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1 . . Introduction 

Since it.s original introduction by Heitlerl ) t.o analyze 

radiation damping phenomena, the react.ion or K-mat.rix concept has been 

widely used to investigate a variety of quantum collision processes. 

Of particular importance is the case of nuclear reactions where the 

reaction matrix theory was developed by Wigner
2
). The advantages of 

the K-matrixmethod are that it remains valid if the interaction cannot 

be described by a potential and that it. satisfies the unit.arity require-

ments in a particularly simple way. 

These features of the K-matrix approach have encouraged a 

number of authors3-9) to use this formalism in the case of high-energy 

hadronic collisions, where it provides a natural way to incorporate 

unitarity corrections to the Born diagrams. Another, frequently used 

unitarization procedure is the eikonal formalism, and the t.wo approaches 

are of course not unrelated. We shall actually show in Sec. 2 that. t.he 

results obtained within the eikonal framework can also be derived in 

the context of the K-matrix formalism for both elastic and inelast.ic 

t.wo-body processes. In the former case, we recover the multiple 

scattering interpretation of Arnold6), whereas in the latter one the 

basic formulae of the absorption modellO- lS ) are obtained. We also show 

that the K-matrix method provides a simple way of resolving the conflict16 ) 

between "absorption" and "rescattering" corrections, without invOking17 ) 

special properties of multiparticle production amplitudes. 

-In Sec. 3 we carry out a detailed comparison of the eikonal and 

K-matrix methods for high-energy elastic proton-proton scattering. This 

process has been analyzed in the eikonal formalism by Frautschi and 
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MargOlislB ) (hereafter referred to as FM) who identified the contribution 

to the scattering amplitude arising from the (linear) Pomeranchuk 

trajectory--having a slope -2 ex' = 0.B2 (GeV) --with the Born term and 

* ~ obtained a differential cross section showing diffraction minima beyond 

* A similar diffraction pattern was obtained previously by Chou and 

Yang19) . 

the forward peak. Using the same Born term as an ansatz·for the K 

matrix, we find that the resulting differential cross section exhibits 

only breaks (no dips), 
. 20) 

consistent with present experimental evidence • 

We also analyze the phase of the scattering amplitude and the total 

cross sections. 
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2. TheK-matrix Approach to Absorption Corrections 

Let us .consider a two-body collision process. We denote by T 

the transition matrix and by K the reaction matrix. In terms of these 

operators the S matrix is given by 

S == I - 2iT (2.1) 

and 

I - iK 
S I + iK (2.2) 

where I is the unit matrix. The T and K matrices are related by 

the Heitler equations 

T == K - iKT 
(2.3) 

== K - iTK 

In terms of matrix elements, the Heitler equations for an inelastic 

transition a ~b read 

T == ~a -

n 

T na 

= ~a - i L Tbn Kna 
n 

(2.4) 

where the summation runs over all open channels, and multiplication 

implies an integration over phase space. Alternatively, we may interpret 

the Heitler equations (2.4) in terms of partial wave amplitudes, in 

which case they simply reduce to a set of algebraic equations 2l ). 
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We now specialize to high-energy two-body processes. A natural 

wa.y to proceed in this case is to identify the K-matrix element K -oa 

with the Born term ~a fUrnishe~ by the peripheral or the Regge model. 

Before we do this, however, we note that since the Heitler equations 

automatically lead to a unitary Smatrix, the summation on the right of 

Eqs. (2.4) provides the desired unitarity correction to the ansatz we 

have chosen for ~a. Since we expect the initial and final states-

"i 22-23) containing diagonal matrix elements--to dominate/'- the sums in 

Eqs. (2.4), we retain only the contributions from these states7) and 

write the first of Eqs. (2.4) as 

Similarly, the second of Eqs. (2.4) yields 

of 

Combining these two equations, we have 

= ~a 1 + 2:.(K 
2 aa 

1 - 2:.(T 
2 aa 

Before we proceed with Eq. (2.7), let 

elastic s~attering. The Heitier equations 

T Kaa - i L K T aa an na 
n 

= K - i L Tan Kna aa 
n 

(2.6) 

us now consider the case 

then read 

(2.8) 

,.. 

¥ 
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Keeping only the termn = a in the sum, we now have 

so that 

= K - iK T aa aa aa 

K aa 
1 + iK aa 

If we solve this equation by iteration, we have 

= Kaa - iK K + ••.• aa . aa 

UCRL-20114 

(2.10) 

(2.11) 

We now return to Eq. (2.7), use the first approximation 

T rv K and T rv K and expand the right-hand side to obtain aa - aa bb - -ob 

This last equation may be rewritten as 

where we have expanded 

1 

S 2 = 
aa 

1 1 

Sbb 
2 ~a Saa

2 

1 

(1 - 2i T )2 = aa 

(2.12) 

(2.13) 

+ ••• (2.14) 

It is interesting to note that a result similar to Eq. (2.13) has been 

obtained by Ball and Frazer24 ) who studied absorption corrections to the 

peripheral model from dispersion theory. 

We now consider the question of finding a suitable ansatz for 

the quantities Kaa and ~a appearing in Eqs. (2.10) and (2.12). As 

mentioned above, a natural way to proceed is to identify these quantities 
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with the Born term ~a given by the peripheral or the Regge model. 

Adopting this point of view, we find that Eq. (2.9) becomes 

. T. == R - • iR R +. • . aa aa aa aa 

while Eq. (2.13) yields 

1 1 
S 2 R S 2 

bb --ba aa (2.16) 

We note that the connection between the elastic and inelastic 

processes is easily achieved within the K-matrix formalism. Equation 

(2.14) reproduces--up to second-order terms--the prescription given by 

Arnold6) to incorporate absorption corrections to elastic processes 

within the eikonal approximation and leads to a straightforward multiple 

scattering interpretation of the elastic scattering (see Fig. 1). 

Equation (2.15) is the standard absorption model formula for inelastic 

processes. 

It is important to note that several of the approximations 

necessary to derive the formulae (2.15) and (2.15) are not required 

per se within the K-matrix formalism. For example, one could use 

directly Eq. (2.9) to study elastic scattering pr~cesses. We shall 

illustrate this point in the next section, where high-energy elastic 

proton-proton scattering will be analyzed in this way. It is also worth 
l 

emphasizing that the K~matrix approach, while preserving unitarity, 

leads very naturally to the results of the absorption model, and there-

fore avoids the conflict between "rescattering" and "absorption" 

" 



:;1 

-7- UCRL-20ll4 

interest is the fact that his conflict is resolved without recourse to 

absorptive corrections to multiparticle production amplitudes17 ), whose 

existence is not firmly established. 
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3. The K Matrix Applied to Elastic Scattering 

As an illustration of the methods of Sec. 2, we now apply the 

K-matrix formalism to study high-energy elastic proton-proton scattering. 
i, 

This process has been considered by FM in the eikonal formalism. We 

shall use their parameters for the single scattering term in order to 

compare the K-matrix result directly with the eikonal result. 

A main difficulty of any multiple scattering approach to elastic 

scattering is identif'ying the Born or "driving" term. That is, should 

it be a pole or a cut, and fixed or moving? One has some assistance 

from the shrinking of the diffraction peak, but ambiguities still remain. 

(In the absorption approach to two-body-inelastic processes, this 

problem does not arise because all elastic scattering corrections to the 

inelastic exchange term are grouped into the two blobs displayed in 

Fig. 2.) 

We begin by defining the scattering amplitude in terms of the 

S matrix by 

1 

s I + iA/[k(S)2J, 

where A = A(s,t) is the full nonflip helicity amplitude, and k is 

the c.m. momentum; A is normalized in terms of the total cross section 

by 

1m A(s,O) = 

We pass to the impact parameter representation via 

.; .. ' 
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where b is the impact parameter. and ~ the three-momentum transfer 

2 (t = -~). The inverse relation is 

A(s,b) = 100 

q dq A(s,t) JO(qb). 

From (2.2) and (3.1) we obtain 

00 

A(s, b) 2ik(s)t. iK = -2ik(S)! \"" (_iK)n. 
1 +iK L 

n=l 

We now identify the first term of (3.5) with a single scattering term 

defined by a Regge pole 

.1 
-2ik(s)2 (-iK) 

whereap(t) = 1 + ta', and c is a constant. This gives 

-iK(s, b) 

1 

where ~ = -c(s)2/2ka'SO and j.l = in(s/i}, and then 

A(s,t) 

00 

= 2ia'k(s)! ~ L 

., 
.:, t 
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Equations (3.5), (3.'7), (3.8) are to be compared with the corresponding 

equations in the cikonal approach. Instead of (3.5), one uses (3.1) to 

get 

A(s, b) 

This gives 

and hence 

= 

1 
',ik(s)2(1 - s) = ik(s)t (1 .. exp[ 2i5(b) J) 

,00 

-il:(SY~ L [2io(b)Jn/n~ 

2i5(b) 

n=l 

S 2 
= - - exp[-b /4a'~J 

,~ 

00 

?in' k(,I':)t)' 1 
. L nn~ 

n=l 

(3.5' ) 

(3.7' ) 

Using the values of FM, s = 7, a' = 0.82(Gev)-2, we display 

in Fig. 3 the predictions for dcr/dt. For small t the two methods 

a,gree because the first two terms of (3.8) are identical with the first 

two terms of (3.8'). We note, however, that for t "- -1 the dip that 

occurs in the eikonal case is replaced by a break in the K-matrix cal-

culation, even at 1600 GeV. To understand this, we recall that the dip 

occurs in'the eikonal case because of a net cancellation between the 

positive first term and negative second term in (3.8'); the positive 

third term is small (see Fig. 4). In the K-matrix, the third term is 

larger, and the net result is that the dip is filled in. 

One can also ,examine the phase 9 = tan-l(Re[A(s,t)J/rm[A(s,t)]}, 

as a function of t at fixed s. We do this in Fig. 5, where vie 
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show a polar plot of get) at 30 and 1600 GeV for the two models. The 

results are essentially the same. 

We compare total cross sections in Fig. Ga. For the given 

a' ,c, the K matrix gives a larger crT because of the larger third term 

of Eq. (3.8) (see Fig. 6b). The overall rise in as a function of 

P is maintained, however. This rise, although suggested by the 1969 

Serpukhov data, is not confirmed by the 1970 Serpukhov data. The 

discrepancy of this new data with Fig. 6a can, of course, be accounted 

for by introducing appropriate secondary poles. 

Finally, one can also examine the larger angle behavior analyti-

cally by converting the sum of (3.8) to an integral on n and performing 

a steepest descent analysis 27 ) on n, or by performing a steepest descent 

analysis directly on the variable busing (3.3), (3.5), and (3.7) 

(see Ref. 28 for this type of analysis for the eikonal case). We 

comment briefly on the first approach. One converts (3.8)·.to 

A(s,t) cc s (~.:-dn __ J Sln .nn 
exp(-na - T!-l/n) 

where T = ~'t > 0, a = -£n(~/I-l)' and I-l is sufficiently large so 

that IS/1-l1 < 1 and 11l1» T.The saddle points are at 

0 +1.H. 
1 11 cos nn 

= -a - ;.... -2 n sin nn n 

or, for large n, 

1 1 +~ 
(1.H.)2 (sin ¢)2 - 2 tan ¢ rr n = e 
n a 
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For large enough s, this reduces to the formula of Ref. 27, and 

eventually to an Orear-tY])e expression 

A(s,t) cc .L exp([-(2rCTf-l. cotan ~)~-]}. 

The case T» 1f-l.1 can be dealt with in a similar way. 

(3.12) 
ii' 

• 
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FIGURE CAPTIONS 

Fig. 1. Elastic scattering viewed asa multiple scattering series. The 

wav'Y line corresponds to the Born driving term • 

. Fig. 2. Inelastic tvlo-body scattering with absorption corrections in the 

initial and. final states. The wavy line corresponds to the 

exchanged particle. The shaded blobs represent elastic 

scattering. 

Fig. 3. Dif'ferentialcross sections in the two models at 30 GeV/c and 

1600 GeV/c. Solid lines: K matrix; dashed lines: eikonal. 
\ 

~ 

Fig. 4. The first three terms of the sums appearing in Eqs. (3.8) and 

(3.8'); (a) real parts; (b) imaginary parts. Number denotes 

the corresponding term in the series, 3 refers to the eikonal 

A nfl ~, t.n t.hp K !'IlAt-ri x. 

Fig. 5. The phase of the amplitude as a function of t (eikonal) or 

T (K matrix) for (a) 30 GeV/c and (b) 1600 GeV/c. 

Fig. 6. The total cross section in the two models (a) aT vs Plab; . 

(b) individual terms of the real part of the sums appearing in 

Eqs. (3.8) and (3.8'). 

\1 
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