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Abstract

In an electron ring accelerator electrons are often injecfed into
a magneticbfieldrwith index n = - (r/BZ)(dBZ/dr) of about C.S. For
extraction and axial acceleration of the ring; n must approach zero
and several betatron resdnances arevcrossed. kFollowing particles on a.
computer through simulated fields (which approximate ﬁeasurea exper-
imental fields) has elgcidated whicﬁ resonances are impoftant énd
which magnetic field perturbations cause large growth for a particular
geometry and coil-energizing sequence.r Analytical forﬁulas for réso—
nance growth also ha&e been dqfived and checked against tﬁe computerr
calculations. These equations indicate the important dfiving terms éf
the field and are convenient for estimating.thé expected groﬁth on
traversing a resonanée; Resonances at n =.O.5, 0.36, 0.25, and 0.20
“have been investigated. . . '
1. Introduction

Betatron ampiitude growth has been observed under certain condi-

tions during the compressioh cycle of an electron ring accelerator l’q)

t Work supported by the U.S. Atomic Energy Commission.
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To better understand this phenomenon, and to be able to predict beta-
tron-amplitude growth in future experiments, we undertook computer and
analytical calculations pertaining ‘to the device of ref. 2). 1In pre-
3-5)

vious work with betatron resonances analytic and some limited com-

6)

puter calculations have been performeé for other geometries. For
an eléctroh ring acceierator, the electrons typically arerinjected
with a magﬁetic field index n = (-r/Bé)(dBZ/dr) of about 0.5, and
then dufing the compression cycle ﬁ ‘decreases.to ~ 0.1.

Betatron resonant growth can occur when the radial oscillation
frequency oflan electron divided by its gyrofrequency, v, or the
axial oscillation frequency, divided by its gyrofrequency, v, ié a
simple fraction, or when the vy, and v, values are copnected by simple
integral relaﬁions. The quantities v?.and v, are also calied‘the.rad-
ial and axial betatron tunes,.and they are abproximately ielated té
the field gradient index ﬁ by
v =1-n, o o

v.° =n. o (1)

A particular resonance is designated by‘an-equation of the form
kvr + sz = m, . R T (2)

where k, £, and m are positive or neéative integers. 1In eq. (2) ‘m
indicates the harmonic order of the ﬁagnetic field'svazimuthal varia-
tion that drives the resonance (see section k). Important resonances
arise when k, 4, and m are small, and if the magnetic field has
median-plane symmetry, only resonances with even £ ecan occur.

We have investigated the following poténtially dangerous reso-

nances:
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2vr - 2vz =0, at n= 0.5;

v, o+ sz =2, at n = 0.36;

2v_ =1, at n = 0.25;

v_ - 2v_ =0, at n=C')..20. '_ o (3)

Presumably less important, and hence not included in egs. (3),
are higher-order resonances and those occurfing in fiélds with non-
median-plane symmetry. Unless the magnetic field has large higher
harmonic components, the growth will be greatest on the lower-order
resonances.> With regard to resonances that arise only in the absence
of median-plane symmetry, electron ring compressors are designed with
due consideration to medidn—plane symmetry, and magnétic measureﬁents
indicate that deviation from this symmetry is small.

In sections 2 and 3 we discuss the computer method of calculatlng
betatron growth by simulating the experlmental magnetic fields. Then,
in section 4 the analytic method is discussed, in which growth is cal-
culated from certain parameters that characterize the radial and (pos-
sible) a;imuthal variations of the magnetic field and can be deter-
mined from the magnetic measurements- (Often these field parameters
can be estimated from Simple calculations.) After determining these -
field variations, one can use the convénient analytic formulas given
in section h‘to predict the growthvfor each resonance. The growth
rates calculated ffom these formulas whgn compared with the computer
calculationé'have agreed typically within 30% and in the worst case

within a factor of 2.

2. Computer Simulation of the Experimental Magnetic Field

To compute the effect of a betatron resonance on a particle, one

must simulate closely the driving terms of the actual magnétic field.

T

It is convenient to separate the magnetic field into two parts:‘ (a)
an azimuthally symmetric field and (b) an azimuthally vagying (pertur-
bation) field (if it is of significanf mégnitude). Note that a non-
symmetric field is ﬁot required to actuate a homogeneous (m =- 0)

resonance. For each particular calculation two arrays are stored in

the computer. One arrdy contains the axial and radial magnetic field com-

ponents (B, B_) for the symmetric field and'the'other array is used
to calculate the nonsymmetric field (BZ,jBr, Be).

The computational results reported in this paper were obtained
for fields intended to éimulate those present in the compression exper-
iments reported in ref. 2).» o - -

2.1 Symmetric Field.

The experimental appafatus for forming rings usuall¥ contaihiy
three or four sets of combression coils ((see fig. 1 of ref.2): Tﬁé'
coils of ref.2) have ﬁany turns of copper‘windings. If the parﬁiclg
is 20 cm or further from the'coil, the windiﬁgs-éan be accurately'sim—
ulated by infinitesimal circular current loops.' Thé fields from these
loops can then be calculéted by integratioﬁ of the Biot-Savart law7).
If the paftiéle is closer than about 20 cm to the coil, however,.the
helical nature and crossover region of the windings can alter the mag-
netic fieid; see section 2.2. ’

The coils in the apparatus of ref. 2) were pulSéa,so that the
currents used in the program could be taken from thoée measured exper-
imentaliy with Rogowski belts. Alternatively they could be calculated.
fromAknowledge of the voltages and capacity of the capacitor banks,
and the'indﬁétanée, mufual inductance, and resistances of £he coil sys-

tem. Both methods gave essentially the same'result? so the latter

method usually was used.
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Because of the pulsed nature of the fields, the magnetic field
from one coil could induce eddy current§ in the coppér turns (whethér
sh;rted or unshorted) of another coil. For a shorted loop, the cur-
rent induced in the complete circuit can be calcﬁlated in ; rathef
direct manner. However, the inducéd eddy currents due to thé physical
presence of the copper even when the coil is open must also be in-
cluded. This waé taken into account in computatign of the symmetric
field by means of éimulation circuits comprised of two adjacent cur-
rent loops with current in oppoéite directions. The currents in these
loop paifs (which were driven by the.active coils) were calculated in
tﬁe program after parameters, éuch aé the mutual inductances to the
main coils, were adjusted so that the resulting ﬁagnetic field gra-
dients were in agfeement.with measured values.

The calculated éymmetric magneticvfield agreed very well with
measured field, the difference beiﬁg less than 2%.

2.2 Azimufhally Varying Fields

Azimuthal variations of magnetic fields arise from two sources:
(a) asymmetric coil éonstruction or location, (b) eddy currents in
metal that is nonazimuthally syﬁmetric and in spatially localized
ferromagnetic material.- .

The.céils were placed vefy accuraﬁely with regard fo cenﬁer and
tilt, and the possible field perturbétion from this effect was esti-
mated to be small. The effect éf coil leads was also calculated.

This introduced a field asymmetry of only 0.1% in the midplane Bz'

Coil Sets 1B, 2, and 3 (see fig. 1 of ref. 2) were wound with a

threefold symmetry in their crossovers (inner radius to outer radius).

This minimized first and second harmonic perturbations but introduced

-6 =

a third harmonic variation. The magnitude of.this effect was calcu-
lated for a current element with the geometry of the crossover con-
ductor, and the resultant axial field was 0.5 to 1% of the total sym-
metric field. - During the first stage of compression only Coil Sets 1A
and 1B werefenergized, but eddy currents in the unshorted copper cross-
overs of Coil Sets 2 and 3 produced field perturbations of the same
magnitude as those arising from the normal currents in the crossovers
in Coil Set 1B.

Eddy currents in the copper-iron injection snoutz), the stainless
steel flanges, probe housing,'étc. gave rise to large peripheral bumps
in the magnetic field. Fig. 1 shows the azimuthal variation of the
axial field component in the median plane for two radii at the time of
injection. Similar data were obtained as a’ function of timé for\sév-

eral radii from il cm to 19 em. Also direct midplane measurements of
(ABZ/AI) were made. ‘
The third harmonic component was described by the calculated field

contribution from the crossovers. In addition, four circular current
!

loops_(and a bias field) were used to simulate the peripheral bumps.

 The radius and location of each'loop were chosen to fit the width.and

radial variation of the meaéufed bump. The currenfs in the féur simu-
lation loops were determined as‘a function of time by a least-squéres
fit of the calculated fieids Ez(r;be, z =0, t) to the méasﬁred mid-
plane fields. A typical example of.such a calculafed field at injec-
tion time for R = 19 cm is shown in fig. 2. At injection time the
guide field was typically 700 G.

The compressor was designed to héve median-plane symmetry/in its
magnetic field during the compression cycle. Although Coil Set 3 was

mechanically unsymmetric, the turn-to-turn spacing in the short coil
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of the pair was made larger so that the total field had reasonably
good .median-plane symmetry. Measurément of Br indicated that the
deviations from median-plane symmetry were small. Therefore, in the
calculations it was assumed that Br, and Be are zero on the median
plane. For convenience, a midplane array of Bz(r, 8, z =,0, tl) was
stored in the computer for the orbit code to calculate resonant growth

near a time tl' If BZ .on the midplane is known, B can be calcu-

lated for small (z/r) by the expansion equations

2 3B, , OB ¥z,
B (z) =B lz -5 TS % 5 + =5
z Z2l=0. 2r | 2=0 dr 220 28 220
aBz
B.(2) = 2 ’
r T 2=0
V4 aBZ
B, (2) = = ’ :
8 T 08 220 | (%)

Most of the calculations were done neglecting the higher-order
second term of BZ, as this simplification was found not to affect
the results for those cases that were compared.

Another method of handling the azimuthally asymmetric field was
to make a least-squares fit of the data (BZ and ABZ/AI) to Fourier
series. For a particular time (when the resonance is crossed) arrays

B B P _P ' . - .
(Cm » 8, s Cps 8y ) of Fourier coefficients (vs. r) are stored in

the computer for use by the orbit code. The components of the asym-

metry field are calculated from the arrays as follows:

-8 -
| | y n’z” | B | | ‘B ) &i 9
BZ(T,Z,G) = I (1+ Zrz ) e, (r) cosm6 + 5 “(r) sinm

. .
Z d P d P .
- -ZT\; %‘-1 [{;{5 Cm (I‘{} cosm 6 + {?1; Sm (I’?} sin m 9] s

Z P P .
Br(r,z,e) =z I [%m (r) cosm 6 + Sy (r) sin m é] ,

m

oz o |.B ‘ "B . (5)
= - z -
Be(r,zze) ; Zm|s; (r) cos m 8 - Cy (r) sinmel| ,
, B B o . '
where Cm and Sm are the Fourier coefficients determined from the
midplane BZ measurements. The coefficients CmP and SmP represent
respectively' r 9 C B and r 0 S B and are determined directly
dr “m dr "m ’

from the midplane ABZ/Ar measurements.

3. Computer and Some Experimental Results for Betatron Amplitude Growth

A typical ealculated compression cycle-is plotfed'in fig. 3 to
indicate how the radius R, pagnetic field B, kinetic energy T, and
magnetic field index n vary with timef The variation with time of
n at the location of the closed orbit (as on fig. 3) we will call the
"n trajectory." Trajectories similar to this could be calculated for
any set of parameters.used in the experiment.

The n value at the location of the closed orbit could be shifted
experimentally by putting a small current through a coil set which by
itself would cause a large value of n at that location. For example,
a small capacitor (of an n-shifter circuit) could be discharged through

Coil Set 1B (see fig. 1 of ref. 2) to shift the n trajectory at large

" radius.
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By use of the exact relativistic equations-of motion and a simu-
lated magnetic field for which the characteristics were adjﬁéted to
fit the experimental conditions, the resulting particle motion was
determined by numerical integration. - To obtain a scan of the total
interesting region of n, particles were injected with different ener-
gies at various appropriate radii into a magnetic field,ﬁhat was con-
stant with time. They were injected with an axial amplitude of 0.1 cm
and a radial amplitude of roughly 2 cm. The resulting axial amplitude
grqwfh rate for the particles is plotted in fig. 4. The computer
results thus demonstrate Qirectly fhat there are regions of growth
near n = 0.20, 0.25, 0.36, and 0.50. The peaks are not exactly cen-
tered about these n wvalues, because the axial motion is modified by
radial motion of appreciable amplitude. If the same calcuiations are
performed for an azimuthally symﬁetric field, the n = 0.25 and n =
0.36 peaks disappear, but the n = 0.20 and n = 0.5 peaks remain.

That these results have 'physical significance is demonstréted in
fig; 5, which depicts the experimental results for a compression cycle
during which n was_rapidly swept over a large range. (This result
was obtained with an experimental apparatus similar to that of ref. 1 .)
The X-ray signal is due to electrons striking an obstaclevat 1.7 em
from the median plane and so is indicative of the acquisition of con-
siderable axial amplitude. The value of n versus time was determined
by a computer calculation and is accurate only to about 0.03. Thus,
experimentally, there appeaf to bé axial losses near n = 0.5, 0.25,
and 0.20, in qualitative agreement with the computer calculations.
(Axial growth near n = 0.36 has been observed for other conditions,

but apparently it was too small to be observed in this case.)
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The phenomenon of interest here in each case evidently is basi-
caliy that which was treated in ref. 4). Briefly, in any resénant
region an initially small axial amplitude exhibits an exponential
growth, at least until quite large amplitudes are attained. The rate
of this growth is dependent upon the proximity of n to the resonant
value, and, in the case of coupling resonances, is dependent upon the
amount by which the initial radial amplitude exceeds a certain thresh-
old value.

To determine the total growth that would be expected in the oper-
ation of a compressor, it is necessary to traverse the resonance in
the course of the computation. To simplify the calculation, the.ar—
rays for the symmetric and azimuthally asymmetric fields are stored
in the computer for apprqximately the time at which a particular res-
onance is crossed. Then the symmetric magnetic field and the particle
energy are varied with time at the same rate as they change during
compression.

3.1 2v, - 2v, = 0 (n = 0.50) Resonance

This resonance occurs in the absence of azimuthal bumps, and is
ariven by nonlinearities of the field (3°p/ar’), (3B /ar%), ete.
This was shown in.the computer calculations by rurs with and without
azimuthal bumps and with several different values of (szZ/Brz) and
(5332,/ar3) .

An exahple of crossing this resonance during the experimentz) is
shown in fig. 6. The x~ray signal is due to an axial loss of electrons
when the n trajectory crossed n = 0.5. By moving the ring into a

probe at smaller radius it was determined that about‘l/3 of the elec-

trons were lost on this resonance.
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A computer simulation of traversing this resonance is shown in
fig. 7. The particle is followed fo¥ only the few microsecond; during
which the resonance is traversed. The variation of n with number
of revolutions (or time) is shown at the top of fig; T. The time for
one revolution is about 3.5 nsec. ‘ ;

Since the particle's position is not always printed out for its
maximum axial or radial excursion, ;t is convenient to take for the

axial and radial amplitudes the quantities

Ay = [(Pz/moﬂice)z/n + 281/ (6)

and

h, = Lo fmgr, )F/(on) + (e - EYE, (o

where P, and p, are the momentum componenté, ‘mg is the electron
rest mass, 7y 1is the ratio 6f total mass to rest mass, Boe is the
gyrofrequency, and R 1is the radius of the closed orbit. By tracking

particles in a constant magnetic fiéld, R can be determined for a

given electron energy. However, in traversing a resonance, R chang--

es with time. Since R = Tove and Tove is easier to obtain in the

computer calculation, Tove was used for most of the calculations of
Ar' The initial radial and axial betatron amplitudes wére ghosen,

for this calculation, to be 1.5 cm and 0.1 cm, respectively (see fig.
7). As one can see, the axial amplitude grows while the radial ampli-
tude decreases. Several different initial phaseé were tried with sim-
ilar results. Also thé initial radial amplitude was varied, and in
each case the axial amplitude_grew to equal the initial radial ampl;—

tude. Because of the multiturn injection process; the initial radial

amplitudes are 2 to 3 cm, and particles strike'the walls if the axial
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amplitudes grow to greater than about 2 cm. Thus this resonance
grqwth‘at n =-0.5 explains the X-ray signals of fig. 6.

If a particle is injected into a constant magnetic field in the
niddle of the resonance, the axial and:raaial amplitudes continuously
exchange maxima and minima, as shown in fig. 8. From these and other

computer»calculafions an approximate rule for the relationship be-

tween axial and radial dmplitudes was obtained,
", - ) ‘
A" + A" ~ const. (8)

This rule seems to fit very well for small and moderate amplitudes.

However, if the amplitudes become .extreme, the rule breaks down. The
. . . 2

maximum growth rate was shown to be approximately proportional to_ArA.

3.2 v, -2y, =0 (n = 0.20) Resonance

This resonance at n = 0.2 1is often referred to as the Walkin-v

3),

shaw resonance It has many similarities to the (2v¥ -2v = 0)

Z
resonance discussed in 3.1. This resonance also can be driven by nén-
linearities of the ﬁagnetic field in“the absence of azimuthal varia-
tions.

: The relationship between axial and radial amplitudes for this

5)

resonance is

AT+ hArz ~ const, : (9)

for small and moderate amplitudes. This is demonstrated by the comp-
utational results, plotted in fig. 9, for particle motion in a con-
stant magnetic field_for which n has the resonant value 0.2. The

maximum growth‘raté is‘approximately proportional to Ar.

3.3 2v, =1 (n= 0.25) Resonance

This resonance was shown to be driven by azimuthal asymmetries
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of the magnetic field. It was further shown by decoﬁpésing the field
into its Fourier components that just first harmonic variations drive
this resonance. Calculations were done for severa; initial values of
A£ with no indication thét the growth rate dependé on Ar'

3.4 v, +2v, =2 (ns= 0.36) Resonance

This résonaﬁce‘was shown to be driven by azimuthal asymmetries of

the magﬁetic field. It was further shown by decomposing the field into
" its Pourier components that second harmonic variations account for more

than 80% of the observed growth rate in typical cases. Also, the
growth rate was égown to be roughly proportional to Ar

In determining the total. growth developed in traversing this reso-
nance it was particularly important to start particles with several
different phases. The sensitivity of thé accumulated growth to tﬁe
initial‘phase of the axial motion may be attributed to the fact that

this resonance is inhomogeneous (m # O)band involves a coupling effect

from the radial motion. (The choice'of the otherwise arbitrary origin -

of the angular coordinate 8 cannot be used effectively in such cases
to eliminate the apparent significance of phase differences between |
radial motion, axial motion, and the field perturbations.) Some par-
ticlés have an increase in betatron amplitude, whereas other particles
have a decrease. In fig. 10 the axial momentum p, and position =z
are plotted-for 24 particles (with different initial phases) for dif-
ferent times as the resonance is traversed. "T" refers to the number
of revolutions (gyroperiods). One notes from fig. 10 that the elong-
aﬁion of the phase—spape ellipses means that, after the resonance has
been traversed, most particles have a larger axial betatron amplitude

whereas some particles have a smaller axial amplitude.

- 1 -

L. Analytical Formulas for Four Resonances

The derivatiéns of the analytical expressions for the growth rate,
total growth, and width are given in Appendix A for the resonances de-
scribed in section 3. The results of these calculations are given be-
low. For the 2v, +v =2 (n = 0.36) resonance and the 2v =1 (n =

0.25) resonance it was assumed that the midplane magnetic field had

the form

B, = Bo(r) +z [Cm(r,t) cos m 8 + Sm(r,t) sinm 8], (10)

The resonances do not always occur exactly at the'éxpééted'value

~of n (see fig. 4) because of the modification of the axial equation by

radial motion of appreciable amplitude.

.1 Zvr'— 2v, =0 (n = 0.50) Resonance

Let
2 62 '
N R Bz(r,t)
b = = 2
B N ’
0 or r==R
B3 3B (nt) |
P o= Do Z b .
r =R . -

where R and .t are the radius and time at which the resonance is
crossed. Then the maximum growth rate, total growth, growth factor,

and full width of the resonance are given by

0.020 A 2

M = Maximum Growth Rate = —
. R

3 + 200" - 56b"% - 12"

(decades/rev), (12)
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~ ) R .
- - = = 0.20 n
1-6 x 10 2+Aru [3 + 206" - 56b"2 « 120"t 1% v2 v, - v, =0(n ) Resonance
G = Total Growth =" T Tan7a(zev)]
R Here one has
l.SAr
(decades), (13) M = Maximum Growth Rate = = lb"l (decades/rev), (18)
Growth Factor = 10% ) (1”5 0.% Arb")z (19) *
= s .
G = Total Growth = (decades), 19
and ‘ - T f Tdn/d(rev)| R -
1 L ,.
Hn = 0.52 M, (15) o Growth Factor = IQG, . (20)
where Ar is the radial betatron amplitude given by eq. (7); and and
dn/d(rev) (the change in n per revolutibn) measures the rate at. An = 0.52 M. ' ‘ (21)
which the resonance is crossed. Thus for a given initial axial beta- . ) ‘ ) .
' ' If the value for the final A [calculated by eq. (16)] is greater
tron amplitude, the predicted axial betatron amplitude after traversing ) . . .
than 2Ar’ then, inm general, the limitations on growth given in eq. (9)
the resonance is given by : 3
will apply.
s G s '
Az(flnal) = 10 AZ (initial). (16) b.3 zvz =1 (n = 0.25) Resonance
Let : .
If the value for the final A  [calculated by eq. (16)] is greater BCm(r,t)
| O (108) =7~
than A, then, in general, the limitations on growth given in eg. (8) 55 (r,6)
. . _ r,
. . 0 _ .
will apply. . ‘ . §', (ryt) =1 —5p— . (22)
To minimize the growth caused by traversing this resonance one and ' ’ 1/2
wishes to minimize the quantity (3 + 20b" - 56b"2 - 12b"'). Fig. 11 K= irb {Ezcl(r:t) - C] (r,t)1" - [?Sl(r,t) - 5] (r,t)]:} )
. . ) (23) LY
shows the curve of the equation . o where C , 5, and B, are defined by eq. (10). Then,
3 4 200" - 56b"° - 12p"" = 0. (17) M = Maximum Growth Rate = 1.k K (decades/rev), _ (2k) .
. ) .
P - LK (decades) - (25)
This relation between b" and b"'" for minimum growth was checked G = Total Growth = Ty a(renl ecades ),
with a computer codeiusing appro*imate equations of motion, and the Growth Factor = lOG . (26)
four points obtained by minimizing growth for a given b" are also
and .
plotted in fig. 11.' Results with exact particle trajectories were ’ ’
: _ &n = 0.73 M. : (27)

also consistent with this curve.
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Loy v. +2v, =2 (n = 0.36) Resonance

Let .
vy [a (o)
‘e =T F > ),
" d 2 >5Sm(r,t) '
R - (28)
and .
1/2
l " 2 1" 2
L = ﬁ(; (02 ) ot (Sz ) s (29)
Where Cp» S, end R, are defined by eq. (10). Then
Ar ) R
M = Maximum Growth Rate = 1.1 ?T-JLJ (decades/rev), (30)
1.4 ArZL2
G = Total Growth = 5 (decades), (31)
_ - R7{dn/d(rev) )
G
Growth Factor = 10 : (32)
and 7
o o= 1L.h oM. ' (33)

It'should be noted that the formulas above apply for the particle
with the maximum growthfon the phése-space ellipse (see fig. 10).
5. Discussion .

To understand the resonant growth behavior observed in experiments
during the compression phase of an electron ring accelerator, computer
and analytical calculations have been performed for conditions similar

to those in the experiment of ref. 2). At low intensity, when only

single-particle effects should be important, the calculations agree
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qualitatively with the experimental results. At high intensity some
energy spreading occurs that broadens the time at which different par-

ticles cross the resonance. This makes it more difficult to compare

. the experimental and computer results, but even in these cases they

seem to be consistent.

The'calculations have élso elucidated the driving terms for each
resonance. . Thus, if é particular resonance causes large grqwth Qne
can try to reduce the field variation driving that resonance. vFor the
n=10.5and n= 0.2 resonances one coulq add extra coils to adjus£
b" and b"' at the time the resonénce is crossed. Changing the coil
spacing or energizing the coils in a different sequence also can affect
b" and b"'. For the n = 0.36 and n = 0.25 resonances the signif-
icant pertufbations are greatest near the periphery of the chamber.

By use of an n-shifter circuit these resonancesg can be crossed at smal-
ler radii where the perturbations are smaller. If the magnetic—field
bumps are still too large, one can remove various components from or
add them to the simulated field in a computational program until satis-
factory growth is obtained. Then one could remove these same compo-
nents from (or add them to) the real ekperimental apparatus.

Looking at the formulas for "total growth" one notes that the
total growth is proportional to the factor l/ldn/d(rev)l. fhus if a
resonance can be crossed more rapidly this, in general, will reduce
the growth, particularly since it appears in the exponent of the
"growth factor." This will work well if the growth is not too large.
For the n = 0.5 and n = 0.2 resonances, if the growth is so large
that it is already limited only by the initial radial betaéron ampli-

tude, a small change in the speed of crossing the resonance may not
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reduce the final axial amplitudes.
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APPENDIX A

Derivation of Analytical Formulas of Section U

These calculations are directed to the occurrence of a substantial
exponential growth of axial amplitude when the radial amplitude is
sufficiently great. The axial amplitude is assumed to be small
initially, consequently the axial moﬁion can be characterized by a
linear differential equation in which the radial motion may be regarded
as a'prescribed function. :

The general procedure fo; deriving the analytical formulas is

(a) Determine the radial and axial equations of motion for a

particle in the maénetic field. . |

(b) Determine an appropriate expression for the magnetic field

which contains the relevant driving terms for the particular_

resonance under consideration. Then put this magnetic field into

the ‘equations of motion of (a).

(¢) Make reasonable approximations‘to obtain a simple expression

for the radial coordinate with the gxial coordinate ignored.

Then insert this expression into the axial equation of motioan.

(d) After confirming that the axial equation has the form of a

Hill or Mathieu equation, obtain s simplé approximate solution.

(e) Using this solution, defermine the width of the stop band of

the resonance, the maximum growth rate, and the total growth.

We obtain the equations of motion from the Princ;ple of'Least

VAction,
& [ (p-eh) - as =0, . (A1)

where p 1s the mechanical momentum and A 1is the vector potential.
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Since dg = (rre_ + z'éz + r%e)de (where the primes indicate differ-

r

entiation with respect to 4), eq. (41) can be expressed as

1
2.5

5 [{ p[r2 + r'2 +z'7] - e[rAe +'r'Ar + z'AZ]] de. = O. (a2)

In the median plane, the radial variation of (A2) gives the familiar

Erajectory equation, -

o a4 , 3
d_ PT' _ pr . ev a(rAe) ) AI‘ o 0 (AS)
B® | (2, iy (2 1 OE Sr % | )
or
a pr!' ] pr
— 2| = -t - €erB_.
© [(r2 + r'2)2 (r2 + r'2)2 z

For r' << r this can be writtén as the SimpLified approximate
equation

r'" - r + er2 Bz/p = 0. . (ak)

Considering the axial variation of (A2) results in

! pz! 1 oA, M\ oA a,

Fr) ——T| - er o - ' _ -

a8 (r" + " + z'2)§ r oo & | T % or =0
or (A5)
a pz'’ _ _ .

5 [(r2 T2 Zve)éJ =erB - er'By ,

which similarly may be approximated as
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2" - er2 Br/p =0, B (A6)

1. v -2v, =0 {(n = 0.20) Resonance

Because the relation between the osciiiation frequencies is
homogenous [it has the form of eq. (2) with n = 0], azimuthal field
variations are not required for ekcitatibn 6f this resonance, and it
therefore 1s appropriate to focus attention instead on the effect of
nonlineafity in the magnetic field.

Let ' .

7
£

and (A7)

-z
y=3 -

Expanding the magnetic field about r = R aand z = 0, with ’BZ'
symmetfic with respect to the median plane, and using Maxwell!s equa-

tion, we obtain

o
1]

By [1 - nx+ 1" (x2 - yz)] . (A8)
B, =Bg [-my4bmy] , | » (89)

where b" is given by eq. (11). Curvature effects have been

neglected in (A8) and (A9), and these field components satisfy the

dB OB
s Z r . s
curl gonigglon gi— =37 and the divergence condition
B
r

V-§~§[6—X— +3y—] = 0.
Substituting (A8) and (A9) into (A4) and (A6) and neglecting higher-

order terms results in
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2 2
x" + (1-n)x - " (y'-x7) = 0 (A10) .

and

y"+ny - b'xy =0, _ (A1l)

where we have used eq. (A7) and p =-eRBo.

We adopt the viewpoint of Walkinshaw3) and treat the x motion as
a prescribed motion unaffected by coupling effects. This non-Hamiltoa-
lan approach appears to be entirely justified when cne is examining £he
onset of y growth from initial amplitudes that are quite small.

In this spirit one writes eq. (All) as

v+ (vye - b"x)y = 0 _ (aA12)

and in‘croduces'r X = AX cos vxe to obtain the Mathieu equation

¥y o+ (vy2 - b"Ax cos vxe)y = 0, : (A13)

2 2
= 1l- d = n.
n an vy n

The relevant "stop band” for this equation, within which growth ulti-

where v
X

mately will occur for all non zero initial conditions (save for a set

of measure zero) is defined by the inequalitiesff

t An additional phase constant in the expression for x would clearly
. be inconsequential in this case, as it would correspoand to no more
than a translation of the origin of 8.
Tt see rer. L), esp. egs. (2.7) and (2.9), p. 1237. 'These expressions
are, of course, merely the leading terms of well-known series develop-
ments for the eigenvalues associated with the eigenfunctions cey and
se)] of the Mathieu equation [cf. Whittaker and Watson, Modern.
Analysis (Cambridge University Press, London and New York, 1927),
Sect. 19.3]. The phase shift of these solutions, per period of the
coefficient of y, is = (and hence vy = v/2). T
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2

vxz b"AX ! o Vi b"AX

- - |=| < vy <t = 5 (Alk)
i.e., by t

vB (v ¥l<z o |, (A15)

X ¥ X

or

|AX| > B = ] (A16)

The quantity A, . ‘defined by eq. (Al6) thus coﬁstitutes a threshold
amplitude of radial motion above which axiél growth will be expected to
ocecur,

Within the stop-band just defined one expects a lapse rate w, for
the amplitude of the exponentially groving soiﬁtion ofAthe Mathieu

equation (Al3), given bytt

1/2

v \2 ] v.\2 - : 5 5 '
v 2 X L, (_5) I 2l cPs<cPs
~ y 2 2 x|l 2 2 x Y : (Al7)

L < _ser > < est >

B

For the eigenfuactions c(8) and s(8), it is coavenient merely to

take cos vye and sin v&e . respectively, resulting in

2 2
®> & T (A18)
<§- sc’ <3:sf> v 2 .
’4
Then, -
vl .2 2 (12 .
= - 9. Al
po= vy (AX Ay ) neper per radian of (A19)
t Cf. section ITIA of ref, 4, especially egs. (3.4) and (3.5), pp.
12h1-1242, with a = vy, b =c =0, and d = -b"A,.

Tt Ref. 4, section IID, especially eq. (2.58), p. 12ho.



IS

c T -25-

= 0, we obtain the maximum

Writ}ng Ax = Ar/R and vy ~ 40,2, with Athr

growth rate

T Ar
— = v

v0.8 1nlO

decades/rev . (A20)

In passagé through the resonance there is an accumulated growth that can

be estimated by use of eq. (ALl7), which is conveniently rewritten as
i i 1/2
p= [(2b A -1+ 5n)(2b A+ 1 - 50)]17/ /(8 J0.2). (a21)

In passage through the resonance, n increases from its value

1"
Nt " (n22)
1 5
at one edge of the stop band to
1" . .
L 1+ 2|b |Ax (423)
2~ 5 2

at the other. On the assumption that the growth is not so great that

turnover has occurred or is approached, the y amplitude is expected to

a=ap

grov by the factor exp~/. pud6. If the resonance is traversed at a

n=nl

dan d 1 dn
constant ratg of change of n.[a§ = const.; or T = I Azev)’ where

P

dn A
7T is ‘the rate of change of n per revolution and is treated as a

constant] , one has

n=n2 n2 7
1 21
f HA® = g f uda = dn
ﬂ.:[ll l——l nl .

~ o~

o2
1
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/
o 8 5 af(a-a))(ap-a) (2 /4) (5/4) 2 (a,m0, 2
’ dn = -
- igv o, 8 JE:; ; |dn/d(rev)r
2 b”2A 2

*_ x nepers u {a2h;
2.f5- W?direv i‘ ’ . /

or the total growth is

2
1
2 1 Ab

b r ,
G = — (———— decades . (A25)
of5 10 10 [dn/a(rev} R

The width of the resonance is

. B lJ_A ' v .
An o= lnz - nll = gﬁﬁ Jb", @Y@:%éiﬂ_lgi M= 0.52 M. . (A26)

2. 2v -2y, =0 (n = 0.50) Resonance

Here also the felation betwéen'the oséillation frequencies is
homogeneous, and it again is appropriate to focus attention on the
effect of nonlinearity in the magnetic field,

The resonance 2vr - ?vz = 0 1s of higher order than most of the
coupling resonanées to which attention has beea given, leading, for
example, to a predicted "stop-band width" that is proportional to the
square rather than to the first power of_the radial amplitude. Srecial

care must be taken, therefore, not to omit effects whose consequences

would be of the same order as those treated in the analysis, -and the
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algebraic work correspondingly is tedious. The analysis preseated
below has, however, béen subjected to some computational checks and is
believed to constitute an adequate semiquantitative aescription of the
axial growth that can arise from the 20r ; ZQZ resonance. |

The magnetic field can be adequately described by means of an
azimuthally directed vector-potentiél function that is developed in

terms of the coordinates x and y ast

Thg _2x + x2 _ 3x2 + 2x3n N bx3 4 3xubh N 5xu + 4X5bh.
2. 2 ) 24 120
R'B
0
P 2EE (0o - 5Pum)yP  (a27)
Here n 1is the field iandex, and Db", "' are constants that have been

evaluated at the (circular) equilibrium orbit of radius R [see egs.
(11)]. The differeatial equation for uncoupled radial motion (A3) with

use of this vector potential is

d x! L+x 1 2 1 31

=5 - - + (l4x) [l-nx+ = b'"x "+ Z B¥x ] =0,

8 [j(i+x)£+x'2] J(L4x)24x12 2 6

- : (428)
where x' denotes dx/de and we have set p = eRBo.

To provide in full measure the required alternating terms in the

equation for axial motion, it is necessary to obtain a solution for x

t The expression given for rAe/RzBO can be extended to a more consistent
form by the addition of the term

: 2
. i+x (0 +b" + 2 % 62 + 3x B ) yh;
such a term is not required for the preseat analysis, however, since

only linear forces are included in the differential equation for axial
motion used here.
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that is valid through terms proporticaal to the square of the radial-
oscillation amplitude. Terms proportivnal to x'2 in the differential
equation thus properly should not he ignored. A suitable:SOlut%on,
obtainable by harmonic balaace, is of the form

X = Py + P, cos vxe + P

1

, cos v, 0 (829)

.

(an inconsequential arbitrafy phase constant being ignored), with

1 2

. . 1,, 2

Po= (€, + A" Py = Ay Py= - (Cp - gp)hy
and .

2 2 5 3 11, 2.

VX_.l-n-(1502+E02+EC3-%)AX, (A31)
here C, = - (2-ba + b")/6 and Cy = (60 - 60" - B")/6, and these
coefficients are approximately equal to - % b" and % - " - % B,

respectively, for a z-% .
The linearized differential equation ﬁhat describes small-amplitude

axial excursions is obtained from eq. (A5):

] + (L4+x){(n-b" x- % meQ)y = 0, (a32)

e |\ _____y
de [J(1+X)2 +x 2

1
-2

with y' = dy/dé. The quantity [(l+x)2 + x‘2] may dow,be expanded

5 .
through terms of order. x2 or x'~ and the solution previously given

for x substituted into this equation to oBtain a result of the form
d .
36[(1«12+62cos v B+7,c08 2vxe)y'J + (0g+Bgcos v B+7,208 2vxs)y=o, (A33)

where

(430)

4



ag=a+ (g-b 4502 - LA, B (ab)a,

7o = (jt - éb”-- %bng- %b )Ai . | (A34)

)

7]

The differential equation (A33) can be regarded as a generalized Hill
equation, fof which we may seek eigenvalues g “that permit periodic

solutions with a basic frequency (vy) equal to v+ It will be recognized

that with regard to the coefficient % such solutions would be analogous
to the solutioas se; and cey that occur gt the boundaries of the first
stop band for the Mathieu equation, whereas with respect to the co-
efficient EO they are analogous to the functions €, and cep

associated with the second stop band of the Mathieu equation. Because

2

BO is directly proportional to AX and 70 is proportional to Ax,

one thus may expect that the influence of each of these terms will be

to generate a stop band whose width is proportional to Ai.

By the use, in turn, of trial fuanctions of the form

D sin vxe + D, sin 2vxe and E, +.El cos vxe + B, cos 2vxe, the pro-

cedure of harmonic balance leads respeétively to the following estimates
iy : .
for the corresponding eigenvalues:

2

2 5 1., . 1.
0‘01"Vx'(3_2“2'11b tg b

-2 7 1 ., 11,2
O‘o,z“’x"?'@lb -

or, after the expression given in Eq. (A31) for’

bt

STALS

2 s s
v is inserted,
b

(435)

(04 =
0,2

Finally, noting that

aoA: n
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5 1. g"..2‘2
l'“'('ﬁ’ﬁbrw" Ay s

23 - b" - ‘ib”z - T]I_b"') Ai .

1-a- (@ 2

v e B2

we obtain the estimated stability boundaries

1
h =3
N
1
P2 =3

and a width

An = |n2 - nll

Within the StOp band bounded by the eigenvalues Qg1 and aO,E
2

- <]
solution (formed approximately as et

13 - 58b" + 28b"2 - 6-bm A2
- L3 x’

29 - 96b" - 2kpm 2
- o oy

55 - 212b" + 56‘b1|2 - 36bn|
102

_ I3+ 2op" - s6p"® - 1zpe

T See ref. b, especially Sect. IID, p. 1240.

A2

X

~ one expectsf,that the growth rate of an exponentially increasing

(836)

(A37)

(438)

(A39)

(ak0)

(Ak1)

times a linear combination of
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the periodic eigenfunctions associated with the boundaries of this stop

band) will be givea approximately by

(an-ay Yo -2 )\ 1
0 0,1°Y70,2 70 [ ]5 .
= = 10.5(an-0x o -Q nepers/radian.
K 5ag O,l)( 0,2 o) pers/

2
by
* (ak2)

By use of the expressions previously given for a,, o , and o B
0’ “o,1 0,2

this characteristic exponent becomes

b= [Z(n-nl)(nz-n)]% nepers/radian, (Al3)

with a maximum growth rate of

2
‘/E T ] n2 " Ar
M = 361310 3 + 20b" - 56b"° - 12b ® decades/rev. (Alk)

The total growth in traversing the resonance is

L
decades. (AL5)

N 2 2 (3+200"- 56p"°- 12bM)° ﬁ)
G =l: hd® = 3EEBE T 10~ [dn/a(rev.)| R

:nl

The proportionality of this result to Aru, being characteristic of

traversal of a second-order resonance, is noteworthy.

3. 2v, = 1(n = 0.25) Resonance

We represent the magnetic'field components by expressions that
contain azimuthal ﬁariatioﬁs but are carried only through first-order

terms in x, y. The radial motion in this case contains a flutter that

arises from closed-orbit distortions produced by the azimuthal variatibn

-32-
of Bz’ and this flutter is introduced into the axial equation through
the factor r2[= R2(l+2x + +++)] of eq. (A4). In principle a term of
similar order would arise from the iaclusion of the second-order term

Ibb“-xy in Br’ but normally the contribution of this additional term

is relatively small. We accordingly write

B B _. P P .
B, = By(l-ax) + C, cos md + § sin af + (Cm cosm @+ S siam) x
| (a46)
and
P N 4
B, =- 0By + (C cosme +§ sia me )y, (AlT)
where ‘ ‘
T acB(x) as (v)
CP m ) SP I P . (a48)
m= |* T ar ’ m dr ;
. A B 4B P P
with the coefficients Qm B Sm ’ Cm’ Sm evaluated at r = R.

The resonance 2v, = 1 has the form of eq. (2) with m = 1,

indicating that first harmonic variations in the azimuthal field are
important. Substituting the magnetic field of egs. (Al6) and (ALT),

with m = 1, into egs. (AL) and (A6) and neglecting higher-order terms

)

in x and y results in

' P P
x" + (1-n)x + x[(Cl + 20?) cose + (Sl + ZSlB) sine]/Bo = -(A50)
B B .
—(Cl cost + 8 s1n9)/Bo’
P P . , _
y* + (L42x)ay - (Cl cost 4 S 5ing) (y/Eb) = 0. (A51)

©d
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In a low order of approximation, we write the solution to (A50) as

B B .
Cl cost + Sl sin®

nBO

Substituting (A52) into (A51), we obtain
“ 4oy +[(20,% - ¢.7) coso 2g. B By s
v 1 1 ) cos +(sl -81)31ne] _‘//Eb:O.
Thus we may consider the Hill equation

y' + (a + K cos8)y = O,

where

1 B P\2 B P\2.3
K_-%[(zcl -cl) +(2sl '51)],'
From (AS4) we obtain a lapse ratet
(n-n,)(n,-n)< o 2 e
N\ )< e > < s > 2
o= R 1/2
b <-ge' > < es' > T [(n_nl)(n2'nl>]

within the v, = % stop band. Alsof'r

jul
1t

0.25 - K/2,

O.25—+K/2. 

1

t Ref. 4, section IID, especially eq. (2.58), p. 12LO.

1 see ref. 4, especially eq. (2.60), p. 12u1,

(A52)

(A53)

(ash)

(A55)

(A56)

(457

_34.

Thus the maximum growth rate is

M = K/2 nepers/radian - (A58)
or
VL decades/rev (459)
“1ln 10 ’ .

and the width of the stop band is

‘M~ 0.73 M. o (860

The total growth upon traversing this resonance is

- A2 o K - :
G :-[; L To[da/a(Fev)] .decades. ] . (a61)

' vt 2y, = 2(n=0.36) Resonance

This resonance has the form of eq. (2) with m = 2, indicating
thét second harmonic aiimuthal variations in the.field are important for
its excit;tion. In order to.allow fully for coupling of free radial
oscillations into the axial equation as a first-order perturbation, it
is appropriate to develop the B, component of magnetic field to such

an order that eq. (AL7) is supplemented by a term proport%bnal to xy.

Accordingly, if the B, component is taken to be given as - in eq. (A7)

to lowest order by (l/Z)Br(r,e) (1/r)e(r,0) [whére £(r,8) =

r 8Bz/8r = - n(r,e)BZ(r,é) for z = 0], one writes
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B (r,8)
r B CE(x 9)
Z = -I‘, + Sr (r-R) ) (A62)
r=R
r=R
or
2 . L2 P P .
r Br(r,e) 2 R (L+2x+-- ) -aBy + Cp cos 20 + S, sin 28] ¥
R R
NEICRIZY a(s,’/r)
+ b"BO + R\—ag7—| cos 26 + ————| sin 20} | xy
r dr
1R R
2 R2{|-nB, + C,F| cos 26 + 5.F| sia 20
2 -nBy + C, L + 8, sin v
‘ d(rceP) d(rszp) '
+ [(b” - 2n)Bo + — ) cos 28 + |, sin 26] xy ). (a63)

Insertion of this expression (A63) for rZBr into the differential

) . r’B
equation for axial motion, y" - I -0 [ef. (A6)], then yields
R°B -
y" o+ [n - ﬁk C2P cos 20 + 82P sin 26} |y
0 R : R
1 d(rCzP) a(rs P)» T S
+{2n0 - b" - =— cos 20 + ————|{ sin 28) xy = 0.
[ BO (v dr R dr Ik ]

(A6k)

For the coupling resonance 2vz,+ v, = 2- of present iﬁterest we now may
ignore the coastant term 2n - D" in the coefficient of xy in (Aéh);
likewise the alternatiné component in the coefficient of y does not
play a direct role in exciting this resonance, and recognition of this

alternating component can be given through use of a Vy2 whose value is

slightly displaced from a.
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. Recognizing that the absolute phase of tihic perturbation is of no
importance, the equation for axial motion [eq. (A64)] therefore can be’

taken to be of the form

~
y" +(Vy2 -2Lxsin28) y =0, (465)
. .
where
a(xcB) [ 12 [a@esh)| 72 |12
o[ 2T e
With the radial oscillations written simply as Xx = AX sin vxe,eq.
(A65) then becomes
2
n _ - -
v o+ {vy + AXL[cos(2+vx)9 cos(? vx)e]}y = 0. (867)
Equation (A67) may be regarded as a Hill equation [especially if
we artificially suppose Yy and m(=2) to be commensurate ;n some, - possibly
large, intervall. Noting that eq. (A67) has the form of eq. (2.45) of
. co J
ref., 4 (taking the lower siga) with
a=v ?~n ‘
Ty ! : _ N
C = - EAXL,
vy = 2~V
q = 2/vo, .
b =4d=0, (A68)

we conclude the estimated width of the resonance indicated by the

stability boundaries ist

-t Ref. k, especially eq. (2.50), p. ;2&@.
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|2 )2 - <.2-vx.>2| = 2|LAxl

If the threshold amplitude is taken to be

; 2
L2 (2-vx)
- y 2
Athr =2 1L ’
then the lapse rate is expeéted to be*
» g_vX 2 o v, 2 N z 1/2
n o= [vy -( 5 +—-IL.A | [_T +§‘LAX- vy] 2vy

or '

(AX2-A2 )l/2 nepers per radian of €.

thr

Ty
¥
The maximum growth rate is thus

. A .
7M = Eé%ié%a (ﬁf) decades/rev,

and the total growth is

2 LA }2
¢ 3T 10)[dn/d(rev)] decades
with a resonance width of
A
8|L r 48 1n 10
fa = = _ﬁ_) =755 M ~1.4M

¥ Rer. b4, section IID, especially eq. (2.58), p. 124o.

(469)

(70)

(a71)

 (a72)

(A73)

(a7h)

(A75)
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FIGURE CAPTIONS

The variation of the z component of magnetic field as a func-
tion of the azimuthal angle for radii of 18.5 cm and 13 cm at
the time of injection.

Comparison of measured and simulated azimuthally varying
fields for a radius of 19 cm at the time of injection.

The radius of the closed orbit (R), the kinetic energy (T) of
the electrons, the magnetic field (B), and the magnetic field
index (n) at the location of the closed orbit, as functions
of time during the compression of the electron ring for a typ-
ical compression cycle. ’

Growth rate of axial betatron amplitude for particles injected
into a magnetic field that is constant in time, for different
values of n (different radii and kinetic energies).

X-ray signal (due to electrons striking an axial obstacle

1.7 cm from the median plane) as a function of time during a
compression cycle in which n at the location of the ring is
swept rapidly with the aid of n-shifter circuits; n is deter-
mined by calculation and is accurate only to about 0.03.

X-ray signal showing electron loss on traversal of n = 0.5
resonance.

Radial and axial betatron amplitudes versus time (number of
revolutions) as the n = 0.5 resonance is traversed by a par-
ticle in the computer calculation. The initial radial and
axial betatron amplitudes are 1.5 cm and 0.1 cm respectively.
The upper graph shows how n 1s varying during this time.

Radial and axial betatron amplitudes versus time (number of

" revolutions) for a particle in a constant magnetic field in

the middle of the n = 0.5 resonance.

Radial and axial betatron amplitudes. versus time (number of
revolutions) for a particle in a constant magnetic field in
the middle of the n = 0.2 resonance.

P -z phase-space ellipse as the n = 0.36 resonance is tra-
Relation between D" and b"' for vanishing growth rate from

eq. (17). The circled points represent a computer check of
the analytical formula.

-40-

0.05 T T
Snout

0.04

- 003
N

AB,/B

0.02

0.01

e—R=18.5¢cm

180°

(¥

&>



o

[
G
=
w
g
4]
O,
™
@
q
e
2
3
8
¢

46

40

-41-

— MEASURED
————CALCULATED

e e i i e

p—

Figure 2

XBL .7010 6261

-42-

201 —TT20
15 P _ 415
1 110
=
(&)
o
45
Qs_
15
B
0.6
-+ —n=50 10
- .
ask |- \D
4 —n=.36
—_— Z _.n=.25 s
0.2 —n =.20
fo] = o | S T T T YOO Y W T S O (S N I |
o o 160 240 320 400 480 560 640 720 800 880 960
Injection t,usec, from coil 1 fire
' XBL 698 4873
Figure 3

T(MeV)

B (kG)at ring



ra

¥

$29-%1L TdX:

¢ aan3tg

Xapul p|atj anaudep —u
0oI'0 020 0g'0 10)40] 0G0 090
! T T T J I T T
A== o'
- [~
€l /// I

X

e SN feix P

=3 ~

~

=gl N de¢

WJ _ mllLV//,

S ol N Hv

a //

2 uf dg
8l - Jd9
6l —L

_ _ | _
gole] 0S . 82 0
(9957) uoioslul 4a)ye awt|

-pF-

eudis Aei-y

2929 0L 1ax

(xapuy

Jusipesd paty d1sudew) u

 2andtg

Growth rate (decades/revolution)

- o

-0°

20"
0
0

~90°

° o
~
T

8
-1 60
ol

’ o}
< & o
T

og*

1

ov'
T

[44

44
T

98* v¥S* 2S5t 0S8
T T T T

8s°

20]

09°

- Mwl



45

X-RAY SIGNAL

‘% :' j——“ l‘——— 20 psec'
¢ . ‘ | | ,

R )’
i....__.._..._.;......q_.,_.x . R § i - —
I | |

FanN

n & 0.5

— INJECTION

XBB 7011-5339

Figure 6

1052

\ 1 P e

Betatron amplitude‘(cm)

< 0.50

_46-

=

6

0.8]

0.4

0.4?[
X

—

500 300 00

Number of' revolutions

Figure 7

l. L — ' &
1500 1800

X8L 70106264



-48-

_47-

100

q

150

M
Te]
M
P
)
n ~
C @
O x
o =
O . =
- O
>
1)
-
(Wi
o
S
3
O
n €
>
N.

(wo) apnijdwe uoJlelsg

150

50
Number of revolutions

Figure 8

. XBL 713-6352

. Figure 9



6

© -49-

Figure 10

XBL 713—6355 .

-50-

XBL 713-6354



&

by

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor-any of their employees, nor
any of their contractors, subcontractors, or.their employees, makes
any warranty, express or- implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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