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ABSTRACT 

The results of some strip model calculations of rtn scattering 

are presented. In these calculations, unitarity is imposed by means of 

the Mandelstam iteration. This procedure has the advantage that the 

output trajectories and residues (including their imaginary parts) may 

be computed above as well as below threshold; this is at present not 

feasible in calc1uations using the N/D technique. First, a bootstrap 

calculation of the p trajectory is carried out, neglecting Pomeranchuk 

exchange. The extra requirement of self-consistency above threshold is 

very strict, but a solution with satisfactory consistency between -1 

and +2 GeV
2 

is obtained. The scale of energy is established by giving 

the p resonance the physical mass; the self-consistent p width is 

then about 400 MeV. Various dynamical approximations are investigated., 

and it is shown explicitly that the pion mass is not a significant 

paramei,er o,f the dynamics. Finally, a bootstrap calculation of both 

the p and pomeranchuk trajectories is presented. Except for the 

Pomeranchuk resid.ue, the results show satisfactory self-consistency 

throughout the range -1 to +2 deV2 . The self-consistent Pomeranchuk 

trajectory has an intercept ~(O) "" 1 and a slope -2 ap(O) "'" 0.5 GeV -. 
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singular, double integrals. In spite of this forbidding numerical 

prospect, the technique, has received some attention. 9,lO It has con

ceptua1, if not mathematical, simplicity, and it turns out that the 

real and imaginary parts of the leading Regge trajectories and their 

residues are easily computed above threshold. Some more technical 

problems of the N/D method, such as those associated with repulsive 

11 
potential~ 'like that due to Pomeranchuk exchange, also appear to be 

circumvented. These difficulties are associated with the fact that the 

input to the N/D equations should in any case be unitarized by means 

of the Mandelstam iteration. This procedure has also been shown to be 

. 1 t· . t· t t· 1 tt· 12 necessary ~n nonre a l~S lC po en la sca erlng. 

It appears, then,that the Mandelstam iteration, as a basis for 

bootstrap calculations, has languished rather because of numerical 

difficulties than on account of any dynamical inadequacies. Considerable 

progress in the solution of these numerical problems was made by Bali,lO 

who showed that results of adequate precision were obtained from a 

computer program that applied the Mandelstam iteration to nonrelativistic 

potential scattering. Bali also found that the method, with a particular 

cutoff prescription,13 gave interesting results in relativistic 

calculations. 

In this paper we report further progress in the numerical 

implementation of the Mandelstam iteration, made possible by the 

development of a new computer program that operates between five and 

ten times faster than those used in earlier calculations. This speed 

permits the laborious parameter searches inherent in bootstrap 

rl 
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calculations to be carried out without excessive use of computer time, 

and so it has become possible to apply this technique to the controver-

sial :n::n: bootstrap problem. 

A variety of bootstrap techniques have been applied to the prob-

lem of calculating the :n::n: scattering amplitude, generally with limited 

success. If only the I = 1 :n::n: channel is included, then a p-wave 

resonance can be bootstrapped, but its width is typically two or three 

times larger than that of the observed p resonance. This difficulty 

has persisted even in the most sophisticated single-channel 

calculations. 3 At the same time, studies of more massive channels, 

such as :n:w, KK*, and NN, have suggested that these channels do make 

large contributions in the formation of the 14 
p, and that this particle 

should be regarded as predominantly an NN 
1') 

bound state. ' However, 

recent calculations by Collins and Johnson4,S have disrupted this 

interpretation, since they appear to show that the proper inclusion of 

the I == 0 Jln channel suffices to reduce the p width to the observed 

value. Their prescription for the I = 0 scattering involves the 

exchange of the Pomeranchuk trajectory, which is treated as an ordinary 

Regge trajectory with an intercept ap(O) ~ 1. 

Our approach ~o this problem has been, like that of Collins and 

,Johnson,. wi thin the frame.work of the strip approximation. In Sec. II 

we set out the notation and assumptions of this approximation, which we 

usc in Sec. III in a bootstrap calculation of the p trajectory. The 

results are similar to those of earlier calculations, although our 

technique allows us to impose strict requirements of self-consistency 
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above threshold, and in particular to arrive at a self-consistent value 

of the p width. The effects of various approximations are relatively 

easy to interpret in this simple one-trajectory calculation, and we 

study these effects in some detail. In Sec. IV we include the I = 0 

nn channel in a bootstrap calculation of the p and Pomeranchuk 

trajectories. We observe no tendency for the p width to be reduced 

by the inclusion of Pomeranchuk exchange. In Sec. V we summarize the 

results arid discuss the disagreement between our observations and those 

of Collins and Johnson. 

'. 
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II. THE STRIP APPROXIMATION 

We assume that the reader is familiar with the phenomenological 

arguments in favor of the strip approximation;6 in this section we 

simply set down the equations that define the model, with only the 

briefest comments on their plausibility. 
, ' 

The Bose-symmetrized s-channel nn scattering amplitude with 

isospin I, A I(s,t,u), may be written in the form 
s 

A I(s,t,u) 
s 

I· I I 
= A (s,t) + (-1) A (s,u), 

where I A (s,t) is an amplitude of definite signature, having only 

(2.1) 

right-hand singularities in the t plane. The normalization is such 

that the s-channel differential cross section is 

where 1(. 4m 2)i is the s-channel c.m. momentum. qs = 2' s - 11: 

The first assumption of the strip approximation is that an 

(2.2) 

amplitude of definite signature has double spectral functions that are 

nonvanishing only in the strip regions A,B, C, and D of Fig. 1. 

Furthermore, it is assumed that the contribution of the shaded region 

A is given by the following s-channel elastic unitarity equation: 

g(s) 
. 1 
nq S2 

s 
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where 

K(s; t,tl ,t2 ) ::: t
2 

+ t12 + ~22 - 2(ttl + tt2 + t l t 2 ) - tt~t2/qs2, 
(2.4) 

and the t discontinuity of the amplitude, DtI(t,s), is given by 

I Dt (t,s) 

where 

pi t (s I, t) (31 J __ o_u~ _____ + ~ du
' 

s' - s 

pI t(ul,t) 
ou 

u ' - u 

I' 
p. (t,s') 
~n 

I' l 
Pin(t,u')\, 

S I - S u' - u ( 
) 

(2.6) 
u' - u' 

Here SII' is an isospin crossing matrix element, and g(s) is a 

cutoff function13 which forces the function pI t(s,t) au 
to vanish above 

the upper boundary s = Sc of the strip A. This is not 'otherwise 

ensured. by the equations, so the cutoff is assumed to represent some 

influence .of other channels that causes the interior parts of the 

double spectral functions to be negligible. The interpretation of 

Eqs. (2.3) - (2.6) is as follows: one starts with input doub.Le spectral 

functi(lns p. I(s,t), for I::: 0, 1, and 2, which specify a potential 
~n 

accordj_ng to Eq. (2.6). This potential may be used in Eqs. (2.3) and (2.5) 

to gen~rate the output functions I Pout(s,t), by mea~s of the Mandelstam 

iterat;,.on procedure. In principle, one has: only to find 1:1 [~et of 



.' 

-7-

functions I 
P (s,t) such that 

I . I I 
p. (s,t) = P t(S,t) = P (s,t), 
~n ou (2."() 

for all s, t, and. I, in order to have arrived at a complete solution 

of T(T( scattering within the limitations of the strip approximation. 

The amplitude generated is not simply elastically unitary, since for 

example the strip B makes a contribution that represents a certain 

class of multipion unitarity contributions, namely those that have a 

t-channel elastic intermediate state. In this respect the 11', strip 

model bears a strong resemblance to the type of multiperipheral model 

proposed. by AmaH, Bertocchi, Fubini, Stanghellini, and Tonin. 16 

The goal of satisf'ying Eq. (2.7) at all,s, t. and I is at 

present too ambitious, and in practice one attempts only to find functions 

con~aining the same leading s-channel Regge poles for some limited 

region of s: 

and 

I f I a. l(s} p . ( s , t),-......; [';. r3 . ( s) t l.n 
l.n t~ 00 s l.n 

I ( t) - J [';. f.l (s). ta~ut(S)} Pout s, rt~ s ~out ' 
~ 00 

(2.8) 

where 

over some limited 

and 
range of s. 
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Here D.s represents the discontinuity across .the cuts aSBoeiated with 

the s-channel threshold branch pOints. If these self-consistent 

trajectories resemble the observed ones, the amplitude will have the 

correct principal low-energy resonances and the correct behavior near 

the forward direction at higher energies, which would account for most 

of the features of the experimental data. However, we can hope to 

find suchia solution only if the dynamics of nn scattering are 

primarily determined in nn channels, because the cutoff prescription 

is too crude to represent in detail any important contributions from 

other channels. 

" 
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III. RHO BOOTSTRAP CALCULATION 
',"'; 

For our first reT[ bootstrap calculation we perform the 

standard single-channel calculation of the I == 1 amplitude. The 

input potential will involve the exchange of the p Regge trajectory, 

which is .. well known to provide the dominant forces in this system. 

However, p exchange also gives rise to strong forces in the I = 0 

direct channel, so for real self-consistency one should include some 

I = 0 input, and in Sec. IV we shall do this. 

We assume for the input double spectral function 1 
p. (s,t) In 

a simple form that has a leading Regge trajectory a(s) with residue 

(3(s): 

where is the conventional Regge scale factor of 1 Ge~, and 

91 (tc ,6,t) is the following continuous "effective threshold function": 

o 

1 

t - 6 < t < t + 6 (3.2) c c 

t ~ t + 6. c 

The effect of the cutoff function 91 is to approximate the curved 

boundary of the physical double spectral function by a straight 

boundary near t = t c ' as shown in Fig. 1. We therefore regard t c 

asa free parameter, representing the effective inelasticthresh01d of 

the potential, which may be varied to improve the self~consistency of 

a bootstrap solution. The function of the small parameter 6 is to 

remove a logarithmic singularity that would appear ln the potential at 
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s = t if the double spectral function were discontinuous. One finds, c 

on substituting the form (3.1) in Eq. (2.6), that the potential is 

given by 

where TC(t) =tc - 6 + 2qt2; the function R~(X; €) is defined by the 

relation 

R,/(x; <) " *~+1 (x) - R,/(X) - (1 + dH1~~+lG : ~ - Ra 'G ~ ~l) , 
(3.4) 

where 

This integral may be expre~sed in terms of the hypergeometric function 

+ - g FQ-, a a 
x

2
) Ra (x) = 2'; 1 - '2; a . 

and 

R~(X) 
+ = xR 1 (x), a-

which permits the definition of the potential through analytic 

continuation for all s and t. In the limit 6 ~ 0, we have € ~ 0 

+ + 
and Ra-(X; €) ~Ra-(X); the potential is then logarithmically singular 

at s =~ t. A finite· value of 6 removes this singularity, and the c 

potential is then continuous throughout the neighborhood. of s ~ t . 
c 
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We parametrize the leading trajectory a(s) and its residue 

~(s)' in the following way: 

a( s) = a + bs + c(4m 2 - s)p, 
p :n: 

(3.8) 

where 92(sc'.6.,s) is a cutoff function with a continuous derivative, 

= 0 

s ~ s - 6, c 

s- .6. < s < s +.6., 
c c 

We use this cutoff function, rather than one similar to that in Eq. 

(3.2), because the numerical details of the Mandelstam iteration make 

it desirable that the potential should be fairly smooth in t. By 

choosing 

in Eq. (2.3), we ensure that the strip width is the same for the input 

and output double spectral functions. Apart from this cutoff factor, 

the form of the residue in Eq. (3.9) is just that given by the asymp

totic form of'the Veneziano formula for J(J[ scattering .17 We take 

c to be a free parameter, although one might suppose that the Veneziano 
p 

formula suggests the value cp = a'sO' where a' is the mean 

trajectory slope. This would. not be correct, because we ought to use 
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only the s-channel elastic contribution, rather than the complete 

Veneziano term, for the input potential. The value of c is therefore 
p 

expected to be less than alsO' corresponding to an elasticity that 

decreases with increasing s. 

There are eight parameters to be varied in the search for a 

bootstrap solution: t . c We did not 

vary the cutoff width parameter 6, since the dynamics are quite 

2 
insensitive to its value, which we fixed at 0.5 GeV. For given values 

of the parameters, the Mandelstam iteration is carried out and the t 

discontinuity I Dt (t,s) is computed at successively higher values of 

t. Eventually the Regge asymptotic behavior becomes apparent: 

I 2 a t(s) 
Dt ( t , s) r--' r3 t (s )[ (t + 2q ) / So J ou (3.12 ) 

t 
ou s 

~oo -

[c.f. Eq. (3.1)], and the leading output trajectory aout(s) and its 

residue R (s) may be foun. d by making least~squares linear fits to ""'out 
I 2 tn Dt as a fUnction of £n[(t + 2qs )/sOJ. We find that local 

duality18 holds in this situation, in the sense that these linear fits, 

extrapolated downward from very large t, also describe the average 

behavior of I in Dt in the intermediate energy range 

2 
~ 20 GeV). Conversely, a least-squares linear fit over 

an appropriate intermediate energy region, where I £n Dt may still 

exhibit pronounced oscillations, gives a good representation of the 

asymptotic behavior. It is usually possible, therefore, to determine 

the output Regge pole parameters in this intermediate t region, 

corresponding to 15-25 Mandelstam iterations, and to avoid making the 

.. 
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very large number of iterations, ty]?ically 50-70, necessary to reach 

the truly asymptotict region. 10 An example of our procedure is 

illustrated in Fig. 2. 

We chose to impose self-consistency on the p trajectory and 

residue in the region of s from -1 GeV
2 

to +2 Gev2, since one could 

not reasonably expect the strip approximation to be valid outside this 

range. In this region, a value of x2 is computed for the consistency 

of the input and output values' of Re(a), Im(a), Re(e), and Im(e). 

The x2 contributions of the trajectory and the residue are weighted 

according to their expected relative numerical precision; it turns out 

that the residue is a good deal less accurately determined than the 

trajectory, so it receives less weight. A minimization program directs 

a parameter search that leads to the solution with the minimum value of 

x2
. 

The requirement that the real and imaginary parts of the 

trajectory and residue should be self-consistent above threshold is a 

very strict one that has not been imposed in any other bootstrap 

calculation. In the p bootstrap of Collins and Johnson,3 for example, 

the inconsistency above threshold must be very great, since the widths 

of the input and output p resonances differ by a factor of at least 

2. It is therefore not clear from earlier calculations that a p 

resonance of any self-consistent width can be generated. 

We do in fact find a solution with fairly good self-consistency 

throughout the region of interest, which is shown in Fig. 3. In view 

of numerical errors of about 20% in the calculation of the residue 

function, the consistency is good below 1 GeV2, although above this 



-14- UCRL-20134 

value there is a significant tendency for the output value of Re B 

to decrease less rapidly than the input. 
i 

There is a corresponding 

tendency for the output value of 1m a to rise rather too rapidly. 

We do not ~ind any solution that differs very much from that 

in Fig. 3; for example, the intercept of the self-consistent trajectory 

appears to be limited to the range 0.60 ~ a(o) ~ 0.75. This represents 

a considerable improvement in uniqueness over earlier p bootstrap 

calculations, presUmably because of the requirement of consistency 

above threshold. 

The isovector, p-wave cross section, corresponding to the 

solution in Fig. 3, is shown in Fig. 4. The consistency of input and 

output is good, but the p is wider, by a factor of about 3, than the 

experimentally observed resonance. As we discussed in Sec. I, the 

large width of the output p resonance has always been a problem in 

single-channel rtrt bootstrap calculations, and by increasing the 

input width to achieve consistency we have not rectified this. 

Our technique of calculation has some disadvantages if one 

needs to evaluate amplitudes and cross sections, because we can at 

present identify only the leading term in the asymptotic behavior of 

I Dt (t,s), that is, the leading output Regge pole. In calculating the 

'. 
,1'_ 

ampli tude, -it 

I 1 fOO , D/(t' ,s) 
A (s,t) = ; dt t' _ t ' 

4m 2 
J1 

it is necessary to know the locations and residues of all poles in the 

right half of the angular momentum planc'. Howe ver, lnsot'ar ar. tIlP. 
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amplitude calculated according to Eq. (3.13), taking into account 

only the leading Regge pole, lies on the unitary circle, we may say 

that we see no evidence of important secondary pole contributions for 

2 s < 2 GeV • 

Figure 5 shows how some representative output quantities depend 

on the cutoff and threshold parameters and t , when the other - c 

input parameters are held constant • _ Since tc affects only, :the 

nonresonant contribution to the potential, which is dominated by the 

resonant p contribution, there is little sensitivity to the value of 

this parameter, and in fact we did not vary it in the search for a 

bootstrap solution, but held it constant at the value 

(= 150 m 2). 
:n: 

2 
2.73 GeV 

The sensitivity to the cutoff parameter s , on the other hand, c 

is pronounced. This is reasonable, because the cutoff represents two 

important effects, which are presumably associated i~ the real world 

with inelastic channels not present in our model. The first of these 

is the elimination, through the function g(s) in Eq. (2.3), of Regge 

cut contributions. This mechanism is discussed in detail in Ref. 13. 

The second effect is -the decoupling, in Eq. (3.9), of the high-spin 

part of the input trajectory, which would otherwise play an unreasonably 

large role in the dynamics, even in the presence of the rapidly 

decreasing elasticity factor a c 
p 

One may of course achieve the same 

ef;fect by arranging for the input trajectory to turn over at some small 

value of ,a, but we have not chosen this scheme, because it would 

require much more elaborateparametrizations of both the trajectory 

and residue functions. However, the output trajectory does in fact turn 
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over in the upper half of the strip, so the output residue is not 
-.... 

required to fall rapidly in order to decouple high output ·spins. This 

is probably the source of the disagreement of the input and output t 

residues at high s, which may be seen in Fig. 3. 

The magnitude of the pion mass is of crucial importance in the 

Mandelstam iteration procedure, since the number of iterations required 

to continue the double spectral function to a given value of t is 

inversely proportional to this quantity. One might suppose" therefore, 

that the scale of energy in our calculations is set by the pion mass, 

which would then be a dynamical quantity of great si&;nificance. Figure 

6 shows that this is'not the case. For given input parameter values, 

the output is largely insensitive to the pion mass, provided this is 

less than about 0.2 GeV. Of course the Mandelstam jteration becomes 

numerically unreliable if the pion mass is too small J owing to the large 

number of iterations required to reach the region of large t. The 

apparent variati~n in the output below m = 0.08 GeV can be ascribed 
T( 

to numerical difficulties of this type. On the other hand, there does 

appear to be an onset of significant variation around m = 0.18 GeV, 
j( 

corresponding to the 1m threshold lyin~ one full wj_dth below the p 

pole. Presumably a more realistic calculation, with a narrower p 

resonance, would show no variation up to even larger values of the 

pion mass. These considerations suggest that, although the nonzero 

pion mass is an important kinematic feature that makes the Mandelstam 

iteration possible, its neglect does not lead to any significant 

distortion of the dynamics of j(j( scattering. 

'. 
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A direct result of the insensitivity to the pion mass i3 the 

existence of a co~tinuum of bootstrap solutions, related to the one in 

Fig. 3 by a change in the energy scale of the input parameters. We 

have fixed this scale by setting the input p mass at approximately 

the physical value. When the resonance width is large,this does not 

correspond to the condition 

condition given, for example, 

2 
Re a(m ) = 1, 

p 
. 19 

by Newton. 

but to a more complicated 

The dynamical effects of the strip labelled D in Fig. 1 are 

expected to be small in the region 2 s ~ -1 GeV , because the potential 

contribution of this strip contains rio resonances at low t and behaves 

like at high t. In a single-channel calculation, the strip 

D contribution enters only as the last term :Ln Eq. (2.5), and in Fig. 7 

we show that the effect of neglecting this term is indeed small. In a 

two-channel calculation, with both I = 0 and I = 1, strip D contri-

butions also occur in Eq. (2.6J, where they have to be computed in terms 
I 

of the input double spectral functions p. I(s,t). 
l.n 

If these contribu-

tions are to be included, our input trajectory parametrization must be 

modified, because the form (3.8) gives a(-t) ~ +00 as t ~OO. However, 

we take the evidence of Fig. 7 to indicate that all strip D contribu-

tions are negligible, and in the two-channel calculation of Sec. IV we 

shall omit them altogether. 
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IV. INCLUSION OF THE POMERANCHUK TRAJECTORY 

A simple inspection of the nn isospin crossing matrix reveals 
. ". ." , , 

that pexchange produces a strong attractive force in the I = 0 

direct channel, and this force gives rise toa high-lying output traj

ectory with the guantum'numbers of the vacuum. We display in Fig. 8 

the position and residue ,of this Pomeranchuk trajectory for the pure 

I = 1 input of the p bootstrap calculation discussed in the previous 

section; The trajectory is roughly parallel to the output p trajec

tory, with very nearly the same imaginary part for s < 2 Ge~, and with 

an intercept of about 1. The residue function has the same form as that 

for the p, but is about twice as large. 

Since the potential is expected to be dominated by p exchange, 

the output Pomeranchuk trajectory should be similar to that shown in 

Fig. 8 even when Pomeranchuk exchange is included in the input. 

Accordingly, we have chosen the following parametrization of the input 

Pomeranchuk trajectory and its residue, corresponding to Egs. (3.8) and 

(3.9) for the input p: 

(4.1) 

t'p(~) (4.2) 

where the parameters b, c, p, sc' and 6 are the same as those for 

the input p trajectory. The. I = 0 contribution to the potential then 

has a form similar to that given by Eg. (3.3), with the positive-

signature function in the place of R~. 

/ 

''; 
oJ 
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There are now 11 input parameters, namely a 
p 

t , subject to the single constr::dnt that the 
c 

resonance should have the physical mass. Figure 9 shows the most 

p 

consistent solution that we have found using this panmetrization. The 

agreemerit between input and output . p and Pomeranch k trajectories is 

d th h t th -1 Gey2 < s < 2 Gey2, and h . t f goo roug ou e range e conSlS ency 0 

the p residue is rather better than in the single-c 3.nnel calculation 

of Sec. III. However, even allowing for a 30% numeri :al uncertainty in 

the Pomeranchuk residue, the self-consistency of this quantity is 

unsatisfactory for 2 
s > 0.5 GeY • 

",. 

The discrepancy between the input and output 'omeranchuk 

residues above s "'" 0.5 GeV2 reflect'S a difficulty c f the strip 

approximation which we do not believe to be caused by our particular 

form of parametrization. Fora wide variety of physi:::ally reasonable 

input potentials, the output Pomeranchuk residue fall; rather slowly at 

large s, while the real and imaginary parts of the trajectory rise 

sufficiently rapidly that there is a significant f-meson contribution 

to the output cross section, even if the real part of the trajectory 

does not reach the value Re(ap ) = 2. Correspondingly, if the input 

and output trajectories and residues are to agree up to s ~ 2 Gev2, 

there must be a large f-meson contribution to the input potential. 

As in potential scattering, such a high-mass exchange (short-range 

potential) generates output trajectories that are much too flat to bear 

ar.y resemblance to those observed -experimentally. The f· meson must 

therefore be decoupled by an input residue that falls rapidly at large 
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s, and we have the residue discrepancy that appears jn Fig. 9. 

Alternatively, the f contribution may be removed by naking the input 

trajectory turn over at small s, but this leads to a comparable 

inconsistency with the output trajectory above 2 
s "" 0., GeV Clearly, 

this is·another case of the problem of decoupling high-spin input 

contributions, as discussed in Sec. III. The problem is more serious 

here simply because the f resonance should in fact occur within our 

region of interest, s < 2 Ge~. 

The slope of the output p trajectory near s = 0 is similar 

to the observed value 0'(0) "" 0.9 Gev-2, but this is largely due to a 
p 

threshold effect associated with the rapidly rising imaginary part of 

the trajectory. Above threshold the slope remains slightly greater than 

that obtained when Pomeranchuk exchange is ignored, but the effect of 

this on the width of the p resonance is overwhelmed by the increase 

in the imaginary part of the trajectory. The p-wave cross section, 

shown in Fig. 10, reveals that the p width is now about (;00 t-1eV. 

In Fig. 11 we exhibit the relevant behavior of the I = 1 

output as the amount of input Pomeranchuk exchange is increased from 

zero. The trajectory intercept falls steadily, while the value of 

Re a (0.5 Gev2 ) is not substantially changed, so the real part of the 
p 

output trajectory approaches a form with the physical slope and intercept. 

• 

But the residue increases rapidly, not only for s = 0 (the representa- .,..: 

tive value shown in Fig. 11) but also for s > 0, where a corresponding 

i l\ert.~a.61·· i II lUI Il produces the large <.widtb of the output resonanrp. 

In contrast to these observations, Collins and Johnson found in their 



-21- UCRL-20134 

WjD calculations4,5 that the inclusion of Pomeranchuk exchange led to 

a decrease in the p. residue and to an associated reduction of the 

resonance width .to the experimentally observed value. 

Next we turn to a comparison of the self-consistent Pomeranchuk 

trajectory with the experimental data. The intercept· ap(O) :::::: 1 and 

the slope ap :::::: 0.5 GeV-2
, throughout the region -0.5 GeV

2 < s ~o, are 

in agreement with the values suggested by the recent Serpukhov pp 

scattering data. 20 The value of the residue at s = 0, however, 

corresponds [when we take ap(O) = 1] to an asymptotic nn total cross 

section of 46 mb, whereas the estimate by factorization of the np 

and pp data is 15-20 mb. 

Chew and Snider21 have conjectured, on the basis of their 

. "schizophrenic pomeron" model, that a calculation of the type presented 

here should give rise to a degenerate leading I = 0 trajectory, which 

will be split in a more sophisticated scheme (involving small potential 

contributions not confined to the strip regions of Fig. 1) into two 

components corresponding. to the physical P and P' trajectories. In 

order to split into P and P' components with the observed properties, 

the degenerate trajectory should have an intercept of about 0.7, the 

-2) normal slope (;::,{).9 GeV ,and a large resi~ue (about twice that of the 

P component). Although we find that the residue has roughly the expected 

size; the trajectory slope and intercept are more like those of an 

already-split P component. In view of our poor results on the p 

t-.rlljecto:ry, whi r.h til not subject to such effectfl, th:1.a probably eaGLe 

more doubt on the validity of the present form of the strip approximation 

than on the conjecture of Chew arid Snider. 
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Our results on the intercept and residue of the Pomeranchuk 

trajectory are similar to those of Collins and Johnson, but they arrived 

at a higher, more normal, value of the slope, ap ~ 0.9 Ge~. They saw 

no sign of a secondary pI trajectory, as one would expect if their 

leading trajectory was degenerate. 

As explained in Sec. III, our technique is not directly sensitive 

to secondary output trajectories. However, if one tries to use Eq. 

(3.13) to compute the isoscalar amplitude, subtracting out only the 

leading Regge pole on the right-hand side, one obtains an absurd result 

that appears to violate unitarity. This suggests the presence of a 

secondary pole with a positive intercept, and it is possible that further 

work along these lines will enable us to obtain quantitative information 

on secondary contributions of this type. In the meantime, we have no 

way of evaluating the isoscalar amplitude and, in particular, we are 

not able'to compute an I = 0, .e = 0 scattering lengt~ for comparison 

with the encouraging results of Collins and Johnson. 4 

As in the p bootstrap calculation of the previous section, 

there is in this case only a small range of solutions that are roughly 

as good as the one displayed in Fig. 9. We have not found any self-

consistent trajectories with intercepts outside the ranges 

" 

0.55 < a (0) < 0.70, 0.90 < CL(O) < L05; for solutions with intercepts :/:' 
"'" P rv "" -.I:" "" 

within this range, we find 11 ~ ~p(O) ~ 17. 

We end this section with a brief discussion of the behavior of 

the p residue function near the wrong-signature point a = o. 
p 

In 

Fig. 12 the trajectory and residue of li'ig. 9 are extended into the 
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region s < -1 Ge~, where no attempt was made to achieve self-consistency. 

The numerical errors are large in this region, because i,he asymptotic 

value of Dtl(t,S) there is very small compared with values in the strip 

region A. However, it is clear that the output trajectory passes 

through zero somewhere near s = -1. 7 GeV2 , while the residue shows no 

sign of vanishing or even becoming small around this value of s. In 

other words, we detect no tendency for the dynamics to generate a zero 

pf the output residue, and this of course precludes any possibility of 

self-consistency in this region, since we have used an input residue 

parametrization that does contain this zero. One might suppose that 

this difficulty causes a reduction of the slope of the self-consistent 

p trajectory, by forcing the point a: 
p 

o to lie outside the region 

(s > -1 Gev
2

) in which consistency is demanded. But we find that 

ignoring the residue inconsistency, or requiring consistency only for 

2 
s > -0.5 GeV , leads to little change in the trajectory slope, which is 

therefore not seriously constrained by this effect. Certainly our 

calculation would be more satisfactory if we could find a simple input 

p residue parametrization that does not vanish when 0: = 0 
p 

but does 

lead to some self-consistent bootstrap solution. So far, however, we 

have not been able to do this, and, in any case, it appears unlikely that 

such a modification would remedy the basic problem of the large width 

of the p resonance. 
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V. CONCLUSIONS 

In the preceding sections we .hope to have shown that the 

Mandelstarri iteration is a useful technique for performing detailed 

bootstrap calculations, and that it supplements the N/D method by 

providing valuable information on Regge trajectories above 'threshold. 

We have used the ~technique, in conjunction with the strip approximation, 

to carry out first a bootstrap calculation of the p trajectory alone, 

and then a combin.;d bootstrap of the p and Pomeranchuk trajectories. 

We begin this section with a summary of the results of these calculations. 

In the p bootstrap calculation there does exist a solution 

vii th satisfactory self-consistency in the region 2 2 -1 GeV < s < 2 GeV , 

but the traj ectory slope is too small and the p resonance is about. 

three times too wide. The strip width is an important parameter and 

/"4 2 has the value 3.8 GeV. If the strip width is increased, large contri-

butions o:f the hjgh-spin parts of the input trajectory are introduced. 

It does not seem possible to incorporate highly elastic high-spin reson-

ances in the pre[ ent formulation of the strip model, and problems 

associated with ihe existence of such resonances, like the g(166o), 

22 seem likely.to occur in a large class of models. 

When Pom(:ranchuk exchange is included in the calculation, both 

the p and Pom(:ranchuk trajectories may be made reasonably self

consistent in th':range -1 Ge~ < s <.. 2 Gev2, except for some incon-

sistency in the }lomeranchuk residue at positive s, which is associated 

wi th the high-sp:Ln resonance problem again, this time in connection 

with the f-meson contribution. The slope of the p trajectory is 
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slightly greater than in the calculation without Pomeranchuk exchange, 

but this is offset by a more rapid increase in the imaginary part above 

threshold, which leads to an even greater width for the p rer;onance. 

The slope and intercept of the self-consistent Pomeranchuk 

trajectory are in agreement with experiment, but the residue if; too 

large, and it appears likely that a valid strip approximation r;hould in 

fact generate a leading· 1= 0 trajectory with just such a large 

residue, but with a normal slope and an intercept of about 0.7, which 

would be split by nonstrip effects into the observed P and pI 

trajectories. We have to conclude that the addition of the I 0 

rrrr channel to our original single-channel calculation has not signif

icantly increased our understanding of the details of rrrr scattering. 

The most natural conclusion from this rather disappointing 

result is that JI[( scattering dynamics cannot in fact be understood 

in terms of the rrrr channels alone. The large width that is obtained 

for the p sugge:3ts that this particle is in large measure a: bound state 

of some channel of higher mass, such as NN. Furthermore, the rather 

unsatisfactory way ih which the cutoff prescription deals with the 

problem of high-:::;pin resonances suggest that at least some of the 

inelastic effects, which the cutoff represents, must be handled explicitly 

th:r:ough the inclusion of inelastic channels . 

. The bootstrap calculations of Collins and Johnson3- 5 are based 

on a formulation of the strip approximation that is very similar to ours, 

and, apart from some details due to the different parametrizations and 

regions of self-consistency, one would expect our results to be much 

the same as theirs. In the p bootstrap calculation this is indeed 
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, '?: 

the case.'-J However, as we have pointed out in Sec. IV, on including. 

Pomeranchuk exchange we obtain substantially different results, for their 

solution (iisplays many features of the experimental data, and in particu-

lar they find that the p resonance width is reduced. to the physical 

value. 

At present the reasons for this discrepancy remain obscure. 

Lyth
24 

has argued that certain features of the results of Collins and 

Johnson suggest. that the physical p should appear as a CDD pole in 

their rrrr N/D equations. This would support our characterization of 

the n as primarily. a bound state of some other channel. However. 

.' I" 
Bali, Chew, and Chu j have shown that the type of calculation presented 

here should be equivalent to an N/D calculation with no CDD parameters. 

For this reason, independent of the true nature of the p, one would 

expect the two calculations to give similar results. 



~, 

.. 

-27- UCRL-20l34 

ACKNOWLEDGMENTS 

It is a great pleasure to acknowledge the innumerable helpful 

comments and criticisms of Geoffrey F. Chew. I am also grateful to 

Naren F. Bali and Cristian Sorensen for valuable conversations, and to 

Daniel P. Lamb for his elegant machine-language programming . 



-28- UCRL-20134 

FOOTNOTES AND REFERENCES 

* This work was supported in part by the U. S. Atomic Energy Commission. 

10 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters '1., 394 (1961). 

2. Attempts to bootstrap Regge trajectories are discussed by P. D. B. 

Collins and E. J. Squires, Regge Poles .in Particle Physics (Julius 

Springer-Verlag, Berlin, 1968); earlier calculations are reviewed 

by F. Zachariasen, in. Recent Developments in Particle Physics, 

eidted by M. J. Moravcsik (Gordon and Breach, Science Publishers, 

Inc., New York, 1966), p. 86. 

3. P. D. B. Collins and R. C. Johnson, Phys. Rev. 177, 2472 (1969). 

4. P. D. B. Collins and R. C. Johnson, Phys. Rev. 182, 1755 (1969). 

5. R. Co Johnson and P. D.Bo Collins, Phys. Rev. 185, 2020 (1969). 

6. G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 147E\ (1961). 

'(. G. F. Chew and S. Mandelstam, Phys.Rev. 119, 467 (1960). 

8. S. Mandelstam, Phys. Rev. 112, 1344 (1958). 

9. B. M.- Bransden, P. G. Burke, J. W. Moi'i'att, R. G. Moorhouse, and 

10. 

ll. 

120 P. D. B. Collins and R. C. Johnson, Phys. Rev. 169, 1222 (1968). 

13. N. F. Bali, G. F. Chew, and S.-Y. Chu, Phys. Rev. 1)0, 1352 (1966). ~-

14. J. S. Ball and M. Parkinson, Phys. Rev. 162, 1509 (1967). 

15. S. Mandelstam, Phys. Rev. 166, 1539 (1968). 

16. D.Amati, S. Fubini, A. stanghellini, and M. Tonin, Nuovo Cimento 

22, 569 (1961); L. Bertocchi, S. Fubini, and M. Tonin, Nuovo 

/ .... 



-,., 

,~. 

-29- UCRL-20134 

Cimento 2, (;21; (1962); D. Amati, A. Stanghellini, and S. Fubini, 

Nuovo Cimento 2G, 896 (1962). 

1'(. J. A. Shapiro, Phys. Rev. 179, 134) (1969). 

18. R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968). 

19. R. G. Newton, The Complex J-Plane (W.-A. Benjamin, Inc., New York, 

1964), p. 9. 

20. G. G. Beznogikh, A. Buyak, K. 1. Iovchev, L. F. Kirillova, P. K. 

Markov, B. A. Morozov, V. A. Nikitin, P. V. Nomokonov, M. G. 

Shafranova, V. A.Sviridov, Truong Bien, V. 1. Zayachki, N. K. 

Zhidkoy, L. S. Zolin, S. B. Nurushev, and V. L. Solovianov, Phys. 

Letters 30B, 274 (1969). 

21. G. F. Chew and D. R. Snider, Phys. Rev. Dl, 3453 (1970). 

22. P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys. Letters 

26B, 223 (1968). 

23. One should notice that the strip width, in the sense of the width 

24. 

of the regions outside which the double spectral functions are 

negligible, is determined in the Collins-Johnson calculations by 

the parameter they call t a , which has a value of 2 2-3 GeV , in 

agreement with the value of our parameter s . c 
The parameter 

which they refer to as the strip boundary, serves mainly as a point 

of transi tioh;from the low-energy to the asymptotic region. 

Do H. Lyth, CERN TH-1143, March 1970. 



-30- UCRL-20134 

FIGURE CAPTIONS 

Fig. 1. The regions of the double spectral function:; that are taken 

into account int~e strip approximation to nn scattering, and 
; . . 

the cutoff and threshold parameters and t . c 

Fig. 2. Examples of the fitting procedureu:;ed to compute the parameters 

of the leading output Regge traj ect Jry. 'IttH: dashed lines 

indicate the least-squares fits anc the reg~.ons of t that 

were used, for the two cases s = ( and 2 s = 2 GeV • In this 

example the slope and intercept 0:1 the lin(!ar ,fit give the 

values of Re a and .en 113 I at i hat valu<! of s. The 
p p 

maximum value of t used in these fits 2 (t = 42 GeV ) corresponds 

to 22 Mandelstam iterations. 

Fig. 3. The self-consistent p trajectory a(s) and its residue 

function !3(s). The input is shoWY by the dashed lines and 

the output by the full lines. Inp11t parameter values were 

'-2 -2p 
a = 0.63, b = 1.22 GeV , c = 0.92 GeV , P = 1.111, 

P 

gp = 63.4, cp = 0.091, 

2 
6. = 0.5 GeV . 

2 
2.73 GeV , 

Fig. 4. Input (dashed line) and output (fu.l line)' isovector p-wave 

cross sections, corresponding to the solution shown in Fig. 3. 

The input p resonance has m = 0.765 GeV, r = 0.410 GeV, 
p p 

and the output has m = 0.720 GeV, r = 0. 415 GeV. p p 

Fig. ). Dependence of the output values of the three representative 

quantities a(o), Re a(0.5 Gev2 ) , and 13(0) on the parameters 

(a) s c' (b) t . In each case the r~maining input parameters 
c 

i,;..... 

-'of 
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had the values given in the caption to Fig. 3. and the dashed 

lines indicate the corresponding input trajeciory and re~;idue 

values. 

Fi;!. 
,'. 

o. Dependence of the output values of cx(oL Re (X(o.~) Ge,i), 

and f:$(Q) on the pion mass. The input values are shown by 

the dashed lines, and correspond 1;0 the input parameter values 

gi ven in the caption to Fig. 3, a] lart from negligible changes 

due to the shift in the J[J[ thre;;hold. 

Fig. 7. Effects of neglecting the contribution due to strip D of 

Fig. 1. The input was as in Fig. 3; output wjth strip D 

contribution = --, without strip D contribution = - -

Fig. 8. output Pomeranchuk trajectory and residue generated by the 

I = 1 input of Fig. 3. 

Fig. 9. Self-:consistent p and PomerancllUk trajectories and their 

residue fun ctions. The input is ::hown by the dashed lines 

and the output by the full lines. Input parameter values 

were a 
p 

p = 1.136, 

-2 b = 1.45GeV , 

= 33.2, gp = 101.), cp = 0.22, 

t = 2.1 GeV2 , ~ = 0.4 Gev2 . c 

c 

Fig. 10. Input (dashed line) and output (fill line) isovector p-wave 

cross sections corresponding to tj le p trajectory and residue 

shown in Fig. 9. The large width and asymmetrical shape of 

the p resonance make its parameters difficult to determine. 

The input has m ~ 0.76 Gev, r ~ 0.6 GeV, while the output 
p '. p 

has m ",,0.71 GeV, r ::.::0.6GeV. 
p p 
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Behavior of the output quantities 0:(0), 
P 

UCRL-20134 

and f3 (0) 'when the amount of Pomeranchuk exchange is varied. 
[l . 

All input parameters except were held constant at the 

values given in the caption to Fig. 9. 

Fig. 12. Input (dashed line) and output (full line) p trajectory and 

residue functions in the region of negative s. The numerical 

errors in this region are large, and no attempt was made to 

obtain self-consistency there, but the fact that the output 

residue remains large when ,~he trajectory passes through zero 

is significant. 

.... 
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