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ABSTRACT 

We have made some steps towards solving numerically the equaticlns 

of Khuri and Treiman for K and T) -7311 and extending them to include 

P-wave interactions, the effects of a nonflat bare matrix element, an6. 

the effects of unequal masses for the charged and neutral pions. Our 

results show that it is rather difficult, with S waves alone, to get a 

steep enough slope for the matrix element on the Dalitz plot when the 

bare matrix element is a constant. The S-wave phase shifts required to 

fit the Dalitz plot data are usually quite unphysical (e.g., 

aO - a2 = -1.0, an FO pole located just off the edge of the Dalitz 

plot, etc.). In our calculations the inclusion of P waves appears to 

have -a large effect on the Dali tz plot. If we assume I = 0 phase 

shifts of either the up-down or the down-up variety, and if we aSBume 

I = 1 and I = 2 phase shifts that'- are consistent with the experimen-

tally determined phase shifts, then the resulting solutions of the KT 

equatiohs with a constant inhomogeneous term yield Dalitz-plot slopes 

which fit the data. - The inclusion of P waves in the KT equations 

probably deserves more. study,. however, perhaps with different 

numerical approaches. 
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With the same assumption of a constant inhomogeneous term, the· 

extension of the K-decay solutions to T} decay follows trivially 

just from changing the mass of the decaying particle. 

If the inhomogeneous term of the KT equations is given a linear 

term, 
. I 

Mbare = I + 2 g(sc - so), the effect is to tilt the solutions, 

but by an exaggerated amo.unt. If the inhomogeneous term is changed to 

Mbare- = I 
I 

tan~[ (sc sO)/r ], which gives a slope on the Dalitz + 2 gr -
plot but goes to a constant asymptotically, the effect is just to tilt 

the solutions in the region of the 'Dalitz plot by the amount 1 "2 g. 

When the masses of the charged and neutral pions are made 

unequal in the KT equations, the largest effects to be observed in the 

matrix element are cusps related to thresholds located in the physical 

region of the Dalitz plot and due to the presence of communicating 

subchannels. The calculated effects are in a direction agreeing with 

experiment, thus leading to the speculation that perhaps the unequal 

masses of the pions might be responsible in large part for the slight 

amount of I = 2 final state observed in the decay. 
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I. INTRODUCTION 

The three -pion decay of the K meson has been studied since 

R.H. Dalitz first analyzed 13 T events in 1953.1 
The decay modes 

observed are: 

K+ + + -
~ rc rc rc " + . T decay" 

+ 0 0 
~ rc rc rc "",' +q.ecay"; 

-·similarly for K ; 

KL
O + - 0 
~ rcrc rc 

000 
,-7 rc rc rc . 

Because of the small amount of energy released in these decays, the 

experimental distribution of energy among the three pions is rather 

featureless except tor gentle slopes to the Dalitz plots of these 

decays.· Because of this small energy release, however, it is tempting 

to see if one cannot understand these slopes in terms· of the low energy 

strong interactions amongst the three pions in the final state, rather 

than attribute it to some intrinsic slope in the matrix element of the 

bare weak interaction. A number of attempts in this direction have 

been made, but in more recent years explanations· based on current 

algebra, relating the slope to the magnitude of the two-pion decay of 

K meson~have become more popular (see review by Cabibbo2 ). The view-

point we would like to adopt is a return to the original view that the 

slopes are caused only by dressing a bare, flat weak interaction with 

strong final-state. interactions. Accordingly in this paper we assume 

various forms of the low energy rcn: interaction and proceed to 

calculate slopes for the Dalitz plot. 
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This picture of ha.ving only final-state interactions has some 

virtues., First, if the picture is correct, one has the pleasing 

possibility of going the other way'to infer some information about low 

energy it 11: scattering from the observed slopes. 'rhere is not a partic-

ular wealth of unambiguous data for this important low energy 11:11: 

scatterin& so it would be worth trying to sort out the interactions of 

a three-particle final state. Secondly, if the idea is correct and the 

assumption of a constant primordial matrix element applies to eta decay 

as well, it should be straightforward to include an explanation of the 

slope of the Dalitz plot for the electromagnetic decay of the T] 

meson into three pions. 

'Our basic approach is that of Khuri and Treiman,3 which was 

first P!oposed in 1960. '!'he KT approach uses relativisticS-matrix 

theory and dispersion-relation techniques. Mathematically the approach 

requires the solving of a set of coupled, singular integral equations 

whose kernels are essentially 11:11: scattering amplitudes. In order to 

solve these equations Khuri and Treiman proceed to make a series of 

approximations which we will wish to re-examine in this paper and 

hopefully improve on. 

,Using just an S-wave scattering length approximation to low 

energy 11:11: scattering, Khuri and Treiman were able to fit the slopes 
@I 

of the 'various Dalitz plots with In a more phenom-

enological approach Brown and Singer5 have proposed that the Dalitz 

plot spectra could be understood by assuming a low-energy broad-

-width. I= 0 11:n: resonance, the so called a resonance. A fit to 

the da.ta requires a mass, rna ""I 390-425 MeV, and a width, 
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r a ~ 75 .... 100 MeV. It seems somewhat suspicious tha'; the "resonance" 

has to be located just outside the edge of the DalLtz plct ("" 360 MeV 

for K decay and "" 410 MeV for 1) decay), but the mOGC!l provides 

a good mnemonic for.the direction of the experimenGal DaJitz plot 

slope[;,and indicates that large phase shifts are~equirEd in order to 

fit the data when using only I == 0 interactions. Barbcur and Schult
6 

and Schult and Barbour? used Faddeev equations with S- snd P-wave 

ncinlocal separable potentials to investigate final-state interactions 

in K7. decay. They' find that using only S waves requires 
::nr 

22· . a 2 - a
O 

~ 2 in order to fit the data. By incluling P-.wave and 

using small S-wave scattering lengths (""Q.2) they find that the P wave 

can be'corne dominant and fits C,;l.n' be achieved with These. 

P-wave dominant solutions are sensi ti ve to a cutof:' used in the 

calculation, nevertheless it is interesting that tl'ey finl that P vlaves 

could be impOrtant in the problem. 

A recent attempt to use the KT equations hLs been made by Neveau 
'. 8 

and Scherk. In their work they use the KT equations 'to find what 

corrections strong final state interactions might nake on a bare weak 

interaction that has a linear slope equal to that predicted by current 

. algebra;,:~, The J1J1 P-wave and I= 2 S-wave intenctions are neglected 

and the I = 0 S ,,,ave is taken to have a resonanCE' at ab)ut 700 MeV 

wi th a wid,th of about 300 MeV. Two ::.ubtractions are made so that an 

arbitrary linear dependence can be introduced. An equation for the 

correction to thi s linear dependence is derived, and sol vE'd approximately 

by taking a major portion of the expected solut~ion out in terms -of 
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Omnes -type functions. El,nclu§ing a one-it(:ration Cl,pproxirnation for the 

remainder. 'l'hey alsocon9i(ier ,the case of TJ
311

decay and make argu- .. 
ments that perhaps the strr)ng ·final-state interacti01J con ections can 

overcome the· failure of simple cl!-rrent algebra to give a I onzero matr:~x 

element for the decay. 

In this paper we should like to explore a techniqte for solving 

the K'l' equations more directly and numerically on a compui er, to try 

to include P-wave 1111 interactions in the KT prescription, and to 

investigate crudely the effects· on·the matrix element wheL one takes 

\ 

into consideration the mass difference between the chargell and neutral 

pions. 

7 
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II. BRIEF SKETCH ,AND REVIEW OF THE KHURI -TRElMAN EQ,UATIONS 

A. Basic Idea of the KTEquations 

. The Khuri-Treiman approach uSes the S-matrix ideas of analy-

ticity, crossing, and unitarity. Rather than focusing attention on 

decay diagrams like Fig. la,.one considers the general "scattering 

like" diagram shown in Fig. lb .. When analytically continued and con-

sidered on a Mandelstam plot this reaction amplitude will have s, t, 

and u physical regionslik~ a normal reaction and will also have a 

Dalitz-plot physical region in the center because one of the particles 

is heavy enough to decay into the other three (Fig. lC). One then 
. . ." 

assuinesthat this . "scattering like" amplitude obeys a Mandelstam 

representation similar to that for a normal reaction. 

For the discontinuity of the amplitude in agi ven channel, say 

s, the unitarity equation is used, that is 

! Disc A __ 
2 s -lCrr~ rr11 = I 

all open inter-
mediate states, 
"int" 

(1) 

Next comes an important assumption. For the intermediate states we 

shall ~eep only rr1t. This means retaining in the unitarity equation 

oJ;l.ly a diagram like Fig. ld o.nd ignoring int.ermediate states such as 

Krr, 4rr , etc. The foremost rationale for doing this is that it makes 

the problem Simpler. But arguments can be put forward that the K11 

and 411 thresholds are much higher than the 1111 threShold and might 

therefore. have less effect on the Dalitz-plotregion. These thresholds 
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occur "beyond" the ~litz plot, whereas the nn threshold occurs right 

at the "beginning" of the Dalitz plot. 

The sum over all the open intermediate states also implies 

integration over all angles of the intermediate state. Khuri and 

. Treiman next make another important approximation which we hope to 

relax somewhat in Sec. III. They keep only S waves in the Tor ampli-

tude. If this is done one can arrive at the following symmetric-

looking set of equations, known as the KT equations: 

* . 
A-_ (8 t u) 
-1(n:-+ n:n: " = rOOdS' 

Jthr 

. ,- J.sc 1 D" ~ 
2 s· _.. n:-+ .. ;(.n: + similar terms in t and u, (2) 

(s' - s t ie)(s'- So + ie) 

where -2
1 Disc A __ . s -1(n:-+ rrn: 

and where 

= \' -4A* (s) L ( )2" Krr-+ nrr 
charge s 
states 

J
.+l 

-1 

dz * . 
-2 A . (s,z). -len-+ nrc 

(For this general discussion I shall gloss over questions of charge 

states and symmetries. They will be gone into later in more detail.) 

With the use of the +ie prescription it can be seen that we have 

* A . both inside the integrals and outside and thus have an integral 
Kn-+ nrr 

equation in three variables s', t, and u (actually only two because 

s + t + u= The kernel of the integral equation is essentially 

the nrc scattering amplitude, In practice one assumes the 
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11:11: scattering amplitude to be known, and solves for the decay ampli

* tude, A..._ That it is a coupled integral equation can be seen by 
-1C11:~ 11:11:. 

the fact. that the intermediate -state pions may have different charge 

states from the final~tate pion~ so that there is a coupling between 

the amplitudes for the different charge modes of decay. 

Notice that the KT equations cannot give the overall normaliza-

* tion of ~_ , since it appears linearly on both sides of (2). This 
-1C11:~ 11:11: 

means the KT equations can give only relative amplitudes compared with 

some chosen spot in thes, t, and u plane, such as the center of 

the Dalitz plot. In practice the subtraction constants are chosen to 

be real and of order I (for example the choice -2 and I for T 

and -r' decays respectively satisfies 1.0.11 == ~ requirements). 

B.Critique of the Approximate Solution by IDuri and Treiman 

Now comes tneimpol':'tant question of how to iolve this compl:l-

cated set of coupled integral equations in two dimensions. Khuri 

and Treiman obtained an approximate solution by making one iteration 

* of an iterative solution to the problem. The A inside the integral 

was replaced by the subtraction constant so that with 

a given assumed form for the 11:11: scattering amplitude the integration 

could be done explicitly to obtain a closed expression for the ampli-

tude. The 11:11: scattering amplitude chosen by Khuriand Treiman kept 

only S waves and used a scattering-length approximation. Specifically, 

they assumed 

and 
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io 2qa e sin 0 ~---r, 
(S)2 

where is the scattering lengtll for apure I-spin state. 

Using these approximations and keeping up to linear terms in· s - So 

in the matrix element squared,Khuri and TreiIilanobtain an expression 

for the slope of the Dalitz plot which is proportional to aO - a2 • 

Fitting this to the observed slope then requires aO - a2 "" -0.7. 

The KT paper was written in 1960,and since that time a 

theoretical prejudice has evolved that aO should be small and positive 

and that a2 should be smaller and negative, in direct disagreement 

with the above result. As a guide to our thinking we can recall the 

values proposed by.Weinberg9 on the basis of soft pion theorems:l namely 

aO ~ +0.20 and a2 ~ -0.06. 

Upon a second examination some of the above approximations made 

by Khuri and Treiman to solve their equations appear a bit shaky. For 

the purposes of this mathematical discussion let's consider a somewhat· 

simpler equation in only one variable, namely the so-called "amnes 

equation," 

A(s) = 
ds' F(s') A(s') 

io(S' ) whereF(s' ). - e . sin o(s'). !<huri and Treiman take 

F(s') ~ 2qe.i 
(S}2 

and obtain,after one iteration, 



'" 

l~. 

where 

r(s) 

-9-

A(s)- = 1 + res) - r(so) , 

= 
2q~ l' 1 - ,,-log 
(S)2:n: 1 

2 
~ _(~, ) • 2a 

\(8)2, Jt 

~
q 

+ (sY 

-~ 
(s)~ 

-i~ 
{S·)2 

- i~a 
1 

(S)2 
(q <<.1) . 

This gives a reasonable behavior, that is,a matrix element decreasing 

with energy for positive a, and vice versa. However, if we use a non-

relativistic effective-range approximation, 

and 

we get 

1 q cot 5 = -a 

F(s') ~ qa, 

res) = -iqa. 

Since here res) is purely imaginary this leads to an IA(s)1 2 

that is equal toone at the subtraction point, but is greater than one 

everywhere else in the physical region, thus exhibiting a bowl-shaped 

s dependence around the arbitrary subtraction point sO. rn fact, if 

one takes F(s)/q(s) to be any real analytic function of s with at 

most a. right-hand cut with a square-root branch point' and no other 

singularities on the physical sheet, then res) is purely imaginary. 
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Examples of such behavior are 

F(s), = qa, 

,qa 't' 1 .. iqa' a pos~ lve, 

1 - bq2 - iqa' 

qa a and b positive, 

'or 
2 4 ' 1 .~ bq +cq - iqa 

qa a, b, and c positive and 

b
2 > 4c 

This seems like a fairly large class of kernels that leads to non-

sensical results on first iteration. 

It might be hoped that these problems could be' cured by further 

iteration, that is,by using the output amplitude as atrial amplitude 

tb be substituted back into the integral. to generate another output 

amplitude, and so on. Since doing the integrals explicitly for repeated 

iteration soon becomes tedious, 'iteration was tried numerically on,a 

computer. The effort was unsuccessful, however, most of the time. The 

solution most often ''blew up," that is, for any s I So it increased in 
, 

magnitude with each succeeding iteration. For a few cases the numerical 

iteration was even started with the exact known solution for a trial 

solution, and yet the iterations still diverged. This could be due to 

numerical inaccuracies and propagation of error, but we suspect it may 

be due to violation of some unknown convergence criteria, which wpuld 

lead to failure even if the integrals were done analytically. 
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Because of these problems a more direct method for solving (3) 

by matrix inversion was tried and found to be successful. The method 

involves choosing a set of N mesh points, replacing the integral by 

a sum, and deriving a set of N linear equations in N unknowns for 

the amplitude. Details for the numerical method can be found in 

Appendices A arid B. 

Next we come to a question of uniqueness. The exact solution 

'for, integral equation (3) is known, namely 

A(s) So L: = ~~:l) . eX]J,,{_S '-: - d,S' 6(s') 
(s' - s + iE){S'- So 

where p(s) is an arbitrary real polynomial in s. 'The highest order 

of polynomial that can be tolerated depends on the convergence of the 

integral in (3) and the number of subtractions. For example, if we use 

againthenonrelativistic effective range approximation 

the exact (but unnormalized) solution is 

p(~) 
1 + iqa' a > 0 , 

C(l - iqa), a < 0 , 

where p(s) is a first-order polynomial,and C is a constant. This 

means, after normalizat~on, that the solution is unique for a < 0, 

but not for a > O.The reason for the nonuniqueness is due to the use 
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of "unphysical" phase shifts,i. e .,phase shifts which do not go to 

zero as s goes to infinity as in nonrelativistic potential scattering. 

Now in the above example the solutions which seem physically reasonable 

are 

,:C 
1 + lqa' a > 0, 

C{l - iqa), a < 0. 

That iSjthe matrix element squared should go down wi th energy for 

positive a and vice versa. The physically reasonable way to achieve 

uniqueness and extend the nonrelativistic potential scattering results 

then would be to select the solution with the lowest asymptotic 

behavior. Now, one might worry' hbwthis selection can be achieved 

in the numerical solution, but it is submitted that the manner for 

doing the numerical integration outlined .in Appendix B introduces 

sufficient bias to select the lowest asymptotic behavior for our 

,cases of interest. As a demonstration of accuracy, numerical solutions 

were obtained for (3) using nonrelativistic scattering lengths of 

a = ±l.O, and only 16 mesh points. Comparison of the amplitudes squared 

of the true and numerical solutions gives a discrepancy of 41% at 

thelast;rneehpoint; s == 1000, 310 at s = 100, and less than 1% for 

s S 6.76 (the Dalitz plot region for K ~3n). For s S 100, then, 

there is virtually no difference between the solutions, and on the 

scales used in later figures there is no graphable difference between 

the solutions. 
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III.. AN EXTENSION TO INCLUDE P-WAVE FINAL STATE INTERACTIONS; 

' .. THE DERIVATIONOFT.HE. EQUATIONS USED. FOR-APPROXIMATE, 

NUMERICAL SOLUTION OF THE KT EQUATIONS 

A. General Expression of the KT Equations 

We now present a sequence of derivations and approximations 

leading up to theequa.tions actually used for numerical calculation. 
. . 

To reduce the amount of algebra we may occasionally gloss over certain 

inessential complications for the particular topic under discussion. 

Also because of all the different charge cases possible we shall 

occasionally use.'just illustra.tive examples, in which the generalization 

to other charge 'cases is obvious. 

Let us first write down a general expression for the :rrll 

contribution to the discontinuity ina particular channel and then 

proceed to .make simplifications. Let A *(K ~ llallbllc) =MCX/3y(sa,sb'sc), 

where a,S, and y. stand for the charge states of lla' llb' and TIc 

respectively, and where Sa:!5 sbc' the invariant mass squared of '. llbllc' 

etc. Then 

JdD f 

X' . 4TI 
bc 

where 1(1( matrix elemeht for 

where the integration is over all possible angles of the intermediate 

state, llb'llc' in the b'c' (or equivalently be) center of mass •. 
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Here also qt3' y' stands for the center-of-mass momentum, and 

(m
t3

, + my ,)2 the threshold for the b'c' intermediate state. Similar 

equations can be obtained for ,the s .. and s 
b c discontinuities. The 

normalization of B is such that if we projected onto a pure state of 

I spin and angular momentum the S matrix could be regained by 

= 1 + 2i 
i f .1. 

(q qi )2 B , 

(S)2 I-

where. qi and 
f 

q are 1nitial- andfinal-state momenta respectively. 

As mentioned before, the overall normalization of M is immaterial, 

since it appears bn both the left- and right-hand sides of the above 

equations. 

Equation (5) is deliberately written with general kinematics, 

·in order to be useful when we consider what effects the difference in 

mass of the charged and neutral pions might have on the matrix elements. 

In what follows we shall consider the pions to be of equal mass. This 

means that all the thresholds are the same, that qi = qf _ q q, 
-t3' y' -

that we can use I-spin amplitudes for the me interaction, etc. 

B. Angular Integration Approximation 

Since the KTintegral equations involve the sa' ~,and Sc 

plane, some set of mesh points must be chosen for numerical calculation. 

Rather;than try. to cover the whole plane it was decided to economize on 

the ~Umber of mesh points and choose points along certain rays in the 

pl~ne. In order to see the rationale behind the rays chosen we examine 

the angular integration in (5). One could use partial-wave projections 
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of the decay amplitude, but we can.obtain almost equivalent results by 

using appropriate combinations of rays. Figure 2a shows the situation. 

The integration is in the bc (equivalently b'c') center of mass. 

and is over all angles for the intermediate pion momentum ~b" Now, 

(Pa~ 
2 ~. 2 s c' == sab' = + Pb'~) = m + ~i + 2Ea~' 2~'~b' , a 

(Pa~ 
2 2 2 

sh' == s = + pc'~) = m +m, + 2E E , - ~.£c" ac' a c a c 

so that 

Notice that for fixed sa' the angular integration, when viewed it) 

the Mandelstam plane,will be over a variable that is "perpendicular" 

to sa' namely· sb' - sc" with the center pointof the integration at 

sb' - sc' = O. Since we are including at most P waves in the rcn 

interaction, this integration will be sensitive at most to the linear 

variation of MaBy(Sa,sb' ,sc') 

Along any given ray let 

in 

Mray label (s) , 

where s, the only variable, goes from threshold to 00 along the ray, 

and the ray label is any convenient mnemonic label. If for illustra-

tion we suppress the charge labels and choose to label the rays for 

M as shown in Fig. 2b, then in the vicinity of the s rays we make a 

the following linear approximation to M; the decay amplitude, 

." 
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M(s ,Sb· ,·,8 ,) a c 

x ( sb ' - s c ,) , 

where 2.6 is the separation of the two rays, Mab(sa) 

On the Dalitz plot of course experiment indicates that 

and M (s ). . ac a 

/MJ 2 . 
J.S nearly 

linear, which is consistent with the above approximation. With only 

Sand P waves the 1(-:n: scattering amplitude is 

and CO' Cl , and C2 stand for the appropriate I-spin Clebsch-Gordan 

coefficients. The angular integration in (5) can now be performed by 

using the rule that for any vectors ~, ~, and c· 
'" 

Thus 

1 * -2 Disc M (s ,sb's ) . . sa a c 
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An important thing to observe.' is that the S-wave interaction multiplies 

the sum of Mab and Mac on the right-hand side of (6) and the P-wave 

interaction multiplies the difference. For an S-:wave-only situation 

each set of parallel rays can be allowed to collapse to a single ray 

if desired by letting 6 go to zero. Another important thing to 

observe is that the final expression for the angular integration and 

discontinuity, (6), involves only relativisttc invariants, so that it 

is natural to analytically continue this expression beyond the Dalitz 

plot, even though it was derived and motivated from the Dalitz plot 

physical situation. 

As mentioned before, the 'choosing of rays yields an economy of 

'mesh points and thus a reduction ih the size of computer memory 

required. The added accuracy to be obtained by keeping explicit 

angular averaging was felt not to be worth the bother, at least at , . 

this stage of the exploration of the KT equations. This approximation 

is reversible if desired by substituting: 

f
'd~ . ' . 

. ~ M(s ,sb"s ,), LJ.n: a c . 

9bb , ). 
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C. Extension of the KT Equations to Include 

P-Wave Final-State Interactions 

We should now like to examine how one can go from one;"dimen-

siona1 dispersion re1atibns to a "three dimensional" KT dispersion 

relation. Holding 

M =! fds ' 11 a 

s c fixed we can write 

where Gc is an unknown function except that it has no cuts in the 

s or a 

and 

where 

vatiables. Similar equations can be written for holding 

fixed. Let' 

F (s) ~2[M b(s ) + M (s)J a+. a a a ac a 

1 . 
+ F ( s ) 2 ,J M b ( s ) - M ( s )]( sb - s ), a- a u a a ac a c (8) 

and F 
a-

are the appropriate S- and P'-wave interactions, 

and similarly for Mb and M. c If we have only S wave, i.e. 

Fa_ = Fb _ = Fc_ = 0, then by comparing the symmetry of the single 

dispersion relations in s c 
we can.deduce that 

:!:. jdg, M (s') 
Gc(sa,sb'sc) 

c c 
+ GO(sa,sb'sc) , ::: 

S' 11 . C - S 
C c 

where GO is an unknown function with no cuts in any of its variables. 

When we include P waves, 'however, the s' integral in (7) requires that a 

we replace in (8) with "m. 2 - s' - 2s . , t... lac But then by com-
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consistent choice for G. c I~ however, we use the trick . . 

S t ~ Sf - S + s ,the s t - s will cancel the denominator and we a a a a a ,a 

will have the constant 

fds ' F ( s') ~ J M b ( s ,) - M (s ' ) ] , . a a- a ~ a a ac a 

which we then can add to G·. Notice that this constant depends on the c 

P-wave iriteraction arid on' the solution of the problem, Mab and Mac' 

but it nevertheless does not depend on· the external variables sa' sb' 

and With the inclusion of all such constants into their ,respective 

G's it is possible to deduce a consistent G. c The equation for M 

then becomes 

M = 
___ M_a.,.-S .... a_'_s..;,b __ ....... C_ + _ " -0 c a 

l:n: f'.' dsa'· (t - s .. ··:) 1 fdsb' M. CSb' ,s -.s) 

s ~ - sa" :rr. st, . - sb 

where G .' as before,has no cuts in any of its variables, and where o 

Ma is a function of the two variables, sa' and sb - s c' as given 

by (8) , and is at most linearly dependent on sb - s ,and similarly c 

for 1\ and M. c 
'This is the extension of the Khuri-Treiman equations 

to include P-wave :n::rr interactions. 

It is interesting to consider the physical interpretation of, 

Go. ,If all the :rrrc interactions were turned off, all that would be 

left would be Go' so it is natural to regard it as something like the 

bare ioTeakinteraction. What is not clear, however, is whether GO 
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contains any terms like the ones we had.to add to G in other words c' 

terms which may depend on the T(T( interaction and the solution, M, 

of the integral equation. These terms,then,as well as the integrals 

in (9) might be related to the final-state enhancement of the decay. 

It is relevant here to observe that Amado and NoblelO have looked at 

the general question of final~tate enhancements for three-body weak 

decays, within the context of Faddeev equations for an exactly soluble 

S -wave separable-potential model. They find the final-s tate enhance-

ment can vary over many orders of magnitude as some parameters of 

their model are changed. Their Dalitz plot distributions, however, 

can remain relatively unchanged as this overall enhancement varies. 

In our problem, since we are assuming the pure weak interaction contri-

but ion to be constant,we have assumed Go to be a constant and have 

performed one subtraction. Notice that terms like 

( ) 1 
. sb - sc' • s' _ 

a sa. 

go at '.most to a constant as one approaches 00 along all rays but two 

in the sa' sb plane, so that making GO a first-degree polynomial 

or better would give it a stronger asymptotic behavior than the strong-

interaction part and might require further subtractions. 

D. Symmetries of the I = 2' Rule 

Experimentally the branching ratios to the various modes of 

decay plus the relative magnitudes of the Dalitz plot slopes indicate 

that in general the decays obey the \61\ = ~ rule .. lith perhaps some 

sm&ll admixture of I~I =.~ (i.e., the final state is ' I = 1 with, 

I 
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perhaps a small admixture of I = 2). In what follows we shall assume 

that the 1611 = ~ rule holds and that the final state is I = 1 

only . 

Following Khuri and Treimanwe can as a matter of convenience' 

pretend that the K meson has I spin = 1 arid that I spin is 

conserved in the decay. Letting p, CJ., 5, and y be the charge 

indices of the K, and mesons,we can write the invariant 

matrix element for the decay as 

M = A'O 5 +B'O 5 
p;CJ.6y . pCJ. 5Y p(3 m + C 5 'OrvA ' pY '4-' 

(10) 

where A, B, and C are fUnctions of and From the 

Bose statistics of the three pion system we have the symmetries 

(Sb ~ sc) B ~C, A ~A, 

(sa ~s ) A c ~C, B ~B, 

(sa ~ sb) A ~B, C ~C. 

Applying (10) to some cases of interest we have,for example, 

M ++_ ( sa' sb ' s c ) = A + B, 

MoO+(Sa'Sb'sc) = -C , 

M+_o(Sa'Sb'sc) = -C ) 

MoOO(sa,sb'sc) = A + B + C. 

Expressing everything in terms of '["I decay, we then have the following 

relations between the amplitudes for the various charge modes of decay: 
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M -- -M+OO 
- MO+O , ++-

M+_O -- MOO+ ' 

MOOO .. := -M - M - MOO+' +00 0+0 

'J'hus if we wish to impose the symmetry of the 1& 1 := ~ rule, we can -

decouple the amplitudes for the different charge modes of decay in the 

KT equations and derive an equation for only a sil'lgle amplitude, say 

the ,,' amplitude.· All other amplitude'S can then be expressed in 

terms of that amplitude . 

. E. Equations for ,,' Decay 

Figure 3 shows the rays and ray labels chosen for ,,' decay.· 

For convenience one pair of parallel rays has been collapsed because 

there is noP wave; in that channel. Because of the right-left charge· 

symmetry of Fig. :3 there are only three independent rays, as is apparent 

in. the ray labels chosen. 

Putting together now all the things discussed in this section, 

and letting ~ B == F := e i5 sin 6, we obtain the following equation 
(sy? 

for t-bo+: 

; JdS' (S' 
1 

+ ic - s + a s' -

1 IdS' 1 
+ s' iE: Ti - S + a 

1 Jd:> , (s' 1 
+ 

j( ,r - S· + 
b 

Eqtwtion (U) Continued nezt page 

.~. 

,~ 
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Equation (11) Continued 

+ -
1 fdsl .1 

Sl - ~ + iE 

where 

Mu (Sl) 

and 

Mw(SI) 

Here we have subtracted at the center of the Dalitz plot, 

sa =sb= Sc = So == ~ L mi 
2

. The subtraction does not affect tbe 

Fl terms because they are zero at that spot anyway • 

(11) 

. To make a coupled set of integral equations out of (11) one 

merely evaluates the general matrix element on the left-hand side along 

the same rays as are being used on the right-hand side. Thus for 

I\u(s) we substitute into the right-hand side of (11) sa = s, 

= ~ So 
1 1 and 3 1 1 

Similarly for sb - - s + 2' 6, s = 2' So - 2' s - 2' 6. 2 c 

M1L, 3 1 1 
and 3 1 1 

s = s, sb = 2' So - '2 s - '2 6, s = 2' So - 2' s + 2' 6; a c 

and for ~, 
3 1 3 1 

and s = 2' So - 2' s, sb = 2' So - - s s = s. a 2 '. c 

for M1A and M1D one just adds and subtracts the appropriate 

equations for I\u and ~L' 

Then 
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IV. SPECIFIC CALCULATIONS 

A. Preface to Specific Calculations 

We shall next wish to investigate the solution of (11). Since 

the nature of the nn interaction is not known exactly, the best that 

-we can hope for is Some sort of intuitive understanding by assuming a 

range of reasonable input n1tphase shifts and observing the range 

of output solutions. In order to try to separate the I = 0 and I = 2 

S-wave, and P-wave effects, we shall consider FO' F2, and Fl one 

at a time to be nonzero, and later combine them in concert. 

A few comments about the numerical program for solving (11) 

might be of interest. Using 25 mesh points per ray requires the inversion 

ofa 75-bY-75 complex matrix. An accurate subroutine calledLINITll 

was used for this inversion. The total program required about 15-30 

seconds and 76,000 words of· storage locations on a CDC 6600 computer. 

The solution for M2 was not sensi ti ve to 6, the amount of separation 

of the 1\ rays, so a value of 6 = 0.5 was rather arbitrarily chosen 

and used. 

In order to compare our solutions with data, we have taken as 

our "experimental data" the empirical form12 

The value, 

tion of the 

g "'=< 0.4, 
. 1 
6I = 2' 

= where g "'=< 0.4 •. 

is the Dalitz plot slope predicted from an applica-

rule to the T decay data [g(T') = -2g(T), 

where g(T) ~ -0.2], rather than the measured value,g ;:::; 0.5. The 

experimental data for T decay are better known than for T' decay, 

and the discrepancy between g ~ 0.4 and g;:::; o. 5 indicates some 

.. , 
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breaking of the .6I = ~·rule, which we assumed in deriving (II). 

Considering. the exploratory nature of the present work, this empirical 

form with g ~ 0.4 . should be adequate for our purposes. 

and ~ = 3.6, this leads on the Dalitz plot to 

Sc min 
4m 2 

:rr: 
= 4.0, 

Using m = 1 
:rr: 

Since the I = 2, S-wave phase shift is 'known to be small, it 

is natural to begin with the I = 0, S-wavechannel, which is expected 

to be more important, to see how close one can come to "fitting" the 

data using this channel alone. The I = 0, S-wave :rr::rr: phase shift is 

of course a subject of some controversy in the literature (for a short 

review·ofthe current pion-pion phase-shift situation see JaCkson13). 

There is agreement,howeve:r; that.the phase shift should be positive and 

large (>60°) by 700 MeV. 

We begin the analysis with just a nonrelativistic scattering 

length approximation 

(12) 

where is the scattering length~The numerical solution of (11) 

for ~ 

are somewhat disappointiAg because the slope of the Dalitz plot is in 

-the wrong direction for positive aO' and is small unless enormous 
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scattering lengths are used. The mathematical reason ·for this can be 

understood,howeve~ if we return to consideration of the simple, one-

dimensional Omnes equation and consult the exact solution, Eq. (4). 

Substituting 

a = qa (13) 

into (4) yields a rather flat solution, IA(s) I = 1.0, for all s! 

In other words the solution to the Omnes equation is dependent not so 

much on the magnitude of the phase shift as it is in how the phase 

shift varies·above or below (13). We can now see that (12) varies on 

the downward side (for positive aO) of (13) and thus produces a 

declining solution for the Omnes equation and for Eq. (11). It is 

essential+y for this reason that Khuri and Treiman get the result 

aO - a2 "'=I -0.. 7 and the possibility that aO is negative. We find 

that aO ~ -1.0 approximately fits the data, not only for (12) but 

also for the relativistic scattering length approximation (see Fig. 5), 

(14) 

If we wish to stay with the idea that 00 is positive, as is 

indicated by experiment, the way is clear. The phase shift must begin 

like (13) at low energies but then must rapidly rise above (13). Many 

forms for achieving this might come to mind. Historically the first 

form to be used was a pole, the so-called a (or e) resonance, 

proposed by Brown and Singer.5 Using just a simple propagator approxi..,. 

mation for the matrix element, they were able to fit the Dalitzplot 

data by assuming a low mass and moderate width for the resonance, 
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ma R: 390-:-~25 MeV and Ta R: 75-100 MeV, which puts it conveniently just 

off the edge of the Dalitz plot (360 MeV for K decay and 412 MeV 

for n decay). Recently there has been some suggestion that the pole 

could beat 750 MeV, "underneath" the p resonance. Using a simple 

Breit-Wigner form 

, -lC~c1 a,(q) ') :::: tan 2 " 
, ,ma - s 

, where 

we get the results shown in Fig. 6. Unfortunately, owing to numerical 

difficulties, we cannot get a good solution for a pole any closer to 

the Dalitz plot than 450 MeV (we shall discuss this point later). Never-
I 

theless, if the 450- and 750-:MeV cases are compared, the trend is clear 

that the Brown and Singer values in some sense reprel?ent an optimum. 

In order to get a steep incline' it is necessary to bring the pole in 

as close as possible to the edge of the Dalitz plot, say 390-425 MeV. 

A choice for ra > 100 MeV will make the' graph for 1~12 not steep 

enough, and ra < 75 MeV willyield too much positive curvature for 

1~12 on the Dalitzplot. 

Another phase-shift form that may be of interest to try is on~ 

corresponding to the so-called "up-down solution" of the literature.13 

This s,oltltion lies between ,60 0 and 90° over the range 500-1000 MeV 

rather than rising rapidly through 90 0 to produce a resonance as for 

the "down-up solution." A form which rises faster than qao initially 

(so as to produce a positive Da1itz plot slope), goes through 60° at 

an energy mO' and then le~els off at 90° is as follows: 
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°0 = tan -l[qao + (q/qo f3(ij3 - qoaO)] (16) 

2; 1 

where aO is the scattering length, and qo == (mO . 4 1)2. For lack 

of a better expression let me refer to form (16) asa "hump. " The 

results of using this form for various values of the parameters aO 

and mO is shown in Fig. 7. As can be seen, the steepest slope occurs 

for the lowest component of qab' namely aO = o. Also the optimum 

value for mO occurs between 500 and 550 MeV. Values closer than this 

to the edge of the Dalitz plot produce too much negative curvature, 

and values further away produce slopes that are too small. Even for 

the optimum, however, the Dalitz plot slope is only about ~o1o of the 

required slope, so this phase"shift form by itself is inadequate to 

fit the data. 15 

An even more extreme case 

was tried,but the results were not appreciably better; furthermore, 

this form leads to a logarithmic singUlarity on the real axis • 

. A few miscellaneous comments about the foregoing solutions 

might be of interest. First, for all the hump and scattering-length 

cases with positive 'asymptotic phase shift, the numerical IM2(S)1 2 . 

appears to go to zero as s goes to "infinity" (the last mesh point 

is s = 1000), which means that in Eq. (11) the inhomogeneous term, 

MOO+(SO'SO'SO) = 1.0, is being cancelled off at "infinity" with a 

fair degree of accuracy. For example, using the nonrelativistic 

.... 
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scattering length approximation with aO == +1.0 produces an 

2 -4 
IM21 = 3 x 10 at s = 1000. In fact crude fits can be made to the 

asymptotic behaviors for the foregoing solutions with the general result 

.n: I 12 -1.6n.. that for an asymptotic phase, 80 == n'2' ~. '" s , whereas the 

amplitude squared for the Orones equation would go like -n s For the 

FO poles the numerical problems are worse, but there still is a 

reasonable degree of cancellation of the inhomogeneous term 

(I~ 12 = 9.0.10-3 - 1.0.10-3 at s = 1000). Secondly, the hump and 

scattering-length' solutions were tested for cutoff sensitivity by 

introducing cutoffs past 1000 MeV.' (s ~ 53). These cutoffs of 

course produce singularities in the solution at the cutoff point, but 

otherwise produce no graphable difference in the Dalitz plot region 

(1. e., less than 1% difference). Thirdly, an interesting numerical 

problem occurs in (11) and in the oIDnes equation for phases outside 

1 1 
the range, -2 n: ~ 8 ~~, as occur~ for exampl~ for poles (0 ~ 8 ~ n:). 

The F s (e2i8 - 1)/2i has an ambiguity in that 8 ~ nn: gives the 

same· F, so that a very reasonable phase shift such as 8 == +135 0 would 

be equivalent to another reasonable phase shift, 8 == -45°. Normally 

the assumption of analyticity for F and M admits only one solution, 

but,for a numerical. problem that does not stress analyticity for F 

and M, one can often get solutions that appear to correspond to 

changing the phase rapidly from 8 to 8 - n: when 8 becomes greater 

than ~. For our dalculations we get around this problem by factoring 

out· of the'unknown integrand the major expected violent behavior near 

poles,and treating that part more exactly. In. this way the remaining 

u.nknown portion of the integrand is likely to be smoother (see Appendix 
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B for numerical integration techniques). With this improvement in 

integration we always managed to get the correct solution, provided 

that th~pole is not too close to the Dalitz plot. The cause for 

the probleni when the pole is near the Dalitz plot is still unclear. 

The major cause appears to be related to the fact that there is a cusp 

in MlA at s = 7.96 [in (11), ~ So 1 2 7.96 = 4.oJ. The closer the 

pole approaches this cusp, from either above or below, the worse the 

solution becomes, going asymptotically to a large constant at s = 00. 

It may be necessary to factor this cusp behavior out in some manner 

in the numerical integration of FO Mu in order to get a good solu

tion. As long as ma ~ 450 MeV (550 MeV for ~ decay), however, 

no problem is encountered. 

Lastly there is a threshold cusp problem,most noticeable for 

large negative s-wave scattering lengths. Numerous efforts were made 

to get rid of this cusp by improving the numerical accuracy of the 

calculation (e.g., increasing the number of mesh points near threshold, 

improving the weights for numerical integration by taking into better 

account the square root nature of the threshold branch point for F, 

etc.). All of these efforts consistently yielded the same solution, 

however. The cause for this cusp is still a mystery. 'Phe numerical 

solution of the Omnes equation using these same phase-shift forms 

produces no such curvature. Since experiment would appear to indicate 

that actual three-body final states in nature do not exhibit such cusps 

or positive curvature near the physical subenergy thresholds, it would 



I" 

-31-

appear to be a fault of the model or numerical technique that they 

occur in our calculations. This cusp will not bother us so much in 

our more realistic examples, however. 

Figures 8 and 9 show the effect ·of using nonrelativisticand 

relativistic scattering length approximations, respectively for F2 • 

The sharp break in ~ that occurs at s = 3 So - 8 = 7·96 is due to 

the fact that sa and sb go below threshold at that point (see Fig. 

3) • In comparing the F2 scattering-length results with FO one can 

make the remarkable observation that for a2 = -aO one obtains very 

nearly the same graph for s < 7.96. This is in keeping wi ththe KT 

result, aO - a2 :=::: -0.7, which depends only on the. linear combination 

(aO - a2 ), and not on the individual magnitudes. Accordingly we find 

that a2 :=::: +1.0 will approximately fit the data. 

As can be observed, the threshold cusp problem persists for 

F2 as well as FO. 

52 = n~, 1~(s)12 

In f'itting asymptotic behaviors we find that for 

-1.2n 
'" s 

The experimental I = 2 phase shift is reasonably well known. 

The form used by most serious phase -shift analysts is the 0 ne by Baton 

et al.,17 

= where a2 :=::: -0.052 and the effective 

range 

Analytically, however, (17) goes sharply to -T[ at 1260 MeV 

To prevent this unreasonable behavior we artificially limit 52 to be 

_21 0 
. for 970 MeV (s:=::: 50) and beyond, which is the last data point 
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of Baton et al. This form is our standard choice for a realistic I 2 

phase shift for use in later applications. We shall refer to this 

choice as the "Baton F2," even though strictly speaking Baton et al. 

are responsible for only the first portion of it. A cutoff or·any other 

similar procedure could just as easily have been used and would make 

little difference. Figure 10 shows the mild nature of the solution 

for M2 for Baton's F2 used alone. 

D. FO and F2:1 0 

Since we previously found that exchanging aO = +1.0 and 

a 2 = 0.0, for aO = 0.0 and a2 = '+1.0, produced the same Dali tz plot 

curves, it might be interesting to test the KT hypothesis further, that 

is, that the slope depends only on the combination aO - a2 . In Figs. 

11 and 12 are shown the results for various sets of nonrelativistic 

and relativistic scattering lengths respectively. In support of the 

KT hypothesis it can be seen that aO ~ -0.5 and a2 ~ +0.5 will 

approximately fit the data, and that the sets aO = +0~5, a2 = +0.5, 

and aO == -0.5, a 2 = -0.5, cancel out remarkably for s < 7.96 but 

behave quite differently beyond this point. 

Figure 13 shows the results of combining the gentle .Baton F2 

with two typical previous I = 0 cases. The solutions are changed 

very little for s < 7.96, but are slightly larger asymptotically. 

The combinations go nearly to zero asymptotically in spite of the fact 

that 82 by itself would produce a growing solution at infinity. The 

FO pole, ma = 750 MeV and ra = 250 MeV, was chosen for graphing 

because it showed. the largest graphable difference when combined with 

'". 
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E. FO' Fl , and F2 1 0 

The first thing one might wish to try when analyzing the effects 

of the inclusion of P waves would be to try _a' P-wave case by itself. 

Upon setting FO = 0 and F;; = 0 in (11), however, one discovers that 

the only solution is MoO+(sa,sb'sc) = Moo+(so'so'so) = 1.0, regardless 

of Fl !The numerical solution .of (11) reassuringly also yields 1.0. 

This result has an intuitive interpretation. If the "primordial weak 

amplitude," the inhomogeneous term in (11), is constant and so has no 

projection into any of the I = 1, P-wave, nn channels, then there 

can be no P-wave rescattering unless there is some S~wave rescattering 

present which can give contributions to those channels. In other words 

there can be no P-waverescattering amongst the pions unless there is 

also some S-wave rescattering amongst them. Mathematically the way 

that this shows up is that in the equation for ~D' considered to be 

uncoupled for the moment, there is no inhomogeneous term. There are 

only effective inhomogeneous terms involving integrals over FO and 

Accordingly, to begin an orderly investigation we shall first 

combine Fl with FO and use nonrelativistic scattering lengths for 

both. For P waves this of course means 

= (18} 

where is the P-wave scattering length. Figure 14 shows the effect 

of adding increasing amounts of P wave to a case with aO = 0.2. 

Interestingly enough, the effect of adding small amounts of P wave is 



to tilt the Dalitz plot slope in the desired direction. In the 

solution, what apparently happens is that a "line of zeros" appears in 

the Sc plane at s =-00 c (that is, the solution is zero 

everywhere along a line of fixed sc)' and advances towards the Dalitz 

plot as the Pwave is increased. This line of zeros can be seen approach-

ing the Dalitz plot region if one looks at the solution for ~U 
and ~L (see Fig. 3) , and after entering the Dali tz plot region the 

line can be seen in M2 as well. This is what gives rise to the 

dramatic dips in Fig. 14. When the line of zeros approaches the sub-

traction point, Sc = 5.32, for al "'" 0.35, the solution of course 

becomes quite violent. Since the experimentally observed Dalitz plot 

has positive slope, the line of zeros will have to have Sc < 4 in 

order to fit the data. 

If aO is changed to +1.0 the picture looks much the same as 

Fig. 14, but rotated clockwise somewhat to account for the different 

starting point (the F 0 -only solution). The line of zeros still 

crosses the subtraction point for al ::::::: 0.35. If the Baton F2 is 

added to the mix, the effect on the Dalitz plot is roughly the same as 

would be accomplished by reducing a l by about 25%. 

A study of the effect of introducing cutoff into Fl and FO 

was made to determine the sensitivity of the solution. It was found 

that introducing a cutoff into FO when Fl is present makes a 

bigger change in the Dalitz plot slope than when Fl is absent. 

Introducing the cutoff into Fl with FO present makes a comparable 

change in slope, but in the opposite direction. Introducing a cutoff 

.".. 
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intoFl at s = 51 is comparable in effect to increasingal by 

;:,b.lo The largest effect occurs for those cases in which the line of 

zeros is near the Dalitz plot and the subtraction point. 

Figure 15 shows the effects of adding increasing amounts of 

scattering lengthP wave to an 1=0 hump case. The results are 

similar to those in Fig. 14 except that here, of course, the Fo-only 

solution already has a positive slope in the Dalitz plot. The best 

fit to the data occurs for an al "=:! 0.15. 

The separation between the MIU and MIL rays in the Mandel

stam plane corresponds to a smaller and smaller difference in cos 9, 

the cosine of the rtrt scattering angle, as one goes out along the 
, . . 

rays, if their separation, 6, is a constant. Thus one might expect 

MID to become smaller and smaller at large s. This is in fact the 

case. If one makes 6 a growing, linear function of s, corresponding 

asymptotically to a constant difference in cos 9, 

off so rapidly, but then the in'tegrals involving 

M_ does not fall --.l.D 

l\D have a linear 

6(s') in the denominator so that there is no particular convergence 

problem. Importantly there is virtually no change in the solution for 

~ when 6 is "widened" in this manner. 

To make use of more realistic 0l's,we recognize the existence 

of good experimental data for °1 at the higher energies near the p 

pole, but note that the value of the scattering length is not so well 

determined. Accordingly we adopt a parametrization of °1 by 

01sson18 which will allow us to vary the scattering length and not 

disturb the pole parameters too greatly. Explicitly we take 



= -l( tan . 
1 + 

where 2 
r r/8Qr5, a - w c r 

where w = 755 MeV <=;:: 5.51 , r 

rr = 110 MeV <=;:: 0.80 , 
Q =:: 2.57 , ·r 

and where cl is a :free parameter. The scattering length is given 

by 

al = cl a <=;:: cl X' 000273. c 

The "effective scattering length" of the low energy portion of (19) 

is not so easily changed by cl ' however, because with large cl ' the 

higher-order terms in the effective ~ange expansion soon become impor-

tanto The net effect is to reduce the phase shift so as not to disturb 

the resonance features too greatly. To emphasize the care that must 

be used in comparing theoretical scattering lenths (defined at 

threshold) with empirical scattering lengths found:from fitting low 
, 

energy data, we give the following example. A fit of (19) to the low 

energy experimental data of Baton et al. l ? requires a cl <=;:: 10 or 20, 

which would imply al <=;:: 0.27 or 0.54, but if one fits a scattering 

'length to the lowest energy data point, at q = 1.6, one obtains a 

value of ;9!lly al .,<=;:: 0.06. 
;':':.' . 

Figure 16 shows the effect of combining this Fl pole with 

the a' = 0.2, o mo = 500 MeV, FO hump,' for several choices of cl • 

As can be seen, the addition of the P wave dramatically steepens the 

/~. 
- ". 

\ . , 
'. 
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Dalitz plot slope in the proper direction. By comparing with Fig. 15 

we can see that the p pole with cl = 10 is comparable in effect to 

a P-wave scattering length, al = 0.15. Figure 17 shows the effect of 

combining the preceeding FO and Fl with the limited Baton F2 • The 

effect of this addition is not large in the Dalitz plot. Mostiy it les-

sens the slope of the cl =10 and cl = 20 cases so that they come close 

to fitting the experimental data. If the above calculations are 

repeated with the aO = 0.0, mO = 500 MeV, FO hump, the cl = 10 and 

cl = 20 cases exhibit steeper slopes than the data, mainly because the 

initial slope of the Fa-only solution is greater . 

. Figure 18 shows the effect of combining the F 1 pole with the 

r a = 250 MeV, FO pole, for several choices of 

Again the addition of the P wave dramatically steepens the Dalitz plot 

slope in the proper direction. With the addition of F2, in Fig. 19, 

the steepest slopes are dampened somewhat so that the cl = 10 and 20 

cases come close to fitting the data again. If in the above the 

ma = 450 MeV pole is used, the resulting Dalitz plot slopes are too 

steep because of the steeper initial slope. 

There is an ambiguity.in the I = 0 phase shifts, of course, 

but it is interesting that if one takes the two most popular chOices, 

corresponding to the up-down and down-up solutions, and adds reasonable 

amounts of P-wave and I = 2 interactions, one can come this 

close to fitting the experimental data. 
-

Some comments are perhaps in order at this point. The first 

is that the addition of P wave to the problem appears to have a 

surprisingly large effect. This is consistent with the observation by 
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Schult and Barbour, 7 who found in their calculations that P waves could 

have'large effects. Nevertheless the fact that it is large means that 

this portion of the calculation is likely to invite the most contro

versy. ,If one vTere to search for possible numerical weak points in 

the calculation, there are two that come to mind. First is the 

possibility that since the, equation for MlD has no inhomogeneous 

term, it may in some way be more unstable numerically. Secondly vTi th 

regard to the FI pole, all the previously mentioned problems in 

obtaining a good numerical solution when a pole is present apply to 

the, FI pole as well as the FO pole. In fact, although the same 

numerical techniques were used on the Fl pole as for the FO pole 

(see Appendix B), the Fl pole showed greater sensitivity to the 

exact nature of the techniques than did the FO pole. The numerical 

techniques for handling the poles were developed on the Omnes equation, 

for which there is an exact answer for comparison. Although it is 

reasonable to expect the same techniques to work for the coupled 

equations with F 0 and F I poles, they of course can never be 

compared with an exact answer. Since the equations involving theFO 

pole are more similar to the Omnes equation than the equations involving 

the FI pole, perhaps there can be greater confidence for the tech

niques to work for the FO pole than the FI pole. 

F. 11 Decay 

By just changing the mass of the K meson in the above cal

culations to that of the Tj meson (Il)c ~3.6 and m
11 
~4.o) we 

should be able to calculate the decay spectrum of the 11 meson., This 

simple procedure assu.rnes that the "bare" decay matrix element for 11 
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decay is a constant as before, in spite of a different decay mechanism~ 

This is probably contrary to current algebra which gives zero for the 

decay rate if the matrix element is flat. 19 It should be observed here 

that N'eveauand Scherk8 have made an attempt to impose the constraints 

of current algebra at the two soft-pion points and generate corrections 

to the linear (and hence zero) matrix element via final-state inter-

actions in twice-subtracted KT equations. 

By virtue of the assumed I-spin symmetry of the final state, 

Eq. (10), the ~of Tt decay will correspond to the S+_ spectrum 

of + - 0 
'T1 ~ rr rrrr • Figures 20-23 show the extension to decay of some 

selected cases of interest from K decay. Again the ttexperimental 

points" shown are just the result of substituting into the empirical 

formula, IM212 = I + 0.4 (sc- sO), and shown here for rough comparison 

20 only (see Cnops et al •. ). The general features of the calculations 

tend to confirm and accentuate our previous conclusions. It is just 

as impossible as before to fit the Dalitz plot with I = 0 cases 

alone unless one assumes a pole on the edge of the Dalitz plot. The 

FO pole closest to the Dalitz plot for which we can obtain a reliable 

numerical solution is ma = 550 MeV. This pole unfortunately has too 

large a mass to fit the data, but, as before, it indicates that a pole 

closer to the edge of the Dalitz plot would do better. The best I = 0 

hump case does particularly poorly when extended to 'T1 decay. The 

best fits from before involving P wave, however, continue to fit as 

nicelyfor 'T1 decay, in accordance with the final-state interaction 

philosophy. 
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G. Nonflat Inhomogeneous Term 

It is of interest to determine the changes that occur if the 

bare matrix element has some energy dependence, instead of being 

constant as in the foregoing discussion. There may be contributions to 

the inhomogeneous term which depend on the 1111 final-state interactions, 

but we ignore this possibility for the moment and speak as if the 

inhomogeneous term were a Born term or bare weak interaction term. We 

chose a linear term of the form 

(20) 

For K decay, current algebra2 predicts such a matrix element in the 
:-:? _';,:'--. ~, 

physical region with g "'" 0.4,which of course will;t~t<the data. 

Figure 24 shows the effect of using just a simple scattering 

length, aO = 0.2, with a bare term of varying amounts of g. The 

most striking observation is .that the final-state interaction exag

·1 
gerates the slope of the bare matrix element, 2 g, by roughly a 

factor of 4. The amount of exaggeration is a function of the 11Jl 

interaction. For example, for aO = 0 the factor is of course 

uni ty, for aO = 1.0 the factor is roughly 10, and for the hump 

case,aO = 0.2, mO = 500 MeV, it is also 10. There is apparently 

no problem of nonconvergence of integrals for these cases because if 

one measu~es the asymptotic behavior of 

asymptotically, one obtains IMlAl and 

11 F 0 cases for which 00 'v 2 

I M21 'V sa, with ex "'" +0.6. 

For comparison ex "'" -0.8 when g = O. For F2 cases in which 

!:> JT 
u 2 'V '2 asymptotically, a "'" +0.6 as compared with ex "'" -0.6 when 

g = O. This suggests that negative scattering lengths will yield 
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divergent integrals, which indeed is found to be true. We were 

unable to measure the asymptotic behavior accurately for an FO pole 

case because of zeros near the "asymptotic region," but the a appears 

to be approaching something less than one and these cases presumably 

converge also. 

Some scattering length cases for Fl were tried by themselves, 

since (20) has a nonzero projection into theP-wave channels. The 

solutions appeared to converge, but showed an even stronger exaggeration 

of g, for example a factor of -38 for al = 0.1. The combination 

a l = 0.1 and a small g = -0.01 can produce a solution that goes 

through the data points. 

The slope of the bare matrix element (20) by itself causes a 

line of zeros in the Mandelstam plane. Because of the exaggeration of 

that slope by the rrrr interaction, the zero rapidly enters the Dalitz 

plot,with increasing g, and approaches the subtraction point, sO. 

If one wishes to test the response of previous cases of interest to 

the introduction of a bare interaction slope, one must do so gently, 

e.g., Igi < 0.10, otherwise the solutions rapidly lose their identity 

and any correspondence with reality. Figure 25 shows such a "gentle" 

perturbation of a hump case. This violent modification is in contrast 

to the results on K decay of Neveau and Scherk. 8 The explanation for 

the d.ifference lies in the fact that they have two soft-pion subtraction 

points. Their amplitud.e is therefore less susceptible to the influences 

of the final-state interactions. 
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The sensitivity of solutions to g is due to the asymptotic 

behavior of (20). If instead we use a bare interaction term of the 

form 

M (s s s) = 1 + !2 gr tanh[(sc - sO)/r] . 00+ a' b' c bare (21) 

this sensitivity disappears. Little or no exaggeration of the slope 

occurs, and all cases which previously converged for a flat matri,x 

element, converge for (21). The only difference is that the solution 

in the region of the Dalitz plot is "tipped" an extra amount, given by 

1 "2 g. An interesting aside observation is that solutions which would 

ordinarily have gone to zero asymptotically now go to approximately 

1 "2 gr instead. Figures 26 and 27 show the effect of using (21) on 

some cases of interest, with r chosen to be 2.5 (the results are 

not sensi ti ve to this particular choice of r) . 

l 



v ~ EXTENSION OF. THE KT EQUATIONS TO ALLOW UNEQUAL MASSES 

FOR THE CHARGED AND NEUTRAL PIONS 

A. Derivation of the Equations Used for Approximate, 

Numerical Solution of the KTEquations 

It was felt that the KT equations might be an appropriate 

vehicle for studying the effects to be expected from the fact that the 

charged and neutral pions have slightly different masses. Accordingly 

a study was.undertaken to try to incorporate the slight pion mass 

difference into the KT equations. The starting point isEq. (5). There 

we can see immediately the most important changes to be made. First, 

the 9 function means that the various discontinuities can "turn on" 

at different values of s, depending upon.the masses of the pions in 

the intermediate state. Therefore we will have to begin the various 

integrals involved in the KT equations at the different thresholds. 

Secondly, . there is a QI3Y(s) factor, which originally came from phase 

space, and which also depends on the masses of the intermediate pions. 

This factor goes to zero,of cours~at the intermediate-stat~ threshold, 

and is rather insensitive to small variations in the threshold at 

large s. Thirdly, it can be seen that the 10t interaction will have 

to be expressed in the form of an invariant matrix element, for the 

various initial and final charge states. This invariant matrix 

element,of course, does not go to zero at any threshold, but goes 

smoothly to the appropriate scattering length, L e., the q from 

phase space has 'the threshold kinematics and the B has the dynamics. 
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It was decided to make a calculation of only one test case, 

namely the T and T' system. Both T and T' are required because 

the intermediate-state pions can have different charge from the external 

pions, and thus the amplitudes for the T and T' decays will become 

coupled through the KT integral equations. Previously,wi~h the equal

mass problem, we could reduce the complexity of the problem with the 

imposition of the 1&1 ==! rule and force the final state to be 

I == 1 only. But here the electromagnetic splitting of the pion masses 

is specifically an I-spin breaking effect so that exact 1&1 = ~ 

will no longer hold. For the next step we make use of experimental 

evidence12 that indicates that the T· and T' decay final states are 

mostly I = 1, with some small admixture of I = 2, and no evidence 

for I = 3. A simple analysis of the various I-spin states of three 

pions21 reveals that I == 3 will lead to a ratio of the T and T' 

amplitudes evaluated at the center of the Dalitz plot of 1/2, as con

trasted with -2/1 for I == 1. The I = 2 does not contribute at 

the center of the Dalitz plot. The evidence for the I == 2 admixture 

is that the ratio of the center- point T and· T ' amplitudes is just 

as it should be for the 1611= ~ rule, but that the ratio of the 

Dalitz plot slopes is -2.60 ± O.l~ or about five standard deviations 

greater than the -2 ratio allowed by the 1&1 ==! rule. The way 

chosen to mimic this situation for the KTequations was to take -2 

as the inhomogeneous term for the T equation and +1 for the T'. 

This will discriminate against the I == 3 final state and yet allow 

the ratio of the Dalitz plot slopes to vary from the strict 1&1 == ~ 

rule value. 

• 



. '. 

In order to keep the problem simple, no P-wave final-'state 

interactions were assumediso that the No.1 rays could be collapsed 

to one (see Fig. 3). The ray labeling chosen is Tl, T2, Ttl, and 

Tf 2, similar to before, with the label, 2, referring to the odd pion 

spectra. There is a total of four r~ys of 25 mesh points each, which 

requires the solution of alOO-by.,.lOO complex '"matrix. Using the 

11 numerical matrix inversion subroutine called LINIT, the program to 

solve the KT equations required approximately 40 seconds on a 8DC 6600 

and 103.000 words o'f central memory core. 

Defining the integral operators 

f~ do' (s~f ---s~1""+~i""1 Sf sl+1€-,.\., - ° ') 

the set of coupled integr.al equations for the unequal-mass case is 

= -2 + La(q+_ B++ ++ MT2) , 

Equation (22) continued next page 
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Egul:ttion (22) continued 

= 

(22) 

where the appropriate 9 function is understood to go with each of 

the g'S. 

In choosing the parametrization for the n:n: invariant matrix 

elements the goal was to make them correspond as closely as possible 

to the familiar I-spin amplitudes., because the main reason for breaking 

the symmetry at lower energies is presumably just due to the mass 

splitting. It is probably adequate just to approximate the matrix 
i 

elements by scattering lengths near threshold, but in order to ensure 

that the parametrization is unitary and has the correct analyticity 

properties at the vl:trio\ls thresholds, we resort to I:t K-ml:ttrix formalism 

.1 for nested thresholds. The matrix elements are: 

-. 



where 2 
qcxt3 (s) 

K (s) aa 

D(s) 

[K (s) - 'iq (s)J/D(s), aa +-

22 
;: [s - (ntx + m!3) ][s - (ma: - m!3) J/4s, 

i! ~[2f 0 (s) + f 2 (s ) 1, 

-v; [ (i'), () 
!!!! - T fO s-f2 s J, 

2 
Kab (s), 

and where fr(s) == q(s) cot 0r(s) is the real, analytic, isospin

invariant, effective range function. 

There is a slight ambiguity as to which points in the .~ and 

~, Dalitz plots the relative normalization of -2/1 should refer to, 

because of the slightly different Q values of the two decays. Howeve; 
I 

such problems are of second /order in nature and different choices of 

points near the centers of the Dalitz plots will give nearly identical 

solutions. 
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B. Specific Calculations 

Numerical solutions were obtained for the set of coupled 

integral Eqs. (22), for some simple I == 0 and I == 2 cases of 

interest, namely a hump for I = 0 and a Baton choice for I == 2. 

o When 1.0, 1.0, and 3.6 are substituted for the masses of the 11 , 

re ±, and K + respectively, i. e., theequal-mass case, the solut ions 

obtained are nearly identical with those obtained previously with Eq. 

(11). This is a good verification that the prescription for using the 

inhomogeneous terms, -2 and +1, with the increased number of ampli

tudes will still yield the IDJI == ~ results in the limit of no mass 

splitting. 

When the experimentally observed ratios, 

3.659, are substituted for the masses of the o 
11 , 

1.0, 1.034, and 

± 
11 , 

respectively, solutions like that shown in Fig. 28 are obtained. The 

most striking feature of the solution is the cusp for M-r'2 at the 

+ -
11 re threshold (s::::: 4.27). Since the physical threshold for M-r'2 

is the reOreO threshold (s = 4.0), the cusp occurs in the physical 

region of the Dalitz plot and would occur as a "line of cusps" at 

s = 4.27, across one edge of the plot. Physically the situa.tion is c 

as follows. The + -
11 11 

can inelastically scatter into a channel with a lower threshold, namely 

o 0 
re re • The sub energy of the + -

re re has to be above the + -
11 11 threshold, 

however, or otherwise thts process cannot occur. 

cusp arises from the first integral in the M-r'2 

On the DalHz plot Mil I'::J -2, and near threshold 

Mathematically the 

equation of Eqs. (22). 

1 
B+_,OO ~ 5(a2 - ao)· 

• 
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Since a2 -aO is expected to be negative, this first integral will be 

positive for s just below the + -
11 11 threshold. The integral will 

decrease rapidly as s goes further below threshold, causing the sharp 

break to appear in the solution at s = 4.27. When a2 - aO = 0, no 

cusp appears in the solution~ 

The solution shown in Fig. 28 has a cusp for as well as 

M~'2' although it is not discernible, and above the threshold 

the Dalit~ plot slope of M~'2 is -2 times that of M~2 just as 

for the 161 1 = ~ rule. However, the Mt.2 cusp is included in its 

physical region whereas the M~'2 cusp is not, so that the "average" 

slope of the M~'2 Dalitz plot will be steepene~, compared withM~2' 

in the proper sense to agree with experiment. In fact if one makes 

least-squares fits of straight lines to the two physical region slopes 

of the example of Fig. 28, one obtains a slope ratio of roughly -2.6. 

It is interesting that the unequal,-mass effect has the proper 

direction and can have a proper order of magnitude to agree with experi

ment, but unfortunately when one examines the data of Davison et a1.
22 

on T' decay, there is no evidence for a cusp at s = 4.27. One can 

get rid of the cusp in our calculations by setting a2 - aO ~ 0, but 

that simultaneouslY' makes the slope ratio revert to -2, and would 

imply that the I = 2 final-state admixture is due to some other 

mechanism besides the unequal mass of the pions. A different possibility 

is that a2 - aO t 0, but that the cusp shown in our caiculations is 

too large due to some poor approximation we may have made.. It is 

interesting to speculate that perhaps just using S waves for the rOT 
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amplitude is inadequate, because it can then be readily seen that the 

KT integral equations imply double discontinuities for the decay 

amplitude that have sharp, sector type boundaries (e.g., sand t 2: 4, 

sand u 2: 4, and t and u 2: 4) instead of the expected curved 

boundaries. 
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VI. AREAS OF IMPROVEMENT 

Consider in what areas this study could be improved. The 

inclusion of more partial waves is probably not warranted right away, 

partly because of energy considerations, but mostly because the whole 

question of how to extend the KT equations to include more partial 

waves needs to be examined and answered satisfactorily first. This 

extension should of course be some'well-defined approximation to the 

Mandelstam representation. In this paper we have made a guess at an 

extension which it is hoped is not too bad for P waves. Another possi-
'-. 

bility for improvement is to include the "initial state interactions" 

of S-wave K:n: ~ K:n: scattering. This would lead to a coupling of all 

theK-meson three-pion decay modes, but an imposition of thel6I1 =! 
rule co:uld reduce the problem to tractable size again. It would also 

introduce the complex conjugate of the unknown decay amplitude, into 

the integral equation, which would require special handling. Howev€r, 

if the belief is held that the ~- and K-decay Dalitz-plot slopes 

arise from the same origin, then the K:n: intermediate state would not 

be expected to have large contributions because it is present in one 

case and not in the other. 

One qan also look for better numerical ways of approaching the 

problem. One possibility is that instead of solving for the amplitude 

at 25 mesh points along a ray one could expand the amplitude in a 

finite number of terms of some orthonormal basis along the ray., and 

then solve for the expansion coefficients. The hope of this kind of 

procedure would be that only a small number of basis terms would be 

required for comparable accuracy. This would also make the calculation 
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accessible to smaller computers because of the smaller matrix to invert. 

If it turned out that 25 basis terms for each ray were required to 

achieve comparable accuracy, then there would be no advantage to this 

approach. In this connection one would have to worry about the non-

analytic behavior of the ray amplitudes at s= 7.96 3 1 (- s - - s 
202 

and how many terms would be required to reproduce this behavior, 

4.0) , 

especially along the No. 1 rays where this nonanalytic behavior is more 

Another possible approach would be to expand 

Moo+(sa,Sb'Sc) in partial waves in the various rtrt subchannels and 

then obtain a coupled set of integral equations for these partial-wave 

ampli tudes rather than for ray amplitudes. At some point in the 

derivation an equation similar to (9) will be reached, and where in 

order to partial--wave analyze the left-hand side, it will be necessary 

to integrate over two of the three singular denominators .. With only 

one singular denominator remaining it may then be possible to convert 

the equation into a Fredholm equation by standard techniques (see 

Muskhelishvili23 and POgOrZelski. 24 ,25 
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VII. CONCLUSIONS 

We have made some steps towards solving numerically the 

equations of Khuri and Treiman for K and T] ~ 3rr and extending them 

to include P-wave interactions, the effects of a nonflat bare matrix 

element, and the effects of unequal masses for the charged. and neutral 

pions. Our results show that it is rather difficult, with S waves 

alone, to get a steep enough slope for the matrix element on the Dalitz 

plot when the bare matrix element is a constant. The S-wave phase 

shifts required to fit the Dalitz plot data are usually quite unphysical 

(e.g., aO - a2 =~l.O,· an FO pole- located just off the edge of 

the Dalitz plot, etc.). In our calculations the inclusion of P waves 

appears to have a large effect on the Dalitz plot. If we assume I = 0 

phase shifts of either the up-down or the down-up variety, and if we 

assume I::; I and I::; 2 phase shifts which are consistent with the 

experimentally determined phase shifts! t hEm the resulting solutions 

of the KT equations with a constant inhomogeneous term yield Dalitz 

plot slopes which fit the data. The inclusion of P waves in the KT 

equations probably deserves more study, however, perhaps with different 

numerical approaches. 

With the same assumption of a constant inhomogeneous term, 

the extension of the K-decay solutions tO'T] decay follows trivially 

just from changing the mass of the decaying particle. 

If the inhomogeneous term of the KT equations is given a linear 

term, M_ = I + !2 g(s - sO), the effect is to tilt the solutions, --bare c 

but by an exaggerated amount. If the inhomogeneous term is changed to 



1 
M = 1 + -2 gr tanh[(sc -care so)/r], which gives a slope on the Dalitz 

plot but goes to a constant asymptotically, the effe.ct is just to 

tilt the solutions in the region of the Dalitz plot by the amount 1 
"2 g. 

When the masses of the charged and neutral pions are made 

unequal in the KT equations, the largest effects to be observed in 

.the matrix element are cusps related to thresholds located in the 

physical region of the Dalitz plot and due to the presence of communi-

eating subchannels. The calculated effects are in a direction agreeing 

wit? experiment, thus leading to the speculation that perhaps the 

unequal masses of the pions might be responsible in large part for the 

slight amount of I = 2 final state observed in the decay. 
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APPENDIX A. METHOD OF DIRECT NUMERICAL SOLUTION OF 

INHOMOGENEOUS INTEGRAL EQUATIONS BY MATRIX INVERSION 

The method outlined below for direct numerical solution of 

inhomoge"neous integral equations by matrix inversion is a standard. 

numerical technique and is included here only for comPleteness. 26 

Let us consider the inhomogeneous integral equation, 

¢(s) = ¢O(s) +lb K(s,s') ¢(s') ds' , 

where the inhomogeneous term, ¢O( s), and the kernel, K(s, s'), are 

known functions of sand s', and ¢(s) is the unknown function to 

be found. Choose a set of N mesh points {5 i }, and devise a method 

of approximate numerical integration so that the integral can be 

replaced by a sum, 

(a
b 

Ja K(s,s') ¢(s') ds' 

N 

"'" 
~" wij ¢j' 
j=l 

where the is now a known set of weights, and where the i refers 

to 

Wij 

sand J. 
i to , 27 Sj. The integral equation can now be rewritten 

as a set of N equations in N unknowns, ¢j' 

¢i = ¢Oi + L w .. ¢j ~J 

j 

or 

L (W .. - O'j) ¢. 
~J ~ J 

= 

j 
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This set can now be solved by standard matrix techniques by considering 

N-dimensional column vectors,and (w .. - 0 .. ) 
l.J .. l.J 

to be an N-by-N matrix, to be inverted. 

A set of m coupled integral equations [such as Eq. (11), 

where m = 3J can be solved in a like manner by combining the individual 

cj vectors "end to end" to make one mN-dimensional vector, and 

similarly for the matrices. 
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APPENDIXB. METHOD FOR EVALUATING 

SINGULAR INTEGRALS NUMERICALLY 

Our experience has been that success in the direct numerical 

solution of singular integral equations by the matrix-inversion method 

depends heavily on the quality of the numerical integration techniques 

used. Accordingly it is perhaps useful to write down explicitly the 

methods _that we used in this paper. 

We shall wish to integrate numerically, singular integrals of 

the form 

. 1 00 ds! f (s ' ) 
- s' - s 

St 

in a manner useful for solving singular integral equations. That is, 

we shall wish to replace the integral by a sum over a set of mesh 

points 

N 

L 
j=l 

w .• f(SJ'.), 
~J 

where the w.. are known weights, which can be evaluated once and used 
~J 

later to integrate an arbitrary function f(s'.). 
J 

The naive weight 

w .• 
~J 

= 
1 

• 6i3 '. 
J s '. - s. 

J ~ 

will not work because of the ambiguity that arises when st. = s .• 
J ~ 

Besides, the pole is such a violent thing that sampling it with just 

a few mesh points is not likely to give very accurate results. Also 

the pole "moves" as s. 
~ 

is changed,so that trying to put extra- points 
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in the vicinity of the pole would just increase the mesh-point density 

everywhere. The general philosophy of our method is to try to factor 

the integrand into a "violent but known" part [such as lies' - s)J 

and an "unknown but smooth" part. Then we can handle the smooth part 

in some crude, approximate manner, and handle the violent part as 

exactly as possible.· The application of this philosophy will become 

more clear as we proceed. 

First let's dispose of the aside problem of the infinite upper 

limit of integration. We can use the general linear transformation of 

. the form. 

s = 0: + SX 
r + ox 

to reduce the range of integration to something finite. If we impose 

the requirement that the points St' s , and 00 map into the points m 

= -1, 0, and +1, the transformation becomes 

s = 
sm + (sm - 2st )x 

1 - x 

Here s is still arbitrary and can be chosen to suit the particular 
m 

problem. For our case, St "'" 4, and we chose s = 8 as a compromise 
m 

between emphasizing:the Dalitz plot region. and the resonance region 

(e.g., the center of the Dalitz plot, s ~ 5.3, corresponds to x "'" -0.50, 

and the p resonance occurs at s "'" +0.74). The results of course are 

not sensitive to the choice of s. The integral then transforms into 
m 

[

00 ds' 

St 

f(s' ) 
s I - S f

+l 

dx' 1 - x .rex') 
. 1 - x f Xf - X • 

-1 
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The factor (1 - x)/(l - x') can either be considered part of the 

violent but known portion of the integrand or combined with the f(x') 

to become part of the unknown but smooth portion, depending on the 

expected asymptotic behavior of f(s'). For a subtracted integral [such 

as occurs in Eq. (11) for the I = O· and I = 2 . portions] the factor 

can disappear altogether, . 

1
+1 

dx' 1 - x . f(x') 
1 - x' x' - x 

. -1 . 1
+1 

-1 

dx' 
1 x' x 

= 

(+1 

)-1 
dx' f(x') f 1 l} lX' -x - x' - Xo 

In general, the weight for a subtracted integral is just the difference 

of the two appropriate weights for the unsubtracted integrals [either 

wi th or without the factor (1 - x)/ (1 - x') being priorly removed]. 

Now to evaluate an integral of the form 

b 

f dx' f(x') 
x' - x 

a 

we shall choose a set of mesh points, (xjJ, and use linear interpola

tion for f(x') between successive f j , 

x, - xJ+l x' - x. 
fex' ) "'" fj +' ~ f. 1 . (Bl) x; - 'xj +l x j +l - x. J+ 

J J 

We do not choose either a or b as mesh points because in our 

original problem fCa) is always zero [due to q(s) factors] and 
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f(b) is occasionally indeterminate. In the left-end region, between 

a and xl' we shall approximate f by just linear interpolation from 

o to flO This .canbe done easily in (Bl) by defining Xo ~ a and 

fO 5 O. In the right-end region, between ~ and b, we shall 

approximate f ·by just continuing the linear interpolation used between 

~-l and ~o If the first arid last mesh points are near the end 

points then these are not bad approximations. 

By using the linear interpolation for f, the following weights 

can be obtained: 

N 

dx' fex') 
. x'. - x 

~ L w.f. , 
J J 

j=l 

where for 1'::: j < N-2 

w
N

_l - same as above except that g(~) -+ g(b) and h(~) -+ h(b), 

1 . 
wN = ~ _ ~-l [(g(b) - ~-l h(b)}- (g(~-l) - ~-l h(~_l)}]' 

whereg and hare defined as 

g(t) 

and 

t 

. = J dx' ,1 = t + x log( t - x) x - x 

"'01 '.,. 

(B2) 
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h(t) dx' 
x' 

1 
- x :Log(t - x). 

One can put an x ± iE . prescription easily into the above weights by 

just using complex logarithms and a small E. If a principal value 

integral is desired then the arguments of all logs must be the absolute 

value of the quantities shown. Also in the computer program for a 

principal value integral,· there would have to be a separate test for 

indeterminate 0 ~ log(O)·cases, a problem which doesn't occur in the 

iE prescription. For x = x. - iE, 1m w. = -inb .. as it should, and 
l J lJ 

for an x between two mesh points [as occur :in Eq. (11) denominators 

O f the form ' (3 1) +' f . 1] th s - 2 So - 2 s . lE, or examp e e -in is distrib-

uted linearly between the weights of the two mesh points, the closer 

point receiving the larger weight. 

Next we come to the problem cases which require special treat-

ment, namely cases in which the· f(x') itself has singularities, for 

example a "square root pole" at x' = +1, or poles in the complex 

plane near the real axis. 

If f(x') has some known, violent structure or behavior, 

u(x'), then one can factor it out in the following manner: 

f(x') = u(x' )[f(x' )/u(x')], where u(x') can then be regarded as a 

"violent but known" factor to be collected with the l/(x' - x) to be 

treated as exactly as possible, and f(x' )/u(x') is the new "unknown 

but smooth" function. In (B2) this can be accomplished by using 

get) 

t 

= J dx' x' u(x,) 
. . x' - x and h(t) =r 

and dividing the resulti,ng weight by u(x.) • 
J 

dx' u(x') 
x' - x 



-63-

Examples of where these problem'cases arise are as folJ:ows. 

The f(x') is of course_some F(x' )·M(x') where F = (e2i1'3 - 1)/2i 

is the rrrr interaction and M(x') is the unknown solution to the 

integral equation~ If we consider just the simple Orones equation and 

let 6 go to - ~ asymptotically (e.g., a negative scattering 
1 

length), then F is finite but M cc S2 asymptotically. Mathematically 

the subtracted integral converges of course, but whereas the true solu-

tion rises rapidly in the vicinity of x';:: +1, the nu;nerical solution 

exhibits large oscillations near this point. The use of 
1 

u(x,) = 1/(1 - X')2 cures this problem nicely. 

When F contains a pole near the real axis this pole should" 

obviously be factored out into u(x'). However, from the physics of 

the situation we know that a pole in F will produce a pole in M at 

a complex conjugate poin~ so this pole should be factored out into 

28 u (x') also.. The prescription for handling the' F 0 pole cases is 

as follows: 

For the FO M2 integrands, 

u{x' ) ;:: 

* ' (x' - x ) (x' - x ) p p 

and for 'the F 0 M:t.A integrands, 

1 1 

u(x' ) {l + x'22 {l - x' 22 
;:: 

x' - x 
, 

p 

where is the pole of FO. Wi th the above integrand 

prescription used in the Omnesequation with our FO pole cases, the 
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integral is done exactly, that is,the remaining unknown but smooth 

portion is just a constant. The u for the FO ~A integrands just 

reflects the structure of FO and nothing of M. The prescription we 

used for the Fl pole and the Fl·MlD·(l - x)/(l - x') integrand is 

u(x' ) = 

1 

(1 + x' )"2 (1 

(x' - X )(x' p 

1 

- X')2 

and where the (1 - x)/(l - x') is included with the unknown but 
1 

smooth portion. The fact that we have used (1 + X')2 in u instead 

of (1 +xl)3/2 makes little difference. The justification for the 
1 ' 

asymptotic form of u is that Fl <X:! (1 - X')2 asymptotically and 

empirically . ~ cc (1 - x), even if u is changed somewhat. There 

is, however, some sensitivity. of the overall solution to this asymptotic 

form of u for the Fl pole. 
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27. For the simplest integration technique one could think of, w •• 
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mesh points. However, if K(s,s') or ¢(s' ) is a rapiclly varying 

fun.ction of s', as in our case, one must use the knowledge of 

that behavio:r' to devise a more appropriate set of weights (see 

Appendix B). 
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FIGURE CAPTIONS 

Fig. 1. (a) Decay diagram for K ~ 3rr. 

(b) General "scattering like" diagram for Krr ~ rrrr. 

(c) Sketch of the physical regions of the general amplitude. 

(d) Diagram showing intermediate states kept in the unitarity 

equation in each of the subchannels. 

Fig. 2. (a) The momentum vectors of Pa' Pb' Pc' Pb" and pc,as 

seen from the bc (equivalently b'c') center-of-mass 

system. 

(b) An illustrative set of ray labels fora decay matrix 

element. 

Fig. 3. The ray label choice for MoO+(sa,sb'sc)' The "lU" and 

"lL" stand for "upper" and "lower" branches of ray number 1, 

and "lA" and "lD" for the "average" and "difference" of the 

amplitudes. 

Fig. 4. !M2 (S)!2 versus s for numerical solutions of Eq. (11) with 

a nonrelativistic scattering-length apprOXimation for FO' 

Eq. (12) with aO = +1. 0, +0 .5, +0.2, -0.5, and -1. 0 • ~ ( s ) 

is defined (see Fig. 3) as the invariant matrix element for 

+ 0 0 + 
K ~ rr rr rr evaluated along the ray, soo = s, and either 

3 1 sO+ = '2 So - '2 s. The matrix elemen"ti has been normalized to 

1 at the center of the Dalitz plot, So = 5.32. The extent 

of the Dalitz plot is indicated along the line 1M212 = 1.0 

and again along the bottom of the graph. The open boxes 

((J) roughly indicate the experimental data and lie along a 



Fig. 5 . 

Fig. .6. 

Fig. 7· 

curve given by the . empirical formula 1 ~ 12 1 + g (s - so), 

with g = 0.4. 
. 2 

1~(s)'1 ,versus sfor the relativistic scattering length 

approximation for Fa; Eq. (14) with a o :::: +1.0, +0.5, 

+0.2, -0.5, and -1.0. 

2 
I~(s) 1 versus s for an r = 0, S-;wave pole, Eq. (15) 

for the following sets of parameters (mcr,ra ; sa): (450 MeV, 

75 MeV; 10.8), (450 MeV, 100 MeV; 10.8), (750 MeV, 125 MeV; 

30 ), and (750 MeV, 250 MeV; 30). 

s for a ''hump'' in the 
'. 

r = 0, S-wave phase 

shift, Eq. (16). Shown in (a) is ~ = ~)OO MeV (s = 13.4) 

and a O 0.0, 0.1, 0.2, and 0.3. Shown in (b) is a
O 

= 0.0 

and rna = 450, 500, 550, and 700 MeV (s = 10.8, 13.4, 16.2, 

and 26.1). 

Fig. 8. I~(s) 12 versus s for the nonrelativistic scattering

length approximation for F2 , with a 2 = +1.0, +0.5, -O.Of, 

-0.5, and -1.0.' 

Fig. 9. I~(s) 12 versus s for the relativistic scattering-length 

approximation for F2 , with a 2 = +1.0, +0.5, -0.06, -0.5, 

and -1.0. 

Fig. 10. 1~(s)12 versus s for the experimentally determined r = 2 

phase shift of Baton et ale (1967), Eq. (17) with a 2 = -0.05 2 

and r 2 = 1.9. For s >50,. 52 is limited to be _21°. 

Fig. 11. 1~(s)12 versus s for nonrelativistic scattering-length 

approximations for F 0 and F 2 for the following s.cattering-
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length sets (aO,a2): (-0.5, +0.5), (+0.5, +0.5), and 

( -0.5, -0.5)· 
. 2 

1~(s)1 versus s for two FO cases, with and without 

Baton IS F2 • The two FO cases used are (1) a hump with 

aO = 0.0 and nu = 500 MeV, and (2) a pole withma = 750 MeV 

and ra = 250 MeV. 

Fig. 14 .. 1M2(s)1 2 versus s using nonrelativistic scattering-length 

approximations for FO and Fl. Here aO = 0.2, and 

al = 0.0, 0.1, 0.2, 0.3, 0.4, and 1.0. 

Fig. 15. 1M2(s)1 2 versus s using a nonrelativistic scattering

length approximation for Fl and a hump for FO. Here 

aO = 0.2, mO = 500 MeV, and al = 0.0, 0.1, 0.15, and 0.2. 

Fig. 16.1M2(s)1
2 

versus s using the p pole parametrization, (19), 

for Fl'and an ao = 0.2, . mo = 500 MeV hump for FO. The 

values of cl are 2, 5, iO, 20. 

Fig. 17. 1M2(s)1
2 

versus s using the same FO and Fl as Fig. 16, 

and adding the Baton F2 . 

. Fig. 18. 1M2(s)1 2 versus s using the p pole parametrization, (19), 

for Fl , and an 

The values of 

m = 750 MeV, a 
r = 250 MeV pole for a 

are 2, 5, 10, and 20. 
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I~(s) 12 versus s using the same FO and Fl as Fig. 

and adding the Baton F2 • .... (. 

T} decay /~(s)12 versus s f'or the FO hump case, 

ao == 0.0, mO =500 MeV, and the FO pole case, m =550 a 

MeV, r == 100 MeV. a 

the Baton F2 . 

Both cases are shown with and without 

18 

Fig. 21.T}decay , I~( s) /2 versus s f'or the F 0 hump case, 

aO = 0.2, mO = 500 MeV, with and without the Fl scattering 

length al = +0.15· 

Fig. 22. T} decay /M2(S)/2 versus s f'or the FO hump case, 

.. 

Fig. 23. 

aO == 0.2, mO = 500 MeV, the Fl pole, (19), with clIO, 

and 20, and the Baton F2 • 

T} decay /M2 (S)/2 versus s f'or the FO pole, rn = 750 cr 

MeV, ra = 250 MeV, and the Fl pole, (19), with cl = 10, 

and 20, and the Baton F2 . 

Fig. 24. 1~(s)/2 versus s f'or a nonrelativistic scattering length, 

aO = O.?, and using (20) f'or an inhomogeneous term in Eq. 

(11). Here g = -0.2, -0.1, 0.0,+0.1, and +0.2. 

Fig. 25. I~(s) /2 versus s f'or a hump case, aO = 0.2, rnO = 500 

MeV, and using (20) f'or an inhomogeneous term in Eq. (11). 

Here g = -0.1, 0.0, +0.1. 

Fig. 26. /~(s)12 versus s f'or a nonrelativistic scattering length, 

aO = 0.2, and USing (21) f'or an inhomogeneous term in Eq. 

(11). Here g = -0.2, 0.0, +0.2, +0.4. 



-72-

Fig. 27. /M2(s) /2 versus s for a hump case aO = 0.2, mO = 500 

MeV, and an Fl scattering length; al = +0.15, and using 

. (21) for an inhomogeneous term. Here -g = -0.2, -0·.0, +0.2,· 

+0.4. 

Fig. 28. /MT2 (s)/2 and /MT'2(s)/2 versus s for numerical solutions 

of (22). The masses for the o ± + rr , rr ,and K mesons are 

taken to be 1.0, 1.034, and 3.659 respectively. For I = 0 

the case used was a hump with aO = 0.2 and mO = 500 MeV, 

and for I = 2 the Baton F2 was used. 
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