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Summary 

Spark chambers with digitized readouts offer 
distinct, advantages in spatial resolution and cover-
age over other gamma-ray imaging devices. While 
these chambers usually require external logic sig-
nals for triggering, in this paper we describe a 
method that provides self-triggering spark chambers. 
We also descrbe initial 0tests of a 45 X 4 cm spark 
chamber with OOCO and 9°Au samples. 

Introduction 

The widespread use of gamma-ray_emitting radio-
isotopes has become a powerful tool in human and 
animal physio1ogy studies. While present devices for 
the spatial imaging of isotope distributions tend to 
be limited both In resolution and area coverage, wire 
spark chambers with electronic readout afford compact 
instruments that are able to cover large areas with 
high resolution and supply quantitative information at 
low cost. 

In our spark chambers the wires in one plane run 
at 90 deg to the wires in the other so that X and Y 
coordinates can be obtained (fig. i), and Mylar win-
dows are used to seal the chamber. 

The sampling system consists of a magnetoatric-
tive1  wire (typically a ferromagnetic alloy) placed 
close to, but not in contact with, the chamber wires. 
The particular wire (or wires) carrying current to the 
spark are surrounded by a rapidly changing magnetic 
field. The properties of magnetostrictive materials 
are such that their length varies with magnetic field. 
The fast increase and decrease of field arOund the 
sensor wire produces a rapid contraction and relax-
ation in that wire. This disturbance travels down the 
line with acoustic speeds (about 5000 rn/sec). A 
detector consisting of a pickup coil and amplifier 
produces a signal that is processed by the technique 
of differentiation and .zero crossing so that the 
center of gravity of the spark current can be deter-
mined. The signal is timed by 20 MHz scalers; the 
number of sparks that can be detected depends on the 
number of scalers used. To make the system inde-
pendent of the positioning of the magnetostrictive 
line and of conditions that effect the speed of sOund. 
in that line, we connect the first and last wires in 
each plane through a resistor-capacitor chain. In 
this way, a current flows through these wires each 
time the chamber Is pulsed, and two marker or 
"fiducial" pulses are obtained on the line. The first 
fiducial turns the timing clocks on, the spark turns 
one clock off and a second spark or fiducial turns the  

other clock off. In the latter case we obtain an ab-
solute normalization of distances along the line. 

For a wire-to-wire separation of 1 mm, we obtain 
location accuracies of ±0.33 mm, this being due to the 
fact that the current splits proportionately to the 
distances from the track to the two wires that straddle 
it. 

In many experimental situations the range and 
energy of the detected particles is sufficiently 
large so that the events are selected by a triggering 
signal derived from scintillation counters placed 
strategically around the spark chambers to form an 
appropriate coincidence for the event. Such a trigger-
ing system is. less effective in dealing with y rays or 
other neutral particles whose presence is detected by 
secondary charged particles produced in converters in 
or around the wire planes, and becomes especially 
inefficient when dealing with low-energy 7 rays from 
radioactive sources, or X-rays, where the range of the 
secondary electrons is small enough so that they 
often do not emerge from a single gap. 

Since our Interest is in using wire chambers for 
medical diagnostic purposes- - the localization of y-
emitting radioactive isotopes with energies ranging 
from tens of key to a few Rev- -we have investigated 
the characteristics of the signals produced by low-
energy charged particles in the pre-avalanche region 
in the wire chamber and the sparking characteristics 2 
of the chamber Itself when triggered by these signals. 

Experimental 

The spark chamber used to test the properties of 
gas-multiplication triggering has an ative area of 
20 cm X 20cm and a capacity of 140 pF. It consists 
of three planes, the central one made up by stringing 
0.08 inn steel wires 1.5 mm apart over a lucite frame. 
The outside planes are of copper-etched Mylar, 1 mm 
apart. The distance between the planes is 1 cm in 
each case, and magnetostrictive readout is possible 
from the two outside planes. For operation, the cham-
ber is filled to atmospheric pressure with a .90% re - 
10% He gas mixture saturated at room temperature with 
ethyl alcohol (— 50 mm Hg). 

Figure 2 shows the circuit used for particle 
detection and spark triggering. The outer eleetrodms 
are grounded and a positive high voltage was applied 
to the central one. A 22 MO resistor is used to limit 
the current available to the chamber and prevent a con-
tinuous discharge. The resistor also determines the 
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recovery time of the chamber for detection of particles 
after sparking, since it limit's the recharging rate of 
the chamber. 

The proportional pulses are collected from the 
high-voltage electrode through a 100 pF capacitor into 
a voltage-sensitiie preamplifier with an input imped-
ance of 10 kfl. The preamplifier has a gain of - 20 
and its pulses are fed into a variable-gain linear 
amplifier. The preamplifier is protected during spark-
ing by a simple back-to-back diode aystem with a 1 k 
resistor to limit the current through the diodes. The 
spark chamber is decoupled by a series gap from the 
capacitor in the high-voltage pulsing system. 

When the chamber is operated with the gas mixture 
previously described 0.25 mV pulses are obtained for 
an applied voltage of 3900 V; this corresponds to a 
gas amplification of approximately 6000. The detection 
efficiency of the chamber was tested by placing it be-
tween two scintillation detectors and counting simul-
taneously double (between the scintillators only) and 
triple coincidences. Full efficiency was reached at 
3750 V. 

Using a variable threshold discriminator set to 
trigger at 10% of the height of the average pulses, we 
find that it fires about 0.4 isec after passage of the 
particle through the chamber. Since no appreciable 
losses in sparking efficiency are seen for times up 
to 0.5 psec after passage of the particle (see fig. 3), 
the delay can be tolerated. The triggering jitter 
time is less than 0.3 isec. We observed also that the 
operation of the chamber is moderately insensitive to 
the rise time of the high-voltage pulse and that rise 
times of 50 nsec do not cause any loss in efficiency. 

We have also measured the rekindling time of this 
chamber (time during which a spark will be formed along 
the path of a previous spark, i.e., the number of 
double sparks on the same track as a function of the 
delay time between the sparks). This is shown in fig. 
! for a particular set of parameters. 

A Gamma-Ray Scanner for Clinical Uses 

Magnetostrictive readout spark chambers coupled 
to converters, i.e., lead plates, offer distinct 
advantages over present systems for the imaging of y-
ray emitting radionuclides: 1 mm or better accuracy 
of location, large area for whole body scanning, and 
low cost. Such a system with an active area of 45 X 
45 cm Is presently being used by us , and the schematics 
are shown inflg. 5. 

When imaging single y-ray-emittlng nuclei, a 
collimator placed between the source and detector is 
commonly used. For all practical applications, the 
resolution of the system is given by the hole size 
and configuration of the collimator. In our work the 
chamber is triggered on all counts in the scintillator 
except the ones blocked by the cosmic-ray anti-
coincidence counter. Not all triggers correspond to 
real events since an appreciable number of y rays will 
convert in the scintillator itself, giving rise to 
false triggers, and conversely, not all electrons 
reaching the chamber give rise to a trigger signal. 

It is in this type of application that full ad-
vantages of ga s-multiplica tion- triggered spark chambers 
are realixed, since they allow for detection of par-
ticles that would not register otherwise, and an 
Increase in detection efficiency produces a directly 
proportional increase in sensitivity. 

We have performed computer simulations of colli-
mators, and found that for constant resolution, the 
acceptance (fraction of y rays being collimated) 
Increases with increasing thickness, since the densi-
ty of.holes can be increased. We have built and tested 
with °°Co sources, two 15 cm thick lead collimators 
with 5 mis diameter holes. The first, which has 5 mm 
septa, was found to give a granular image, the resolu-
tion of the detector making it easy to see each indi- 
vidual hole. The second collimator has 3 mm septa, 	a 
and individual holes are still discernible, although 
to a lesser extent than in the previous case. We feel 
then that 1-2 mm septa will be adequate for 5 mm holes. 
From these preliminary results, we conclude that for 	-v 
applications where high resolution is desired, colli-
mators with holes as small as 1 mm could used. 

Full advantage of the high resolution and large 
scanned areas that spark chambers make available can 
only be realized through the use of computers. Pic-
tures can be obtained on-line by the use of an ADC 
(Analogue-to-digital converter) unit, which converts 
the digitized information into voltages that are 
applied to the X and Y inputs of a cathode ray tube, 
with a Z-intensify signal applied simultaneously. 
While the pictures are useful, computer analysis 
allows for background subtraction, selective contrast 
enhancement, quantitative output, high resolution, 
etc. Figures 6 through 9 show pictures and computer 
outputs of various phantoms. It can be seen that 
simple schemes of background subtraction yield pictures 
that are extremely clean. 

Work is proceeding In the application of these 
techniques to clinical uses. 
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Fig. 1. Schematics of a magnetostrictive readout 
wire spark chamber. 
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Fig. 2. 	Setup for gas-multiplication triggering of a 
spark chamber. 
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Fig. 3. Sparking efficiency as a function of trigger delay. The gas is 90% 
Ne - 10% He. The delay time is measured after particle detection by 
the chariber. Curve A is for 3400 V dc and 50 mm Hg of ethanol as the 
quenching gas; curve B is for 4000 V dc and 215 mm Hg of methanol. 
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Fig. 4. Rekindling of old sparks as a function of time between high-
voltage (hv) pulses. Pulsing was done by discharging a 
500 pP capacitor at 9 kV. The chamber was flushed at atmos-
pheric pressure with a 9 Ne - 10% lIe gas mixture saturated 
with ethyl alcohol ( 	50 mm Jig). 
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Fig. 7. Same as fig. 6 with 20% background subtraction. 
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Fig. 9.  Rat's liver and spleen, labeled with 170 4ci of Au 98 , 
computer reconstruction of data of the 18" x 18" spark 
chamber, with 20% background subtraction. Lead 
collimator of 7 mmdiameter holes, 5 mm septa and 76 mm 
thick. 20, 000 points. Scale in centimeters. 
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