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ABSTRACT 

An important class of interference terms is included in the ABFST multiperipheral model by 

adding an extra term to the inhomogeneous term and to the kernel of the integral equation. This 

additional term corresponds to the contribution to the 2-to-4 cross section from interchanging one 

or two pairs of particles from two different vertices. It is found that these interference terms 

change only slightly the position of the output vacuum pole, although they give a nonnegligible con-

tribution to the four-particle production cross section. 

I. INTRODUCTION 

One of the popular approximations of multiperipheral models is to neglect interference terms 

arising from the overlap of amplitudes with different particle orderings along the multiperipheral 

chain. Supporting, but not proving, this assumption is the fact that the multiperipheral amplitude 

is largest when the longitudinal momenta are ordered according to the particles' position along the 

chain. 
1-3 	 4 Recent calculations 	with the ABFST multiperipheral model, the only multiperipheral 

model without arbitrary normalization of the kernel, have found the kernel to be too weak by a 

factor of 2 to 5 to explain the intercepts of Regge trajectories. These calculations neglected all 

interference except that inherent in a 2-to-2 process. 

Because of the basic assumption of the multiperipheral model we expect interference terms 

to be inversely ordered in importance according to their complexity. In this paper we study the 

effect of including in the model the "next order" interference. This is incorporated in the model 

by adding the interference terms from the 2-to-4 cross section to the kernel of the integral equa- - 

tion. 

We find that including this interference has only a small effect on the position of the output 

vacuum pole; this, however, does not mean that for high multiplicity production cross sections 

interference effects are negligible. 

Since interference terms in the ABFST multiperipheral model have their origin in Bose sta-

tistics of the final-state pions, we begin in Sec. II by studying-the effects of symmetry on produc-

.tion amplitudes (ignoring isospin until Sec. III); we then derive the modified integral equation and 

a formula to measure the effect on the position of output Regge poles when a certain class of inter-

ference terms is included. Isospin is then properly taken into account in Sec. III. Section IV dis- 

cusses the 2-to-2 1r-rr amplitudes that we-use as input. We discuss the results in Sec. V. In the 

Appendix, we discuss four-particle phase space and the kinematic variables used in our calculation. 
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II. MODIFIED INTEGRAL EQUATION FOR ABSORPTIVE PART 

In this section we consider pions to be isospinless. The basic assumption of the ABFST 

multiperipheral model is that the amplitude for two pions to go to n pions (n must be even be-

cause of G parity) is given by 

I T(p1, p2 ,  •.', 	a' 	
= (q • - 2 ) (q-2) .. 	

n/2j_1 	
2) 

XT 2 (p 1 , p2 ;p, q 1 ) T 2 (p 3 , p4; -q 1 , q2 ) .. T 2 (p 1 , P; - ( fl/2)_I , P)  

where q= 

	
ja' 	is the pion mass, and Tz(pk. p j ; q., q.) is the off-shell 2-to-2 

scattering amplitude. A diagram illustrating the variables and representing Eq. (11.1) is shown in 
Fig. I. 

If we neglect all interference terms due to different orderings of the final-state particles, 

then the amplitude in (11.1) may be successfully squared and integrated to get the 2-to-n cross sec-

tion. However, since pions obey Bose statistics, (11.1) is not a proper amplitude. A properly 

symmetrized amplitude is 

M(p1,p2, 	. 	a' Pb= 	
T 	(.(p.'s);P

b ), 	 (11.2) 

where 	.(p.'s) is the ith permutation of the set of n momenta (p 1 , p2 . .. . p). The 2-to-n 
cross section is 

Z-n 	 r. a(s) 	
2 	2 	3n-4 >< -i- j d' 

ZX(s,m, mb) (2ir) 

	

Pb)] 	 (11.3) 

where s is the c. m. energy squared and ' 
	is the n-particle phase space and is given by 

[jd4pi,+(m)]X 
64 (Pa+Pb (11.4) 

The factor -- in (11.3) comes from normalizin g  the final state-vector, or equivalently from inte-

grating only once over the distinguishable region of phase space. Since the p) s are variables of 

integration, (11.3) may be rewritten in the unsymmetric form 

2-.n 

	
j 

a(s) 	
= 2 	2 	3n-4 

	
dT(pj .pZ , ...,p;p , pb ) 

ZX(s,m,m,0 ) ( Zii) 

n i 
X 	T 	 (11.5) 

The usual assumption of the ABFST model is that only those 2 n/2
permutations corresponding 

to interchanging pions from the same vertex are kept in (II.5). With this assumption, the 2-to-n 
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cross section becomes 

2-.n 	 I. 1 a(s) 	= 	
Id 2 	2 	3n-.4 i 	n 

ZX(s , m , mb) (2w) 

(2 zY\q 4 - L  

X T(p 3 , p4 ;-q 1 , q2 )[T 2 (P3  p4 ; -q 1 , q2 ) + T 2 (p4 , p3 ;-q 1 , q2)] 
( 2 	2 

I 	 * 	
q) 

• • 	
(2 	

2\Z X T 2  (P 4  p; 	(n/2)1' 
- 	I 

X[T 2 (p 1
, p; - (n/2)-l'.b + T 2 (p, p 1 ; -q(fl/2)_1, Pb (11.6) 

This leads to the usual integral equation 4  for the forward absorptive part of.the elastic ampliti de 

with the kernel being proportional to the 2-to-2 cross section. This 2-to-2 cross section is sche-

matically represented in Fig. 2. For n = 2, (11.5) is identical to (11.6). But for n = 4, (11.5) h.s 

additional terms not contained in (II 6) It is these additional interference terms to the 2-to-4 

cross section with which we are primarily concerned. For each production cross section a gen-

eral class of interference terms will be included in the model when we add these 2-to-4 inter-

.ference terms to the previous kernel. 	 . 

For n = 4, there are 24 permutations in (11.5). This set of 24 permutations may be separated 

into three convenient classes by defining the set of permutation operators D = {i, S 12 , S 34 , S 12  s34 ) 

where I is the identity operator, and is the operator which interchanges the i and j indices. ij 
Then {TPk} = D + C + X, where C D S 23 D and X DS 13  S24. Th'e sets D, C, and X con-

tain 4, 16, and 4 permutations respectively. Notice that applying any of the operators in D does 

not change the expression for q1 - - a this is why this particular decom- 

position of 	is useful here. 

The terms in a 2-4
from the permutations of D are exactly those included in the ABFST 

model under the standard assumption. 	These four terms are shown in Fig. 3. One of the 16 

terms in C is shown in Fig. 4a; the other 15 terms are obtained by interchanging two final-state 

particles from one of the four vertices. We represent the sum of all these 16 terms of C by 

Fig. 4b. The sum of all four terms from the class X is represented by Fig. 5. These interference 

terms from classes C and X are the terms not included under the standard assumption. . 

If we define 	 . 

- 	. 	 -j+2  - 	a' 	 . 	 . 	. 	 . 	. 	 ., 	. 

q C 	p1+p3 - a 
	 (II 7) 

- 	a' 	 . 	 . 	. 	 . 	. 

and use the abbreviated notation T12 aD 
	

T 2 (p 1 , p2 ; 	 etc. , then we may write 

2-4 	2-..4 	2-'4 	2-..4 
a 	=a 	+crC 	+a 

where 	 . 	.. 	 . 
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2-4 
aD(s) = 	2 	

b 
2 	8 	d4 2 2 2 

	

a. Z(S.!-nm) (air) 	. 	(q_IJ. 

* 	 * X T12 aD  (T12  aD  + T21 aD)  T34  .-Db (T34 -Db  + T43 -Db 

2-4 
I 	r 	 I 

aC(s) = 	2 	2 	8 	dc14 	2 	2 	2 2 

	

2X(s,m,rnb) (Z1T) 	 9D 	) (q-p 

(II.8a) 

X (T2aD + T j ) (T34, -Db  + T3 -Db (T13  aC  + 31,aC (T 24 Cb+ T 42 , Cb' (II.8b) 

Cr 	 • 2 	8 j d'4 	2 21  2 	2 
Z)(s,mrnb) (Zir) 	 (ID- 

	

)< TaD (T12 -Xb  + T 21 	T4 -Db (T34  aX + T43 ,aX) 	 (1I.8c) 

From these equations, we easily see that the antisymmetriCrpart of the 2-to-Z amplitude gives 

zero contribution. Therefore, we can express (11.8) in terms of the symmetric 2-to-2 amplitudes, 
M 2 , defined by Eq. (11.2). At this point it is also convenient to switch from momentum variables 

to kinematics invariants. Since each 2-to-2 amplitude has one particle off-shell, it is a function 

of three invariants. As in the Appendix, we define 

(p1+p) 2  

ia 	 1 
tib 	bi' 	• 	 (11.9) 

Tqforv=D,C,x. 	J 
We may rewrite (11.8) as 

2 	 2 2-. 	
I 	 (' 	M2(s12, t1, TD 	M2(s34 t4b TD)j 

aD(s) = 	• 	2 	2 	8 ,) 
d4 	

- 	2 2 	 , 	 (II.lOa) 
2X(s, ma  mb) (2) 	 4D 

2—.4 	
I 	 C CrC(s) = 	2 	2 	8 ' d4 	2 	2 

	

ZX(s , m , mb) (2w) J 	(TD_ 

X M(SIz , tI , TD) M(s34t4b,7D) M2(s13,t1 	Mz(s242t4b , TC) , 	 (II.IOb) 

2-.4 	 I 	 I 
aX(s) = 	2 	2 	8 d4 	2 	2 

a.2 X(s , m , mb) (2w) 	4 (TD_I-J- ) (TX 

XM(sIz , tI ,TD)M(S34 , t4 , T)M(stT)M(stT) 	 (II.IOc) 



/ 

In the Appendix, eight invariants are chosen as independent, and expressions for all the others 

are derived in terms of these eight. The four-particle phase space is also expressed in terms of 

these independent variables. 

Having found the corrections to the 2-to-4 cross section, we proceed to investigate the cor-

rection to the total cross section due to including these effects in the integral equation. The inte-

gral equation for the forward absorptive part of the elastic amplitude under the "standard assump-

tion" is schematically represented in Fig. 6. We modify this integral equation by adding the in-

terference terms C and X to the kernel and to the inhomogeneous term. This modified integral 

equation is schematically represented in Fig. 7. At this point it should be mertioned that this new 

kernel cannot generate diagrams of the form shown in Fig. 8a. However, becaise these diagrams 

involve interchanging lines from nonneighboring vertices,they are expected to give a smaller con-

tribution than the diagrams of Fig. 8b, which can be generated by this kernel. Our kernelalso 

cannot generate diagrams of the form shown in Fig. 9a. This diagram may giv a comparable 

contribution to the diagram of Fig. 9b, since both diagrams involve cros sing foir lines into their 

neighboring vertices. Diagrams of the form of Fig. 9a can be included by adding further terms 

to the kernel. If we want to include all interference terms, then the kernel is actually an infinite 

series. It is hoped that the magnitude of this first modification gives an indication of the rate of 

convergence of this series. 

To study the effect on the position of the output poles from changing the kernel of the integral 

equation we examine the diagonalized integral equation, which can be written as 2  

F(T, ' ) = F (TT')+ 	di" F(T, T") K(7, 7'  

-00 

where 

oo  

= 	3 X 	2 2 	ds 
t6v 	(7-p) 	2 	 J+t 

44 

with 

coshfl(s, T,T')=  

(a,b,c) = (a 2 +b 2 +c 2  - Zab - Zac - Zb c ) 1 /2 ,  

and a(s) is the ir-ir cross section to be included in the kernel 

2-.2 	2-4 	2-=4 
a(s) = a(s) + ac(s) + ax(s) 

(II. 2) 

For our case, we have (see Fig. 7) 

(II.3) 

Because we are concerned with the relative effect of including a correction we will avoid all 

intricacies of solving the integral equation. For the Fredholm determinant, 3(J), whose vanishing 

determines the pole position, we usethetrace approximation, i. e. , 

D(J) 	1 JdT K(7,7) . 	/ 	 ( 11.14) 



By making certain approximations, Chew, Rogers, and Snider 2  found a particularly simple ex-
pression for the trace for J near one. It gives 

D(J) = I - 	
2R 

	

 J(J+1) (J+2) ' 	. 	 (11.15) 

where 

S max 

R = 	 ds a (s) . 	 (11.16) 
I6ir 	'-'2 

, 4 P. 	. 	. 

The approximations are (a) the trace approximation, (b) neglecting the high-energy tail of 
(s) (in our calculation we set crel(5) = 0 for s > 3 GeV 2 ), and (c) neglecting the pion mass 

in doing the T-integration. Besides these approximations, there was also the choice of off-shell 

prescription. As in Ref. 2, we let the off-shell continuation be completely contained in 6, the 
c. m. scattering angle, i. e. * 

M2(56)ff hi1 = M2(s,0(s,t,v,y' 	 (11.17) 

This precription leads to a simple relation between the two-particle contribution to the kernel and 

the it-v elastic cross section. Other equally plausible prescriptionà lead to less manageable re-

lations. For the four-particle contribution to the kernel, we calculated its magnitude when the 
external lines are on-shell. 6 

Finally, from Eqs. (11.16) and (11.13) we see that a measure of the effect on the position of 
the output pole by including interference terms is 

2-2  
dscT(s) 

III. INCLUDING ISOSPIN 	 . 

We now consider the problem of isospin alone. Later we will see how to take into account 

both isospin and statistics. The kinematic invariants for all three diagrams are shown in Fig. 10. 

We work out the procedure in some detail for the uncrossed diagram; the procedure is the same 

for the crossed diagrams. The isospin indices for the uncrossed diagram are shown in Fig. 11. 

Following the notation of Chew and Mandeistam, and defining T. to be the 2-to-2 amplitude 

at the ith vertex, and for each ± defining A., B., and C. to be three independent amplitudes at 
the ith vertex, we have 

T(s ,t 	T)-A5 	8 	+138 	6 +C6 	8 I 12 Ia, D 	I af ek 	I ae fk 	I ak ef ,  

TII(s34* t4b* TD) = A11 8 bf 89j + B11 6 bg 6fj + C 11 6 bj 8 fg' 

(111.1) 
T111(s34, t4b*TD) = AIubchôgj + B111 6cg6hj + C111 8cj6gh' 

Tiv(s12* ti *TD) = AIVôdh 6ek + Biv 6de8hk + Civ 6 dk 6eh' 

'V 
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where At s , B.t s , and C)s have the same arguments as T.'s. The individual vertex amplitude of 

a definite isospin in the t channel is given by 

(T.) 	= 3 B. + A. + C. 
1 	1 	1 

(T 1 ) 1  = A1  - C 	 (III 2) 

(T.) 	= A. + C. 12 	1 	1 

where the subscript outside the parenthesis refers to the t-channel isospin at the ith vertex. 

The 2-to-4 amplitude squared is given by 

TI2 = 	
T T T111 Tiv 

(TD -2 ) 

where the sum is over all nonexternal isospin indices. The expressiox IT 1 2  has 81 terms and 
can be written as 

IT!2 = 	 { A 8b  6  cd, + B 6ad 8bc +C 6ac 6bd 	 (111.3) 

(TD_) 

whereA has 30 terms, B has 20 terms, and C has 31 terms. As we are mainly interested in the 

change in the position of the output vacuum pole, we consider only the case in which the isospin 

in the t channel is zero. This gives 

= 	I 	2 { 3B + A + C 	. 	 (111.4) 
t 	

(T-p) 

From isospin conservation we also know that 

I T 0  = 	
2 2 	

a (T 1 )* (T11)* (T111) (Tiv) 

	

+b (T 1) (T11) 	(T111) (Tiv) 
0 	2 	2 	0 

+ b ( T1)* (T11)* (T111) (Tiv) 
2 	0 	0 	2 

	

+ c (T 1 ) *  (T11)* (T111) 	(Tiv) 	 (III. 5) 

+c (T. )* (T 	(T111) 	iv (T) 1 0 	I 	 0 

+ d(T 1 ) *  (T11)* (T111) (Try) 
I 	I 	1. 	1 

• 	+e (T )* (T  )* (T ) 	(T ) 
1 2 	III 	1111 	IVZ 
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+ e (T 1 )* 	(T11)* (T111 ) (T 
I 	2. 2 . 1  

	

* 	* 

	

+f(T) 	(T 	) II (T 	) (T 	) 
2 	2 2 2 

Since (III. 4) and (III. 5) must be true for all A's, 

and thereby determine the unknown coefficients in 
B.'s, and C's, we can equate the two expressions 
(III. 5). 	find 8  We 

a = 	1/9, 	b = 5/9, 	c 	1/3, 	d = 	1, 	e = 5/3, 	f = 25/9 . 	 (111.6) 

Similarly, we can derive analogous equations for the two crossed diagrams. 	The single- 
cross diagram is given by 

T 	
= 	(TD 

- 	2)( 	- 	2) 	(T (T11)* (T111) (Try) 

• 	 + 	(T1) (T11)* (T111) (TIVIO  

+ 	(T1) (T11)* (T111) (Tiv) 

- 	(T)' (T11)* (T111) (Try) 

• 	 (T )* 3 .10 
(T 	

)* 
II (T 	) (T 	) 	 (111.7) 

111 1 1V 0  

* 
+. 	(T 1 ) 

* 
(T 	) 11 (T 111 (T IV 1. I  

+ 	(T)'' (T11)* (T 111 ) (T 1 ) 

+ 	T1)  (T11)* (T111) (Tiv) 

+.
(T1) 	

(j)* 	
(T 111 ) (T 1 ) 

where 

= T1(s12, t1a 	' 

T 11 	= T11(s34, t4b TD) 

	

• = T 111  (s24, t4b Tc) 	 • 	 • 

Tiv = Tiv(s13, t1 	T C) . 	 • 

The double-cross diagram is given by 	 • 	 . 

V 



- (T 1 ) (T 11) (T111)° (Tiv)° 

+.. (T1 ) (T 11 ) (T111 ) °  (T1 ) 

+ (T1  (T 11 ) (T11 ()0 
 IV 

+ (T 1 ) (T 1) (T111)1 (Tiv)1 

+- (T (T 11 ) (T111)0 (Tiv)2 

+ (T (T 1 ) (T111)2 .(Tiv)° 

4 (T 1) (T 11 ) 2  (T111)1 (Tiv)2 

T 	
2 I 

2 T 	
(D - 	)(r 	

2 
 - 

(III. 9) 

- 	(T 	(T 	(T111)2 (Tiv) 

I (T 1) ' 	(T 11) 	(T 111) 2  (Tiv) 2  

where the superscript outside the parenthesis refers to the s-channel isospin at the ith vertex and 

T 1  = T1 	t1.a  TD) 

T 11  = T11  (s34, t4b ,  TD) 	

(III. 10) 
= T 111  (s12, tzb TX) 

= Tiv (s 34 , t3 	TX) 

Combining the results of this section and the previous section, we see that to include both 

isospin and statistics just means that we should replace the numerators of Eqs. (II. lOa), (II. lob), 

and (II. lOc) by the terms in the brackets in Eqs. (III. 5), (III. 7), and (III. 9), respectively. Of 
course, the t-channel isospin will now appear as an index in Eqs. (U. 11) - (II. 16) and Eq. (II. 18). 

IV. ir-ir AMPLITUDES 

From Eq. (II. 10) and the discussion in Sec. III, we see that we need as input the 2-to-2 

,r-r amplitude for all three isospins with one of the pions off-shell. As was discussed in Refs. 

1-3, the low-energy contribution must be the dominant contribution in generating the output poles. 

Therefore, in this paper we input only S waves (both I = 0 and I = 2), P wave, and D wave (I = 0 

only), and leave out the Pomeranchuk tail by setting the amplitudes equal to zero for s > 3 GeV 

For the P wave and D wave, we use Breit-Wigners with widths equal to 140 MeV and with 

m = 765 MeV and mf  = 1260 MeV as their resonance masses, respectively. Since these two 
p 	 21+1 partial-wave amplitudes must behave near threshold as k 	, where k is the magnitude of the 

center-of-mass momentum, we multiply the Breit-Wigner by 
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?1+ 1(k2 ( s )) 	 4 \ 
/ 	SR \ 

2 	
2 

sR .4 	
(IV. 1) 1 

\  

where s R = m 	 ve, p 2 and i = I for the P wa 	an s R 
	f 

d 	= m 2 and j = 2 for the D wave. The factor 
(IV. I) is chosen such that it is normalized to unity at the resonance mass and has constant 
asymptotic behavior. 

For the S waves we use the phase shifts shown in Figs. 12 and 13. Because of the uncer-

tainty in the I = 0 S-wave phase shift, we have used two different forms. The form (ô cor-

resPondstoabroadresoianceatthemassofthep. The form (
6 .)U does not correspond to a 

resonance, but rather it asymptotically approaches 90 deg. 

All these S-wave amplitudes have scattering lengths near the current algebra values. 10 

Since there is some indication 1112  that the S-wave off-shell scattering lengths may be larger 

than the on-shell values, we also tried S-wave partialwave amplitudes with scattering lengths 

increased by a factor of 3. We find that although for small s the 2-tO-4 cross sections become 

larger, all essential features of our results remain unchanged. 

V. RESULTS 

Using Monte Carlo integration, we calculated the 2-to-4 cross sections for I=O from the 

classes D, C, and X. The results for classes C and X are shown in Figs.. 14a and 14b, respec - 

tively. As is expected, class C in general gives a smaller contribution than class X, since the 

former splits up the resonances. The result for class D and the sum of the results for classes 

C and X are shown in Fig. 15. We see that for low energy, the contribution of the interference 

terms is not negligible. But as the energy increases, the crossed terms drop off faster with s 

than the uncrossed term, because at high s the momenta of the final particles can be very dif-

ferent, and so interchanging two such momenta can greatly increase the momentum transfers. 

We also find that the two differentforrns of 6 0  do not give, rise to different results until s gets 
large, when (6 0') 1  gives a small amplitude, Whereas (5) 11  gives a large amplitude. 

el To calculate the effect on the position of the output vacuum pole, we calculatedR 0 /R 
defined in Eq. (II. 18),, where the subscriptspecifies the t-channel isospin. We find 

ARO 	0.06 , if (Sg) i  is used, 

el 	
. 	 (V.!) R0 	

0.08 , if (5 0 ) is used. 
0 II 

Using the numerical calculations of Ref. I, we find 13  that corresponding to this 6%to 8% increase 
in the kernel strength, the output vacuum pole changes only from 

°I0 = 0.30 to a I=0 = 0.33 	
(V.2) 

The smallness of this correction to the kernel indicates that the infinite series of the kernel 

(as discussed in Sec. II) most probably converges rapidly. 
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Our relative magnitude of the interference terms to the noninterference term in the 2-to-4 

cross section is probably consistent with the recent result of Jurewicz et al. , 14 who found 

that the contribution to the cross section from the set of all interference terms for the reaction 
+ 	

p 3+ 2it at 8 GeV/c is about 8010 of the contribution from the noninterference 

term. We expect their effect to be much larger than ours because there are more interference 

terms for n = 6 than for n = 4, and because they include all interference terms, whereas we 

include only a subset (although the important subset). 

That interference terms are important in calculating n-particle production cross sections 

but not important in calculating the position of the output vacuum pole is understandable because 

aTotal( s ) = 	an(s) 	 V. ) 

which shows that a small change in a 	 can give rise to a large change in Ga(s) for large s. 

In conclusion, although the inclusion of interference terms can greatly increase n-particle 

production cross sections for large n, it does not alter appreciably the positions of the output 

Regge poles. Therefore, another mechanism must be sought to strengthen the kernel of the 

ABFST multiperipheral integral equation. One possible mechanism is the inclusion of K-meson 

exchange. 
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APPENDIX. PHASE SPACE AND KINEMATIC VARIABLES 

Although n-body phase space has previously been worked out by others, for completeness we 

include a discussion of four-body phase space in this Appendix (most of the material in this 

Appendix was worked out by one of the authors (D. R. S. in collaboration with Terence Rogers). 

We define n-body phase space as 

= 	
6 (p• - th)] X 	a + b - 	 . 	 (A. 1) 

Two-body phase space may be written as 

2 	2 2 	2 	X(s,m 2 m 
 2 2 ) 

	

(s; m, mb; m 1  m2) = 
	8 s 	

d2 

(A.2) 
1 

4X(s m m) 
a b 

where s = (p + 	2 , X(a 	 2 2 2 1/2 
,b, c) = (a +b +c - 2ab - Zaè - Zbc) 	, d 2 = d cos o d , and e and 

are the scattering angles in the c. m. system. 

We want to consider four-particle phase space as a nested set of two-particle phase spaces. 

The kinematic variables are shown in Fig. 16. For this purpose we define 

Pi 	 vi =P 

and 	
(A.3) 

2 q 1 	.P 
1  
.-p 	, 	t.q. 

a 	1 	1  

We will now show that the four-body phase space can be written as 

2 a + P1)  -. p4  + P3) 	a + q3 - p 3  + P2) 2 a + q2 -. p 1  + p2 ) 

with extra integrals over v 2  and v3 . We start at the p 4  end and lump the other three final-state 

particles together by using 

	

(p 1  + p + p + p - a - 
	= S d 4P 3 	(P 3  + 	

- a - 	
6 4(p 1  + 

2  + 
	- P 3 ) 

and also 

Yd 
4 

 P
3 
 = 5 dv3  YdP3 6+ (P 2  - v3 ) 

Inserting these into Eq. (A. 1) for 	we obtain 



- t3- 

= Sdv3{d4P3 5+(pZ - v3)dp4 6+ (p - m) 6 4(p 3  + 	
- 	 - Pb )] 

x 	ö+(pZ m) ,d4p2 5+(pZ 
- m) ~d4p 3  8(p2 - m) 

+ p2  + 	- q3 
- Pa)] 

= 

 

	

Y dv3 2 a +Pb, + P4 	(p±q3 	p+ p2  + p3) 

Now for fixed P 3  (and hence q 3 ) we repeat this step for 3 . That is, we use 

(p +.p2  + p3 
- 

a q3) 	dvzSd4Pz 6 (P - v2 ) 6 4(P2  + p3 
- a - q 3 ) 6 4(p 1  + p2  - P 2 ) 

to get 

3a + q 3 	p+ p2  + p3) 
= 

dv 	
2a + q 3 	P2  + p3) 2a + q2 	p 1  + p2 ) 

This gives for 	(when the 's are expressed in terms of invariants) 

2 	2 	2 	2 	2 	2 4(S ;  m, mb. m., m2 , m3 , m4) 

= 

 

S dvydv3 
2  (s; m 2 , m; v3 , m) 2 (v3 ; m 2 , t3 ; v2 , m) 

x 	(v2 ; m 2 , t 2 ; m, m) 

We evaluate each 	in the c. m. of the system it describes to get 

X(s, v3 , m 2  4 ) 	 X(v 3 , v2 , m 2  3) dv 4 	 8 	 dv2 	
8 v 3 	

d2 	

(A.4) X(v m 2 , 	1 , m2 ) 
X 	8v2 	3 

Here o
. 

is the angle between P. and p 
a  in the c. m. of 	and Pa and 

. 

is the azimuthal angle 
between P. and1+2  in the same system; 43 is an irrelevant angle. For each d2 the range of 
integration is 41i, and for the v's the range is where all the >'S are positive 

We could have used the other form of two-body phase space, Eq. (A. 2), to get 

- 	

dv3  dt3 dcl3 	ç dv2  dt2 	 dt 1  d4 4  

3 4X (s, m, mb) 	4X (v3 , t3, ma) 	4X (v2 , t2, ma) 

but now the range over the t's are more complicated. To calculate the range in t 1  for fixed v.1 
v.1 , and t i+1 we use the equation 
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+ 2t. - m2 - t. 	- vi 
- 

m 1) + (m2 
- t1 ~ 1) (v. 

- cosO. 
= 	 2 	 2 	 , 	 (A.6) 

	

1 	
X(v.+1 m, t1+1) M+1 v, m. 1) 

and set cos 6. = I and -1. 

We need to be able to express any kinematic variables in terms of those chOsen here. In 
particular we want to find expressions for the various Mandelstam invariants in terms of the set 
of vs, Vs, and t5  The first step in this is to express the two-particle "subenergies" s 23  and 
5 34  of Fig. .16 in terms of this set. 

Consider the diagram in Fig. 17. Now, c.i  is the azimuthal angle for the two-body reaction 
q. + p -. p. + P. 

1 - 1 
. That is, it is the azimuthal angle between P. 	andp. +1  in the frame where 

i-I 	i 
= 

a + q. = 0 and where 'a is along the +z direction, as shown in Fig. 18. From an exami-

nation of this we see that the two-particle "subenergy" s
i, (p. + P+ 	is a function of 	To 

find this function we write 

(p + •+I 	= 	i+1 - 

P_). 	 . . 	 . 	 . 	

(A. 7) 

= v..+1 + V.1 - 2 	 + 	 P. 	(cos cos 	+ sin sin j 	 cos 

where we have introduced the angle 1i shown in Fig. 18. To find 4i we use 

2 	- 	-* 	- 

	

- 	l+1 - (q. 
+ 	

= t1-f m.+1+ 2 q 1 P11 f 2 1q1 ! 	cos 4i. 	 (A. 8) 

For these two equations we need a number of energies and three -vector magnitudes in this frame 
of reference. In general if 

	

k 1 ±k2  = k3 , . 	 . 

and k 	= 
1. 	x. for.  i = 1, 2, 3 1 

then 

.X(x,x,x 
3

) 
1.. 	b. 	- 	 1 	2 	 . 	 . 

I 	- 	2 	- 	 1/2 2x ' 

0 	x1+x3 - x 2 
Ic4 

= 	 1/2 
2 x3  

andk = 
(x2+x3x1 

) 



In our case we have 

p i _ I +pi  = P1  

Pi+1-pi+1 = P , 

P+q = P 

and. = 0 

Since we know all the momentum squares, we have the needed energies and three-momenta to find 
cos 4, , and therefore s. 	in terms of 	 After some algebra, from Eq. (A. 7) we find 

= 	+ 	
+ I

Det (A) + 2 (G(e1) (4,))1/2 C05 4,
i. i+f 	i+f 	i-i 	 2 	2 

 X (v
i
, m , t.) 

a 1 

where 	 . . 

G(O 2 	 2 = G(v t 11  m, t.,vi-1 1 m. 

and G(4,) = G(v., t., m 2 , t., v, 

with 0 being the Kibble function, given by 

CX st.a,bc,d)=st(_s..t+a+b+c+d) 

-s(a-c)(b-d) -t(a-b)(c-d) 

-(ad -bc)(a+d -b-c). 

The matrix A in Eq. (A. 9) is 

2 V. 	 V. + m 2 v 

	

- t. 	 . + V. 	- 

(v. 	

a 	 1 	i+1

A = v. + m2 	 m 2 v  + m2  a i 	 a 	 i+f 	a iff 

 
 + V. 	- •m 

2  
. 	V. 	+ m -  t 	0 1 	i-f 	1 	 1-1 	a 	i-f 

Next we would like to express all other two-body invariants in terms of our basic set, now 
taken to be v 2 , v3 , t 1 , t2 , t 	s, s34, and of course s. Once we have found the 3-particle. 
invariant s 234 	(p2  + p 3  + p4 ) 2  which is like v 3  but on the opposite side, the remaining two- 

particle invariants come simply. To find s 234 we compress p 3  and p4  together. Figure 19 shows 

this and s 234 in relation to the known variables. From this figure we see that the calculation of 

234 is completely analogous to the calculation 	 We immediately write the answer: 



- Det A' + 2(GG2)2 cos 	1 
= S + m + J 	 I 	

, 	 (A. 10) 234 	 1

L 	X (v2 , m, t2) 	
j 

where 

2 	2 	2 G 1  = G(v2 , t I  m, t2 , m 1 , m2 ) , 

G2  = G(v2 , m, m2 , t2 , s, s 34 ) 	, 

and 

/2 v2 	 v2  + m2 - t 	 V + s - s4
2 	 2 

A' 	v + mZ - t2 	m2 	 s + 

2 	2 	 2 	2 v2 +m 1 -m2 	m 1 +m-t 1 	0 

The other two-body invariants can now be easily shown to be 

2 	2 	2 = V3  - V2  - S 23  + m 1  + m2  + m 3  

2 	2 	2 S 24 
 = 234 

- 	- S 34  + m2  + m3  + m4  

tzb = t I 
 - t2 - 234 

+ S 34  +m +m , 

t3a = t 3.  - t 2  - S 123  + V2  + m + mZ 

2 	2 = m2  + m3  + t 1  - t2  + t3  - S 23  , 

2 	2 
TX 	ma + mb - t 2  + V2  + S 34  - S 
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Pa + ci. P 	P1 + ( - 

:= 	
2 

= 	a P. 	, 
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and qi is the angle between p and 

Therefore, if - 

2 	2 	2 	2 cosO = f(s,t, ma  mb m , md ) 
., 	then 

2  cos 	= f(v i l t4 i 1a 	t 	v 	rn 

Y 

cp. 
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FIGURE CAPTIONS 

Fig. 1. 	.A schematic representation of Eq. (11.1) for the 2-to-n amplitude, showing factorization 

and momentum assignment. 	Each blob is an off-shell 2-to-2 amplitude. 
Fig. 2. 	A diagram representing the 2-to-2 cross section. 
Fig. 2-4 3. 	The terms in a 	from the permutations of D. 	We call this sum the uncrossed diagram. 
Fig. 4. 	Diagrams representing 

one of the terms from the class C; the other 15 terms are represented by interchanging 

two intermediate lines from one of the four vertices; 

The sum of all 16 terms of C. 	We call this the single-cross diagram. 
Fig. 5. 	Diagram representing the sum of all four terms in X. 	We call this the double-cross 

diagram. 

Fig. 6. 	Schematic representation of the integral equation for the forward absorptive part of the 

elastic amplitude under the 'standard assumption." 
Fig. 7. 	Schematic representation of modified integral equation when interference terms from 

classes C and X are included. 
Fig. 8. (a) Diagrams not generated by the kernel of this paper. 

(b) Diagrams generated by the kernel, which give a larger contribution than the diagrams 
in 	(a). 

Fig. 9. (a) Diagram not generated by the kernel of this paper. 

(b) Diagram generated by the kernel, which may give a contributIon comparable to that 

in (a). 

Fig. 10. 	Diagram showing various kinematic invariants. 
Fig. 11. 	Diagram showing the isospin indices for the uncrossed diagram. 

Fig. o 12. 	(6c)1 	and 	( 60  )11 	as a function of 5 
1/2 

Fig. 43. 	62 	as a function of 

Fig. 44. 	ts) and as) for It=  0. 	Solid curve uses 	as input, and dotted curve uses 
(6° ) 

, oII
a s). 

apt). 

Fig. 45. 	a2 (t) and as) + a'1s)  for It = 0. 	Solid curves use 	(6°)i 	as input, and dotted 
curves use 	(60 ) 11 : 

Fig. 46. 	Description of assignment of momenta and kinematic invariants. 
• Fig.  General kinematics. 

Fig. Definition of variables in frame where 	P. = 0. 
Fig. Diagram for calculating 8234. 
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