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. ABSTRACT 

, It is shown how the moti9h of an electron in 

a given external classical electromagnetic field is 

derived from S-matrix principles . 
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I. INTRODUCTION 

The motion of an electron in a classical electromagnetic field 

is well understood on the basis of quantum field theory. If radiative 

corrections are ignored then the solut:lon is that given by Feynman in 

his "theory of positions." If S-matrix theory is to be acceptable as 

the fundamental form of quantum theory, replacing theories based on 

microscopic space-time assumptions, then it must be able to reproduce 

this important result. 

This result follows, in fact, quite easily from S-matrix 

principles. Indeed, the derivation isirivial. Nonetheless it seems 

worthwhile to set it down explicitly. For,in the first place, it 

had not been generally recognized, even by S-matrix theorists, that the 

It ·t ·1 1 resu comes ou so eaSl y. In the second place, there have been 

previous unsuccessful efforts to derive the result. l In the third 

place, it is useful for didactic reasons to show how a well-known and 

important result of the older formalism comes out of the new approach: 

the basic ideas of 'the S-matrix dynamics are nicely illustrated in 

this simple example~ In the fourth place, .the derivation shows how 

classical. fields fit naturally into the S-matrix framework . 

... 
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II. CLASSICAL FIELDS AND COHERENT STATES 
.. 2 . 4 

The work of Glauber, Sudarshan,3 Klauder, Rohrlich,5 and 

others makes it clear that classical fields are represented in quantum 

mechanics by "coherent states." A coherent state is a coherent super-

position of states with different numbers of quanta, in which the 

amplitudes corresponding to the different numbers of quanta are adjusted 

in a particularly convenient way. The coherent states of the photon 

field can be labelled by the complex positive-frequency solutions 

+ A (x) of the free field equations 
I-l , 

o A +(x) 
I-l . = o (2.la) 

.. 6 
subject to the constraint 

(2.lb) 

The amplitudes of the components with different numbers of photons are 

adjusted so that the states IA +(x» are right eigenstates of the 
I-l 

annihilation operator pa,rt of the field operator A . (x): 
oPI-l 

A + (x) IA +(x») 
OPI-l I-l 

(2.2a) 

Correspondingly, the conjugate states (A +(x)1 are left eigenstates 
I-l . 

of the creation operator part of the field A (x): op 

= (2. 2b) 

Here A- (x) = [A+ (x)]t is the creation operator part of A (x), 
~I-l . ~I-l . . oW 

and A -ex) ~ [A +(x) ] * is a complex negati ve'-frequency solution of 
I-l I-l. 

the free-field. equations. Note that 

• 

.. 

, 
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(A +(x)IA . (x)IA +(x») = A (x) (A +(x)IA +(x») 
~ op~ . ~ ~. ~ ~. 

where" 

+ 
= 2Re A~ (x) (2.4) 

isreal. That is, the eXpectation value of A (x) in the state 
op~ 

is the real field A (x) defined in (2.4). 
~ . 

The problem of computing the motion of a particle in an external 

field is, from the S-matrix point of view, the problem of computing the 

matrix element 

where ~. and ~f represent the initial. and final states of the 
. ~ 

particle. We shall consider the specific casein which this particle 

is a sPin-~ particle; 
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III.. THE PHOTON-FERMION VERTEX 

It is 'Convenient to rep'resent the S matrix for a sPin-~ particle 

by the covariant two-component formalism. 7 This eliminates spurious 

complications associated with redundant components. The connection 

between the usual S matrix 

and the covariant M function 

Here Jl - Jl v. = p. 1m. 
]. ]. 1. 

M ~ 
a is 

and final covariant velocities. And 

(a,b 1 
+ -) - 2 

are the components of the initial 

where a is the usual Pauli matrix. If the 4-by-4 matrix T is --
written, in the Weyl representation, as 

then (3.2) becomes 

M = T++ + (vf • a)T--(v
i

• cr) + (T+-)(Vi • cr) + (vf • a) T-+ 

(3.4b) 

~' , 
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For example, if T is 

Til = f1 =. G "j , 

Il 

then M is 

M a (v .. a) + (v f • a) 
~ 

- a . 
Il Il ~ Il 

If T ;is 

T = d -' !( r r - r r ) 
IlV IlV 2 Il v v Il ' 

then M is 

M == .!{Ca Ci - a Ci ) + (v
f

' a)(a a - Ci a )(v . • Ci)]. 
Ilv 2 Il v v Il Il v v Il ~ 

If T is 

then M is 

The demand of invariance under proper Lorentz transformations 

and space reflections requires thatS 

M = (a • cr)(vi • Ci) + (v
f

• a)(a· Ci) + (b • a)(vi ' Ci) - (vf • a)(b • Ci), 

(3. 8 ) 

where a is some vector of the prob~em and b is a pseudovector. 
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For the photon-fermion vertex the vector a and the pseudo-

vector b must be linear in the photon field A. Two possible forms 
• 

are 

~. 

aJ.! = e AJ.! (:3.9a) 

and 

bJ.! = g L A v qA. Qp 
€VA.PJ.! 

V,A.,p 

~ g[AqQ]1-l = (J.l gAqvi ]· (3 .9b) 

where 

q - Pi - Pf' (3.10a ) 

Q - (Pi + Pf)/2m. (3.10b ) 

Equation (3.9b) gives the only possible pseudovector. 

Equation (3.9a) gives the only vector a that is linear in A and 

not quadratic in the momenta. The only other independent vectors of 

the problem that are linear in A, and that contribute to (3.8), are 

aJ.! = h(Q' A) QJ.! (3'.11a) 

and " 
aJ.! = h'(q.A) QJ.!. (3 • lib ) • 

These same two forms (3.l1a) and (3.l1b) with qJ.! in place of if 
give no contribution to (3.8) because of the identity 



• 
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(v' cr)(v • a) 2 = v = 1 . 

[Here we have assumed that ttli = mf = m;, so that 

q = Pi - Pf = (vi -vf)m.] , 

The insertion of (3.9a) into (3.8) gives 

M = eA~ == eA· M, , IJ. 

UCRL-202ll 

where M is defined in (3.5b). The insertion of (3.9b) into (3.8) 
IJ. 

gives (for 2 
q = 0, 

(3.l3b ) 

where M is defined by (3.6b). The derivation of (3.l3b)' is given 
IJ.V 

in Appendix A. 

The insertion of (3.lla) into (3.8) gives 

where ~ is defined by (3.7b). However, it is shown in Appendix A 

that (3.l3c) is a linear combination of (3.l2a) and (3.l3b), on mass 

shell. The form (3.llb) does not contribute because q. A = 0. Thus 

if we write 

v J = eM + 2gq M , 
IJ. IJ. VIJ. 

(3. 14 ) 

then the photon-fermion vertex function (<?n..;mass-shell) is 
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This is a 2-by-2 matrix in the spin space of the fermion. Replacing 

the suppressed arguments one has 

= A~(q) J (Pf'P.), 
~ 1. 

where 

A~(q) = 

We also define 

This function V(q; Pi,Pf) represents the connected part of the 

. S matrix for photon-fermion scattering, on mass shell. (Some of the 

momenta must be complex if the mass-shell and conservation-law con-

straints are both satisfied. S-matrix theory is characterized by the 

use of functions in unphysical regions in which the momenta are complex, 

but still satisf'y the mass-shell and conservation-law constraints.) 

The minus sign in from of q in r of (~.18) arises from the fact 

that q is minus the momentum-energy of the incident photon, which 

means that if A~(x) is the incident photon field then -q is the 

appropriate argument of (3.17). The -i in (3.18) is conventional; it 

makes our e the same as the usual charge on the electron. 

• 
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" "\ 

IV. SCATTERING OF AN ELECTRON IN AN EXTERNAL FIELD 

• The calculation is carried out in the approximation where 

radiative corrections are igriored. That is, only the contributions 

corresponding to tree graphs are included. A, typical tree graph is 

shown in Fig. 1. 

Fig. 1. A typical tree graph associated with the scattering of a 

particle by an external field. 

Multiple a~plicationof the pole-factorization theorem9 gives 

for the contribution to M corresponding to Fig. 1 the expression 

(4.1) 

'v 

where 
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v , = V (q .; k,,'~' 1)' , J J J -J- -
(4.2) 

The pole-f'actorization theorem gives only the residues of' the 

poles. Thus it does not determine the function completely: An 

arbitrary entire f'unction can be added to (4.1) without disturbing the 

residues. One simple way to add an entire function would be to augment 

the V's by entire functions that vanish on the mass shell. 

In the S-matrix or dispersion approach 'the ambiguity regarding 

the entire function is to be resolved by conditions on the asymptotic 

behavior of' the functions. In this example one sees clearly how 

asymptotic conditions become, in ef'f'ect, conditiortSl.:"dri',the of'f'-mass

shell part of' the vertex functions V. Thus the asympiotic conditions 

play in S-matrix theory a role similar to that played by the choice of' 

the interaction in f'ield theory. 

A fundamental dif'f'erence between S-matrix theory and f'ield 

theory lies in the approach to the problem of' determining the asymp-

totic behaviors. In f'ield theory one imposes microscopic space-time 

conditions, which have asymptotic implication in momentum space. In 

S-matrix theory one examines the problem directly in momentum space, 

and tries to satisfy the conditions imposed by unitarity, and general 

analyticity requirements: No a priori conditions are imposed on the 

microscopic space-time structure--the asymptotic behavior is not pre-

sumed to be generated by any particular form, or even by any conceivable 

f'orm, of' local interaction. 

• 
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The problem of determining the correct asymptotic behavior is 

a very deep and fundamental one; which lies far outside the scope of 

this note. But in regard to asymptotic behavior the minimal 

coupling has a preferred status: it .is linear in the momenta, whereas 

all·other polynomial couplings are at least cubic. The a priori 

recommendation of the minimal coupling. in S-matrix theory is thus 

essentially the same as in field theory: in terms of powers of the 

momenta it is the simplest possible coupling--it gives the gentlest 

possible asymptotic behavior, within the poiynomial framework. 

To obtain the contribution of M(Fig. 1) to 

(A +(x)vflsIA +(x)V.) one must fold it into the initial and final wave 
~ ~ ~ 

functions. This gives 

)(. J. (p.) 
1. ~ 

4 
d Pi + 2 2 
-"-'-. (2:rr) B (p.- m ) 
(2:rr)~ ~ 

x 11 
J=l 

This contribution S6 contains the contribution of Fig. 1, 

together with the (26 - 1) ·similar contributions corresponding to the 

other two orientations (forward or backward) of the six photon legs. 
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The effect of choosing the coherent initial state IA +(x)) is to j.l 

couple each incoming line to the same initial photon wave function 

Aj.l +(x). And the effect of choosing the coherent final state (Aj.l +(x) I 
is to couple each outgoing photon lines to the same final photon wave 

- + * function A (x) :: [A (x)] • Since the two parts of j.l 

A(x) = A+(x) + A-(x) correspon~ to'positive and negative frequencies, 

one can join them together and let the Sign of qO determine the part 

of A(x) that is used. 

To obtain the full scattering, without radiative corrections, 

one must sum over all the tree ~iagrams. This gives 

ex> 

(1Jf f l S[Aj.l+(X) JI1Jfi ) - (Aj.l+(x)'lrflsIAj.l+(X)'lri ) = L Sn' 
n=O 

(4.4) 

where Sn for n. > 0 is given by ,the obvious generalization of (4.3), 

and 

+ 2 2 (2n) 6 (p - m ). (405) 

If the minimal coupling is used, then the result (4.4) is just 

the two-component form of the result obtained by Feynman, on the basis 

of the Dirac equation and space-time considerations. lO The plus iE 

rule for integrating over the pole singularity comes from the macro

causality condition,ll which is a purely S-matrix condition. 

What has been .calculated here is the S-matrix element,. not the 

.detailed temporal development. Of course, Feynman's solution is known 

• 

• 
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to be equivalent to those obtained by solving an equivalent Schroedinger-

t t · 12 ype equa ~on. So in this simple case one can imagine, if one chooses, 

that the time development between the preparation ,and measurement of the 

particle proceeds ,according to a Schroedinger-type equation. However, 

the empirical content of quantum theory resides in the S matrix. 13 Thus 

this extra bit of imagery adds no empirical content. Whether a micro-

scopic space-time picture can be formed for the complete problem (with 

radiative corrections) .when realistic asymptotic conditions are imposed 

is not known. 

'In the abov,e discussion the field A was assumed to be a free 

field. ,If one wishes to take into account the sources of the field then 

the various photon line's can be attached to' lines representing the 

sources. If the pole-factorization theorem is applied now to the inter-

mediate photon lines of the new expanded tree graphs, then the field 

quantities get replaced by 
-2 

J (q) q ,where 
fJ. 

J (q) 
fJ. 

the source function. Notice that questions of normalization that in 

is 

field theory are resolved by commutation relations are in S-matrix theory 

resolved by the pole-factorization theorem, the normalization of which 

is fixed by unitarity. 

The pole-factorization theorem is derived from unitarity and the 

assumed normal analytic structure:l without any assumption about the 

reality of the coupling constant e. But if e were not real then 

unitarity and the normal analytic structure could not be maintained near 

a pole singularity, because the contributions from the connected parts 

of Sand st become dominant, yet do not cancel, and there are no 

intermediate states in the unitarity equation that can make up the dif-

ference. The reality of e foliows, therefore, essentially from unitarity. 
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V. CONCLUDING REMARKS 

The essential point o:f the above discussion is simply that as 

• long as only tree graphs are considered the S~matrix and field theory 

solutions are almost trivially equiva.lent. The only difference is one 

of viewpoint. In field theory one resolves the ambiguities not resolved 

by general principles by the choice ot space-time Lagrangian, in S-matrix 

theory one constructs the scattering function by using the Cauchy form-

ula, or some generalization of it, and resolves the ambiguities by 

asymptotic conditions in momentum space. 

The important differences between field theory and S-matrix 

theory lie at a deeper level. S-matrix theory is more general in that 

it does not require the asymptotic behavior to correspond to simple 

. microscopic space-time conditions, and it takes as its basic equations 

not a set of ad hoc differential: equations in space and time, but rather 

the unitarity equations, and the discontinuity equations that follow 

from them. These equations 8,re expressed in terms of the mass-shell 

scattering functions and their analytic continuations, and seem to be 

much more' secure than the differential equations. The greater generality 

of the S-matrix formulation must, however, be restricted by imposing 

asymptotic conditions in moment"t.Un space. 

According to the tlbootstraptl idea of S-matrix theory the asymp-

totic properties are closely liriked to the analyticity and unitarity 
f 

properties that hold in the finite part of momentum-energy space: the 

asymptotic properties cannot simply be specified by ad hoc conditions, 
!it. 

such as ..... choice of Lagrangian, but are instead determined by the 

requirement that they be compatible with the analytic;i ty and uni taxi ty 
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requirements. This idea has great aesth~tic appeal. It is not yet 

known how successful it will be. ·In the meantime the general rule is 

to use the simplest asymptotic properties that seem to be compatible 

with analyticity, uriitarity, and experiment. 
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APPENDIX A 0 THE PAULI TERM 

The aim here is to derive (3013b) from (3.8) and (3.9b). 

Insertion of (3.9b) into (3.8) gives 

M = g{[Aqv.] 0 a (v . . a)- (v
f

• a)[Aqv.] • a} 
111 

= g(~[Aqv.] 0 a (v . • a) - ~[qAv.] • ~ (v . • a) 
2·1 1 2 1 1 

(A.l) 

where the antisymmetry of the box product is used. 

identities? 

Insertion of the 

[abc]. a -i(a· a)(b· a)(c ~ a) + i(a 0 a)(b. c) 

'-i(b 0 a)(a· c) + iCc • a)(a 0 b) (A.2a) 

and 

[abc] 0 a = -iCc 0 cr)(b • a)(a . cr) + i(a • cr}(b . c) 

-i(b 0 a)(a . c) + i(c· cr)(a. b) (A.2b) 

gives 

M = g -2i [-(A' a)(q 0 cr)(v. 0 a)(v . • a) + (A 0 a)(q· v.)(v . . a) 
1 1 1 1 

-(q. a)(Ao v. )(v. 0 cr) + (v . • a)(A· q)(v .• a) 
1 1 . 1 1 

+ (q .a)(Aoa)(v. oa)(v .• a) - (q.a)(Aov.)(v. oa) 
1 1 . 1 1 

+ (A . a)(q • v. )(v. 0 a) -. (v . • a)(q. A)(V .• a) 
1 1 1 1 

- (vf 0 a)(A • a)(q • a)(vi • a) + (vf ' a)(vi 0 a)(q. A) 

Equation (A.3) continued 

" 

... 
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Equation (A.3) Continued 

+ (v . a)(q • a)(A • a)(v .. a) - (v . a)(v .. a)(A' q) f' 1 f'1 

where 

-ig[(q .a)(v .• a) + (vf'. ·a)(q .a)J(A ·v.). 
1 1 

(A.4) I 

The second term on the right-h~nd side of' (A.4) vanishes by virtue of' 

(3012). The f'irst term vanishes because q. v. = 0, which f'ollows f'rom 
. 1 

2 the condition q = 0, which implies vi· vf' = 1: 

(A.5) 

If' th d ·t· 2 Oil d th th f' (3 9b) d (3 l3b) e con 1 lon q = - s re axe en e orms • an • 

dif'f'er by a multiple of' the minimal coupling. More generally, all the 

coupling constants can become f'unctidns of' v. v On-mass-shell the 1 • f" 

coupling constants are, of' course, constants. 

To show that (3.l3C) is a linear combination of' (3.l3a) and 

(3.l3b) write (with m now normalized to unity) 
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A'\11-L = (A' o)(vi • a) + (vf - o)(A • a) 

= (A a O)(Q + ~ q) • a + (Q - ~ q). 0 (A 0 a) 

[ '" "'] 1 [ '" "'J = A'o Q-O+Q-O A"o +-Aoo qoo-q'O Aoo 
2 

(Ao6) 

Then write (using q2 = 0, which implies 2 
Q = 1), 

= (Q - A) [1 + (Q - ~ q) • 0 (Q + ~ q) 0 'OJ 

= 2Q. A + ~ (Q • A) [Q. 0 q' C; - q • a Q' 'OJ. (A. 7) 

Thus 

= [A' 0 q' a - q • 0 A 00] - (A' Q)[ Q 0 a Q. 'OJ 0 

(A.8) 

Notice that the right-hand side of (A.8), like the right-hand side of 

(3.9b), vanishes if A is proportional to any linear combination of 

Q and q. 

Equation (3.6b) gives 

= 

.. 

• 
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Using (once again) the identity 

and 

where 

OR' 

"" 2a·b.,b·a a'a, 

2 2 
~ = 1 - Q = 0, one obtains 

= 

q • iJ - q • a Q' a] a 
v 

( 1) ( 1 ."" 2 Q - 2" q J.l a
v 

Q + 2" q) • a 

. 1 "" 1 
- 2(Q- 2" q) • a all (Q + 2" q)v 

.1 0 1 
+ 4(Q - 2"q)J.l (Q + 2" q)v • 

Thus (A.8) and (A.ll) give 

= 

To show that (A.I0) is zero one can write 

A = (A· Q)Q + ° B • 

UCRL-202ll 

(A.10) 

(A.ll) 

(A.10) 

(A.ll) 

It has already been noted that the contribution toA proportional to 

Q gives a null contribution to the left-hand side of (A.10). Thus it 

must give a t;lull contribution to the right-hand side. The contribution 

B satisfies B' Q = O. Thus it is sufficient to show that the second 

term on the right of (A.I0) is zero when A is replaced by B. 
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The first term in R' when dotted into q on either the right 

or left vanishes due to the conditions q2 = Qo q O. Repeated use • 
of these two conditions gives, for the second term on the right of 

• (A.lO), with B in place of A, 
....... v 

1 1 '" 1 '" = - 2"[ (Q - 2" q) • a q. a + q • a (Q + 2" q}a ] B • q 

~[Q • a q. Ci +. q • a Q. CiJ (B. q) 

= -(Q. q)(B- q) = O. (A.12) 

The calculations have been given because the two-component formalism is 

not well known: they are prototype.· calculations. 
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apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission /I 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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