in the field.
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Viewing Eq. (24) as ;}»a,n_equa.tion‘.in ﬁ(t), we see that it
describes the mo£ion of a pa.fticle with displacement 1 velocity z
and total energy K mow}i‘ng in the potential CD(é ). The time d_evelop—
ment of i(t) follows easily from this interpretation of Eq. (2h).

Flrst we cons:Lder the propertles of ®(’b) From Eq. (25),

one obtains

20/3b « B ([B,/4x] + 1 (0) _302['3(0-)31‘1 - ,(0) B, 2(0)s™H)
| i ‘ | (29)

One extremum occurs a,.ﬁ £'= :.O, because @ 1is even in ﬁ .. When multi-

plied by. B)+ thé cﬁrly‘* i-,bi'a;c;e, *in Eq.:(29)'is a ﬁlbnotonically increasing

function of |‘b|.» Thus the brace  is positive for all 4 ‘,é 0, if it

is non-negative at 'é - 0, i.e., 1f
(82/1x) + ,(0){3,/B(O)] - B,(0)3(0)/35°
- (B2 + ()4 - B > O 0

Equation (30) is the Alfvén stability criterion; when it holds, <D($)
has only the extremum at i = 0 and must have the form sketched in
Fig. 3 (a) Tn the Alfvén unstable case, 'when Eq. (30) does not hold, the
curly brace is zero for exactly one: value. of Iﬁ I >0, and @(’6)
© must have the form sketched in Fig. 3 (b).

Evolution of the circularly pola.fized Alfvén wave in the stable
and unsf.g.ble cases 1is g"oyérnecl by the energy constant K, which is

-determinéd by the initial conditions.
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Case 1. Stable Plasma
When Eq.’ (30) holds, ©(0) is the minimum value of @(’b)
Thus K cannot be -less than ©(0), since this would imply an imaginary

Ve1001ty é

A qulescent , stable plasma with j corresp’ohds to
= 9(0). | o
. Aseume K > 2(0), and let - ﬁl = '6 > 0 be the real roots of
the equation <I>('$) K, which is a quartlc in  B. In view of Eq. (2&?
and Fig. B(a), $ oscillates between the turn:mg pomts il and

‘g o° Flgure 2 shows the magnetlc field behavior for thls wave. One

complete cycle, observed from a fixed spatial reference, is demonstrated .

by the sequence (a)(b)---(f)(g)(f)---( ).
When |’blz| << By, Eq. (2&) can be expe.nded in ¢ to
. 2
give
142, 1 -1 2 2 L
EETAES TR aic /tm) +9,(0) - pu<o)1$ SV (51)
where A is & positive constant. Equation (31) is that of a simple

harmonic oscillator with its frequency w given by

2 - o, *fun) + 21(0) = By RO

‘Thus for small amplitude waves we recover the Alfvén dispersion relation.

. This solution is a standing wave; it can be viewed as a linear
combination of two circﬁla.rly polarized Alfvén waves, special types of
the constant-amplitude solution considered in Sec. IT A', propagating

in opposite directions.

o
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For more severe perturbations' the frequency of oscillation is
amplitude-dependent', the period T being simply the transit time of. the .

"magnetic" particle oscillating in the potential % ):

T = 2 ﬂ':h | ap T - .-(-33)
4, b - oBNF

.Althougﬁ this solution i a standing wave, é does not oscillate

sinqsoidally, so this modé cannot be viewed as a superposition of

circularly polérized pé.ra.llel propagating Alfvén waves. |
Case 2. Unstablé Plg;ma ‘

Assume that Eq. (30) does not hél-d, ji.e., assume

The plasma is unéta.ble with respect to° small;amplitude A.lfvén waves,
and the ma.gneticv potential @ has the form sketched in Flg 3(b)-(4d).
The evolution of thé circularly polarized Alfvén wave deperids on the
value of K relative to @(0). |

(a) Assume K > ®(0), which corre‘sponds to Figi “3(b). Let
@(ﬁ’l) = Cb(ja) .= K, where -51 = '52 >0 as before.

As vin Case 1 for large-amplitude waves, 5 oscillates between

the values 51 and Z , Wwith period T given by Eq. (33). The

oscillation is nonsinusoidal to the extent that @ is nonparabolic.

s

The development of the magnetic field in time can be seen in Fig. 2:
a complete cycle consists of the sequence (a)«--(£)(g)(£)-+-(a); i

passes through zero twice each period.
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(v) Assume K ~ ©(0), which corresponds to Fig. 3 (c).

The case K = ¥(0) is the situation usually considered in.‘ |
instabiiity studies: thevpiusma is unstable, but initially unpe-rtuibed.
If a small amplitude circgla.riy polarized Alfvén wave perturbation is
introduced with . 1(0) >0 and ﬁ.(o) >0, 5 initially grows expo-

' nentially, then more slowly until its growth stops at éé, the pesitive
root of Cb(‘b) - K. Immediately the mode decays, with ﬁ ultimately
falling exponentially to zero.

The +time T feQuired for the amplitude to reach satufation
and decay to its initial amplitude 2(0) is |

B> o
To= 2 ® . )
%) 2 o

The exponential rate for growth and decay is the ﬁsual‘ firehose
growth rate. The duration of exponential growth will be arbitrarily 1ong>"’
as Z(O) is made arbltra.rlly small, although in practlce $(O) cannot
be made much less than the inherent random fluctuatlons in B.

‘The .growth-decay behavior is demonstrated in Fig. 2 by the
sequence (c¢)(b)(a)(v)(c), with ultimate decay to the uniform magnetic o
field pictured in Fig. © 2(4). | |

When K = ®(0) the exact equations predict pure decay, or
growth se.turatlon -decay, but the mode is not periodic. When K 1is
near @(0), but not equal to it, any circularly polarized wave OSClllateS_‘
- between solutions of ®(‘5) = K. The perturbation amplitude spends most :

of its time near zero amplitude, since 5 is small there. The period

increases markedly as K approaches @(0).
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_ vw(c) Aséume Qmin < K < ¢(0), where Qmiﬂ denotes the minimum value

- of @Cz ), corresponding to Fig. 3(d).

lLet @(761) = @(162) = K, where O < 2‘1 < ,» and choose the
~ coordinate system so that ﬁl < ﬁ(o).{ ég.' Figure .3((1) shows that
5 oséiliate_s between the limits él and ’62,_ never paésing through
ZeYo. ,The field behavior for a full cyclé is illustrated in Fig. 2 by

. the sequence (a)(b)(cj(b)(a).
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IIT. PARALLEL-AEFVﬁﬁ WAVESIIN THE GUIDING CENTER MODEL -

The results obtained in Sec. II in the CGL model also follow
frbﬁ'the Guiding Centef eQuations, which, because the heat—flpw tgnsor
is not arbitfarily neglected, constitute a more realistic approxihation
to an actual plasmg.. We work with the eqﬁations obtained by Kulsrud
from the Vlasov equatidn,in the small gyroradius limit.5 This is a
kinetic déscription, and thus the particle distribution functibn F,

must be specified. We take Fo to be bi-Maxwellian:

Fo(w,a,8) = Cp, p,f%'eXP[-:pw/gL- Zo(a - w)?/pyls (36)
where S ' ) |
vo= 3(v-w)° | | | - (37)
and |
| q = ip - v | (38)

Parallel and perpendicular refer to the total magnetic field.
Using Eq. (36) and the characteristics (9) of the waves of

interest, we show in Appendix B that Kulsrud's GC equations reduce td

0, - | (39)

By o=
/3t = B, du/dz, - (10)
o3/t = -(By/8%)(p, - B/ kn)3/3z, (u1)
b (t)/p,(0) = B(t)/B(0), (42)
B (6)/2,(0) = B(0)/5%(%), | (43)

oB/B = olp, - B/un) ™" du/ot, ()
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»

(a+p)B = 0. | : o (45)
Equations (40) through (43) are identical to those oﬁtained froﬁ_:
the CGL model, Egs. (10) thrcﬁgh (13). Equation (39) dispdses of the
 §arallel electric”field, which appears in the GC theory; but not in the
CGL model. |
 A. Constant-Amplitude Solutions in the GC System
The solutions of the CGL system.éonsidered in Sec{ IT A have the
property that:vlgl and Igl remain coﬁsfght‘in‘time. Thus both sides
of Eq. (k) Qénish,_Eq. (45) is satisfied, énd.thévGévequations reduce -
. to those derived from the CGL model and lead to the same soiutions as
obtained in.Seé, IT A. | | | |
B. 'Time-Varying-Amplitude Solutions in thé GC System
Tﬁe_time-varying-amplitude Alfvén modes considered ih Sec..IIVB,'
sgtisfy Eq. (k) in view of Eq. (27) and a simple manipulation of Eg.
 (22). Equation (45) is likewise satisfied because Eqéh (23) and (27)
shOW'thgt b and u are orthogonal. | .
Thé GC eqﬁations have thus been simplifed‘to the CGL results,
Egs. (10) through (13), and lead to the same time-varying-amplitude ‘
solutions obfained in Sec. IT B. | |
Note that, since the solutions.obtained from the GC‘eqﬁations .
have a bi—Maxwellian velocity distribution, the heat-flow tensor %
~vanishes. This justifies, in retrospect, the use of the CGL model,.

which arbitrarily assumes that V-Q = O.l’3
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"iv. DISCUSSION
" A, Significance of the Constant Amplitude Alfven Wave .
It has been known for many years that in a uniform MHD plasma
a transverse magnetic perturbation of arbitrary orientation and constantv.
amplitude (or special cases of this type of wave) propagates at the
Alfvén veloc1ty parallel to a unlform magnetic field without distortiom
‘i.e., there is no coupling to particles or waves in the absence of

9-12 gsoctions II A and IIT A show that this

other perturbations.
conclusion holds even for an anisotropic plaSme in the CGL and GC models..
Examples ere picturediin Fig{ 1. | | |

| " The constant-amplitude Alfvén wave nay be importantvin the solar>

wind. Mariner V datal3

show: the high correlation or anticorrelation
between magneticifield and fluid velocity which charactefizes Alfvén
waves [see Eq. (18)]. Although the individual field components .
fiuctuate in a. seemingly random fashion, the total fieid magnitude is
relatively constent over large regions of the solar wind. The mode
propagates at the Alfvén velocity,‘always away from the snn. Furthermore,
the amplitude of the magnetic' fluctuation is comparable to the total
field, so that explanation of tne phenomenon requires a large-amplitude
theory. Subsequent anaiysis of the data may show that the random
flnCtnations in the obéervéd field can be duplicated by the constant-
amplitudevAlfvén wave with suitable choice of the aroitrary function 0.
The conetanteamplitude Alfvén wave is characterized by a constant magnetic

field component BO in the direction of propagation; it has not been

determined whether the solar wind has this property.l
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The simple picturé,éf a constaﬁt-amplitude wave propagating
parallel to the uniform field without distortion may no longer be valid
if other waves are present. It has been shown, for example, that.a
large -amplitude circularqupoiarized Al1fvén wave in an MHD plasﬁa ‘

(p“ = 31) can couple fp another Alfvén wave and an ion sound wave if
the waves satisfy certain three-wave resonance conditions.9 |
" B. The Variable-Amplitude Circularly Polarized Alfvén Mbde-

Barlier quasilinear studiesh-6 of the firehose mode produced

equations accurate to second order in the'wéve amplitudes of the form

ae /e = (Ep/ed) [Pertginyn, )
aEprar - ey - 208))/,7) [ @ 60) W), (u7)
a(k,t)/at = 2r(k,t) Y(ot), . (48)
Pl = R - @) -, (19)
V(e t) 8k + k') = (oB(k,t) - BB(K',8)) | (50)

Here &B is the perturbatioﬁ in the magnetic field, parallel and
perpendicular refer to thg"direction of 'go, and finite gyroradius
effects have been dropped. The brackets denote eﬂsemble aﬁd spatial
averaging in the derivation of Davidson and Volk. Equations (46)
through (50) are obtained in Appendix A from the CGL model without the
necessity of taking enseﬁblé averages.

| ’ The quasilinear equations have the advantage of treating an-

'arbitrary distribution of linearly polarized Alfvén waves. They imply
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the existence of a quenching point: vthe ﬁlasma is initially uﬁstable
if (P“)(O) > <3l)(o) + B, /hn, but, as the waves grow, (Bl) increases
and (P") decreases untll Y(k t) = 0, and no waves are unstable.

However, Eqs. (46) through (50) have not been solved in even
the simplest cases._ The qualitative propertles of the quenchlng process
obtained so 31mply in Sec. IT B for the circularly polarlzed ‘mode--
nanmely, that quenchlng occurs in a flnlte tlme and is- followed 1mmed1ately.
by decay--are obscured by the complex1ty of Eqs. (46) through (50)
Indeed these gross features may have been lost by the approx1matlons
used in deriving them from the more fundemental equations.‘ The quasi-
linear theoryscannot provide quantitative information,concerning the.
quenching process, since, as Dav1dson and Volk note,’ hlgher-order |
nonlinear effects become'lmportant‘as Y -0, In der1v1ng the quasi~
linear.equations one treats Yz(k t) as a zero-ordergquantlty, an
assumptlon which clearly breaks down at the quenchlng p01nt

Qualltatlve features of the quenching of the c1rcularly polarlzed;
Alfrén>wave are shared by other wave saturation processes:

1. Numerical studies of the flute mode in the low-density
-regime shou‘exponential growth at small amplitudes, then saturation
followed'by:decay;l5 The energy in the mode oscillates, much like the
Alfvén weve of Case 2 (b), Sec. II B, when X is slightly less thanx
2(0).

2;7 Investigation of the nonlinear evolution of a single-
wavelength longitudinal flute mode with frequency near a harmonic of

the gyrofrequency in a loss-cone plasma indicates saturation in a finite
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time followed by decay.l6' The anelysis is invalid béyond the deéay
regimeg so-thaf Qscillafof&'behavior cannot be revealed. The modé |
‘cbnsidered is a symmetfic standing wave, and the analysis invoiveé.é
pseudopotential,, both éharactéristics having analogues 1in thé theory
of Sec. IT B. |

3. In a plasma cdnsisting of two cold streams, é dynamical
theory of the two-stream instability shows that "the électric field does
not grow and level pfant some Qalue 'Emai'.where Y =0, ﬁut,‘rather,
‘because of the dyﬁaﬁics, overshoots this poiht»and“then osciliates back
' to its initial state. "

L. The bump-on-the-tail limit of the two-stream instability
has similar properties: wave satﬁration occurs in a finite time and

is followed by gentle oscillations of the wave energy, with period
18-20 - o

comparable to parﬁicle-tfappiﬂg fimes.
| | -C. Conciusion
No pretense is hade that all the special>modes discussed here are sig-

nificant in the physical world. The requirement of a uniform infinite plasma
in a uniform magnetic field subject to no perturbation except the modes

of interest is enough to preclude their occurrence.‘ It is hoped that
. the advantage of having an exact solution in a simple form to an other-

wise intractabie class of problems will make this study beneficial. The 
characteristics of the simple wave-quenching process may serve a useful

purpose if only pointing the way to important characteristics of more .

complete and more complex plasms instability problems.
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APPENDIX A. QUASTLINEAR THEORY OF THE FIREHOSE
i INSTABILITY IN THE CGL MODEL |
We outline azdefivation from the CGL-equationS of the quasilinear
results obtained by Davidson and Vslk.u It is not.surprising that
identical results follow, because the assumption of diagonél préésure
tensor and neglect of the:heat—flow tensor explicit in their work are
used in deriving tﬁe CGL equations. Iﬁ is useful, however, to bdint
out anvimportant differenée between the.defiﬁifion of the averagé_
pfeséures in the tﬁo.ahaiyses. Note,_also,ithat in our analysis
the ensemble averageé used by Davidson and V81lk are never required: it
suffices tb considef_ﬁﬁly spatially-averaged quantities.
We assume a uniform, infinitesimally perturbed plasma in a

# -

uniform magnetic field EO' We view all CGL variables as conéisting
of a space—averagé‘partg.which.may‘depend on time, and a fluctuating
part: po(x,t) = (o)(t) + 80(x,t), etc. The hexagonal brackets denote

spatial averaging.

Taking the space-average of the CGL Eqé. (1) through (3), we

find
{p)(t) = constant ,= .9, ' o (a.1)
(g)(t) = consﬁant,.= ‘Q, . | (A.2)
(B)(t) = constant = B,- . : (A-5):

When the CGL Eqs. (1) through (8) are linearized in fluctuations

about these spatial averages and the unstable Alfvén wave characteristics
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vafe aséumed, the usual iinearly polarizéd firehose waves follow., To

first o;der in the perturbation we find

& = 0, -, | ()

.p_L = v(p_l‘_")(t),. | o o (As5)
o= P,  we
oB(k,t) = 8B(k,0) e EE)Y, (A.7)
eulet) = -ioret) (Bt eBGt), (a.8)
et) = e Ble)(®) - 32 AEIF . (a)

We assumé'that,the.firehose instabilify criterion.holds‘so that the
growthvfdte .Y(E,f) is real. The field fluctuation 182“ is perpendicular
to k and B, gicharacteristic'gf Alfvén waves. |

The average pressures are constant to first order; to calculaté "
their second-order evolution in time it suffices to éarfy the two

adiabatic equations (4) and (5) to second order in the perturbation and

space average'fhé result. - We find
opy)/3t = ((p_L>/Boz)_fd5k T(k,t) V(k,t); : (A.10) )
Noy/oe = 2/ [ @ e s, (aa1)

where the magnetic field\spéctral density Vv 1is defined by

Y0t) 8l + k) = (8Bst) 8B ,E) (a12)
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and setisfies
b (s,t)/3t = 2r(,t) v(k,t) « | (a.13)

In order to eempare the resulfs (A.10) fhrough'(A.15) with
those of Davidson and Volk, we note that le whlch appears 1n the CGL
equatlons,ls the pressure perpendlcular to the local magnetic fleld
§'= §O_+ SB; whereas the quantity ‘glf which is used in the-eerller work,
is the pressure perpendicular to EO' Similar‘remarks apply ﬁo By

and P” Thus we have
(o)) = <gi=§§>, - )
<P_j_> E(g : % i ﬁ’ﬁ')L | o _ (A.15)v"._
(By) = f<g : 8,8,) (A.16)
<11> —=- (¢ (L-Bf)) | o aan

To second order it follows that

]

() = (o) + (/) [ Prvter), O wasy

1

@I\? | <?ll> i v(<PA>/Bo2) f Py (K,8). | (a29)

4

Note that (PJE - (31} is a second-order quantity, and
51mllarly for (p“> - <P‘P Thus to the required accuracy, (pA)(t)
in Eq. (A.9) may be replaced by (P )(t)

Taklng the time derivatlve of (A. 18) and (A l9),we have
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a(PJ_)/at ((P“)/.BOEH) f dBk ‘r(g,vt) \#(5,_1:)-, | (_A'EO) |

a(P“Vat -[(h<Plp fj2<?l})/302];{ d5k.r(§,t)~¢(§,t), (A;gl) |

. Equations (A4.9), (A.12), (A.13), (A.20), and (A.21) are identical

to Egs. (h6) through (50) obtained by Devidson and Volk. Finite 8yro-

radius effects have been ignored here'and should be included in a more

complete treaﬁment.
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' APPENDIX B. GUIDING CENTER EQUATIONS FOR THE
PARALLEL ALFVEN WAVE

We start with the guiding-center equations in the form obtained

by Kuls'rud”.5 This system, which Kulsrud terms the "adiabatic Equations,”

is.

/3t + V°(pg) = 0, . | ! (B.1)
odu/dt = -vop + (vxllg)x :g/lm; N o (.2)
- B8, | - 55)
ol =Z @I%(q -u? 2x dg aw, L - (BB
p_L:Z\ijO w 21[ dq dw, | | | (B.‘j)_»
aFo/ét + (o + _qﬁ)-VFO + wwaFo/aw + QBFO/aq = 0, _v (3.6)
W= BB :wg- Vg . Qv-B, o (B.7)
Q = Q.Bﬁ/at_+ gg': vB + qgﬁ : VB + wv.ﬁf :eE."/m, (B.8) |
@ = ou- ‘g-ﬁﬁ—; (8.9)
vV-B = O, ' o | (B.lo)"
3B/t = VX (uxB), S ' , (B.ll).:‘

Ze fFO dg aw = O, | (B.12)

Ze fFquq aw = O, ' (B.13)
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Y (efm) B @p)/ QN 2/m), (3.14)

W

-w%, ey

a = v . . | - (B.16)

In these equations the notation of the CGL model, Eqs.»(l) through (8),
has been used where applicable;'the particle distribﬁtibn.fﬁnction FO'
'depends on the particle velocity. v through q and w; barallel and
perpendicular.réfgr to the direction of the locél magnetic field B;
E‘r is thgvpafallel electric field component; and the'summations in
Egs. (B.L4) - thiough (B.14) are over particle species.'

It is convenlent to s1mp11fy Egs. (B 7) and (B 8) by using

(B.9) to ellmlnate @ in favor of the fluld velocity u. We find

w = B8 :w-ven -,qv-ﬁ,r - (B.17)-

» g-aﬁ/bt + [uu + (q - E}ﬁ)uﬁ] : VB +,wv,§ + eE"/m. - (B.18)

~

D
it

'We consider Alfvén waves having properties (3) and use these
characterlstlcs to simplify (B.1) through (B. 18).
'Equations (B.l) and (B.10) are trivially satlsfled.

Equations (B.2) and (B.B)_reduce to
~ pou/ot = '[pA:':B'E/)-I-ﬂ] B2 B,Ob/oz. (B.l9)l"
Equation (B.ll) becomes

d/3t = By dwz. o | (.20)

_The wave equation (14) is readily obtained from (B.19) and (B.20).
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Equation (B.14) gives.
Ey = 0. - , : » . ’(B.El).
Finally, Egs. (B.17) and (B.18) simplify to

W

il
1

FEP ot - BB B  (B.22)
and

~(u-b B/8%) -

O
]
=

ol - wBl(p, - B wPr.  (B.23)

nwe-asSumeba bi-Maxwellian distribution function:

Fo(ﬁ,q,f)  ; c ?L—% p”'%'exp[pr/gL;- o(q - u”)2/2p"]- (B.24)
The appropriate time dependence of the norméliZatiQn factor is included
in Eq. (B.éh); “With this choice, Egs. (B.h) and (B,S) give the appropri-
ate pressﬁres,' The quasineutrality condition (B.12) holds for all times
if it is true initially, ahd-Eq. (B.13) requires fhat the fluid velocity
be the same for electrons and ions, u”e = uni. Equations (B.6), (3.22),

(B.23), and (B.24k) reduce to
{-é.l./pl "'%— I.)"/P“ + Q“;I.)_L/P_Lg + %Q(q - u“)2 lgn/png = W(é/B)D/IlL
¢ LaR)B/s° + gpla - up(py - B/ 3u%/3t] pla = w)/5, ¥ = O-
o 1 | | o (3.25).

~Since Fo is never zero, and since (q - u“) and w are
independent variables, the coefficients of w, 1, (q - ulp;’and (q - un)2

in the curly brace: of Eq. (B.25) must vanish:
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-B/B = 0,

P /7

o+

: 13.1_/?1. + '—I.)"/P" = .0)

(E'E)B 0,

n

. T
P”/p“_+ p(pA — Bg/hn)‘} du /ot

. Equations (B.26) and (B.27) give

2,(6)/p)(0) = B()/2(0)

B (£)/py(0), = Bg<o>/32<t>.

UCRL-20066

(B.26)
(B.27) .
(B.28)

(B.29)

(B.30)

(.31)

- Thus for the AlfVen modes under con51derat10n and for a bi-

Maxwellian particle dlstrlbutlon, the GC equations reduce- to Eqgs. (B. 19)

through (B.21) and (B.28) through. (B. 31)

'-Equatlons (39) through (h})'and:

(45) are equivalent to Eqs. (B.21), (B.20), (B.19), (B. 50), (B. 31), and

(B.28), respectlvely. Equatlon (hh) follows from Eq (B 29) when p“

is eliminated by means of Eq. (B 31).
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FIGURE CAPTIONS .

Magnetic field lines of the constant-amplitude A1fvén wave for =

various choices of the function 6(-), which specifies the

.direction of the field disturbance b: (a) 6(x) = n tanh kxj

(b) 8(x) = (x/2) tanh kx; (c) O(x) = (7x/2) expl-(kx)°]. 1n
each»iliﬁstfatienethe field linee make a hS“degranglé'With :§O
everywhere, corresponding to lo| = By In:(a):and (c) the -
neafly ﬁniform field at-larée positive values of .k(z - Vt)

is parallel to the field at large negative values of k(z - Vt);_

the exaggerated perspective makes them seem nonparallel.

In the CGL and GC models these field configurations

propagate without distortion at the generalized Alfvén velocitY"

~0

Temporal evolution of the time-varying-amplitude Alfvén mode.‘
Field lines are pictured for: (a)‘é ~ 6Bb, (b) b ~ SBO,
()% ~ 3y, (@) F =0, ()8 ~-By, (£)F ~ 38, (&) F ~ -68;.

The helical standing-wave structure is generated by a magnetic

- field componentVperpendicular-to the uniform field go having

signed amplitude Z;(t), whose time dependence readily follows
from Eqs. (24) and (25). This mode is an exact solution for
a stable or unstable plasma in the CGL and GC models.

Sketch of the magnetic potential ©(% )> Ea. (25), for the

bvariablefamplitude Alfvén mode with various choices of the

plasma parameters: (a) gtable plaema with K > ¢(0), corre-

sponding to Case 1; (b) unstedble plasma with X > ¢(0),
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corresponding to Case 2(a); (¢).unstable plasma with K = 9(0)j
corresponding to Case 2(b); (d) unstable plasma with
0 in <K< ®(0), corresponding to Case 2(c) In (a), @ is

' e " a2
~sketched for the pressure anisotropy (p_L)ﬁ -0 = B /8,
(p"),é 0= Bovg/)-H'_f.._ The unstable plasma in (b)-(d) corresponds
to (p_L)‘5=‘o = Bo./lm,_ (p“)é -0 =_L."BO_ /x. ‘By Eq. (2’4), thg
time dependence of the signed amplitude 5 , which determines
‘the evolutioh of the helical structure pictured in Fig. 2,
is the displa;cenient of a unit mass particle of energy K moving

in the poteri_tié,i o(8). '
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Fig. 1c
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Fig. 2b
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Fig. 2f
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