
,r . 

• 

. 
" I 

Submitted to the Logistics Review 

, . 
L~ I:. """ ,,"_"t 'I'" 

I, \' - 'I ,r', f ' 

l j u, ~ "\ ;:;'\' :-\~"j tJ 
_lOCU,,,,",'::,,,\"15 S:~'C"l':Oi\:: 

THE SPACE OF CUBIC SPLINES WITH 
SPECIFIED KNOTS 

Jonathan D. Young 

October 1970 

AEC Contract No. W-740S-eng-48 

TWO-WEEK LOAN COpy 

This is a library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Diuision, Ext. 5545 

UCRL-20137 
Preprint 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



THE S'PACE OF CUBIC SPLINES 
, WITH SPECIFIED KNOTS 

Jonathan D. Young 
, " 

lawrence Radiation Laboratory 
University of California 

Berkeley, California 

October 1970 

ABSTRACT 

UCRL-20137 

For a given closed finite interval, which has been partitioned 

into a finite number' of subintervals, we conside; all cubic splinesl 

which have " knots at the endpoints and at each paTti tion pOint. 

A finite basic subset may be readily chosen such that any spline in 

the parent set can be expressed as a unique linear combination of the 

basic splines. 

Any function defined on the interval whose values at tbe knots 

and whose first derivatives at the endpoints are known can be appro-

ximated by a unique cubic spline, hence as a linear combination of 

basic splines. 

Where a relatively large number of ft1nctions are to be approximated, 

it 'becomes practical to first compute the ba~ic splines and then deter-

mine ,the required linear combination to approximate each of the functions. 
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INTRODUCTION 

For a given interval, [a,b]with partitioning: 

a = x< x < 
1 2 

x = b, 
n 
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a cubic spline, s (x), defined on[a,b]with knots at the xi has the 

following properties: 

(I) The function, s, is a polynomial of degree three (or less) in x 

on each subinterval, 

[Xi' x i +l ]; i = 1, n-l 

(II) The function s has a continuous second derivative on the whole 

interval [a, b] . 

Obvious examples of cubic splines are: 

s = constant (including zero) 

s = x 

s = x2 

s = x3 

and any linear combination of the above. However these splines do more 

than meet the requirements (I), (II), they have constant (hence continuous) 

third derivatives over the whole interval. In general, cubic splines witl1 

knots at xi may have finite discontinuities in the third derivative at 

interior knots. As an example consider: 

s =-0 

x ~x 
2 

Any function f (x) defined on[a,b]for which values at the xi are known 

and values of its first derivative at a and b are known can be readilyapproxi-

mated by a unique cub i c spline with knots at the x .• The cubic spline fit can be 
~ 

computed directly for the function l or-where several functions are to be fitted 

~-

[ } 
",-
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a basic set of splines can be determined and the fitting splines be com-

puted for each function asa unique linear combination of the basis. 

Direct Cubic Spline Fit. Suppose we are given a set of points, 

l';r~~il; i • 1, n 

with the asslUIl.ption that there is a function, f(x), defined on xi ,xn 

such that 

j i = 1, n 

with specified terminal derivatives 

and 

f' (x ) = f' • 
n n 

The cubic spline s which approximates f on [a, bJ must be an exact 

fi t of the above data, 1. e. 

s, = f 
1 i 

s' = f' 
1 1 

s' - f' 
n n 

" i = 1, n 

m' Th .. l There is a unique s wh~ch fits f. 

Proof: 

(a) Existence 

s! 1 +46' + 
1- i 

From properties (I) and (II) we 

-' x ) (8;-S ) 
,1-1 1+1 j, + 

x:i>tl - Xi 

for i = 2, n - 1 

In terms of the fitting requirements 

4s' + s' = 3 2' 1 3 2 + 3 [(x "'X )( f - f ) (x 
, 2 3 x3 ·,x2 ' 

have 
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s' + 4s' + s' = 3 i-I i i+l 

r(X - x )k - f \< (X - x )4' - f .)] 3 n-l n-2 ,n n-1J: + n n-l \" n-l n-2"_ f' 
x

n
- x

n
_
l 

x
n

_
l

- x
n

_
2 

n 

The above linear system of n-2 equations is tridiagonal with diagonal 

dominance, hence has a unique solution for s' j i :::: 2, n-l. 
i 

(b) Uniqueness 

On any subinterval [xi,Xi +l ], j i 

the values of si and si+l are determined by 

si = fi and si+l:::: f i +l 

1, n-l 

and the values of s! 
]. 

and s' are uniquely determined by the linear 
i+l 

system above. These values uniquely determine a cubic segment on [x. 
l, 

Consequently s is uniquely determined for the whole interval [a,b]. 

The Cubic Spline Space. Let S be the Set of all cubic splines with' 

knots at x. j i = 1, n. We have already shown the S is not empty. 
1 

In fact it contains as a s ubse.t the linear space of all polynomials of 

degree three or less 2 • With the obvious definitions of addition 

U :::: S + t u(X) = sex) + t(x) s,t E S 

and scalar multiplication 

v = as veX) :::: a sex), S E S 

it may be readily shown that S is itself a linear space. 

Since S contains a linear space of dimension 4 its dimension 

x J' i+l 

must be greater than or eq"W11 4. Further since any s in S is completely 

determined by its n-l cubic segments, the dimension of S is less than or 

equal 4(n-l). Note that for n=2, the dimension of S is necessarly 4. 

j. 

\ ' 
( i 
\-:; 
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The dimension of Sis readily established by the' following theorem: 

ThI].2. Any spline s in S is uniquely,determined by the value of 

s at the xi and s' at XJ: and xn• 

Proof: (Indirect) 

Suppose there are two such splines, sand s* satisfying the specif.ied 

values. Then both sand s* are spline approximations of s and by ThW 1 

S::z s*. 

Since n+2 values are necessary and sufficient to determine any s in S, 

the dimension of S must be n+2. 

We now construct a convenient basis ltjt 

be cubic splines in S such that 

j 1, n+2 for S. Let tj 

t' (xl) 0 t' (xn ) :: 0 t (x.) :: [) for j = 1, n i j j j ~ ij 

t' (x ) = 1 t' (x):: 0 tn+l(xi)=O for i = 1, n n+l 1 n+l n 

t'n+2 (xl) :: 0 t~+2(xn) = 1 t 2(x. )=0 for i :: 1, n. n+ ~ 

It is obvious that no one of the t. is a linear combination of the 
J 

_ and, further, that for any s in S specified in accordance with ThIE 

sex) = £ 
i=l 

s(xi ) t.(x) +s'(x.) tn+l(x) + s'(x ) t 2(x) 
~ , ~ n n+ 

= 1, n 

others 

2 we have 

Practical Applications For any function f defined 0 n [a, b ] with terminal 

first derivatives and function values at the x.known, the basic splines, 
~ 

t j , may be generated ( this consists of computing tj (Xi) for i = 2,n-l) 

then the fitting spline s forf is determined by 
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for i = 2, n-l together with 

s I (x ) = f' (x ) , S I (x ) f I(X ) 
1 1 n n 

and s(x. ) = f(x.) ; i = 1, n. 
~ ~ 

Obviously this method is not practical for fitting one function, f , or 
\ 

even for fitting n+2 such functions since the generation of the basic 

splines would require as much computation as the direct C"omputation of 

the fitting splines and the final vector multiplication would be required. 

If we assume (perhaps conservatively) that each matrix inversion requires 

approximately n times as much computation as the vector multiplication, 

then the basic computation is worthwhile when 

where m is the number of functions to be fitted. 

Methods for obtaining numerical solutions to second-order differential 

equations in the spline space as linear combinations of basic splines will 

be discussed in subsequent articles. 
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