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ABSTRACT

The influence upon éxial stability in an electron ring of the
diffraction radiation reaction force, generated by a ring moving in
an acceleration column, is calculated theoretically. A stability
criterion is obtained, and numerical examples show that the criterion
ie not an important constraint upon the cholice of parameilere or the

operation of an electron ring accelerator.
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I. INTRODUCTION

It ie well known that the diffraction radiation by an electron
ring in the acceleration column of an electron ring accelerator (ERA)
is an importent effect insofar as it can cause significant loss of
energy of the ringl’z. The effect of the diffraction radiation upon
the internal dynamics of the ring has not so far been studied, although
it is clear that the large energy radiation could easily have a
significant effect upon ring stability in the axial direction, where
the focusing - coming only from ions, images3, and possibly from the
accelerating field -- is weak.

In this note we study the contribution of diffraction radiation
to the axial focusing forces of a ring, limiting our analysis, for
convenience, to the case of & ring moving at relativistic speeds.

We evaluate the defocusing force for two different geometries: In
Section II we consider a charged rod andva current carrying rod moving
past an infinite array of semi-infinite perfectly conducting plates,
which geometry has the advantage that the problem may be analyzed
analytically. 1In Section III we consider a charged ring in an accel-
erating column consisting of an infinitely long corrugated cylindrical
wavegulide. The effect of the ring current is not included in this
model. 1In Bection IV we evaluate the axial oscillation frequency
resulting from defocusing forces, and in Section V we present some
numerical examples.

We may obtain a rough estimate of the order-of-magnitude of



the diffraction defocusing from a simple physical model. Consider
a charge, Q, moving along the axis of an acceleration column. The
complete solution to Maxwell's equation is, in general, difficult

to obtain, but roughly speaking there are image charges moving in

concert with the charge Q. These images are slightly displaced behind

the charge, leading to an axisl field, Ez’ at the charge and hence
-a net retarding force. The magnitude of the displacement is diffi-
cult to estimate. The gradient of this field, which is what deter-
minegs the focusing force, is, however, not sensitive to the image

charge displacement. Thus, in a column of radius a , the field

de
gradient EEE' in the frame of the moving charge is approximately
given by
*
i‘E_Z\ ~ 2
dz” ) 3
/ a

Thus in thé laboratory frame, dEz/dz is proportional to the
relativistic y-factor of the charge.

The defocusing force of (1.1) will give a shift in the square
of the axial oscillation frequency in the ring frame, (mo*v)z, of

amount

* .2
A(mb v) = ¥ az ’

¥* *
where @, is the revolution frequency in the ring frame and 7,

is the relativistic y-factor for the circulating electrons. This

formula is derived in Section IV, although many readers may consider

(1.1)

(1.2)



it obvious. Thus, from (1.1) and (1.2):

Av ~ -

where N 1is the number of electrons in the ring, and r, is the

classical electron radius. Taking N = 1013, a

10 cm, and 7l* = 40 --
typical psrameters of and ERA -- we obtain sz =~-T. % 10_3, which
is emall in comparison with the expected self-focusing.
We have, in thls simple-minded discussion, ignored magnetic
images which for a smooth accelerating column would greatly reduce
the sz. However, the structure of an accelerating column destroys
the nearly perfect electric and magnetic cancellation of a smooth
pipe and thus our result -- obtained from considering only electric

imeges -- 1g a fair egtimation of the effect.

IT BSEMI-INFINITE PLATES

In this section we consider as a model of an acceleration
column, an infinite set of Bemi-infinite conducting planes; i.e.
a comb. The electron ring is replaced by a charged rod and a current
carrying rod moving past the comb. The advantage of this model is
that the defocusing force -- just like the radiation lossu -- can
be calculated analytically.
We employ exactly the notation of Ref. 4, which reference will

have to be consulted to make the present calculation understandable.

(1.3)



The plates are taken in the x-y plsane and extend from -w < ¥y <o,
X > 0. They are meparated by the distance 2xL, while the rod,
located at x = - Xo’ 18 parallel to the y-axis and moves in the

z-direction with speed v.

1. Charged Rod

We first consider a rod having charge q per unit length.
We want to compute the electric field in the z~direction due to the
charges and currents on the plates, but we only need this field
Egy evaluated at x = - x,, z = vt + 0, and averaged over one
period. of the structure. From Eqns. 8 and 23 and the argument
leading from EQn. 23 to Eqn. 36 in Ref. 4, it is easy to see that

/ ™ { - .~
\DSZ\—AO, L=y

N
=1
—~
C
<
]

-]
2 2XoN  ion
an - P(N,7) exp |- T . (2.1)
(-4
2,-1/2 c L
where p = V/c, and 7 = (1-87) , and P(),7) is given by Eqn. 3

‘of Ref. k.

The evaluation of (2.1), in the limit of y >> 1, follows the
procedure employed in Sectiocn 3 of Ref. T particular, Eqn. 51 is
modified to

[



with

2xo iUO 1
B=\T T/ 7 (2.3)

s (2.4)

<%

+ 2 (L+i) £(1/2)

I+

and we have written o = 00/7. The expression (2.2) is correct, in.
the 1limit of large 7y, through the first two terms. Evaluation of

the integral ylelds:

(E(U_»:Eqrco » 2 50/2) /2@\3/2 1+ Lo
SRS v S ol o B O &/

(2.5)

N
M
e

from which follows:

3/2
<E(0)> = ﬁéislzi) (gx_ﬂi) ’ (2.6)

) 1/2
2
A, - 21

The formula for <E(oz> shows that the average energy-loss decreases
as 7;1/2 - - which was the major result of Ref. 4. On the other

hand, the leading term in the defocusing field varies linearly with 7.
It is easy to see that this leading term correspoands in magnitude5 to
what one would expect from an image rod located at x = + x .

0]

We have,numerically‘evaluated < E (0)> for a number of values



of p = 2nL/xo and for 7y ranging from 2 to 50. Taking p =
0.5, for y = 5 the asymptotic formula is only in error by 3%,
while for 7y = 10 the error is less than 1%. For p = 3.5, the
error 1s about 7% at 7 = 5, but less than 1% for y = 20.

The numerical calculations are important for evaluating how
well <ﬁ(0)> is approximated by its value and first derivative
at 0 = 0. The calculations showed that the diffraction fields
(in contrast to the self-field of a rod) were well-approximated
by the first two terms of a Taylor series over distances
0 <K xo/7; i.e. 0, << x,. In applications of this model to
an ERA we shall always satlsfy this condition; i.e. the ring
minor dimensions (in the ring frame) should be smaller than the
distance from the ring to the accelerating column wall. Thus,
in & ring with non-zero minor dimeasions, which in the present
model would be approximated by & compact bundle of thin rods,
the fileld due to charges and currents on the plates is adequately
described by (2.6) and 2.7) with g corresponding to the total
line charge of the ring. The self-fields decrease as y _  and

we can safely neglect them at large 7.

2. Current Carrying Rod

A rod having current in the y-direction of magaitude
qB'c is treated in Appendix A of Ref. 4. Employing Maxwell's

eguations to relsaste Hx to Ey one obtains



2 ! 1 %
an(o a(g'y) i 3 6(3) [enL
B’<d0 >=O = = 5 Y Ll + 5 2—2r —_—

The energy los&, which is evaluated in Ref. 4, varies as

(ﬁ'y)zy—a. Since the tranaverse velocity of electrons, in the ring

frame, is approximately constant as the ring 18 accelerated, the

quantity p'y ig essentially 7-independent (and equal to un

ity,

if the electrons have relativistic transverse velocities before

being accelerated axially). Thus the energy loss of a charged rod

.y
and a current carrying rod both vary as 7 2 (at large y) and

in

fact are equal in magnitude in this limit. In like manner, the

focuging force contributione [Eqs. (2.7) and (2.9)] become equal

in the limit of large 7. We believe this equality to be a general

(geometry-independent) result.

3. Focusing Force

The focusing force on an electron, in the awxial direction,

is given by

. - .
rBEZ(U,t) , OHp(d,t)
e [ gm0

(2.10)

(2.8)



which we write in the form
F(t) = K(t)o

For the semi-infinite plate model, then, taking q = Ne/2xR,

with R the ring radius

2 %
TR ON -y g 0 f:zj; o
o]

ITT CORRUGATED CYLINDRICAL WAVEGUIDE

In this section we represent the accelerating column by an
infinitely long, periodically corrugated cylindricael waveguide with
geometrical parameters as shown in Figure 1. We employ the notation
of Ref. 1 which is necessary for the understanding of what follows.

The complete vector potentiasl é(f?t) ig given as a sum over the

eigenfunctions of the empty waveguide Ax(r) :

A (r,t) =

e,

q7\ (t) fp\ (i‘);

> ™M

where the functions qx(t) obey the equetion

*

. . .
G ot @y G o= N gAy AV = £y

NC is the number of cells and VW is thelr volume.

(2.11)

(2.12)

(3-1)

(3.2)

If the azimuthal motion of the electrons is neglected, an electron

ring with charge @Q and geometrical parameters as shown in Figure 1,
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travelling with speed v, has the current density

S S -z - - -
i, = R H (30 - |2 vt|) H(p R,) H(r, - o) (3.3)
2 1

where H(x) is the Heaviside step function. Performing the integration in
(3.2) with A¥ from Ref. 1 yields :
po= - P 5 oa og(dgh) J(x) exp(if vt) (3.1)
m m m

A N w m Xm
c A

The factors S(x) = x‘l sin x and J take into account the finite dimensions
of the electron ring ; J is given by
2 [Rydy (xyRp) = By Jy (xR, )
J(x ) = (3.5)
m x (R2 = R%) 7 (x. &)
m 2 1 o m

The propagation constants Bm and X, ere defined in Ref. 1 by
B = w,/v - 272/d with L chosen such that [B | € m/a, B =8 + 2m/a,
o ] o m o
2 2,2 2
X = w)\/c - B .
m m
With the Nc cavities centred at z = 0, and vith‘j{from (3.3),

fx(t) =0 for |t| > T = 5ch/v, and hence for t > T qA(t) is .

given by
1 T
qx(t) = w, é fx(t') sin wx(t - t') dt’ (3.6)
which becomes
- Q'g'i_z . + - :
B8 = - L A8 () a) [(s(6") + 567 sin w t +

A
(8(6") - 8(6™)) i cos wt]  (3.7)

+
where ¢— = } N d (‘”A/V + Bm), and S(¢) = ¢ = sin ¢ as above.
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For N + = the contributions to q, come from two resonances with

N + B£V = 0 in the notation of Ref. 1. In that limit we find
i (t) = di -2 A S(iw h/v) J(w, /yv) sin w t (3.8)
lim q, t) = - Q iw, g Stzw, N A
N+
c

This result is multiplied by a factor of two because two resonance conditions

are fulfilled at the same frequency by waves travelling in opposite directions

which are counted as onc mode in Ref. 1.

The electric field gradient for the A-th mode is

aEzX aAzA
. SRR (3.9)
z = vt zZ = vt
The z-derivative of the vector potential, averaged over the minor ring
dimensions, follows from Ref.l :
A ! 1
z - .
= o T J - .
P w, "L AmBm S(%Bmh) (Xm) exp( 1Bmvt) (3.10)
= vt
Using (3.8), (3.9) and (3.10) we find the electric field gradient
in the limit Nc — o 3
aEzA 2
lim = Qdiw A, S(3w, h/v) J(w /yv) Z A B S(i8 n)
N o 3z = vt A 1l A A m mmnm m
e
J(x ) cos w.t exp(-iB vt) (3.11)
m A m

When this expression is averaged over the time necessary to traverse one

period of the structure the sum reduces to a single term and yields

3E
. z) Qdi 2
<Nlim¢,, ‘gz } Vt>= -é—l;;; [Al S(3 wxh/v) J(w)‘/YV)] (3.12)

C
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Since AL is not available in closed form, it is advantageous to compare
(3.12) to the energy UAradiated in the A-th mode in one period of the

structure, calculated in Ref.l. We find

aE
wAUA

. Z
lim ——— = (3.13)
N az)L _ V> vdQ

The total electric field gradient

3E
z

&

is obtained by summing (3.13) over all modes. Because of the factor w, it

zZ =

converges less rapidly as a function of w, than the energy loss UA'

A

Finally, we wish to remind the reader that in this section we have

neglected ring current effects.
IV EVALUATION OF THE AXTIAL FREQUENCY
In order to evaluate internal ring dynamics it is convenient to

work in the frame of reference in which the ring is at rest. 1In this

frame, axial motion of electrons is described by

2 * % *, *
dt m.7)

*
where R is the revolution frequency, Ve describes the focusing
-!— .
due to ions, images, and the accelerating wave, 7, is the relativistic
(] 3 * . -
y-factor for the circulating electron, and F is the axial force on

an electron due to the diffraction radiation. The absence of a star

on Vo follows from its invariance under ILorentz transformation. We
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have neglected the change in energy of an electron in the interval of

an axial oscillation.

From (2.11), and the invariance of longitudinal force under

Lorentz transformation, we have

F(t") = K(t) o,

*
which, since 2z =0 7|‘, becomes

*, % K(t)z
Z
il
Tn the case of relativistic axial ring velccity (7|l>>-l)
and for closely spaced acceleraling cavities, the time variation
of K(t) is rapid compared with an axial oscillation period,

and we may average K(t) over time. Thus letting

K= <K(t)> ,

and combining (4.1), (4.3), and (4.4), we have

o x
dz *2 2 ¥
—_—s 4+ W v oz

dt

where the total axial betatron oscillation frequency v 1is

glven by

U 7L % 7

(h.2)

(&.3)

(4.4

(k.s)

(4.6)



- 14 -

We introduce the quantity B, by writing

2
Ne n'

K=—Z®

B, (%-7)
where N 18 the number of electrons in the electron ring and R

is the ring major radius. (Clearly B has the dimensions of inverse

length squared. The factor 7 has been inserted merely for

convenience. From (4.6) and (4.7)

. Nr RB
. (k.8)

*
2n 7y

In (4.8), r, 1is the classical electron radius and we have
employed wo* = c/R in deriving the equation.

The quantity B, upon which v2 depends, is a function
of the geometry of the accelerating structure and of ring
speed. For B > 0, the diffraction radiation reaction is a
defocusling effect. Axial stability follows if v2 is positive,
and hence to obtain stability when B > O requires that a noan-
zero amount of focusing be supplieg by lons, images, or the
accelerating wave.

We have not concerned ourselves with radial motion in
this note as the focusing - - from ions, images, and the external
field —-—'is strong in this direction, and there is no near
danggf of loss of radial stability. Crossing of a resonance

by a relativistic ring would - - presumably - - not be serious.
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In this section we evaluate (4.8) for the structures discussed
in Sections II and III.
The semi-infinite plate model, after replacing the charge per

unit length g by Ne/ZnR and setting B'y = 1, yields, from (2.12),

X n'xo (5.1)

The corrugated cylindrical waveguide model for a charged ring

(ring currents ignored) yields

B = Eﬂ%ﬂ s (5.2)

&
where the coefficient  y(b/a, d/a, g/a, y) is a weak function of
all of its arguments. Computations for a large number of cases indicate
that 1 < 0.5. As remarked at the end of Section II.Z2, we expect
that in the relativistic limit ring current effects should introduce
an additional factor of 2 in 7.

13

*
Taking as typical values, N = 10", R = 3.0 cnm, Y, = ko one

finds, from (4.9)

v =v " -3.2x 10°% 3. (5.3)

Thus (5.1) with x, =~ 10.0 em and 7y >> 1 yields . voz - 1.6

-
x 10 '; while (5.2) with R = 3.0 cm, a = 10.0 cm and 1 = 1.0 (to
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include magnetic effects) yields vz = v02 - 6.0 x lO—u.

These defocusing effects sre small, and presumably can be

easily overcome in practice by means of ion focusing or image focusing.
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The sign is just wrong, however. The reason for this is that

in the plate structure, since the plates are perpendicular to

the direction of motion of the rod, the boundary conditions are

satisfied - - to fair approximation - - by an image rod of the

same sign as the rod (thus minimizing H_ along the plates);

hence the reversed sign in (dE/do).
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FIGURE CAPTIONS

Fig. 1. Geometry of a corrugated cylindrical waveguide with a
charged ring.
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