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ABSTRACT 

• 	 Aifvn waves parallel to a 'uniform magnetic field 

ma uniform but ánlsotropic plasma are studied in the CGL 

and guiding-center models. Exact solutions are found in 

the stable and unstable cases. When the plasma is stable, 

an arbitrarily large constant amplitude perturbation 

perpendicular to the uniform field can propagate without 

distortion parallel to the uniform field. The exact 

nonlinear behavior of an'unstable circularly polarized 

Alfvn mode is obtained: growth of a finite pertur-

bation is quenched in a finite time, and decay begins 

immediately. 
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I. INTRODUCTION 

Energy conservation prevents the indefinite growth of a linearly 

unstable plasma wave. Nonlinear effects, such as wave-particle and 

wave-wave interactions, ultimately limit.the amplitude of modes that. 

increase exponentially with time in linear theory. 

This mode quenching problem rarely yields analytic.solutiOflS in 

simple closed form, and insmght regarding wave-saturation processes 

is acquired with difficulty. Except in special cases, even the qualita-

tive properties are uhknown. For example,. does the plasma approach the 

saturated state of rnaxim1m wave energy asymptotically as t -.-, or 

does saturation occur in a finite time? If the latter holds, does the 

quenched state represent a stable configuration, or will further evolution 

occur? 

In preparation for a more detailed nonlinear analysis of low- 

frequency waves, it was discovered that the circularly polarized Alfvn 

wave oriented, parallel to a uniform magnetic field in a uniform 

anisotropic plasma is an exact solution of both the hew-Goldberger-

Low (CGL) equations1  and the guiding-eflter (GC) equations. 2 ' 3  When 

an excess of pressure parallel to the magnetic field makes such a wave 

unstable, it is known as the "firehose" or "garden-hose" instability. 

By use of elementary analytical methods, the nonlinear quenching of 

this unstable wave can be solved exactly in either model, thus providing 

perhaps the first simple and complete solution of the nonlinear growth 

of a plasma wave, rigorous within the limitations of the GC equations. 



In what follows we will consider Alfvn waves in an infinite, 

uniform plasma in a uniform magnetic field B. The velocity distribution 

will in general be anisotropic. 	 . . . 

The firehose mode has already been studied in such a plasma by 

quasilinear techniques.. 	The Vlasov equation carried to second 

order in the perturbation shows that the unstable waves, initially 

growing due to an excess of pressure parallel to B, react back on 

the particle distribution, causing the parallel pressure to decrease 

and the perpendicular pressure to increase as long as any waves are 

growing; the growth rate is made smaller by the relative decrease of 

parallel pressure, and wave growth is thus self-quenched An explicit 

examination of this process has not appeared in the literature. 

The CGL model was chosen for this paper primarily for the 

simplicity inherent in a fluid description and because to lowest order 

it predicts the same nonlinear behavior of Alfvn waves as the Vlasov 

equation. .. In Appendix A the earlier quasilinear results are generalized 

to arbitrary k by carrying the CGL equations to second order in the 

wave perturbation. (of course,finite ion-gyroradius effects must be 

appended to.the CGL equations to correctly predict growth rates for 

small wavelengths.) This calculation verifies that, at least to second 

order, the CGL model agrees with the more complete kinetic description. 

It was thus deemed a reasonable model for this investigation 

despite the approximations implicit in it. 

The Alfvn modes that exactly solve the CGL model also satisfy 

without approximation the more widely recognized GC equations. Moreover, - 

the GC solution has the property that the heat-flow tensor, which is 
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arbitrarily dropped in deriving the CGL equations, vanishes, providing, 

further justification for the suitability of the CGL equations to this 

study. 

Section II treats exact Alfvn wave solutions in the CGL.model. 

In Sec. hA a magneticpèrturbation perpendicular tothe uniform field 

of constant, but arbitrarily large, amplitude is shown to be an 

• 

	

	 exact solution of the CGL equations provided the usual Alfvn wave 

stability criterion, Eq. (19), is satisfied. Such waves propagate 

• 	 without distortion parallel to 	at the generalized Alfvn velocity, 

given by Eq. (16). Figure 1 illustrates examples of this wave. The 

constant-amplitude A1fvn wave in the CGL model has been. briefly treated 

as an example of a "simple wave" of classical fluid theory. 7  

In Sec. IIB a circularly polarized Alfvn wave with k parallel 

to 	is studied. This mode reduces the CGL model to the simple 

Eqs. (12), (13), (20), and (23) through (27), which are derived without 

any approximations. The mode does not propagate. The magnetic field 

has a helical structure consisting of B and a component perpendicular 

to 	of signed amplitude 	(t), as shown in Fig. 2. The time 

evolution of 	(t) is easily obtained from the energy Eq. (24): 

can be viewed as the displacement of a classical particle moving in the 

potent±a1 	which is sketched in Fig. 3 for various initial plasma. 

conditions. If the stability criterion (19)  holds, 	(t) oscillates 

between positive and negative values with an amplitude-dependent 

frequency, which approaches the Alfvn frequency in the small-amplitude 

limit. 
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If the Alfvn stability criterion (19) is not satified, three 

special cases can occur, depending on the particular boundary conditions 

assumed for the plasma. The usual initial condition assumed for plasma 

instability studies corresponds to Fig. 3(c), in which 

p11 (0) > :p(0) + B02/4t, and the initial perturbation amplitude 	and 

its time derivative 	are small and positive. The amplitude grows 

exponentially at first, then more slowly; it reaches a maximum value in 

a finite time and immediately decreases, ultimately decreasing to zero 

exponentially. This demonstrates that wave quenching occurs in a finite 

time . and is followed by immediate decay. If the initial conditions 

correspond to the situation in Fig. .3(d), the wave amplitude oscillates 

(nonsinusoidally), never passing through zero. If the initial conditions. 

correspond to Fig. 3(b), the wave amplitude oscillates nonsinusoidally and' 

passes . through zero twice each period. 

Section III shows that idèitical results are obtained from the 

GC equations. 

in Sec. IV the exact results of Secs. II andill are discussed. 

It is noted that the cànstant-ampiitude wave may be an important low-

frequency phenomenon in the solar wind. The circularly polarized 

46 	 - 
firehose mode is related tothe quasilinear theory,...of. the Alfven . 

instability. Qualitative features of the nonlinear evolution of the . 

circularly polarized firehose mode are compared with characteristics 

of other unstable waves. 
V 
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II. PARALLEL ALVEN WAVES IN THE CGL MODEL 

The CGL equations or double adiabatic equations are 1 ' 3  

• 	
/dt 	.-pVu, 	 (1) 

pdujdt = -VE.+ (VX ) X 	 (2) 

	

Jt = v x (u x ), 	 (3) 

d(p1pB)/dt = 0, 	 (4) 

2p 3 )/dt = 01 d(p 11B 	 () 

0, 	 (6) 

= BB p1(i - 	) + 

	

= pi + pp,. 	 (7) 

- p. 	 (8) 

The usual notation for the convective derivative, d/dt (/t + u.V), 

has been used. In these equations B denotes the magnitude of the total 

magnetic field B. 

We assume that the unperturbed state consists of a uniform 

plasma in a uniform and constant magnetic field 	. Choose a 

Cartesian coordinate system with z axis parallel to 

All plasma waves discussed in Secs.,:II...and III are assurnedto 

have the following space-time dependence:8 
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u 	= u(z,t),  
S 

B 	= +b(z,t),  

= 0,  

b• 	= 0 1   

b 	E I(z,t)I 	= 	b(t),  

= P .LMY (9r) 

p0 	= p 11 (t),  

p 	= constant.  

Note that the only spatial dependence is through the variable 	z,hence 

the name parallel Alfv4n 'waves. 

Without any approzi 	tion, use of properties (9) reduces the 

CGL Eqs. 	(1) through (8) to the simple system 

= 	B0 	uftz, (10) 

puJt = 	-(B0/B2)(p 	- B2/!lit)bJz, (ii) 

pI(t)/pj(0) = 	B(t)/B(0),  

p 11 (t)/p 11 (0) = 	B2 (0)/B2 (t).  

Equations (10) and (11) can be combined to give A wave 

equation for b: 
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= -p(BB)2(p - B2/42Woz2. 	 (14) 

Equation (14) can be treated by a separation of variables 

technique, but, due to its nonlinearity, particular so1itions cannot be 

superposed to give more general ones. Guided by solutions of the 

linearized plasma equations, we investigate two classes of solutions 

of Eqs. (10) through (14).. 

A. Constantrnplitude Solutions in the CGL Model 

• 	Assume b(t) is constant in time.. Equations (12) and (i) 

imply that p11  and p1  are also constant With b = b 

Eq. (14) reduces to 

= 	. 2 /z2 , 

where the generalized Alfv&i velocity V is given by 

p(B0/B)2[(B2/4t) - p] . 	 . 	(16) 

and is also constant. 	. 

The general solution of the simple wave Eq. (15) is 

= x cos e(z - vt) + y sin O(z - Vt), 	 (17) 

where b has been chosen perpendicular to 	in accordance with 

Eq. (9d), and ®(•) is any twice differentiable real function. 

For example, if ®(x) . tanh(kx), then for Iz - Vtj >> 

the direction of b is nearly constant, whereas when Iz Vtt K ICl  

b rotates. The - total magnetic field is essentially uniform where 
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Iz - vtl >> k 1  and is slanted with respect to the 	direction in 

this region. The field lines twist in the vicinity of z = Vt so 

that the total field B always makes the same angle with 	. The 

approximate shapes of the field lines for 0(x) = c tanh(kx),. 

0(x) = /2 tanh(kx), and 0(x) = (71r/2)exp[ - (kx) 2 ] are shown in Fig. 1 

(a), (b), and (c), respectively. In the CGL model, the field structures 

shown propagate without distortion at velocity V paraIlelto 	. 

The propagating interface at z Vt, where the interesting field 

behavior occurs, has been likened to a shock front moving through a 

uniform plasma. The helical structure of Fig. 2 results if 0(x) kx. 

• 	 The fluid velocity u is obtained from Eq. (10): 

(18) 

Since u must be real, V must be real, i.e., 

p l,< p1 + 	 . 	 . 	 (19) 

which is the well-known stability criterion for A1fvn waves. 

In summary, Eqs. (16) through (18) and (9a) through (9h) 

constitute an exact solution of the full nonlinear CGL equations when 

the stability criterion (19) is satisfied. The solution is a wave of 

arbitrary.. but constant amplitude, propagating without distortion at 

the A1fvn velocity lvi, parallel or antiparallel to 	. The total 
field B always makes the same angle with 	and has the same 

orientation throughout each plane z = constant. 
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B. Solutions with Time-Varying Amplitudes in the CGL Model 

We next consider solutions of Eqs. (10) through (14) in which 

• 	the wave amplitude can vary with time. 

Since Eq. (9) assumes that the wave amplitude is independent of 

we write 

b(z,t) = 	(t) (z), 	 (20) 

where 	(t) represents an amplitud.e that may assume positive or 

negative values. Substitution of this trial solution into Eq. (114) 

gives 

(d2  /dt2 ) 	= -p(B0/B)2(p - B2/)4ic y d/dZ2  

Separating this equation into parts dependent on z and t, 

respectively, we find 

d2 /dz2  = -k€ 	 (21) 

and 

d2  /dt2 = 	k2p(BB)?(p - B2/14) 	. 	•. 	( 22) 

In order that b have finite components, the constant k must 

be real, and Eq. (21) gives: 

b(z) = x cos(kz + 8) +y sin(kz + 8). 	 (23) 

Thus the magnetic field has a helical structure with axis parallel to 

as shown in Fig. 2. In what follows we assume the wavelength 

large compared with. the, ion gyroradius. to preserve.. the. validity of the 

CGLmodel. 
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An energy-like equation for %(t) can be obtained by 

multiplying Eq. (22) by 	, using Eqs. (12) and (13) to carry out 

the resulting elementary integrations. Thus we find. 

12 + 
	) 	K 	 (21 ) 

where K is a constant and 

04 	2 k B 2  p.(p 11 .(0){B(0)/E] 2  + 2p1(0){B/B(0)] + B 2

/) (25) 

The dependence of 0 on j is through B: 

B = (B02 + 2) 
	 (26) 

From Eqs. (10), (ii), (20), and (23) we find. 

u(z,t) = (kB0)_[2 sin(kz + 8) - 	cos(kz + 5)]. 	 (7) 

Equations (12) and (13) specify p1(t) and p11 (t). 

If Eq. (18) is multiplied by p(kB0 2 , and Eqs. (12), (13), 

and (27) are used to sinrplify the result, we obtain; 

p u2 (t) + 1 p 11(t) + p(t) + B2 (t)/8r = Kt. 	 (28) 

• This is the energy equation for the combined system of plasma and wave 

with the obvious physical interpretations: 	pu2 • represents the plasma 

translational energy density, 	p 1  is the thermal energy density 

parallel to B, 	is the thermal energy density perpendicular to B, 

and B2/8n is the total energy density in the field, 
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Viewing Eq. (24) as an equation in 	(t), we see that it 

describes the motion of a particle with displacement 	, velocity 	, 

and total energy K moving in the potential 	The time develop- 

ment of 	' (t) follows easily from this interpretation of Eq0 (211). 

First we consider the properties of 	From Eq. 

one obtains 

cc({B02/] + p1(0) B02[B(o)B] 	- p 11 (0) B02 B2(0)B). 

(29) 

One extremum occurs at 	= 0, because 0, is, even in 	., When multi- 

plied by B1  the cur1yhraQe in Eq.(29)".iS. a monotonically increasing 

function of 6 . Thus the • br&Ce is positive for all 6 	0, if it 
is non-negative at 	0, i.e., if 

• 	(B02/1 ) +p1(0)B0/(0)] - p11.(0)[(c)/B0]2 

= (B02/) + (p)=0 - (P)o > O• 	
(30) 

Eqiation (30) is the Alfvn stability criterion; when it holds, 04) 
has only the extremum at 	= 0 and must have the form sketched in 

• 

	

	Fig 3 (a). In the Alfvn.unstable case, when Eq. (30) does not hold., the 

curly brace is zero for exactly one value of 16 1 > 0, and 
must have the form sketched in Fig. 3 (b). 

Evolution of the circularly polarized. Alfv&n wave in the stable 

and unstable cases is governed by the energy constant K, which is 

•determind by the initial conditions. 
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• 	Case 1. Stable Plasma 

When Eq0 
1
(30) holds, 	(o) is the minimum value of 

Thus K cannot be less than (o), since this would imply an imaginary 

velocity 

A quiescent, stable plasma with 	= 0 corresponds to 

K 	(o). 

Assume K > (o), and let - 	
=> 0 be the real roots of 

2 .  

the equation () 

= K, which is a quartic in B. in view of Eq. (24) 

	

, 	oscillates, between the turning points 	
l and 

and Fig. 3(a)  

2 Figuré2 shows the magnetic field behavior for this wave. One 

complete cycle, 'observed from a fixed spatial reference, is demonstrated 

by the sequence (a)(b)...(f)(g)(f) ... (a). 

When ib1,2i << B0, Eq. (21 ) can be expanded in 	to 

give 

	

! 2 k2 [(B02/) ±p(0) - 
p (0)] 2  = ', . 	(31)

11  

where A is a positive constant. Equation (31) is that of a simple 

harmonic osëillator with its frequency w given by 

	

= 	
-1 k2 [(B02/24-t) + pj(0) - p(0)]. 	 (32) 

•Thus for'sniall amplitude waves we recover the A1fvn dispersion relation.. 

This solution is a standing wave; it can be viewed as a linear 

combination of two circularly polarized Alfvgn waves, special types of 

the constant-amplitude solution considered in Sec. II A, propagating 

in opposite directions. 



For more severe perturbations the frequency of oscillation is 

amplitude-dependent, the period i-  being simply the transit time of the 

"magnetic' t  particle oscillating in the potential 04 

¶ = 2 J 	= # fo 	

dj 	
() 

{2[K - 

Although this solution is a standing wave, 	does not oscillate 

sinusoid.ally, so this mode cannot be viewed as a superposition of 

circularly polarized parallel propagating Alfvn waves. 

Case 2. Unstable Plasma 

• 	 Assume that Eq. (jo) does not hold, i.e., assume 

(p ) 	> (p) =0 + Bo2ft. 	 (34) 

The plasma is unstable with respect to small-amplitude Alfvn waves, 

and the magnetic potential 0 has the form sketched in Fig,. 3(b)-(d). 

The evolution of the circularly polarized Alfvn wave depends on the 

value of K relative to 	(o). 

(a) Assume K 	(o), which corresponds to Fig'. '3(b). Let 

= 	= K, where - 	
= 2 > 0 as before. 

As in Case 1 for large-amplitude waves, 	oscillates between 

the values 	and 	2 with period r given by Eq. (33). The 

oscillation is nonsinusoidal to the extent that 0 is nonparabolic. 

The development of the magnetic field in time can be seen in Fig. 2: 

a complete cycle consists of the sequence (a) ... (f)(g)(f)...(a); 

passes through zero twice each period. 
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(b) Assume K 	(o), which corresponds to Fig. 3 (c). 

The case K = (0) is the situation usually considered in 

instability studies: the plasma is unstable, but initially unperturbed. 

If a small amplitude circularly polarized Alfvn wave perturbation is 

introduced with 	(o) > 0 and 	(0) > 0, 	initially grows expo- 

nentialy, then more slowly tntil its growth stops at 	the positive 

root of 	= K. Immediately the mode decays, with 	ultimately 

falling exponentially to zero. 

The time -r required for the amplitude to reach saturation 

and decay to its initial amplitude 	(o) is 

2 

T = 2f  

The exponential rate for growth and decay is the usual firehose 

growth rate. The duration of exponential growth will be arbitrarily long 

as 	(o) is made arbitrarily small, although in practice 	(o) cannot 

be made much less than the inherent random fluctuations in B. 

The growth-decay behavior is demonstrated in Fig. 2 by the 

sequence (c)(b)(a)(b)(c), with ultimate decay to the uniform magnetic 

field pictured in Fig. 2(d). 

When K = (o) the exact equations predict pure decay, or 

growth-saturat ion -decay, but the mode is not periodic. When K is 

near 	(o), but not equal to it, any circularly polarized wave oscillates 

between solutions of () = K. The perturbation amplitude spendsmost 

of its time near zero amplitude, since 	is small there. The period 

increases markedly as K approaches 	(o). 
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(c) Assumenan . < K < (o), where 0
ruin 

. 	denotes the minimum value 

of 	corresponding to Fig. 3(d). 

Let = 	
= K, where 0 < 	< 	

and choose the 

coordinate system so that 	1 < (0). 	Figure (à) shows that 

oscillates between the limits l and never passing through 

zero. The field behavior for a full cycle is illustrated in Fig. 2 by 

the sequence (a)(b)(c)(b)(a). 
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III. 	PARALLEL ALFVEN WAVES IN THE GUIDING CEWITER MODEL 

The results obtained in Sec. II in the CGL model also follow 

from the Guiding Center equations, which, because the heat-flow tensor 

is not arbitrarily neglected, constitute a more realistic approximation 

to an actual plasma.. We work with the equations obtained by Kulsrud 

from the Vlasov equation in the small gyrorad.ius limit. 3 	This is a 

kinetic description, and thus the particle distribution function F0  

must be specified. 	We take 	F0 	to be bi-Maxwellian: 

F0 (w,q,t.) 	= Cp 	pl , 2 e[-.pw/p1 	(q - u 1 1) 2/p11 ],  

where 

 

and 

q 	Vi 1   

Parallel and perpendicular refer to the total magnetic field. 

Using Eq. (36) and the characteristics (9) of the waves of 

interest, we show in Appendix B that Kuisrud's GC equations reduce to 

B 11 	= 	0, (9) 

bJt 	= B0 Jàz,  

puJt 	= 	_(Bo/B2)(pA - B/14 it)bJ z ,  

• 	 p1(t)/p1(0) 	= 	B(t)/B(0), (2) 	•. 

p 11(t)/p11 (0) 	= 	B2(0)/B2 (t), (43) 

2/B 	= 	p(p 	- B2/) 1 	u2/t, () 
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= •0. 	 (11.5) 

Equations (40) through (43) are identical to those obtained from 

the CGL model, Eqs. (10) through (13). Equation (39) disposes of the 

parallel electric field, which appears in the GC theory, but not in the 

CGL model. 

A. Constant-Amplitude Solutions in the GC System 

The solutions of the CGL system considered in Sec. II A have the 

	

property that BI and 	remain constant in time. Thus both sides 

of Eq. (141.) vanish, Eq. (11.5) is satisfied, and the GC equations reduce 

to those derived from the CGL model and lead to the same solutions as 

obtained in Sec.. II A. 

B. Time-varying-Amplitude Solutions in the GC System 

The time-varying-amplitude Alfvgn modes considered in Sec. II B. 

satisfy Eq. (44) in view of Eq. (27) and a simple manipulation of Eq. 

(22). Equation (45) is likewise satisfied because Eqs. (23) and (27) 

show that b and u are orthogonal. 

The GC equations have thus been simplifed to the CGL results, 

Eqs. (10) through (13), and lead to the same time-varying-amplitude 

solutions obtained in Sec. II B. 

Note that, since the solutions obtained from the GC equations 

have a bi-Maxwellian velocity distribution, the heat-flow tensor Q 

vanishes. This justifies, in retrospect, the use of the CGL model, 

which arbitrarily assumes that V.Q = 0.1,3 
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IV. DISCUSSION 

A. Significance of the Constant Amplitude A1fvn Wave 

It has been known for many years that in a uniform MHD plasma 

a transverse magnetic perturbation of arbitrary orientation and constant 

amplitude (or special cases of this type of wave) propagates at the 

0. Alfvn velocity parallel to a uniform magnetic field without distortion, 

i.e., there is no coupling to particles or waves in the absence of 

other perturbations. 912  Sections II A and III A show that this 

conclusion holds even for an anisotropic plasma in the CGL and GC models. 

Examples are pictured in Fig. 1. 

The constant-amplitude Alfvn wave may be important in the solar 

wind. Mariner V data13  showr the high correlation or .anticorrelation 

between magnetic field and fluid velocity which ciaracterizes Alfvn 

waves tsee Eq. (18)]. Although the individual field components 

fluctuate in a seemingly random fashion, the total field magnitude is 

relatively constant over large regilons of the solar wind. The mode 

propagates at the Alfvn velocity, always away from the sun. Furthermore, 

the amplitude of the magnetic fluctuation is comparable to the total 

field, so that explanation of the phenomenon requires a large-amplitude 

theory. Subsequent analysis of the data may show that the random 

fluctuations in the observed field can be duplicated by the constant-

amplitude Alfvn wave with suitable choice of the arbitrary function ®. 

The constant-amplitude A1fvn wave is characterized by a constant magnetic 

field component B0  in the direction of propagation; it has not been 

14 
determined whether the solar wind has this property. 
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The simple picture of a constant-amplitude wave propagating 

parallel to the uniform field without distortion may no longer be valid 

if other waves are present. It has been shown, for example, that a 

large-amplitude circularly polarized Alfvn wave in an MHD plasma 

(p = 	can couple to another Alfvn wave and an ion sound wave if 

the waves satisfy certain three-wave resonance conditions. 9  

B. The Variable-Amplitude Circularly Polarized Alfvgn Mode 

Earlier quasilinear studies 6  of the firehose mode produced 

equations accurate to second order in the wave amplitudes of the form 

d(P)/dt = ((P)/B02 ) fd3k y(k,t)V(k,t), 	 (46) 

d(P11)/dt = [(4(P) - 2(P1))/B02] fd 3k y(k,t) *(k,t), 	(4) 

diV(k,t)/dt = 2r(k,t) (k,t), 	 (48) 

p(k.0)2((P) - 	- B02/4), 	 (49) 

k,t) 8(k + k') 	(B(k,t) • B(kt,t)). 	 (50) 

Here 8B is the perturbation in the magnetic field, parallel and 

perpendicular refer to the direction of 	, and finite gyroradius 

effects have been dropped. The brackets denote ensemble and spatial 

averaging in the derivation of Davidson and V61k. Equations (46) 

through (o) are obtained in Appendix A from the CGL model without the 

necessity of taking ensemble averages. 

The quasilinear equations have the advantage of treating an 

arbitrary distribution of linearly polarized Alfvn waves. They imply 
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the extstence of a quenching point: the plasma is initially unstable 

if (p 1 )(0) > (p1)(o).+ B02/141r, but, as the waves grow, (Pj) increases 

and 	decreases until y(k,t) = 0, and no waves are unstable. 

However, Eqs. (46) through (50) have not been solved in even 

the simplest cases. The qualitative properties of the quenching process 

obtained so simply in Sec. II B for the circularly polarized mode--

namely, that quenching occurs in a finite time and is followed immediately 

by decay--are obscured by the complexity of Eqs. (46) through (o). 

Indeed these gross features may have been lost by the approximations 

used in deriving them from the more fundamental equations. The quasi-

linear theory cannot provide quantitative information concerning the 

quenching process, since, as Davidson and v'61k note, higher-order 

nonlinear effects become important as I -* 0. In deriving the quasi-

linear equations one treats 12 (k,t) as a zero-order quantity, an 

assumption which clearly breaks down at the quenching point. 

Qualitative features of the quenching of the circularly polarized 

A1fvn wave are shared by Other wave saturation processes: 

Numerical studies of the flute mode in the low-density 

regime show exponential growth at small amplitudes, then saturation 

followed by decay. 15  The energy in the mode oscillates, much like the 

Alfvn wave of Case 2 (b), Sec. II B, when K is slightly less than 

 Investigation of the nonlinear evolution of a single- 

wavelength longitudinal flute mode with frequency near a harmonic of 

the gyrofrequency in a loss-cone plasma indicates saturation in a finite 
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time followed by decay.16  The analysis is invalid beyond the decay 

regim4 so that oscillatory behavior cannot be revealed. The mode 

considered is a symmetric standing wave, and the analysis involves .a 

pseudopotential, both characteristics having analogues in the theory 

of Sec. II B. 

3. In a plasma consisting of two cold streams, a dynamical 

theory of the two-stream instability shows that "the electric field does 

not grow and level off at some value E 	where I = 0, but, rather, max 

because of the dynamics, overshoots this point and then oscillates back 

to its initial state. 1117  

-. The bump-on-the-tail limit of the two-stream instability 

has similar properties: wave saturation occurs in a finite time and 

is followed by gentle oscillations of the wave energy, with period 

compara.ble to particle-trapping times 1820 

C. Conclusion 

No pretense is made that all the special modes discussed here are sig-

nificant in the physical world. The requirement of a uniform infinite plasma 

in a uniform magnetic field subject to no perturbation except the modes 

of interest is enough to preclude their occurrence. It is hoped that 

the advantage of having an exact solution in a simple form to an other-

wise intractable class of problems will make this study beneficial. The 

characteristics of the simple wave-quenching process may serve a useful 

purpose if only pointing the way to important characteristics of more 

complete and more complex plasma instability problems. 
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APPENDIX A. QUASILThEAR THEORY OF THE FIREHOSE 

INSTABILITY IN THE CGL MODEL 

We outline a derivation from the CGL equations of the quasilinear 

results obtained by Davidson and V61k. It is not surprising that 

identical results follow, because the assumption of diagonal pressure 

tensor and neglect of the heat-flow tensor explicit in their work are 

used in deriving the CGL equations. It is useful, however, to point 

out an important difference between the definition of the average 

pressures in the two analyses. Note, alsO., that in our analysis 

the ensemble averages used by Davidson and V&k are never required: it 

suffices to consider only spatially averaged quantities. 

We assume a uniform, infinitesimally perturbed plasma in a 

uniform magnetic field B. We view all CGL variables as consisting 

of a space-average part,. which maydepend on time, and a fluctuating 

part: p(x,t) = (p)(t) + 6p(x,t), etc. The hexagonal brackets denote 

spatial averaging. 

Taking the space-average of the CGL Eqs. (i) through (3), we 

find 

(p)(t) 	constant = 
	 (A.l) 

(u)(t) = constant = 0, 	 (A.2) 

(B)(t) = constant = 	. 	 (A.3) XO 

When the CGL Eqs. (i) through (8) are linearized in fluctuations 

about these spatial averages and the unstable Alfvn wave characteristics 
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are assumed, the usual linearly polarized firehose waves follow. To 

first order in the perturbation we find 

= o, (A.Il.) 

p1  = (p1)(t), 	. 	. 	. .. 	(A.7) 

p11 	= (p 1 )(t),  

B(k,t) 	= 8B(,0) eTt)t,  

u(k,t) 	= -i r(k,t)(k 	Y 1  8B(k,t), (A 8) 

y(k,t) 	= ±(k.0)[((p)(t) 	- B02/!)/p]?. (A.9) 

We assume that the firehose instability criterion holds so that the 

growth rate 	•y(k,t) is real. 	The field fluctuation 	8b is perpendicular 

to 	k 	and 	, a characteristic of Alfvn waves. 

The average pressures are constant to first order; to calculate 

their second-order evolution in time it suffices to carry the two 

adiabatic equations (4). and (5) to second order in the perturbation and 

space average the result. . 	We find 

= ((p1)/B02) fd3k y(k,t) 	(k,.t) (A.lO) 

= -2((p11)/02) 
f 
 A r(k,t) 	(k,t), (A.11) 

where the magnetic field spectral density 	ir 	is defined by 

k,t) (k + k') E (eB(k,t).B(k',t)) 	 (A.12) 
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and satisfies 

= 	•2y(k,t) 	(k,t) 	. (A.13) 

In order to compare the results (A.lO) through (A.13) with 

those of Davidson and Vlk, we note that 	PJ! which appears in the CGL 

equations, is the pressure perpendicular to the local magnetic field 

B = 	+ 8B, whereas the quantity 	PJ, which is used in the earlier 
work, 

is the pressure perpendicular to 	. 	Similar ,  remarks apply 
to 

and 	P11. 	Thus we have 

(pa) 	( 	), 
(A 1)4) 

(Pj 	( 	(i - BB 
(A 15) 

(p ) 	(: Lfl) (A .16) 

QQ)) 
 

To second order it follows that 

(p)(pj) + ((p)/2BQ2) f d3k 	(k,t),  

(p a ) 	 = 	(p1) - ((p)/B02) f dk *(k,t) 
(A 19) 

Note that 	(p 	(P) 	is a second-order quantity, 
and 

• 	
similarly for 	(p 11 ) - (Pj). 	Thus to the required accuzcy, 

(p)(t) 

21 
in Eq. (A.9) may be replced by 

Taking the time derivative of (A,18) and (A.19), we have 	• • 
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= ((P)/B62) f d3k 	 (k,.t), 	 (A.2o) 

= -[(1(P11) - 2(PQ)/B02) f d3k r(k,t) *(k,t) 	(A 21) 

Equations (A.9) (Al2), (A.13):, (A.20), and (A.21) are identical.  

to Eqs (46) through (50) obtained by Davidson and V1k. Finite gyro-

radius effects have been ignored here and should be.included in a more 

complete treatment. 
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APPENDIX B. 	GUIDING CENTER EQUATIONS FOR THE 

PPRALLEL ALFVEN WAVE 

We start with the guiding-center equations in the form obtained 

by Kulsrud. 3 	This system, which Kuisrud terms the "Adiabatic Equations," 

is 

+ V°(pu) 	= 	0, (B.1) 

pdu/dt 	= 	-V 	+ (vx 	)X BJ14IT, (3.2) 

BB + ij(I - BB), (B.3) 

mJF( 	
- uLj)2 2 1T dq dw, (B.) 

PL 	
Z4 F 

0 
v 21T dq dw, (B.7). 

Ft + (a + q). 0  + 	 + QFq = 	O 	(B.6) 

W 	BB: Va - Va - qV., (B.7) 

Q 	a./t + c 	: V 	+ qq~̂3 	V 	+ wV. B ± eEt/m, 	(B.8) 

- 	 ., (B.9) 

V.B 	= 	o, (3.10) 

S 

= 	V x ( 	 , 
(3.11) 

e 
f 

 F 0 dq dw 	= 	0,  

efFo ddw = 	0,  
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= 	(e/m) .cVE)/ 	e2/m), 	 (B.1) 

(v-u)12 	(B.15) 

q = vu.. 	 . 	 (3.16) 

In these equations the notation of the CGL model, Eqs. (i) through (8), 

has been used where applicable; the particle distribution function F0  

depends on the particle velocity v through q and w; parallel and 

perpendicular refer to the direction of. the local magnetic field B; 

E 11  is the parallel electric field component;. and the summations in 

Eqs. (3.11) . through (B.14) are over particle species. 

It is convenient to simplify Eqs. (B.7) and (B.8) by using 

(B.9) to eliminate a in favor of the fluid velocity u. We find 

W = BB : Vu V.0 - qV.B, 	 (3.17) 

Q = u./t + [uu + (q - u•)u] : 	+ wV. + eE 11/m. 	(B.18) 

We consider A1fvn waves having properties () and use these . 

characteristics to simplify (B.l) through (B.18). 

Equations (B.l) and (B.10) are trivially satisfied. 

Equations (B.2) and (B.3) reduce to 

 p- 32/4] B 2  B0bJ6z. . 	 (B.19) 

Equation (B.11) becomes 

bJt = 	
(B.2o) 

The wave equation (111) is readily obtained. from (B.19) and (B.20). 
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Equation (B.14) gives. 

E11 = 0 	 (B21) 

Fitiafly, Eqs. (B.17) and (B.18) simplify to 

W =. 	B 2  B2/t = 	/B 	 (B.22) 

and 	.. 	 . 

/B2 )' - 	p(q - u)(p - B2/) 1  u2/t. 	(B.23) 

We assume a bi-Maxwellian distribution function: 

p0 (w,q,t) = C PJ 	p1 2 exp[-pw/ 	- p(q - u 1 ) 2/2p 11 ] 	(B 2) 

The appropriate, time dependence of the normalization factor is included 

in Eq. (B.24). With this choice, Eqs. (B.4) and (B.5) give the appropri-

ate pressures. The quasineutrality condition (B.12) holds for all times 

if it is true initially, and Eq. (B.13) requires that the fluid velocity 

be the same for electrons and ions, U 1 1e  = u 1 1 1 . Equations (B.6), (B.22), 

(B.23), and (3.24) reduce to . 

(-p1/p1  - p1 /p 1  + pWP1/P1  + p(q - uIl) 2  p 11 /p02  - w(B/B)p/p1  

+ {'(u.b)/B2  + 	(q - u 11)(p - B2/) 1  u2/t] p(q - u 11 )/p, 1 )F0  = 0. 

(3.25). 

Since F0  is never zero, and since (q - u 11 ) and w are 

independent variables, the coefficients of w, 1, (q - u 11), and (q - u) 2  

in the curly brace' of Eq. (B.25) must vanish: 
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- B/B = 0, 	 (B.26) 

• 	. 	 + 	= 0, 	 (.2) 

0, 	 . 	 (B.28) 

P/P1, + 	- B2/1 1Y1  u2/t = 0. 	 (B 29) 

Equations (B.26) and (B.27) give 

p(t)/p(0) =. B(t)/B(0) 	 . 	. 	(B.3o) 

and 

• 	 P11(t)/PU(0) = 	2(0)/B2 (t). 	 (B.31) 

Thus for the A1fvn modes under consideration and for a bi- 

Maxwellian particle distribution, the GC equations reduce to Eqs (B 19) 

through (B 21) and (B 28) through (B 31) Equations (39) through (43) and 

(45) are equivalent to Eqs. (B.21), (B.20), (B.19), (B.30), (B.31), and 

(B 28), respectively. Equation (44) follows from Eq (B 29) when p, 

is eliminated by means of Eq. (B.3l). 
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FIGURE CAPTIONS 

Fig. 1. Magnetic field lines of the cOnstant-amplitude A1fvn wave for 

various choices of the function e(.), which specifies the 

.directioii of the field disturbance b: (a) ®(x) = tanh kx; 

®(x) = (/2) tanh kx; (c) 8(x) 	(7c/2). exp[-(kx)2].  In 

each illustration .the field lines make a 5deg angle with ZO 

everywhere, corresponding to Ibi = B 0 . In (a) and (c) the 

nearly uniform field at large positive values of k(z - Vt) 

is parallel to the field at large negative values of k(z - Vt); 

the exaggerated perspective makes them seem nonparallel. 

In the CGL and GC models these field configurations 

propagate without distortion at the generalized Alfvn velocity 

V, parallel to 

Fig. 2• Temporal evolution of the time-varying-amplitude Alfvn mode. 

Field lines are pictured for: (a) 6 6B0, (b) t 	3B0 , 

B0 , (d) 	= 0, (e) 	-B0, (f) 	 (g) 	-6B0... 

The helical standing-wave structure is generated by a magnetic 

• 	 field component perpendicular to the uniform field 	having 

signed amplitude I (t), whose time dependence readily follows 
from Eqs. (24) and (25). This mode is an exact solution for 

a.stable or unstable plasma in the CGL and GC models. 

• 	Fig. 3. Sketch of the magnetic potential 	), Eq. (25), for the 

variable-amplitude Alfvn mode with various choices of the 

•plüma parameters: (a) stable plasma with K > ( o), corre-

sponding to Case 1; (b) unstable olasma with •K > ( o), 
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corresponding to Case 2(a); (c)itable plasma with K = 

corresponding to Case 2(b); (d) Unstable plasma with 

nin < K < (o), corresponding to Case 2(c). In (a), 	is 

sketched for the pressure anisotropy(p1 	= 

(p1 .1 ) 0  = B02/1 ... The unstable plasma in (b)-(d) corresponds 

to (p1) 0  = B02741, (p11 ) 0  = 4B02/irt. By Eq. (24), the 

time dependence of the signed amplitude '6 , which determines. 

the evolution of the helical structure pictured in Fig. 2., 

is the displacement of a unit mass particle.of energy K moving 

in the potential Oog 
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