To be published in Biogenesis e UCRL-20266
Evolution Homeostasis, Springer e RN Preprint c. 2.
Verlag 1971 (Symposium by
Correspondence--Continuation of

3rd Helgoland Symp. on Quantitative
Biology of Metabolism) pes

Lo IrION

o

[ P

THERMODYNAMIC POTENTIALS AND EVOLUTION
TOWARDS THE STATIONARY STATE IN OPEN
SYSTEMS OF FAR-FROM-EQUILIBRIUM CHEMICAL
REACTIONS: THE AFFINITY SQUARED MINIMUM
FUNCTION

Howard C. Mel and Douglas A. Ewald

January 16, 1971

AEC Contract No. W-7405-eng-48

- )

- TWO-WEEK LOAN COPY

This is a Library Circulat;_ing Copy |
which may be borrowed for two weeks.
‘For a personal retention copy, call

N Tech. Info. Division, Ext. 5545

| LAWRENCE RADIATION LABORATORY
{,\w UNCVERSITY of CALIFRCRNIA BERKELEY

Z.'d 99202-T9DN



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



Thermodynamic Potentials and Evolution Towards the Stationary State in -

Open Systems: of Far- from-Equilibrium Chemical Reactlons The Affinity

Squared Minimum Function.

Howard C Mel. and Douglas A. Ewald
Group in Biophysics and Div1sion of Medical Phy81cs, Donner Laboratory

Univer81ty of California, Berkeley 94720.

, B ABSTRACT

'The "eyoiutionary' chanacteristics of several quadratic functions
(based both on the affinlties and on the reaction velocitles),and of the
entropy production per unit time, have been studled for a number of 2-
variable open 'systems of-Mfar*from~equilibrium ‘chemical - reactions. o
The first and second. order systemsvwere chosen to include: straight '
1ineayloopl(network), autocatalytic and disproportionate kinetic features.
All of the functions,examined-are'closely related-injform to the entropy
production'though they differ'qualitatively andvquantitatively in the non-
iinear'domain.' By a combination of analytical and computational methods

one function, called M, , is seen to have the variational properties of

a "thermodynamlc potential!' for all of the systems, relative to their

non-equilibrium stationary states. The "homeostatic~ like" stability

criterion,- g;“’< 0 is also seen to hold for these systems The

function, a composite property of the system, may be interpreted as a "kinetically-

weightedd system-free-energy” quantity, which would tend to be minimized -
during the evolution, in configuration and in time space, of a constrained.

biothemiedlssystem.
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| ~I. INTRODUCTION
' Evolutlonary principles have long exc1ted the physical and blologlcal
scientist alike As noted by Katchalsky and Curran:
"The attempts to discover a un1versa1 physical princlple
underlying the phenomenon of life bring to mind the older
attempts of scientists of the 18th Century to show that all
mechanical and optical phenomena could be founded in variational
prlnciples. Thus»the great principle of least action governing
vthe nstnral mechanical paths and the Fermat pfineiple of least
time fof»optieal'trscks served scientists and'philosophets as
an outstanding demonstration of a mathematical structure of the
universe."é |
A phy81ca1 evolutionary principle much discussed in the past vis a vis the
development of life is the second law of thermodynamics. If the modern,
biophysicist need no longer be concerned about llkely contradictions with
biogenesis and spontaneous development of complex living systems, never-
theless as a "Variational principle“ or "potential'theory" description
of non-equilibrium evolutionary processes in biology, the second law by
itself is of no direct use.

One 8uch evolutionary process is the evolution of open systems of

‘ chemical reactlons towards their particular non-equilibrium stationary'

states, whose "locations" are determlned by the applicable constraints
(i.e. by the flxed-out-of-equilibrlum concentrations of certain of the
reactants and products). A major contribution to such yarlational and

potential theory studies was Prigogine's demonstration that the entropy

production per unit time, 6D , (or alternatively the dissipation function,

T#) had a minimum value in the non~-equilibrium stationary state, provided

the properties of the system were: (a) linear phenomenological laws



between forces and fluxes, (b) constant coefficients in the laws, (c)

Onsager relations holding for the off- diagonal coefficients.l3

Under
these conditions, then, the state function JD serves as a thermodynamic
potential for the pre-steady state evolution of the system, therefore

again in the words of Katchalsky and'Curran, "has many characteristics in
common with the great principles of the 18th Century," As is well known
however,. thevimplications of these conditions, that the entire evolution

of the system as well as its stationary state must lie within the near-
equilibrium domain, is severely restrictive for chemical reaction systems.
An interesting discussion of the. domain of validity of the minimum

theorem has been given by Klein.? ‘ e . : .

Because of the great interest in working with far-from-equilibrium*

(i.e. "non linear") systems Glansdorff .and. Prigogine among others4 14
investigated possible extensions of these concepts to ‘the domain of non-
linear rate laws, and in so doing were able to demonstrate certain
inequalities such as: . _ ‘
A T4 @ =fvdR,; <0, | (1)
(where the v and_}[“dfé respectiVer the 'reattion velodities
and affinities, defihéd §+écise1y tn thednext section)

Prigogine_describes the general expression of this kind as a."universal
evolution:criterion," though'as he‘points out, sincerthe'left side of
equation (1) is only half of the total differential of the dissipation
'function T’D (and itself not a perfect differential), d 6? ¢an serve

in general only as a "local potential" ‘rather than as a general potential
in the usual sense.14 ‘(A recent novel (topological) approach to several
aSpects of non linear thermodynamics based on use of Tellegen's Theorem,

includes a different derivation of inequalities such as equation 1).° 2 10

)
2 _

‘Finlayson and Scriven™ have presented a detailed theoretical treatment
- of variational principles’applicable to non-linear systems in general.
They express a somewhat critical view toward incomplete-differential
types of variational principles. L ‘

In this_paper we analyze the variational and evolutionary properties
of several quadratic functions plus the entropy production,03. - The
analysis is carried out.by both analytical and COmputationalbmethodS~on

a number of. sequence-syStems of farhfrom-equilibrium chemical reactions

% By this ‘term we, imply the usual restrictions that the instantaneous
values of concentrations, chemical potentials, etc., are still definable.



all hav1ng t1me 1ndependent statlonary states, and chosen to be repre-
sentative of a- wide varlety of dlfferent chemlcal klnetlcs. _(That ‘
stationary states of this kind, akin to blological homeostatic states;
are not necessarlly 1ncompatible w1th oscillations, is pointed . out in a
later section ) One. of these functlons, called the Affinity Squared
M1n1mum functlonh)t ,. 18- seen to possess the formal propertles requlred
for a thermodynamlc potentlal function for the far- from-equ111br1um
stationary state, to be a state function, and to possess other useful

properties’ as well. It may thus be considered of special_interest.

o II. FUNCTIONS AND SYSTEMS
The Affinity Squared Minimum function, M, , is defined for a system

cof i chemical reactions as follows:
H =2 'ozi_}fi‘

'}li ;s thezaffinity of reaction i, = -i.vv‘pv_ where the V?_and qu

@

are the respective stoichiometric coefficients and chemical potentials

for the reactants in each reaction i. For the purposes of this paper,

only ideal affinities will be considered. The Q, are constants, to,. .

be specified in the next section.

Two - quadratic functions of the velocities are e190-examined,'both
having the form: . ‘

2

_ 2. o4
T (v ) = ? Bi Vi

The chOices of the constants Bi are also given in the next

section. The reaction veloc1t1es,.v

i
deg_ 1, oy

way as dt - v, dt for each individual reaction in the system,

, are definedbin the usual

with the nr being the number of moles of each component ¥ involved
in that reaction. For simplicity we consider herein only_constant
' temperature systems with the ny_equivalent to the concentrations of

. the individual components.v

(3)

Our final comparison function is the well known entropy production per
di8

unit time, 07 rrae defined by the equation:
TP =3V

To study and compare the properties of these functions, seven two-

(4)



variable, multi'reaction-pathway systeﬁs were seleCted‘to be broadly
representative of elementary-reaction-step kinetic sequences. ‘These are
summarized in Table 1 (systems I through 1Vb). For all of these, the
concentrations of intermediate species x and y are-allowed to evolve from :
arbitrary initial values to their final non-equilibrium stationary state
values, in ‘accordance with the 1nd1v1dua1 kinetics shown for each system.
All systems are constrained out of equilibrium by (variously) fixing the
concentrations of A and B away from their equilibrium ratios, taken here
to be = 1. A‘single 1-variab1e system (V) was also_included in Table 1

for reasons explained in the next section.

IIT. COMPARISON OF MINIMUM/AND_STATIONARY STATE CONDITIONS
In this section we examine the variational’properties'of.ft and the
two "velocity squared" functions, complete their definitions, and compare-
these functions with each other (and:wdiﬂxéj), to assess their relative
qualifications as thermodynamic potentials for far-from-equilibrium

chemical reaction systems.

The Affinity Squared function“}L

Having ‘restricted ourselves here to reaction systems. involving no

more than two concentration variables,-the condition for an extremal value

of the function M. (or, more conveniently, of T.M) is:

fésgigl ) O,vy.éégzﬂl ;‘67 : ‘(5)

From‘eQUationb(Z):

%‘Tﬁ=zzd..ﬁ.. sl ' U
S

Using the ideal affinities (Table 2) expressions (6) and (7) are evaluated
and tabulated in columns 6 and 7 of Table 2, for all of the kinetic
systems given in Table 1. These columns can be combined and summarized

for all systems by the two‘expressions:

oy | . o
e R

il

N I T ._ “
;'éhx_l‘ﬂ.zfaiﬁi,———ail s e

(-



" rates are chosen positive from left to right.

are taken -

1, . ail_equilibrium cohstants

Table 1. Summéfy of Kihetic Sysﬁems.a
Description Pathways Kinetics
S v, vy vy Vo Vg
Basic System I . Straight Line, First Order A -—1- X~y e=B. A-x x-y. | y-B
.y - . S _ :
: . 4 o o
. 1.0 2 BEI :
ITa 1-Loop First Order . Aw—=X s>y ~=>B . A-x x-y y-B x-B
Networks IIb 1-Loop First Order i:. A il* x'vgafy'véﬂrB A?x Xx-y . | y-b A-y
4 . ] »
: ' . 1. 2. 3_F
. IIc 2-Loop First Order A~—%xX ~—>y 8B A-x X-y y-B x-B A-y
o { __5 i . ~
dops Straight Line, 1-Step 1, .2 L 2
Autocatalyt}c II1 Autocatalytic . Ao X w—ay > B, ,A X xy vy y‘B
o Straight Line, Disproportionate 1 2 -3 ‘ A-x 2_
Iva (1-Step Second Order) 24 ~—"2x y B 2 X =y , y-B
Disproportionate _ o , : , v :
: Straight Line, Disproportionate -1 2 3. 2 2y .2 T
IVb = 2-Step Second Order) 24 =0k ~—=y =B A-xp xoy 1 y-Bo
'1-Variable ‘Straight Line, 1-Step 1 2 ]
Autocatalytic Autocatalytic = A X B | Ax x_ x-B
a) For simplicity all forward and reverse rate constants = = 1;




_Table 2,

Aff1n1t1es and D1fferent1a1 Functions Applicable to

‘Kinetic Systems of Table 1.2

A A | Az | R | Rs L SETR 1 R I U SR S € x| dy
RT RT RT RT RT 2 K1 aéig;;l' iiijZJ @S%f&i dt - dt -
ox<| S By /Y 3
I & III In % | ln-g 1n % alfil-abjlz O&f{z-a3}13 ViV, Vy©Vy
Ila 1n A In x lp_z bln p3 al}Ll-aZ 2 OZJlQ azjlz-a3}q3 17V27Y, v2-v3
X y B B : .
IIb ln-% ~1ln $' In % 1n % alfll-azjlz azjiz-a3ji3+c%jls ViV, VZ-V'3+V5
IIc In A In x Iny | Inx In A o -l-qzﬂ._z-a4ﬂ4 ‘»'2 3 3 V1TV, L VymVatvg
X -y B B y ‘ .
. ‘ ’ 2 .2 oL v
IVa & IVb - 1n é_ 1n x_ 1n.1 arﬂ,l-qzjlz 2 a3Jl3 2(v. v2) Vy<Vq
252 y B _ .
4 In A In x - /% 2‘”‘2 Ot'z.& y=0 ViV,
X B . ‘
a) V_iSt ’
’=)Q, st
_ 1
.
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. . all | - | | ‘ :
o Q(TM) L, T2 : : parv B - ‘ '
The last‘pafenthetical'tefm in each expfession applies only when chemical
reaction pathways 4 and 5 exist, i.e. for the three systems II ‘(Tables 1

and 2), The essential feature that permits this simple form for (8) and

(9) is the validity of the relations:

o aﬂl aﬂz (; 334)

= ox » - T O ox (10
oR, i oA, [ N 3R R an
dyy - dy ~ \ = 9y -

vRelations such as (10) and (11) are quite general. However; for these

(or for simllar relations in other networks) to hold 1t is necessary ‘that
the reactlon scheme be written with the st01ch10metr1es of the successive
steps appearlng in a self-con81s;ent form, prov1d1ng a smooth flow of -
initial'reaetant(s) to final product(s) through the various intermediates,
as for example in our systems IVa and IVb.

In the final two columns of Table 2 are glven the ind1v1dual forms »
for %% and %%., avallable from 1nspect10n of Table 1. Follow1ng the same.

parenthet1ca1 convention these can be summarized for systems I, - IIa,b,c

and ITI:

12)

S dc T Vv (=)

and for systems IVa and.iVb:

I = 2(v1-v2) N | ' | - . : _(14)‘

o
Bt
l

y .
dt = V2™V3 . : (15

1f M. is to be a thermodynamic potential and therefore have an -
extremum at the (far- from-equillbrlum) stationary state, 1t ‘is. necessary

(though not sufficient) that the vanishing of expres51ons (8) and (9)

 exactly coincide with the correspondlng kinetic statement of the stationary-

state - i.e. the vanishing of the appropriate matching expressions (12)

through (15). Since BJEI and-a 2 are non-zero fof_all'finite concentrations

- Sy



of x and y, this requires that in every case: 2

[azﬁzv"".'a3ﬁ3 o i1 0 = ["2."’3'(*4""5')]“:’0 . ., an

The most obv10us and simplest ch01ce of a “to meet this’ requirement is

the ch01ce '
st .

A

which makes the bracketed 1eft hand expressions in (16) and (17) 1dent1ca11y

equal to the right hand expre881ons
This together with (2) completes our definition of the Affinity

Squared Minimum function

though some of its properties remain to be demonstrated._-To_anticipate,
the,eubsequent analysis of the velocity squared functions, however, andther_
possible choice of'O& will be considered briefly: -

o=1 : o (20

From inspection of (16) and (17) it is seen that expressionsdiike: =

DRSS RS c0ad AT AT WSS 0y

do not generally hold for systems constrained'out of equilibrium, 50 a
quadratic form in: affinities based on (20) is of no interest for our ‘
purposes and will not be further discussed here.

A useful property of M., the identity of M,° b with @st, is. immediately
evident from (19) and (4), whereby: ' o

1

T}Lst=¥vi8tﬂ.3t'; P @
i . . . .

From (22) and the form of (2), M. and P are seen to be closely related
functione and in fact to have the same units. .However, under far-from-
equilibrium conditions, they differ. both qualitatively and quantitatiVely:
(In near-equilibrium (but non-equilibrium) situations, M, and'lpﬂwill B

.-

o
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again become equal for all reaction sequences with their elementary

reaction steps written in phenomenologically uncoupled form.) Beceuse--

of the positive definite nature of P, from (22) we can write: ‘
RYOAES 2, (R,°H% > 0 o (23)

which petmits*us to write (by the rules of'positive definite quadratic
forms) : '

@ >0 - | | (24)

Therefore the;}t function itself must also have the property: .
. 8t 2

Tlt: f (A s_t) R i“ >0, ,v (25)
’ i o ' :

(where the equality applies‘to equilibrium).
Thus the extremal of M in the far from-equilibrium statlonary state
given by (16), (17) and (18), is in fact a minimum, hence the name Affinity
Squared Minimum furction. * _ v
Verificetion of M's state function character reveaiS»a»point of
interest.v'Calculetion of the:cross derivative terms from Table 2,

columns 6 and 7, giyes'the result (for all 7 systems):

' , a A |
o) O(TH)Y _ ﬁz . 2
x (' dy :) - 2, ox oy ‘ '(?7)

Thevidentity of (26) and (27) [and hence satisfaction of the Cauchy
conditions for a perfect differential] is again seen to reside in.(10).

The Velocity 8quared functions.

In a search for thermodynamic potentials, the form of (3) most closely

corresponding to (19) seems an obvious candidate. Indeed if we write:

AL\ 2 -
T(V )11 =7 (v ST v.," | (28)

i

we note immediately, analogously to (22):

i"¥ Footnote - see p. 9a.

Jeotnote - se¢ p. Ya.
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- % Fo‘otnote (for .p'.“‘9) w g

Although the above variational calculation would have been slightly o
.simpler considering the affinities ag the independent variable, for =
convenience, e.g. in comparisons with ‘other . functions, it was carried

© out; with respect to the concentrations. "At’ least for all the kinetic_:i
systems - treated in this paper, the*assuredsminimumfin affinity Space"‘

[ assumeﬂ anminimamrtntmoncepsration space.
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However, for none of the _8ystems we ‘are studying does the functlon {v )1,."
have  an extremal in the statlonary state. This is readlly seen by
computing, from Table 1, the x- and y-partial der1vat1ves of this function
as we did for_}L in (8) and.(9). In each case, these partial der;vatlveS'
are'found tO'be of the form of expression (21) (or slightly more complex
expressions’ 1nv01ving the statlonary aff1n1t1es) which will not’ generally
vanish in the ‘stationary state. o " '

In attemptlng to make a more successful ch01ce of B for (v ) in (3),
we can,carry.through the analogous_extremal——statlonary state correSpondence
procedure, for this function, that gave us (16), (17) and (18).for the
Affinlty Squared function. If we do, we find that by choosing all Bi =

we can write for systems I ITa,b,c and IVb:

6T<v )2

Tox - Ay (vl
R (30)
aT<V2>2
5y = “Avymvy (vl
which clearlyfdo-vanish in the respective stationaryvststes.v However,
forAsystems.III'and IVa, the two.partial derivatives'do not similarly
vanish. For example, for III: | |
vy,
= "Avpmiyv,] ,
SR o - (31)
2, - : : .
OT(v"), :
_ -2 - (x-2y)v,-

oy il
and these do not have as roots the stationary values of_x,.y, v1; vz'and

v

3 computed from Tables 1vandc2.n

Entropy;Broductlon.

Though P is known analytically not to be a true thermodynamlc
potentlal except in the near-equlllbrlum conflguratlon, 1t is interesting
to examine quantitatively its ""deviation" from such character as the '
system becomes increasingly constrained away from equ111br1um (as done-'
by Klein for his l-variable photo -induced excitation process7 ). Computer

calculations were made ofp min PSt for all seven 2-variab1e systems as

a functionvof_out-of-equillbrium constraint. The results plotted in



- Sign of

11

Fig 1 1nd1cate that only for system Iva does foreasonably we11 approx—
imate a potent1a1 function, as the constraint 1ncreases
For comparison, s1m11ar1y calculated ratios are included in Fig. 1

for (v ) (all systems) and (v )1 (system I1I). As a check on the program,
m

M
1.0000 + < 0.0001. As must»be the case, for B/A - 1 (equilibrium), any

ln[}{?t was also computed for all systems and found to be equal to

of the functions may serve satisfactorily as a thermodynamic potential
The "fa11ures" for (v )2 and (v )1 in the autocatalytic and disproportionate
systems are seen to be greater than those for P over the entire range of
constraints plotted (The associated ‘failures for the concentration
coordinates are much less ). ' ' '

A geometrical representation of the variational qualities of‘}L and
69 in 3- Space is given in Fig. 2. As noted in Fig. 1, “the relationship
between the minima of the two functions, 6p min <_)L“u , was also found

for all the other systems studied ‘

IV. TIME DEPENDENT PROPERTIES . .

ég!_:i

Closely assoc1ated in interest w1th the variational propertles of a

thermodynamic potential in concentratlon space are its time- -dependent

properties, knowledge of the time derivative of any such function is
useful in considering the time-evolutlon of a system as well as the
stability of its stationary state, Ideally one would like a s1mp1e
analytical expression for the time derivative with a readlly determinable
sign such as is often available for %{3 near equilibrium. For the
2-variable kinetic systems of Tables 'l and 2, no such simple form is
available. For this'reasonvwe,haVe'included1the single l-variable'system
in the tables’~—— system V. (For this autocatalytic 2-reaction system

it is'readily verified by the methodsiof the previous sections that_the

. same qualitative conclusions hold, “as were valid for the autocatalytic

- 3- step system III: M, has a minimum in the stationary state, but both

"velocity potential" functions. (vz) fail in this regard.) We will now
vdemonstrate 'analytically" that for system V, for all values of x:

dMn

i <0, 5 - (32

)
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(with the‘equality being valid only for the stationary state). Exnandingl
the left side of (32): -

dt = dt.'

Following Table 2 and rearranging slightly, (33) becomes:

ad 2 1, st, [ AL Az > o
== - = v o) ( _ - = (v v,) or, (34)
dt T ox ... 7 st st - 17V2/» 7
o o )%1 . -)E T :
' 'vA X
§%£‘= -2R (xst-B)‘ _ :_. - _'Bst‘- v(vl-vz), : . - (35)
: 1n =T Inx ~ | v
-xs B

To evaluate the sign of %%L' in (35) under a11 possible conditlons, we‘

s
first summarize some useful interrelationshlps between x, x t, A and B.

(a) The stationary value of the intermediate species x must lie within

the range of B to A, (except for equilibrium where A = B = x° ) That is:
B> x° > A, or | L (36)
:A>x_>B- - (37)
These reletiens can be verified by forming the two differences'(nSt - A)
and (xst ;iB),;using the value for XSt (calcnlated from Tables 2 end 1):

st _ @)+ up

2 J.

~and noting that for these differences to.be positive; B-A > 0 or A-B > 0,
respectively, and vice versa. ' ' : '

(b) If x>x°°, then v -v, <0,

o ot | (39)
If x<x ~, then vy, >0, v
where (from Table 1):
v, mV, = -x2 + (A - 1) x'+ B. . ‘_ _ (40) .

Relations (39)'are proVed By forming the difference (x -ngt) - using (38),
and noting that for it to be positive (or negative) requires (40) ‘to be
respectively negative (or positive). '

We are now in a position to examine the signs of (35)(for the 12-

(38)

-
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possible relative configurations of x, (six for condition (36) and six for
(37)). Without 1oss~of_génerality this analysis will be carried out only
for the,caSesvéorreSponding_to (36). These six cases are (we exclude -the

trivial case of x = xst whererézﬁ = 0):

T
x>B>x> A D)
x=B>xC>A o - : .(42)

| B>x>x 0> A | . ‘ (43)
B>xt>x>a o | )
B>.xS_tI>A_= X R (45)
B> gSt Sa>x o (46)

The signs of the terms (B - xSt) and--(.v1 - v2)'are immediatély
obvious from (41) through (46) and‘fromv(39),_respective1y,_and'are entered
accordingly in columns i) and j)_of Tabie 3. For cases (41), (42), (45)
and (46) the.signé of the individual logarithms in (35) combine to give a
uniqﬁé sign for the tbtal_logérithmic.term, as indicated in columns a)
through f);aﬁdvh)‘of.Table 3. For cases (43) and (44) it isuseful to
recast the 16gérithmic term of (35)'iﬁto the form;

st

. A X ‘A
In x lé B -1n 2 3" 1n st ;
, , st (47)
"1n A . 1n X
st "B
<3t v

For both (43) and (44) the denominator of (47) is positive so the sign of
(47) is determined by the relative magnitudeé of the two products in the

‘numerator. . For (43), each term in the first product is larger in magﬁitude

than the corresponding term in the second product, while for (44) the .

reverse is true, permitting us uniquely'to complete columns- g) and h) for

" (43) and (44) The product of the 3 signs in'COlumns h); i) and j) with

the intrinsic negative sign of the coefficient in eq. (35) - %E ), gives

us the final result (Column k) that eq. (32) holds for all cases. This’

same result can easily be verified for the remalnlng 6 cases, analogous

.to (41) through (46), but subject to lnequality (37) rather than (36).

Lacking 51mllar simple analyt1ca1 expre331ons for %fu'analogous to-

(35) and (47) for the seven more complex 2-variable reaction sequences of



refer to the specified sections of (35) & (47). .

Table'.3. The sign of %t& for system V. The sighs indicated‘:

a b c d e | £ g h* |4 k-
In A In A a/b Inx . | 1n x8t | d/e ae-bd | 1n terms |B-x5t vV, dMe

Case X - s8t - b B - o ' : dt
eq. (41) - - + - - - + - - -

) (42) . - - + O - 0 + - _ -
(43) - - o+ - - + - + - - .
(44) - - + - - + - - - + -
(45) - 0 - 0 - - + i . N )

(46) + - - - - + - '.. + -
* Column h = colums c-f or g/be
[
'S
3 €

C
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Tables 1 and 2, a computer scan was made. For each system, ggt 'was
calculated and tested for negative definiteness over a 10 x 10 matrix of
concentratlon coordlnates, again restricting the analysis to the domain of
| (36) but lncluding x values in all of the tanges.covered by (41) through'
(46)., (For netﬁork system Ilc where x°© = ySt, a zero divided.by zero
value made tﬁo of the six terms incalculable. 1In this case, xSt was _
perturbed slightly to y°' - 0.00001.) The calculations were carried out .
for the non-equilibrium constraint of B/A = lO.‘ In every case, tHe result

was —'ZL < 0, verlfylng 32).

Kinetic Analysis of System I.

" We complete this kinetic section with an analysis for system.I of
x(t), y(t).andﬁ.(t), and for comparison, @ (t). The equations of motion
(from the last two columns of Table 2 plus the rate laws of Table 1) can

be written 1in the form:

v%+4g—’t5+3x=2A+Bv
dt _

(48)
a? d .
=L +4sl+3y=a+28 "
dt :

Pairs of x 'and_"y to satisfy (48) were calculated numerically, the corres-
pondi.ng,)( and P values computed from egs. (19) and '(4)' and Tables 1 and
2, and the results plotted in Fig. ‘3. (From Tables 1 and 2 the applicable

stationary v_alues are: x°t-Z2A%3B ; % and y°r = A +32B 2

The smooth course of M (t), indicative of a thermodynamic-potential-
description of the time-evolution of a system moving towards a.single stable
stationary state is seen to hold, despite the overshoot of y. Associa_ted'
with this latter, however, 'ie.an overshoot in 0) , displaying in time-
space for this far-from-equilibrium system the failure of @ (t) to properly .
match the evolving system. It may be noted in passing however that suf-
ficiently far from the stationary state, @ does retain'the proper time
~ behavior of ‘an "evol'utidnary'indicator,"v (dp/dt < 0). This is reminiscent
of the result previously noted by Mel also for certain restricted
kinetics.sv ‘(Overshoots in I/ s yet a surprisingly small deviation" off mio

from fStWere also noted by Klein for his photo- excitation process,?)
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. V. DISCUSSION
Co_paratlve Qua11t1es ova;

It is always p0331b1e to construct a p081t1ve definite quadratic form
hav1ng the formal properties of a. minimum at any given: point. in multi-'
dimen31ona1 space. From (16) and (17) ‘alone it is also clear that ‘the
choice of function for assuring anvextremal (even avminimum) in the
stationary state is not a unique one (though neither is entropy, as-
usually defined ‘the only function for which we can write a "second law")
Slgnificant about our "variationally successful"aft however, is its
particular form (2), (18), with the additional properties that followed
Mst _ ’DSt,.p081t1ve definite, extremal ~— minimum, state function,

dM‘T < 0, (plus below). This is in contrast with the behav1or of the
tgree other (formally and conceptually) closely related quadratic forms
(20), (28), (30) which were seen to fail as thermodynamic potentials for
some or all of the systems summarized in Table 1.

‘The close 1link of M to P provided more than aesthetic satisfaction-.
it directly "converted" the less stringent requirement of an_egtremal into

the more restrictive (and more desirable) extremum-minimum condition.

Interestingly, the "velocity potential" candidate that'likewise inter-
faced with OD in the stationary state ( (28), (29) ) was seen to. fa11

variatlonally for all kinetic systems

The Form o.f._/‘L o
" Given a formally successful variational principleepotential‘function,
it is nonetheless worthwhile to critically scrutinize the particular form
this takes._ Specifically, for M., one may ask the 3 closely related
questions: What right or use is there, (a) to presuppose the‘existence
of the stationary state; (b) to include kinetic-mechanlstic quantities- v
in the function rather than to '"derive" them from our variational pr1nc1ple
and (c) to include quantities that must be evaluated at the stationary
state? o

In answer to (a), in this paper we explicitly limit our study to that
large and important class of systems having a single (locally) stable
stationary state. It is in this same spirit that we use free energy or
'entropy for treating (evolution of) reversible systems to known, stable,

equ111brium'endp01nts. (Note that it is usually of little concern that
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most biochemical "equilibrium" endp01nts are actually only restricted or
: unstable equilibria 31nce the compounds 1nvolved are commonly themselves
thermodynamically unstable )

In answer to (b), in a sense we - did "derive" the included kinetic
terms (16), (17) and (18). Furthermore, by their appearing simply as
ViSt or QSt, the form of these terms is quite independent of detailed
mechanism, a feature long cherished for AD within the linear domain. (One
might even argue that mechanistlc considerations enter- into the 0Dnear ed.
~ even more than they do into M.; the "linear phenomenological laws,'" though
common to a11 chemical systems ""close enough' to equiiibrium, are the
actual valid-rate laws so the concept of '"independence of mechanism' in
that domain may be somewhat misleading.) In a more general vein one may
argue that:the'cooperative combination of rate and‘thermodynamic quantities
lies at the very heart of the foundations of the thermodynamics of
irreversible processes (c.f. De Donder's inequality jl *v> 0, and the
multi-reaction extension: T f’ Zjlivi >'0) It also is in qualitative .
correspondence with the operation of the complex reaction networks of
living Systems, whose reaction rates must mutually adjust as part of the
competition for available free energy resources.11 12 '

Regard1n§ question (c¢), perhaps the best response is simply to note
that a =}-'i3f
properties'ofjﬂ., that no other such simply defined and.interpretable

is the "correct" form to assure the thermodynamic potential

potential‘function is available, and then to examine,f‘ to see what
interesting properties and uses it may have. | ' 7
In. this regard a practical point may be considered. Ease in numerical:
evaluation of (and providing an alternative mroute rtoye desi#ed el
information are themselves useful attributes of a function. Calculation
or measurement of the-yis andJR_ St is a straightforward and relatively
simple algebraic exercise not requiring solution of the differential
(kinetic).equations of tbe system. Furthermore even in 1arge;'comp1ex
networks there are‘always“fewer vis‘t .
(sometimes as few as one, e.g. for System I, Table 1 and its multi-

to determine than there are reactions

variable extensions). Given the properties of M aIready discussed, plus
-those indicated below (e.g. its system?characterization of the "position"

and evolutionary properties of far from equilibrium reaction systems; its
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biological interpretation y its feature for comparison of stationary
states; its possibilities (largely untested) as a s_tabilityvi.ndicyat'or,_ v
etc.) the "interest" in the function would not seem to be in question at
this moment. . v ' ‘ ‘ |

In concluding this part of the discussion, another point of comparison
with P may be’ noted For near-equilibrium configuratlons, the "constant
phenomenological coeffic1ents" of the diagonalized P matrix (expressed in_ v

the affinities squared) may be given the same interpretation as our Oz
8 .
V'. :

= - t .
R;®

S:Ljnificance and "Uses" off(.

From 1ts form alone, ( (2), (18) ) two general properties can ’be

stated direetly' (a) as a comp031te function depending upon all the‘Al
and vl t M is truly a property of the system; (b)}(. may be thought of .
as a "kinetically-weighted system-free-energy" quantity. Additional (even
if obvious) statements follow directly from the thermodynamic-potential-
associated properties. (c) for a given system and constraints, the
instantaneous value of M (or TH, we consider temperature c_onstant) ‘
"locates" the system in both configuration and time space. It may also' be
cons:.dered to be the "cost" of a metabolic system; (d) A)Lmeasures the
tendency of a reaction System to make the indicated tran81tion between ‘
arbitrary initial (reacting) and final (reacting) states; (A}'L< 0is a
criterion for spontaneous "evolution" by such a tran31tion,j1, )Llnlt
measures the "maximum evolutionary potential" of the thusly-constrained
system). From its interfac:.ng property with P , alone, (22): (e) A)L
)LZSt }'(_ISt, measures the relative 1rrever31bihty (6r A(T}f't), the relattve |
dissipation) of a system.in two different stationary state configurations.. '
1f one of the stationary states is in fact equilibrium, ‘where )(2 =
}( = 0, j‘(l measures the system-configuration's "absolute irrevers-v
1bllity," i.e. its steady state "distance" from equilibrium.
Notwithstanding the inclusion of kinetic elements (which together
with the}{,i'tt serve as the '"weighting factors") since the. degrees of
freedom for any given system reside in theA terms, we can conSJ.der}'(. '8’
dominant feature to be its "affinity'" character. We may further interpret

the }L’.variational and time-~dependent properties ‘as indicating that
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evolution towardsbthe non-equilibrium stationary state occurs in such a
way as to minimize the'use of or to maximize the.effiCiency of use of
this weighted free -energy. quantity. In an extensive current review of
the experimental m1crobiologica1 literature, Payne makes the 1ntr1gu1ng
suggestion of the existence of "a gene controlling the investment

expenditure of energy,"

as one p1aus1b1e explanatlon for certain control
featureS'observed‘in cell culture growth and evolution.12 This appears |
'generally,consistent with the above interpretation (though as Payne is
carefnl to'point ont, cause-effect relationships remain to be clearly
sorted‘out from each other in interpreting the experimentalrdata) Pardee
in discu381ng different regulated blochemical-pathway systems (""the networks
of life") touches on energetlc as well as rate aspects of such systems,_
but arguing hlologically, particularly from a longterm evolutionary stand-
point, he'favors‘af"growth maximization" c‘ontrol'feature.11 Though this
is related,to'the ratesvof the system, the exact nature of the relation-
ship is. not clear. (Recall that our.(vz)z,v(3), (30), a "pure" rate
quantity was "varlationally successful" for several kinetic systems, and
like}q, is a state functlon ) Others have also discussed ' veloc1ty

potentlals," often of the incomplete differential type.14

Oscillations and Stability Criteria

v The time independent and stable stationary states of Table 1 were
noted to be representative of a large class of common homeostatic-like
conditions. ‘The relationship, 321‘< 0 found for these systems, demon-
strates that the M, function is a valid indicator for the "smooth" |
temporal evolution of these systems and also for the stability of the1r
stationary states. P clearly cannot serve this purpose, see Fig. 3.)

Other kinds of temporal endpoints obviously exist in biology, e.g.

osc111atory states, covered elsewhere in this volume. In some cases one
‘may approprlately consider such systems st111 to have a "stationary"
gtate w1th the proviso that it be a time-averaged,state, over the thermo-
dynami.c time scale suitable to the particular system, as discussed by
‘Tykodi.ls- Real physical systems commonly "maintain" a constant condition
by oscillating about  that condition (though the oscillations may often be
sufficiently "fine-structure" in character to be disregarded).so,the two

concepts are perhaps not 8o incompatible as might seem at first sight.
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(Consider, e. g., the thermostat that functions by "hunting" around its

set value ) In other cases, however, one may w1sh to empha31ze prec1sely
the 0pp081te theme'—~ the non-constancy of the system' 8 behav1or at t = «.
It will be interesting to explore the behavior of E%Q for a permanent '
osc111atory system such as discussed. by Goodwin~ and, alternatively, for
systems known to have bistable or unstable statlonary states, e. g of the’”

kind recently described by Gardner and Ashby. 3

| VI. CONCLUSION | S ,

‘In-sammary, the‘Affinity Squared function,/q, 'based on choiCe'of a
according to (18), is seen to have useful and satisfying propertles -— 1n
its state function-thermodynamic potentlal time-dependent character, and'b
in its simplicity and smooth 1nterfac1ng witildp which in turn. smoothly |
interfaces with entropy. One. may thus regard,)t as a formal extension of
f)into the_far-from-equilibrium.domain of open chemical reaction systems{
Qnestions regarding JM which awaitrfurther clarification'include (1).its.

generallty for other- than chemical systems or for more complex chemical

systems (the extension of (16) and (17) to greater than 2-variable networks

with simple kinetics is trivial); (2) its p0331b1e use in characterization :

of reaction networks according to differences in complexity, connectiv1ty,
etc.; (3) its behavior for oscillatory and unstable and multi-stationary

state systems.
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Captions:

Fig. 1. Deviatlon of function minima from statlonary state values, for :

the seven 2-variable kinetic systems of Table 1 Plotted are
)Lmin ﬂSt,'- —— heavy solid line;

fmin pst — open circles;

(v,

vy

)2 ; ——closed triangles;

v?}iSt, — open triangles.

For interfunction comparison on a single system, dashed lines are used for

all the autocatalytlc system (ITIT) curves.

Minimum Location Program: For each constralnt .and function the
minimum was'locatedTby evaluating'the function over a 20 x 20 matrix of
x and y concentration coordinates, one y-row at a time. The minimum of
each row was compared Qith preceding rows until the smailest'of the tow-

minima was located This process was repeated w1th ranges reduced by

factors of 10 until the concentratlon coordlnates were known within errors

of less than 0.1%.

Fig. 2. ,fL and ¢3 functions in concentration space, Bhown for system T
with B= 10, A = 1; x°% = 4, y* =7, P“’i“_eskn‘“m,_ega The
heavy line-segment denotes the intersection of the two surfaces. The
3-dimensional Figures were'grephically constructed from contour maps df,
X~y areas near the function minima. The insert indicates the inter-

relationship of the two surfaces, as seen from above.

Fig. 3. Kinetic analysis of system I. The kinetic equations for system
I were solved for x(t) and y(t), for B/A = 2/1"xo = 0, and y6-=_2.: Pairs
of x and y were calculated numerically es were the,correspondingh}t and

Y function values (plotted in units of R).
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages -
resulting from the use of any information, apparatus, method, or
process disclosed in this report. ' '

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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