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ABSTRACT 

The deri'vation .of an explicit expression for the 

ionic contributions to the nonlinear electric polarization 

for second and third harmOnic generation of light is prsented. 

The ionic polarizations obtained are to first order in the 

artharmonic potential energy in the dipole moment approximation. 

In contrast to the usual semiclassical or quantum-mechanical 

perturbation approach, we have used many-time t emperature_: 

dependent Green t s functions. 
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I. I1TRODUCTION 

The theory of second harmonic generation (SHG) of light involves 

the process of annihilation of two light quanta and the creation of 

one new photon with twice the energy. This effect was first observed by 
1 

Franken et al. in 1961 and stimulated considerable interest in nonlinear 

optical effects. The availability of intense light fluxes fromlaser 

sources makes possible the experimental observation of such higher-order 

effects in the laboratory. 

Second harmonic generation of light was first discussed from a 

theoretical point of view by Armstrong et al. 2  and Iaeininan3  in 1962; the 

method used in those investigations was that of quantum-mechanical pertur-

bation theory. A descriptive review of optical harmonics and nonlinear 

phenomena has been given by Franken and Ward. 4  (Also see the recent paper 

by Kielich. 7 ) 

One interesting aspect of nonlinear optical problems is 

calculating the nonlinear electric polarization for 5KG and third harmonic 

generation (THG) of light. In general, this polarization results from 

contributions due to electronic motion within atoms (or molecules) and 

forced vibrations of ions in an anharmonic potential. 

In this paper, we use the simplified model proposed by Armstrong 

et al. '  and calculate the ionic contributions (ionic polarization) to the 

nonlinear electric polarization by use of many-time temperature dependent 

Green's functions. It is found that the nonlinear ionic polarization in 

terms of the many-time Green's functions give rise to expressions for 

both SKG and THG contributions. In Sec. II, the nature of the model 

used and the appropriate Green's functions are discussed. The calculation 

of the nonlinear ionic polarization is presented and discussed in Sec. III. 
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II. HAMILTONIAN FOR TIE SYSTEM 

Following Armstrong et al , a given molecule in the isotropic 

system is treated as a. collection of three independent one-d.imensiorial 

anharmonic oscillators The Itaniiltonian of this simplified system in 	 c 
the absence of radiation is  

H = 	 + m1  w01 r12) - 1
2 	 (M 

].X y, Z 	 iX, y, Z 

- 

1=x,y,z. 	. .'. 
(i) 

The last two terms in Eq (1) represent the anharmonic part of the 

potential in which the ions oscillate. The interaction of the system 

with radiation in the electric dipole approximation is given by 

E 	, 	 (2) 

	

i=x,y,z: 	. 	.. 	. 	. 

where 

E = w +  

The general equation of motion for many-time Green's functions 

for nonlinear transport coefficients in the, energy representation is 

nBG n+l' A)E = 2ic G(1B,A], A)E + Gn+1( [BHL A)E 	(4) 

where 

	

G1({B,A); A)E = 	 . 	 (5) 
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and 

G2(B;A)E 	= 	(K B; A >>E  

An ensemble average is indicated by 	(•..), and 	((")) 	denotes Fourier 

transform of the many-time Green's function. 7  

In our specific case, the contributions of the 	x: component of 

second- and  third-order polarizability due to the 	x 	component of the 

electric field will be calculated. 	The appropriate Green's functions 

are 

n = 2; 	0; 	0 	(sIG) 

G 1 	(x; x) 	= 	ç 
E-*O 	

ln=3; 	
70; 	rix 	0 	(THG) 

 

Equation (Li.) now becomes 

noG 1 (x; x) 	= 	j- G([x, x]; x) 	+ 	G1([x, Hz ] ; x) 	,  

where 
2 

P 	 7\. 
x x - 	+ 	m 	w 	

2 
 x  2  .---x3 	

1 	4 
	-x H 9 

On substituting 	H 	from Eq. (9) into Eq. (8) and evaluating the required 

commutation relations, we obtain 

riDG 	x) 	G 1(P; x) 	; 	 E (10) 
n+1 

where 

n+lx 	
x) 	= 	- 	(G) - i m 	W 	

2 
 G 1 (x; x) 

+ iX 	G(x2 ; x). 	+ 	i Tj 	 G 1 (x3 ; x) 
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A delta function of the form in Eq. (11)wili be used tbiohout this 

per; it is defined by 

.1.;. 	n1 	. 	. 

(is) 
0; 	nl 

The system of dependent equations in Eqs 	(10) and (ii) will be solved 

f or 	G.1(x; x) 	by evaluating the higher-order Green's functions, 
W 

G 1 (x2 ; x) 	. and 	G 1(x; x) 	, to zeroth order in 	and. 1 

respectively. 

The explicit expression for 	Gn+i(X2 	x) 	to zeroth order in 

2'.. 	is (see Appendix A for details). 	. 	. 

.25(G) 	. 2 2 
G 1  (x , x)= 
	(2 	

)2 	
( 	

)2 - 	2 	 2
] [ ( 	

)2 
+ 

li.5 (Gk) 
2 

(2tui) 	( 	 ox 

(13) 

wher.e 	 . 	. 

k 	= 	n-i.. (i) 

For the special case of second harmonic generation, we have (n 	2; the 

lowest order nonlinear effect) 

\ Gx;x) 	 2 	2 	22 	' U) 
) 

. 	I 

2(27cm)(U) 	(1)  
Ox 

where terms involving .1/u)2 	have been neglected. 	The system .of equations 

for the requi±ed Green's functions, Eqs. (10) and (ii), reduces to 
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- 	1 	
(16) - 2 	2 	3 	2 w 

 22 	2 	2 
(27t) 	m 	(u - 	) (w0 	- lu 

The nonlinear ionic polarization in this case is 

• 	• 	2 	-21wt E 	e
,  )

3 x 	I x P 	(2 ionic) 	 - xx 	' 	 2 	m 	2 	2 2 	2 	2 2(27t) 	X. 	(co - co 	
) (01OXOx 

(17) 

The expression for the ionic contribution to the electric polarization 

in SI-G, Eq. (17), was obtained, by Armstrong et al. 1  using quantum 

mechanical perturbation theory and. by Tanaka et al 6 
using many-time 

temperature-dependent Green's functions. 

We now extendtheGreen's function method and obtain the 

ionic contribution to the electric polarization in TUG. In this case, 

we must retain the 	term in Eq. (ii) and, calculate :G(x; x) 

For n = 3, Eqs. (10) and (ii) reduce to 

3co G(x; x)co  = 	G(P; x) 	 (18) 

and 

3co G(P; x) 	= -i m WOX  G(x; x) + i T G(x3 ; x) 

(19) 

The details br obtaining G4(x3; x) • are given in Appendix B. From 

Eq. (B12), we note that 	• 

G(x3; x) 	= 7 G3 (x2 ; x) + '(xP)j' 

+ iL(P) G(P, x) + L'(x) G(x, x) 	
(20) 
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The primes on thecoefficientsn Eq. (20) indicate that the coefficients 

are evaluated for 	n = 3. 	For example, 

 

The unprimed coefficients are defined in Appendix B 	On substituting 

Eqs. 	(20) and (19) into Eq. 	(18), we obtain. 	 :• 

/ 
/) 	YIG(x . x ) 2 +F' 

(0 
G(x;x) 	-(---  

where 

F' 
x'xi' 

- 	'(P 2 )a ' ] 	(23) 

and 

e'(w) 
= 	2 m 	+ 

- 	2 m 
	+ n 	L'(x) 

(2 Ii.) 

On multiplying the right-hand side of Eq 	(22) by 	e 	 E3 e3t, 

we obtain a quantum-mechanical expression for the nonlinear ionic 

polarization in THG. 
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APPENDIX A: FINDING G (x2 ; x) n+l 

The details for calculating G+1(x2; x)  to zeroth order in 

are presented in this Appendix. The equation of motion for 

G 1 (x2 ; x) 	is 

2 	1: 	2 	 2 nuG ~1 (x ; x) 	= 	G([x ,x]; x) 	.+ G
+1 ([x ,H]; x) 

2 1  G 	(xP; x) . 	 (Al) m n+l x w x 

Finding G 	(xP ; x) n+l x 	u 

2 x) = - - G(x; x) ± - G 1 (P 	x) 

2 	2 
- im w 	G 1  (x ; x) 	(A2)Ox  

Finding O(x; x) 

kG(x, x) 	= -i-- G(P, x), 	 (A) 

where k=n  -l. 

Finding G(P; x) 

i 	
i (Gk) 

	

(P ; x) 	= - 	 - i 	2 w 	G (x; x) . 	 (A)-i-) n x 	CD 	 2t 	x Ox n 	w 

Therefore G 
n  (x; x) w becomes 

5(G) 
G(x;x) 	= 	 k 	

(A5) n 	
2t m[.(1)2' 

- 

CD23
Ox 



21 	 2 
= - 	 G(P; x) 	2i m w 	G. ~1 (xP; x) 

 X. 

(A6) 

hence, 

15(G) 	 2 	 1 
G(P x) 	

k 
+ m w 	G(x, x) 

] , 

	 (A7) 

Gfl+l(PX2,  x) 	- 	
x) 

+ m w2 G +1(xP ,  x)w} (AS) 

and 

G ~1(xP, x) 	
= [()222 	 + 	

G(x, x) 

ox 

25(G) 
+ 	 k 	+ 	 2 G 	(x2 ; x) 

2 	 xOx n+1 	U) 
(2t) m (nw)(lcw) 

A9) 

On substituting G+1(xP; X)U)  into Eq. (Al), we obtain 

2 	 28(Gk) 	 1 	2 
x) 	

= (2 	
)2[()2 - 	 2 ][()2 - 	 2] 	

+  (nw)(1) 

+. 2 	2 	
(Alo) 

(2t 	
)2()(){() 

- U)ox] 
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APPEINDIX B: FThDtNG G 1 (c3 ; x) 

This Appendix is devoted to the presentation of the details of 

finding G
+1 (x 3; .:X) to zeroth order in I • The equation of motion 

for G
+1 (x; x) is 

nui 1 (x3 , x) 	= L G({x3,x], x) 	+ G([x3,II], x) 

= 	G.. (x2  P; x) 	+ 	G 	(x; x) m 	n+l 	x 	 (Bi) 

	

. w 	m n+l 	w x 	
.. 	 x 

a Finding G +1 (x2  P, x) 

rjaz ~1 (x2  P, x) 	= 	G([x2  P '  x], x) 	+ G~1 ([x2  p, H], x) 

-1 	2... 	:2i 	2.. = 
- G(x , x) + 

- G+i(XP , x) 

+ 1-c 	(P;x) -  im w 2 G 	(x3 ;x) 
x 

	

m n-i-i x 	w 	x Ox 	n-i-i 	w 

On evaluating the various Green's functions ivoived in 

G 	(xP x 2 ; x) , we obtain 
. 	 . 

3G(P 2 x) G 1 (xP 2  ; x) . 

= 	2 	2 ] 	 - 	

G(xP; x) 
+ [( 	)  

21cr 2 G 	(P;x) Ox n+1x 	w 	 2 
MO 	 -2imw 	G 	x P;x x Ox 	n-i-i 	x 	w 

	

- mx WOx2 G ~1 (x; x) 	
. 	 (B) 
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When Eq. (B3) is substituted into Eq. (B2), one obtains 

2 1[(n 	
2 

w) 	- 3111 	]G 	(x 	x) 
Ox 

2 	2 
n 	w 1.4G 	(xP n 

	

; 	x) 

	

x 	w G 1 (x = 	
- 2(nw) {()2 	

I)OX  + 21T m[(r)2 	7w 2 ] Ox 

6 1 G( P2, 
+ 

2 	

+ 

2t(r)[(nw) 	
- iwOx 

[( 	

)22w2]_2 

2 
Ox [1 

- [()2 	

} 

G~1 (P, x) 

1 mx I (nw )
2 
 - 	

w 2 ]w 2  G ~1(x3, ox  x) 

nw[(nw) 	7wo] 

21 W2 Ox 	G +1 (x; x) 

(x) 	7WOx 

On returning to Eq. 	(El), one finds 

G 1 (x3 ; x) 	= (x2 ) G 1 (x2 ; x) 	+ I 	(xP) G(xP x) 

- 

G(P2, x)w + 1 x2 G1(P, x) 

(x) G1(x, X )w  (B7) 

where 

2 
2 	2 

31(nw) 	-3w 	] 
X 

L(x ) 	= (B6) 
2trnØ(w) 
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(xP) 
= 	() 

 
2itm 	0(w) 

x 

2 	mO() ' 
 

= 3[ 	
2 	2 ]  

X 	 °0x 
j  

2 	2 
-5 	] 

L(x) 	= (io) 
mØ(w) 

and 

0(w) 	= {(rn) 	- 	10 w2()2 	+ 	9 w 2 ] (Bu) 

Equation (B5) may  be rewritten in the form 

G1(x3, x) y  G(x2, x)w 	+ 	L(x P) 1 	- 	z(P 2 )a1  

+ 	i L(P) G 1 (P, x) 	+ 	i(x) G
+1

(x., x) 	, 

 

where 

y 	= 	L(x2 ) 	+ 	L(xP) 	- 	
1(p2)a2' 	

/ 
 

(i+ 22 	)6(GkT) 
Jckw 

(2)2
. m[(k'w)2 

- 	2][()2 - 2 w 
	

2]
Ox 

26(G 1 ) 
k  + 

2 	2 (2ic) 	m[(iw) 	- 2 w]kk'w 
(B1) 

L) 



- 	2 2 	
2 

kl )

(2)2 	- (2)2 	'2[(k'(D)2 - 
	2 ]  

2 
2 m 	, 

- 2 
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