
1

Submitted to Nuclear Instruments and Methods

DIFFRACTION RADIATION DEFOCUSING OF
AN ELECTRON RING

E. Keil, C. Pellegrini, and A. M. Sessler

December 21, 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COpy

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Diuision, Ext. 5545

UCRL-20069
Preprint (!...

)



To be published in
Nuclear Inst. and Methods UCRL-20oS9

t

->;-

DIFFRACTION RADIATION DEFOCUSING OF AN ELECTRON RING

E. Keilt , C. Pellegrinitt and A. M. Sessler

Lawrence Radiation Laboratory
University of California

Berkeley, California 94720

December 21, 1970

ABSTRACT

The influence upon axial stability in an electron ring of the

diffraction radiation reaction force, generated by a ring moving in

an acceleration column, is calculated theoretically. A stability

criterion is obtained, and numerical examples Show that the criterion

is not an important constraint upon the choice 'Jf parameters or tile

operation of an electron ring accelerator.
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I. llITRODUCTION

It is well known that the diffraction radiation by an electron

ring in the acceleration column of an electron ring accelerator (ERA)

is an importa.nt effect insofar as it can cause significant loss of

1 2energy of the ring ,

the internal dynamics of the ring has not so far been studied, although

it is clear that the large energy radiation could easily have a

significant effect upon ring stability in the axial direction, where

the focusing - coming only from ions, images3, and possibly from the

accelerating field -- is weak.

In this note we study the contribution of diffraction radiation

to the axial focusing forces of a ring, limiting our analysis, for

convenience, to the case of a ring moving at relativistic speeds.

We evaluate the defocusing force for two different geometries: In

Section II we consider a charged rod and a current carrying rod moving

past an infinite array of semi-infinite perfectly conducting plates,

which geometry has the advantage that the problem may be analyzed

analytically. In Section III we consider a charged ring in a.n accel-

erating column consisting of an infinitely long corrugated cylindrical

waveguide. The effect of the ring current is not included in this

model. In Section IV we evaluate the axial oscillation frequency

resulting from defocusing forces, and in Section V we present some

numerical examples.

We may obtain a rough estimate of the order-of-magnitude o:f
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the diffraction defocusing from a simple physical model. Consider

a charge, Q, moving along the axis of an acceleration colwnn. The

complete solution to Maxwell's equation is, in general, difficult

to obtain, but roughly speaking there are image charges moving in

concert with the charge Q. These images are slightly displaced behind

the charge, leading to an axial field, E , at the charge and hence
z

. a net retarding force. The magnitude of the displacement is diffi-

cult to estimate. The gradient of this field, which is what deter-

mines the focusing force, is, however, not sensitive to the image

charge displacement. ThUS, in a column of radius a, the field
dEz

gradient dz in the frame of the moving charge is apprOXimately

given by

r::,: -Q
:3
CI.

(1.1 )

Thus in the laboratory frame, dE !dzz
is proportional to the

relativistic r-factor of the charge.

The defocusing force of (1.1) will give a shift in the square

of the axial oscillation frequency in the ring frame,

amount

* 2(m v), of
o

* 26(m v)
o

1
(1. 2)

where * is the revolution frequency in the ring frame and

is the relativistic r-factor for the circulating electrons. This

formula is derived in Section IV, although many readers may consider
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it obvious. Thus, from (101) and (1.2):

2
6v ~

Nr
e

*71. a
(1.3 )

where N is the number of electrons in the ring, and r is the
e

classical electron radius. Taking N = 1013 , a 10 em, and 7 * = 40
.1

typical parameters of and ERA -- we obtain 6v
2

- 7. x 10-3 , which

is small in comparison with the expected self-focusing.

We have, in this simple-minded discussion, ignored magnetic

images which for a smooth accelerating column would greatly reduce

the
2

6v 0 However, the structure of an accelerating column destroys

the nearly perfect electric and magnetic cancellation of a smooth

pipe and thus our result -- obtained from considering only electric

images -- is a fair estimation of the effect.

II SEMI-INFINITE PLATES

In this section we consider as a model of an acceleration

column, an infinite Bet of semi-infinite conducting planes; i.e.

a comb. The electron ring is replaced by a charged rod and a current

carrying rod moving past the comb. The advantage of this model is

that the defocusing force -- just like the radiation 10ss4 -- can

be calculated analytically.

We employ exactly the notation of Ref. 4, which reference will

have to be consulted to make the present calculation understandable.
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The plates ~re taken in the x-y plane and extend from -00 < y < 00 ,

x > o. They are separated by the distance 2~L, while the rod,

located at x = - x , is parallel to the y-axis and moves in theo

z-direction with speed v.

1. Charged Rod

We first consider a rod having charge q per unit length.

We want to compute the electric field in the z-direction due to the

charges and currents on the plates, but We only need this field

Esz evaluated at x £ - xo ' z= vt + cr, and averaged over one

period of the structure. From Eqns. 8 and 23 and the argument

leading from Eqn. 23 to Eqn. 36 in Ref. 4, it is easy to see that

1~/_\\_/n 1._ _ ••+.~ "-\\ = T_[{4n\ ~\(l-i/f?)r\
\l'J\uJ/=\.l2J SZ \-AO, ,-,=Yu-ru,v// t .LW'l\i J \2iLJ\l+i/fYI)

f oo 2 r 2xoA icrJ}
dA . P (Ad) exp t 17"" + TJ .

D

where ~ = vic) and r (1_~2)-1/2, and P(A,I) is given by Eqn. 34

of Ref. 4.

The evaluation of (2.1), in the limit of r » 1, follows the

procedure employed in Section 3 of Ref. 4. In partiCUlar, Eqn. 51 is

modified to

(2.1)

( 4~) { 2i)Y 1m (1 - ~I (2.2)
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with

B
1

r

i
z = -

1

}7­
+(2 (l+i) S(1/2) r (2.4 )

and we have written 0 = 0 0 /" The expression (2.2) is correct, in,

the limit of large " through the first two terms. Evaluation of

the integral yields:

from which follows:

(2.6)

Icm (0)\
W,k=o

qy

2x
2
a

The formula for \E(o) shows that the average energy-loss decreases

as ":'l/2
/ - - which was the major result of Ref. 4. On the other

hand, the leading term in the defocusing field varies linearly with r.
')

It is Easy to see that this leading term corresponds in magnitude/ to

what one would expect from an image rod located at x = + x .o

We have numerically 'evaluated < E (0» for a number of values
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of p =: 2rrL/xo and for y ranging from 2 to 50. Taking p ==

0.5, for i =5 the aBy~ptotic formula is only in error by 3%,

while for i ~ 10 the error is less than 1%. For p 3.5, the

error is about 7% at I == 5, but less than 1% for y ~ 20.

The numerical calculations are important for evaluating how

well (E(O) is approximated by its value and first derivative

at 0 == O. The caloulations showed that the diffraction fields

(in contrast to the self-field of a rod) were well-approximated

by the first two terms of a Taylor series over distances

o «xo/ij i.e. 0 0 « xo ' In applications of this model to

an ERA we shall always satisfy this condition; i.e. the ring

minor dimensions (in the ring frame) should be smaller than the

distance from the ring to the accelerating column wall. Thus,

in a ring with non-zero minor dimensions, which in the present

model would be approximated by a compact bundle of thin rods,

the field due to charges and currents on the plates is adequately

described by (2.6) and 2.7) with q corresponding to the total

line charge of the ring. The self-fields decrease as

we can safely neglect them at large /.

2. Current Carrying Rod

-2
Y and

A rod having current in the y-direction of magnitude

q~'c is treated 1n Appendix A of Ref. 4. Employing Maxwellls

equations to relate Hx to E
Y

one obtains
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<H(O» <H (-x, z vt + 0, t~ t =::
2W';

1m {~dAP2(A'7)- ax 0 L

[-2XoA
+ i~j}exp 1;

The leading terms in the focusing force are easily seen to be

(2.8)

2
q(13'l)

2x 2
a

The energy 10 S I!! , which is evaluated in Ref. 4, varies as
2 _1-

(13';) ; 2. Since the transverse velocity of electrons, in the ring

frame, is approximately constant as the ring is accelerated, the

quantity ~I; ia essentially I-independent (and equal to unity,

if the electrons have relativistic transverse velocities before

being accelerated axially). Thus the energy loss of a charged rod
1

and a current carrying rod both vary as 7-2 (at large 7) and in

fact are equal in magnitude in this limit. In like manner, the

focusing force contributions [Eqs. (2.7) and (2.9)] become equal

in the limit of large /. We believe this equality to be a general

(geometry-independent) result.

3. Focusing Force

The focusing force on an electron, in the a"dal direction,

is given by

F(t) ecr
/

- ~

o
(2.10)
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which we write in the form

,
F(t) K(t )0 (2.11)

For the semi-infinite plate model, then, taking q Ne/2nR,

with R the ring radius

2
Ne 1
4,cRx 2

o

(2.12)

III CORRUGATED CYLlliDRICAL WAVEGUIDE

In this section we represent the accelerating column by an

infinitely long, periodically corrugated cylindrical waveguide with

geometrical parameters as shawn in Figure 1. We employ the notation

of Ref. 1 which is necessary for the understanding of what follows.

The complete vector potential A(r,t) is given as a sum over the--
eigenfunctions of the empty waveguide ~?\(~

A (r,t)- .......
(3.1)

where the functions q?\(t) obey the equation

-1
N

c
dV

N is the number of cells and V is their volume.
c N

If the azimuthal motion of the electrons is neglected, an electron

ring with charge Q and geometrical parameters as shown in Figure 1,



- 10 -

travelling with speed v, has the current density

= Qv

where H(x) IS the Heaviside step function. Performing the integration In

(3.2) with A\ from Ref. 1 yields

f =
A

exn(is vt). m (3.4 )

The factors S(x) = x-l SIn x and J take into account the finite dimensions

of the electron ring; J 18 given by

=
J (X a)

o m

The propagation constants 8 and X are defined In Ref. 1 by
m m

8 = w\/v - 2wt/d with t chosen such that 18
0

1 ~ wId, 8 = 8
0

+ 2 nm/d,
O2 '2 22 m
X = w,/c - 8 •
m 1\ m

With the N cavities centred at z =0, and with j fromc
f \ (t) = 0 for It I ~ T = ~N d/v, and hence for t ~ Tc
given by

which becomes

=
+T

f f\(t') SIn wA(t - t') dt'
-T

(3.6)

q\ (t) = _ Qdi L
A S 08 'h) J (X ) [( S( 41 +) + S(41-))sin wAt +2w2 m m m m

\

(S(¢+) - s(¢-)) 1 cos wAt] (3.7)

+
~ ( wAIv -1where tP-- = N d + a ), and S(¢) = ¢ SIn ¢ as above.c m
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For N
c

+ ~ the contributions to qA come from two resonances with

w
A

+ B£v = 0 in the notation of Ref. 1. In that limit we rind:

lim qA(t)
N + co

c

This result IS multiplied by a factor of two because two resonance conditions

are fulfilled at the same frequency by waves travellinr, in opposite directions

which are counted as one mode in Ref. 1.

The electric field gradient for the A-th mode IS

z = vt
=

z = vt

The z-derivative of the vector potential, averaged over the mInor rIne;

dimensions, follows from Ref.l

::11 I

-;~ !z
=vt

= -1 1
-W, [A B S(~B h) J(X )

f\ m mm m m
exp(-iB vt)

m

Using (3.8), (3.9) and (3.10) we find the electric field gradient

In the limit N
c

ClEZAllim az
N +0:> = vt

c

-2= QdiwA Al sOw A h/v) J(w,!Yv) 1: A B SOB h)
1\ m m m m

exp(-iB vt)
m

When this expression is averaged over the time necessary to traverse one

period of the structure the sum reduces to a single term and yields :

/ lim
\.N + co

C
z =
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since At IS not available in closed form, it is advantageous to compare

(3.12) to the energy UAradiated in the A-th mode in one period of the

structure, calculated in Ref.l. We find

The total electric field gradient

>z = vt

IS obtained by summIng (3.13) over all modes. Because of the factor w
A

it

converges less rapidly as a function of w\ than the energy loss U
A

.

Finally, we wish to remind the reader that in this section we have

neglected ring current effects.

IV EVALUATION OF THE AXIAL FREQUENCY

In order to evaluate internal ring dynamics it is convenient to

work in the frame of reference in which the ring is at rest. In this

frame, axial motion of electrons is described by

2 *d z *2+w
dt*2 0

2 *v z
o

(4.1)

where ill
o
* is the revolution frequency, v describes the focusing

o

*due to ions, images, and the accelerating wave, 1
1

is the relativistic

*I-factor for the circulating electron, and F is the axial force on

an electron due to the diffraction radiation. The absence of a star

on v follows from its invariance under Lorentz transformation. Heo
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have neglected the change in energy of an electron in the interval uf

an axial oscillation.

From (2.11), and the invariance of longitudinal force under

Lorentz transformation, we have

(1~ .2)

*Which, s inee z a / ,becomes
1\

*K(t)z

/\1
(4.3)

In the case of relativistic axial ring velocity (/11»1)

and for closely spaced accelerating cCLvities, the time variation

of K(t) is rapid compared with an axial oscillation period,

and we may average K(t) over time. Thus letting

and combining (4.1), (4.3), and (4.4), we have

(4.4)

2 *d z
dt*2

*2 2 *
+ w v z

o 0, (4.5)

where the total axial betatron oscillation frequency v is

given by

2
v

K
* -)(-2

ill / 0Jo .1 0 ) II
(4.6)
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We introduce the quantity B, by writing

2
Ne 711

K == 2:JCR B,

where N is the number of electrons in the electron ring and R

is the ring major radius. Clearly B has the dimensions of inverse

length squared. The factor 711 haa been inserted merely for

convenience. From (4.6) and (4.7)

2
v

2
v

o

N r R B
e

*2J1' 7..1.

(4.8)

The quantity

is the classical electron radius and we haveIn (4.8),

employed

r
e

*w ~ c/Ro
in deriVing the equation.

2
B, upon which v depends, is a function

of the geometry of the accelerating structure and of ring

is positive,

speed. For B > 0, the diffraction radiation reaction is a

2
vdefocusing effect. Axial stability follows if

and hence to obtain ~tability when B > ° requires that a non-

zero amount of focusing be supplied by ions, images, or the•
accelerating wave.

We have not concerned ourselves with radial motion in

this note as t~e focusing - - from ions, images, and the external

field - '- is strong in this direction, and there is no near

dang~r of loss of radial stability. Crossing of a resonance

by a relativistic ring would - - presumably - - not be serious.
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V ~Nu1yiERICf\L EXArvrPLES

In this section we evalua.te (4.8) for the structures discussed

in Sections II and III.

The semi-infinite plate model, after replacing the charge per

unit length q by Ne/2nR and setting ~'y = 1, yields, from (2.12),

1
B =-2

x
o

The corrugated cylindrical waveguide model for a charged ring

(ring currents ignored) yields

B

,...here the coefficient 1) (b/a, d/a, g/a, y) is a weak function of

all of its arguments. Computations for a large number of cases indicate

that 1) ~ 0.5. As remarked at the end of Section 11.2, we expect

that in the relativistic limit ring current effects should introduce

an additional factor of 2 in 1).

(5.2)

Taking as typical values, N

finds, from (l~. 9)

*3·0 em, 11.. 40 one

2
v

2 -2
v - 3.2 x 10 B.

o
(5.3)

2 2
Thus (5.1)Withxo=10.Ocmand III »lyie1ds v '""'v

o
-1.6

-4
x 10 ; while (5.2) with R = 3.0 em, a = 10.0 cm and 1) = 1.0 (to
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6 -4.0 x 10 .2 2
v = vo

These defocusing effects are small, and presumably can be

include magnetic effects) yields

easily overcome in practice by means of ion focusing or image focusing.
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FIGURE CAPTIONS

Fig. 1. Geometry of a corrugated cylindrical -waveguide -witb a
charged ring.
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