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Loh-ping Yu 

Lawrence Radiation Laboratory 
University of California 

Berkeley; California 94720 

February 2, 1971 

ABSTRACT 

We present a series of beautiful, elegant, "simple" and uLique 

formulas for general tree amplitudes and general loop amplitudes in 

the dual resonance model. in particular, new result of multiloop 

amplitudes with external reggeons and pure-reggeon multiloop ampl:tudes 

are derived. Various rules are given for writingdo'Nn the most gtneral 

tree amplitudes and loop amplitudes by simply inspecting the corrc-

sponding Feynman-like diagrams. Simple intuitive interpretations of 

various factors in.the formulas are also discussed. 
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1. PHILOSOPHY AND MOTIVATION 

1 A Veneziano formula incorporates the following three properties 

of strong interaction:
2 

(a) All its singularities arise from narrow resonance 

exchanges. 

(b) Regge asymptotic behavior in all channels • 

. (c) Exact crossing symmetry. 

It follows from the properties (a), (b) that such a model must contain 

an infinite number of exchanged resonances instead. of a finite number. 

Consequently, it then follows that the model necessarily possesses the 

duality property (hence the name "dual resonance model"), because direct 

channel resonance exchanges are supposed not only to dominate the low-

energy region but also to describe the high.,.energy region, which is 

usually controlled by cross-channel Regge poles. Accordingly, duality 

is a natural consequence of the assumptions (a), (b). 

However, the narrow resonance, in fact zero-width, assumption 

although is in consistency. with the experimental fact that all Regge 

trajectories seem to rise linearly,3 nevertheless clearly violates the 

unitarity principle of S-matrix theory4 on the other hand; because 

unitarity requires branch cuts on the real axis (in the energy-squared 

plane) if above threshold, and all resonances, having finite widths, 

to lie on the second Riemann sheet beneath the cuts. However, since 

the dual resonance mo.del has already incorporated almost all S-matrix 

princiPles,4 except unitarity, it is natural to hope that suitable 

modifications made on the model will enable it to satis:f'y the unitarity 
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principle, and will hence enable one to obtain a satisfactory theory 

of strong interaction. This is the motivation behind this thesis. 

The idea of unitarization of the dual resonance model, as 

suggested by the factorization propert; of n-point Veneziano formula, 

is to regard the n-point Veneziano amplitude as the Born (or tree) 
.... 6 

amplitude, Which is an approximation to a more exact physical 

scattering amplitude. One then attempts to construct, from unitarity, 

the higher order multiloop amplitudes, compatible6 with the duality 

assumption~ In other words, the unitarity constraint is imposed on 

the dual resonance model in aperturbative way, strictly in analogy 

with theperturbative fielq theory. But, there is one fundamental 

important property distinguishing the dual resonance model from the 

perturbative field theory. Namely, duality is assumed6 to be true in 

each order of the loop diagrams; therefore all loop amplitudes related 

by duality are equal to one another instead of being added, as they 

usually are in the field theoretical model. 

As we will see later, the outcome of such an approach is 

surprisingly elegant and simple. The results are not only mathematically 

beautiful but also have very simple intuitive interpretations. It 

'might therefore be hoped that they will be useful in the framework of 

future theory of strong interaction. ", 
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II. OUTLINE PRINCIPLES AND SUMMARIZE THE RESULTS 

The perturbative-unitarity equation can be mathematically 

stated as follows, 

Im fen) = 
*(n-m) (m) f f, m <.. n, m,n 1,2,··· 

(2.1) 

where is the scattering amplitude to nth order in the coupling 

constant. Equation (2.1) means that the imaginary part of the nth 

order amplitude can be constructed from the mth and the (!!.:~)th order 

amplitudes. For example, the imaginary part of the planar box diagram 

(~th order) can be obtained from two gnd order four-point tree diagrams. 

In principle, one may then use the dispersion relation to get the real 

part of the ~th order amplitude. In practice~ however, it is more 

convenient to use Feynman tree theorm7 to get directly the loop ampli-

tudes themselves. The application of the Feynman tree theorm can be 

carr1edout in two steps: (a) cuttings or factorizations, to get 

multiply factorized tree diagrams; (b) sewings, to get multiloop dia-

grams. To illustrate this theorem we again consider the planar box 

diagram. The theorem states that we first factorize on the n-point 

Veneziano tree diagram, obtaining a six-point tree diagram ,,7i th two 

adjacent excited legs (Fig. 1), and then sew the two excited legs 

together by inserting a propagator and integrating over the loop 

momentum. We thereby obtain the planar box diagram. 

Similarly, the nonplanar loop diagram can be obtained by sewing 

two nonadjacent excited legs together, as shown in Fig. 9. And the 

overlapping loop diagram can be obtained by sewing two overlapped pairs 

of excited legs, as shown in Fig. 11. Finally, the nonorientable loop 
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diagram is defined by sewing an excited leg with a twisted excited leg. 

. 6 
It has already been shown that the above-mentioned four types of loops, 

namely, the planar loops, the nonplanar loops, the overlapping loops, 

and the nonorientable loops, are the complete set of loops that one can 

construct from theperturbative-unitarity equation, Eq. (2.1). 

The construction of amplitudes from simpler amplitudes by 

repeatedly cuttin,g and sewing, which represents the main part of the 

work of this thesis, results in a series of beautiful, elegant, and 

simple formulas: 

(a) multiply factorized tree amplitudes,8 Eq. (4.25), 

(b) pure -reggeon tree ampli tud.es, 8 Eq. (4.27), 

(c) multiloop amplitudes9 (of all types), Eqs. (5.35) and 

(d) mul tiloop amplitudes with external I'eggeons, Eq. (6.5), 

(e) pure~reggeon multiloop amplitudes (of all types) Eq. (6.7). 

The last two classes of amplitudes, (d), (e), are the new results 

of this thesis report. They are presented here for the sake of 

completeness and for suggesting a complete theory of pure reggeon 

calculus. IO A detailed mathematical calculation for the nonplanar 

multiloop amplitude and simple derivations therefrom of the overlapping, 

the nonorientable, and the planarmultiloop amplitudes are given here 

to supplement the methods given in the former publications. 9 

Most of the formulas in the following are expressed in operator 

formalism. ll We briefly review the operator formalism. An infinite 

set of four-dimensional harmonic oscillators a fJ = 1,2,3,4, 
fJ.,n 
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n = 1,2, ••• 00 is introducedll to discuss the factorized excited states. 

They obey the commutation relations 

[a ,at j = g 8 
~,n v,m ~v nm 

Three very useful identities are 

ata exp(fa) z . 

exp(fa) exp(gat) 

ata ( ) = z exp fza , 

= exp(fzat) fata, 

= exp(ga t) exp(fa) exp(f. g). 

. , 

(2.2) 

It turns out more convenient to introduce the coherent state, defined 

by 

Iz) = exp(zat) 10). 

A number of useful properties involving coherent states are 

alz) = zlz), 

exp(z'at)lz) 

xatalz) 

= 

= 

Iz' + z), 

Ixz) . 

(2.4) 

(2.5a ) 
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III. NOTATIONS AND THE ALGEBRA OF CROS.S-RATIOS 

Kikkawa and Sato's notations12 will be used throughout the 

whole work. We summarize the notations as follows: Let k i be the 
Jl 

four-momentum of the ith particle; n = 1,2,"·00 be the harmonic 

oscillator operators corresponding to the ith particle (if it is an 

excited reggeon), then 

Iki) (ki ki ~, .. ) - ."-T , -:r , , 
12" 22 n2 . 

lai
) (al 

i i i ,a2 
.•• a ... ) - , 'n ' , 

(M+)nm (M T) !5i (i)~ (_)n 
+.mn 

(M_)mn 
T 

= (M_ )nm 

(Mo)run - 5 , run 

00 

(a i Ix) xlai ) [ = - a n 
n=l 

00 

(ailxla j
) L = a n 

n=,=l 

~ .1: 
n,m=l 

i . T i 
(a 1M:±" = M± la ). 

1 

- CiD
2 (_)n 

i n x , 

i n a j x , n 

, 

(-~) 

(:) , 

.,.. 
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In Appendix A~ a set of useful identities is listed. 

Consider now two sets of N Koba-Nielsen variables13 w . 
l 

and w!, i = 1 2 .•• N' a cross-ratio defined on the w. set is l ,~, , l 

(Wj w£)(wk w ) 
P(j,k,.e,m) p(wj,wk,w£,wm) 

m 
- -

(Wj wm)(wk w£) 
. 

It is easy to see, from Eq. (3. 2), that 

(a) ° ~ P(j,k,£,m) ~ 1, except if j = m. 

(b) 1 - P(j,k,£,m) = P(j,£,k,m) , 

P(j ,k, £ ,m) 
1 

= P(j,k,m,£), 

P(j,k,£,m) = P(k,j,m,£) = .P(m,£,k,j) 

P(j,k,£,m) P(j,k,m,n) = P(j,k,£,n), 

P(.e,m,j,k), (3.3c) 

(3·3d) 

P(j,k,£,m) . = 
1 1 

- P(j,m,£,k) 

1 

(c) If ~j = OJ, wk = 0, . w£ = 1, then 

P(j,k,£,m) = wm' 

and we speak of wj , wk ' w£ specifying the W frame. 

(d) If wa = OJ, wb = 0, W = 1 specifies the W frame, and 
c 

w·'. ' . ° w' = 1 specifies the W' frame; then the projective 
J 

=.00, wk = , £ 

transformation from the W :f'rame to the W' frame is 

W = pew' w' w' w') P'(a b c m) m a' b'c' m - , , , , 
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and that from the W' frame to the W frame is 

Note that in Eq. (3.4), we use P' to define the cross ratio of the 

W' frame. 

(e) Any cross ratio is, inva.riantunder projective transformations 

(duality transformations), i.e., 

P(p,q,r,s) P' (p,q,r,s). 

It is this property that greatly simplifies the calculations 

and frequently enables us to obtain frame-independent, projectively 

invariant results. As in special relativity, we can always choose a 

particular convenient frame, work out the answer, an,d then generalize 

it to a projectively invariant form (dual form) by forming the 

appropriated cross ratios. 

We now come to the aglebra of cross ratios. Because, in later 

calculation, it is always possible to keep the momenta conserved inside 

the notation I); we will assume, from now on, that momenta are always 

conserved when they appear inside the notation I). Bearing this 

assumption in mind, we can always ignore all residue terms, i.e., terms 

due to the contractions of M± on !ki ) • 

. A typical example of cross-ratio algebra is illustrated here 

by considering a term describing the' coupling of 

8 reggeon: 

= 

i a reggeon with 



Ii 

"', 

where 

Pi (j) = P(i,i+l,i-l,j), 
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P.(i) = P(j,j+l,j-l,i), 
J 

", "8 14 
and the coherent state lA.j > is of the form' 

IAj) = exp [ ~(ktIYtlajt)}Oj)' 

As we just mentioned, here we assume, L k.e = O. Suppose now we 
£ . 

(3.8) 

(3.9) 

substitute Eq. (3.9) in Eq. (3.7) and commute aJt to the left by 

using Eq. (2.3c), we obtain (omit IA.. > for simplicity) 
~ 

I';j = (O.lexp [\"" (ailp.(j)M P(i+l,j+l,i,j)M Tp.(i)Ynlkn~ 10.). 
... J L ~ - '- J ,c,,c, J, 

,£ , ' (3.10) 

We can explicitly calculate Eq. (3.10), by writi?g 

with 

All 
Pj(X) E P.(X} = P(j,j+l,j-l,x) = p(j,j+i,x,j-l). 

J 

Substituting Eq. (3.11) in Eq. (3.10), we can explicitly simplify Eq. 

(3.10) as follows 

, Iij = (OJ lexp [ ~ ( ail P. (j) M P ( i +1, j +1, i, j)M Tp. ( i ) P . ( Z n ) I k n )] " 0 . ) 
~ - - J J,c, ,c, J 

[by Eq~ (3.11)J 

(OJ lexp [~ = (ailp. (j)M P(i+l,j+l,i,j)M Tp(j,j+l,j-l,i) 
~ - -

Equation (3.13) 

x P(j,j+l,Zt,j-l) Ikt] IOj) 

continued next page " [byEq. (3·12 )J 
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Equation (3.13)continue<;i 

= (OJ I exp [~ (a~ I Pi (j )M_ p( i +l,j+l, i,j )M_ Tp(j ,j+1,z l' i) Ik£)] I OJ) 

, ! [by Eq . (:~ . 30 ) ) .. 

= (ojlexp (2: (aiIPi(J)M_P(i+l,j+l,i,j) 1 _ . ~ 1· .. Ik) IOj) 

I- , ' ,P(J,J+l':~.e,1) J 
[by Eq. (3 .1)] -

= (OJ I exp [~ (a
i 

IPi(j )M_P(i+l,j+l, i,j )p(j, i, z£,j+1) Ik£)] IOj) 

, " ' [by Eq. ( 3. 3e ) ] 

= (OJ I eX» [L (a
i 

IPi (j)M_P(j,i, z£,i+1) Ikt ») IOj) 

p, fby Eqs. (3.3c) and 

(3.3d )] 

= (O·lexp {',) 
J L ... 

.e 
(aiIPi(j)[l - P(j,i,Zt,i+l)llk.£)} IOj) 

- , [byEq . (3 . 1) ] 

= (OJ I exp [r (ai Ip(i,i+l,i-l,j) l'(j'Z.t,i,i+1) Ik£] IOj) . 

.e [by Eq. (3 . 3a) J 

~(O j I exp [L ( ail Pi ( z.£ Jik .£) ]1 OJ) .. 
£ . " 

(by Eg. (3.8)J '" 

.' ~ 

-

[py Eq. (3.11) ] 
(3. :;-3) 

= (OJ I exp [f-(a i ip;'pj -l(YJiJlk.£») IOj),,-c 

0., . 
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This example should 'be enough "to illustrate how the algeb 'a of 

cross ratio works. However, it is more convenient to restore the 

coherent state I Aj ) explicitly.' This can be done formally by in:;erting 

exp[ r (k.eIY.elajt)] to the right of (oJ' I in Eq. (3.11), and use Eq • 
.e . 

(2.3c) to pass it to the right, we get 

Iij = (OJ I exp [~ (ktlYt laJtJjexp [~ (a
i 

IPiPj -l(y tl Ikt l] lei l 

- (oJleXP[(ailpiPJ-1()Jajl] exp [~ (ktIYtlajtJ]IOj) 

. (I il A -l( I" J) I ) ;: '. ° j exp [a PiP j ) a" ] Aj . 

Comparing Eq. (3.14) with Eq. (3.7), we conclude the symbollical 

Iij '" (Olexp[(aiIP}j -1( llajl] ~~> 
, . / 

~ (Olexp[(ailp.(j)MP(i+l,j+l,i,j)M Tp.(i)la
j
)] ~i> 

]. - - J f\.. 

J 

Since Eq. (3.7) is symmetrical with respect to i,jindices, it 

follows that 

(3.14 ) 

Note the two symbollically identities Eqs. (3.15) and (3.16) 

are true bnly if IAi ), IAj) are of the form given by Eq. (3.9). As 
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we will see later, this is indeed the way that we define8 the factorized 

coherent states [see Eq. (4.20)J. 

But Eqs. (3.15) and (3.16) say something more, namely, it is a 

proof of the factorizability of the operator part of the N-reggeon tree 

amplitude8 (see Appendix B also). In fact, they have already been used 

in the planar N-loop calculation, in Ref. 9 (UCRL-20054). Of course, 

Eq. (3013) is identical to tovelace
lO 

expression. 

The virtue of the cross-ratio algebra is not only that it is 

elegant but also that it frequently yields projectively invariant 

expressions. 



-13-

IV. MULTIPLY FACTORIZED TREE AMPLITUl)ES 

• AND PURE REGGEON TREE AMPLITUDES 

In Ref. 8, we have obtained a set of rules for writing down the 

most gerieral formulas for these two classes of amplitudes [see Appendix 

B, also], by simply inspecting the corresponding tree diagrams. However, 

there we did not fUlly invoke the cross-ratio algebra; and in deriving8 

the pure-reggeon tree amplitude, we remarked that letting certain momen-

tum go to zero by modifying the spectrum of relevant trajectories to 

get the asymmetrical propagator, is not a necessary procedure. Here 

we would like to use cross-ratio algebra to re-do the multiple factori-

zations. and to give a proof of the remark mentioned above, by direct 

factorization. The reader who is interested only in the fin.al answer 

may well skip to Eqs. (4.25) and (4.27). 

Let us first write down the dualN'-point tree amplitude in the 

Koba-Nielsen representationl3 (Fig. 2a) 

x - wi+1 

1( 2.2 ) -0:02 k. +k .. 1 
) 

1. 1.+ 

(4.1) 

-~k. ·k. 
) 

.1. J - w. 
J 

(4.2) 
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The three variables w ,w:b,w . are fixed and they specify the W frame. a c 

The set of N variables wi' i = 1,2,···N are ordered, for convenience, 

on a circle (Fig.· 2b). Figure 2(b) will hereafter be called the ordering 

diagram. In Eq. (4.2), we assume a trajectory funCtion o:(s) = 0:0 + !s; 

and for N scalar external legs, the bootstrap conditions 

1 ·2 
O:(ki ) = <'10 +?i = 0, i = 1,2," 'N, is satisfied. 

_lk ·k 2' . 
We can interpret the factor (w. - w.) l J as corresponding 

l J 

to lines directly connecting the w. 
l 

leg to the w. 
J 

leg [if one 

inserts several holes inside the circle of Fig. 2(a), thus obtaining 

the multiloop diagram, one then naturally expects that these lines 

have the freedom to encircle the loops]. Since i I j in the 
_lk ·k 

f t (w. - W.) 2 i j th t' t d d th ac ors e momen um lS no conserve, an e 
l J 

factors 

and 

are necessary to guarantee the projective invariance of the whole 

integrand in Eq. (4.1) (they can also easily be generalized to loop 

ampli tudes) . 

We start by factorizing the N-point tree into M-point and 

(N-M+2)-point trees. We introduce8 three frames (Fig. 3): 

W frame: wI = 00, w = 1, . w
N = 0, w. = w. N (i = 1,2,"'N), 2 l l+ 

Y frame: YM = 00, YM-l = 1, Yl = 0, y. = Yi+M (i = 1 2 .• 'M) 
l ' , , 

Z frame: zM_l = 00, zM = 1, zN 0, z. = zN-M+2+j (j = M-l •. 'N) 
J ' , 

(4.3) 
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the w.' s 
l. 

are· related to the. y. 's, 1. .. a.' s 
J 

and the factorized propagatoj 

variable·t by the equation 

t 

j=M,···N. 

Substituting Eq. (4.4) in Eq. (4.1), we get 

x 

-a(s )-1 a -1 
dtt 1 (1 _ t) 0 

-k. ·k. 
) 

J. J 
- Yi t Zj 

(4.4) 

(4.5) 

where sl = (~ + ~+l + ... + ~)2. Introduce 11 harmonic oscillator 

M Mt ... (1) a , a . to factori ze tHe las t factors J.n Eq. ~ .5 :. 

-k. ·k. 
) J. J 

Zj 

Substituting Eq. (4.6) in Eq. (4.5), arid defining 



G(O) 
(W) ( I (1) . M .. . . (1) Mt I o G(y) (a) nCR,S) G(z) (a ) ,0) 

we then obtain the single-factorization result 

( I (1) . M I o G(y) (a ) "-M> 

withYM = 00, YM- l = 1, Yl = O. 

(4.8) 

On.ecan immediately generalize Eq. (4.8) into a general frame 

Ya = 00, Yb = 1, Y c =0 by simply putting 

(4.9) 

hence the single-factorized tree amplitude (Fig. 4) in a general frame 

is 

We. now proceed to obtain the asymmetrical propagator by direct 

factorization on Eq. (4.10). Since we are considering the case of two 

dots facing each other (see Fig. 5), ~e relabel Yi 

i = 1,2,···M by Yi, i = 1,2,.··M, shown in Fig. 4. Then Eq. (4.10) 

becomes 
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(4.11) 

where PS(i)~· P(S,S-I,S+I,i). We then choose the frame Yi = 00, 

Y2 = 1, YM = 0 to facto:r:ize Eq. (4.11), as indicated by the dotted 

line in Fig. 4. We divide y!, i = 1,2,'" ,M into a W frame and a 
~ . 

V frame by choosing wS+l = 00, Ws = 1, wI = 0 and Vs = 00, vS+l = 1, 

vM = 0, so that 

i = 1,2,·;;:S, 

YS+l 
t = --, 

YS 

j = S+I," ·M. 

Substituting Eq. (4.12) in (4.11), we find15 

X (Olexp 

11 -a(s) aO-l.G 1 -t )-a(ks ) 
X dt t 2 (1 - t) 1 _ tw -

o 'S-l 

S+l 

2:: (as IPs(i) Iki ) + 

i=l 
(i~S) 

S+l 

L (as+1IPs+1(i)lki) 

i=l 
(i~S+l) 

(4.12) 

Equation (4.13) continued next page 

,:,.,0, 
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Equation (4.13) continued 

M 

+ L (as 1M_PI (S~l,l,S,S+l)M:t PS+l (j )Ikj ) 

j=S+2 

where P' refers to W frame, p" refers to V frame, i.e., 

= P~S,S-l,S+l,i) 

PEH1(i) = P' (S+1,1,8,t); 

PS+1 (j) = p" (S+ 1,8+2 ,M, j) 

and 

00 

RS = 2.: n an St an S , 

n=l 

00 

[
. S+lt S+l 

m a a • . m m 

m=l 

One then defines 

(WS - wS+l )(wS~l - wi) 

- Cws -wi)(WS_1 -wS+1 ) 

(vS+1 - vM)(vS+2 - v.) 
~ -

CVS+i - vM) ( vS+l vj ) 
, 

(4.14) 

(4.15) 

I (2) S S+l I (1) S+l t I t...S ) 
- (0 G(W) (a ,a ) D (RS,RS+1 ' s2) G(v) (a ) 0 

S+l 

, (4.16) 

.. 
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with 

1 . 

1 -a(S2)-1· 
= dt t (1 

o 

We thus obtain the second factorized tree amplitude (Fig. 5) 

S+l 

+ 2: 
i=l 

( i~S+l) 

S+l 

[ (aSIPi/i) Iki ) 

i=l 
(i~S) 

Note that in obtaining Eq. (4.19), we have put,14 in Eq. (4.13), 

M 

L t P~+l(j)lkj) ~ la
S

+
l

). 
j=S+2 

(4.17) 

(4.19) 

(4.20) 

As demonstrated in Eq.(3.13), the coupling of as with· as +l term 

in the exponent of Eq. (4.19), can be symbolically simplified to 

( S I Ai -l( ) laS+l ). a Ps PS+l 
(4.21) 

Equations (4.18) and (4.19) are the desired proof we mentionede9.rlier. 
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We now proceed to write down the foUrth-.factoriz.ed trees in 

the most general configuration, Fig. 6. In Ref. 8 (see Appendix B) 

we have derived a set of rules for writing down directly the fourth-

factroized tree amplitude co~responding to Fig. 6: 

(4) a 13 Y 0) 
G(y) (a ,a ,a ,a 

== J~.(Y I exp . ',I, I. d~ 1 8+2 
(ifa,b,c) 

L 
o=(a,t3, Y, 0) 

8+1 

L (a O'j P c/ i) I ki ) 

i==O 
(if 0) 

1 
+ '2 > , (a a I p a( A)M _ p( a+1,A +1, a,A)M _ Tp A (a) I aA) 

a, "-== (a, 13 , Y,o) 
, (4.22; 

( °f~) 
where 

o == 0:,13, Y,o, j == 0,1,··' ,8+1, (4.23) 

and we have omitted the coherent states I,,-cr>'s, for simplicity. 

One interesting interpretation emerges from the form of Eq. 

(4.22) . Equation (4.22) contains the couplings of momentum k. to 
1 

momentumk
j

, the couplings of momentum ki to the "internal 

coordinate" o 
a , and the couplings of internal coordinate a 

0 
to the 

internal coordinate a~. 

As remarked in Sec. III, we can keep momentum conservation 

inside the symbol, I ) in Eq. (4.22), by us ing the identity 

p (0 + 1) == 0 and Eq. (:3.13). Hence the mos t general form of the a 

fourth'-factorized tree ampJ:itude' (Fig. 6) is 
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S+l 

I: (4)( a,') J~. . 
G(y) a s = ',.I. 'l'dYi (Ys+2}exp 

...' . (l~a,b,c) , 

(4.24) 

Notice the form of the expression in Eg. (4.24) is insensitive to the 

dot positions. (Of course~ the cross ratios themselves do depend on 

the dot positions.) 

The related fourth"'factorized tree amplitude with dot on the 

opposite side, say, of the aa leg, is obtained by simply interchangins 

Ya+l with Ya-l everyWhere in Eg. (4.24). 

The generalization of Eg. (4.24) to the Nth-factorized tree 

ampli tude is trivial. One s imply extends the summation over a, A. in 

Eg. (4.24) from {a,s;r,t)) to (a,(3,···,6} (N in number) 

G(N)( 0',. ) 
(y) a , s 

=.Jrr-1 dyi(YS+2) 
(i~a,b,c) 

exp 

(4.25) 

[Again, the expression in Eg. (4.25) is independent of dot positions.) 

The pure reggeon tree amplitudes can be o~tained in.avery 

simple way, too. The symmetrical four-reggeontree amplitude is 
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obtained from Eq. (4.24) by simply setting all Koba-Nielsen variables 

associated with scalar external legs vanish. Namely, one simply sets 
S+l 4 

a = 1, (3 = 2, r =3, 8 = 4 L ~ L in Eq. (4.24), hence the 
i=O i=l 

pure four-reggeon tree amplitude (symmetrical) is 

G(4)( i, ) 
(y) a s 

1 
+ -2 

= J TI 
(i~a,b,c) 

4 4 

L L 
i=l j=l 
(i~j ) 

(4.26) 

Similarly, the symmetrical pure N-reggeon tree amplitude is 

obtairtedfrom Eq. (4.25) by letting a = 1, (3 = 2, "', 5 = N; 

S+l N 
i; ~ i£;" Hence the (symmetrical) N-reggeon tree formula (Fig. 8) 

is 

G(N) ( i, )' 
(y) a s 

1 
+ 2' 

N N 

~ L 
j=l i=l 

(i~j ) 

(4.27) 

Following the interpretation after Eq. (4.23), one can regard 

a reggeon (or a hadron) as a composite object, which is described not 

only by a four-momentum k. but also by an infinite number of internal 
l 

i degrees of freedom an One may further regard ki as the "zero mode" 

.. 
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of the harmonic oscillator modes [actually k. ~ (a i_a it)] . hence 
1 0 ·0' 

in the exponent of Eq. (4.27), one can combine the first term with the 

second term into a single term. Therefore, the form of the pure 

N-reggeon tree amplitude, Eq. (4.27), strongly suggests that one should 

regard the space-time degree of freedom as the zero mode of the infinite 

number internal degrees of freedom, and should treat all of them on 

equal· footing as a generalized coordinate or generalized momentum to 

describe a reggeon (or a hadron). This indicates a theory of third 

quantization. 10 
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V.GENERAL MULTI LOOP AMPLlTUDE816 

In this section we give detailed calculations (by using cross­

ratio algebra) of the nonplanar multiloop amplitude,9 and thence present 

very simple derivations of planar,9 overlapping andnonorientable9 

multiloop amplitudes. We ~hen summarize the multiloop calculations 

into a set of rules, which again enable us to write down directly any 

arbitrary multiloop formula by simply inspecting the corresponding 

multiloopFeynman diagram. 

A. Nonplanar Multiloop Amplitudes 

According to Eq. (4.25) (or Appendix B), we can directly write 

down the 2Nth factorized tree amplitude corresponding to Fig. 9 

[compare with Eq. (4.25)]: 

G(2N) (aa t3. a Y a 5 • (y) ,a, , , 

x exp 

1 
+ -2 

L 
. aE C;i.. *) 
BE(£. ) 

+ 

+ 

8+1 

L 

a, '" -1 ,y 
(a P

a 
Py ( ) a ) 



where 

P (i) = p(a,a+l,a-l,i), a . 

The notations (i.. *j, (£) mean. the set (a, Y,··· ,a}, the set 

((3,5,···,A} respectiveiy. Each.lbop is labeled by two bdices, e.g., 

the (a(3) loop is obtained by sewing the excited Ct leg with the (3 

leg. We have grouped, inEq. (5.1), the indices (CI{3) , (Y5), .•• , 

(aA.) as referring to different loops,withthe total number of loops 

equal to N. The variable ta(3 will be defined as the propagator 

variable corresponding to sewing the excited a leg with the (3 leg. 

We now apply the sewing prescriptions, discussed in Ref. 9, 

simultaneously on the N pairs of excited legs Ct a, 

(a(3) € (all N loops) • The prescription is as follows: 

(a) replace 

.. (a al ~ (A * _ kiM T r t a(3 ] 
a a - l ta(3 - 1 

, 

(a(31 ~ (A(3I, 

(b) set 

1 ACt) = 1 A(3 ) = . IA~)' ka :: -k , a€(i/... *), (3€(~); (3 

and perform the following integrations 
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We then get the nonplanar N~loop amplitude, denote it byFNL(N): 

FNL(N) 

where 

(5.6) 

In Eq. (5.6), we have introduced the N-dimensional vectors in loop 

number space: 

IA) - C! Aa{3)' IAY8),···,IAOAD 
'U 

(5·7) 

IE) - QECX(3) , /E
Y5

), ••• , IE oA)) etc. 
'U 

The definitions of [11.1, [e], [D], IE), IF) in Eq. (5.6) are 
'U 'V 



T tat3 
- M_ t - l' 

Ctt3 

.A -1 
=Pt3 Po (), 

r5)f(o:e) 

k. 
1 

~; 
k~, 

kr 
kc> 

(5.8a) 

, 

, 

(5.8e) 

We now can explicitly do the integral of Eq. (5.6) by the principal 

axes method. 9 We write Eq. (5.6) as 
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I 
,,*) r . ( -[AJ 

d :{; exp ~ - ~ ~~I' (~*I), ' l ' [IJ-[CJ 

y.. (.,~) .). + 

/,,*) 
'V 

= 

where 

( 

-[AJ 

[6.J = 
.'. [IJ-[CJ 

[GH] = C
·. [c] 

[A] . 

[IJ-[C]T) 
- [G]-[H] , 

-[D] 

, 

[THe]) 
-[D] 

(5.10) 

We now calculate Eq. (5.10) order by ord~r in the [GH] matrix. We 

9 -1) define the projective operator (note Yae = QBa 

%a(x) 

and the projective operator corresponding to encircling the (ae) loop: 
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From Eq. (5.14), we have, for all (ae)E (:f *.t), 

With Eqs~ (5.13) and (5.14), we can easily calculate, from 

Eq.(5.8), the following quantities and obtain [summations over (yO), 

(a~) are understood] 

S+l 

IFCX(3) = L , (s.lba) 

(') 
5 

S+l 

L , (5.16b) 

i 

, 

(5.1bC) 
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8+1 

L 

8+1 

'2: PI3 

i 

8+1 

L 

i 1 
(5:)1 
()J . 

( OA)f.(ro) 
(at3)~(Y6)' 

i 

() 

, 

, 

(5·16e) 

From Eqs. (5.12) and (5.16) weobtain9 the [GH] operator, acting on 

the vector ( IF») : 
IE) 
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[A] 
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Ptl;?6Y6-l
( ))'0\ 

(at3)~(Y6) ) 

Pt3R6?6-
l

( )Y6 /' 

(S·=7) 

This GH operator, Eq. (3.17), can also be proved to be applicable tc 

all higher order terms. It follows that 

+ n-l ± ± +. + where [R- J-..4J == R..p RJ) .••• R- w~th total number of R-
e( , i", d\ . 6- ' ~ " , 

equal to (n";l) (summing over all intermediate. -;t, s is understood); 

and alsO, in the produce R~~~ or R~~6Y' it is implied that 

(at3) ~ (Y6). 

The zeroth-order term in.Eq. (S.lO) can be obtained from Eqs. 

(S.16a) and (S.16b), with the result 

Equation (5.19) continued 



Equation (5.19) continued 

-1 
- R 

130· 
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GH) 
C) 

";k ·k 
[a,8,Y,5] [a,8,a,AJ 

We then calculate the !!th-order term in Eq. (5.10), from Eqs. 

(5.16a), (5.16b), and (5.18), we get 

o 
(a(3)~ ••• ,(aA) 
(Y5)e:(~*~ 

[ ] 

-k·k 
Y ."" [Ri ](n+1).(y ) ... i Y 

i tn,x,a Y . 

[ i] n+1)( ) 
Y i - R t3a Aa Y 5 , (aA)~(Y5) 

Equation (5.20) continued 



Equation (5.20) continued 

.. ;r----(. . .. , . 

II 
... . (~), ••• , (0),,) .. 
(Y' 5' ) ,( Y5)€(-i *,-i) 

·cYa) . 
. ... Y

t3
+
1 

. 

( Yy,) 
Y5 ' 
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Cr) .. 
5. (y' 5~)i(ae) 

-~k J.k[ J 
2 [a,e,y' ,5' y, 5, a,r... 

Equation (5.20) continued 



Equation (5020) . . ' . continued 

x 

. 'C·Ya) 
.... YI3+1 . 

(
yy,) 

Yo" 

c:+~ 
(

y y ,.). 

Yo' . 

c:~) 

C) 

(Y' 5' )~(aI3) 
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( 0A)~C-(5) 

-.1.k 
2 [a,I3,Y' ,0' ] Ok[. r,o,O',,,.J 

~k . [a,(3, y' 0' ] ok[ . , L,o,a,~J 

J.k 
2 [a:,I3,Y',5'J

ok
[ y,o;a,~J 
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- .± 
We note that, 'in Eq. (5.20), the operator R occurs in 

different orders; hence when we take infinite product over n, there 

are infinite many number of cancellations9 on the factors involving the 

variables associated with the excited legs, i.e., Ya ' Y
f3

, 

(af3) E ('i:(*t). This infinite number of cancellations is necessary, 

because the final answer should not depend on Ya ' Y f3' (CXf3) E (ct *i..) ; 

and it is this infinite number of cancellations that lead to the invari-

ant points of the loops., 

, The invariant points and the "multipiier" of the projective 

operator Rf3CJ, corresponding to (af3) loops are defined as follows: 

Z[X(2) (l)X J- (1),(2)(1 - Xa(3 ) 
Rf3CJ,(Z) CXf3 X(X$ Ctf3 xa~ xCXf3 

O<.X <. 1, 
z(l - X ) + [x(2)X x,l) J - a(3 

a(3 a(3 CXf3' CXf3 
(5· 21a) 

~ (2) ( ) 
Rf3CJ,(Zl) zl 1= 

x 1, , (5 .21b) = xa(3 , CXf3' 

R~(Z2) = 
(1) 

xCXf3 ' z2 1= 
(2) 

~af3 (5· 21c) 

In Appendix C, we show how the infinite number of cancellations actually 

lead to the invariant points of the N loops. We now combine Eqs. 

(B.8) and (B.9) with Eqs. (5.19) and (5.20) and hence obtain the 

expression for I: 

I 
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We then separate out all Koba-Nielsen variables Yex ' Y/3' (CXt3) E (i. *t.) 

in {YS+2 J of Eq. (5.5) and combine it with Eq. (5.22), we get the 

expression for {YS+2 }I: 

(YS+2 )I . . .~ 

= 1 I~ I 
(det[6])2 (CXt3), ••• , (Y5) €(i *#...) 

8+1) 1t 
2j L n=O 

[i,jf(-t.. *, ':it)] 

r--11r 
(CXt3 ) , (ex' i3') ••• n=O 

(ax), (ro)€ci *~ 

Equation (5.24) continued 
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Equation (5.24) continued 

, 

1 2 --k -1 
2 a 

(5. 24) 

In order to express our final answer in a projective invariant 

form, we need to 'transform from t he set of variables (ta13 , Ya , Y 13' 

a€(~*), 13€("'i-)} to the new set of variables, (X
CXl3

' x~~), x~), 
(CXI3)€(-;!,*t.)]. The relevant factors, in Eqs. (5.24) and (5.5), that 

x 

x 

x 
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In Appendix D, we show how the expression (5.25) is transformed 

into 

rr---f -.e{k-a)-l 2 I· I dXCXf3 XCXf3 ( 1 - XCX(3) 
(CXf3)€(~ *£) 

~. .. . .. (.1) (2) (Ya - Yb)(Yb - Yc)(Yc - Ya ) 
X ,I.,. I "dx~ dxo:e . t.: (1) (2)\2 

(CX/3)e{t *J:J \xo:e - xo:ej . 

X [YO:-1-~(Ye+1)]\.Xaf3 -Ye+J.J [Ya+1-Rpa(Ye-l)J,xaf3 -Yp-J/ { 
~ (1) \)0:0-1{.r: (1) ."10:0-1 

'. [4~f3-Rea(Yf3+l)J· . [X~)-Rf3a(Yf3_l)J . 

, ,(5.26 ) 

Combining Eqs. (5.26) and (5.24) with Eq. (5.5), we then get the 

nonp1anar N-1oop amplitude (Fig. lOa) 

x 
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Equation (5.27) continued 

X(2) 

~-----I;;....T-~~";';'" ~) 
xa.t3 

where 

R~(Z) = 

rr 
n=O 

[ih,n==O] 

-k ·k i y 

(OA.)~( yo) 

( a.t3 ).E (i:. *;1:.) , 

(5. 28) 
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1 

(det[cJ)2 )-4 
- XCR} ; 

± conta.ins all projective group elements generated by R
Ba

, 

i.e., it contains terms like R±n R±m··· Ba oY , 

n,m = 0,1,2,···,00 X{R} is the multiplier of (R}. The symbol 

[R±J(n) is denoted for 
t)cx,5Y 

with total number of 

(5. 29) 

equal to n. The ordering of the variables will be mentioned after 

the following interpretations. 

We interpret9,17 various factors in Eq. (5.27): 

(a) The divergent determinant factor 

~ -4 
(I I [1 - X(-R}J 

(Ir} 

corresponds to all "closed lines" going around the loops. The lines 

are not distinguished by their overall directions or by the points at 

which they begin. 

(b) The factors raised to the power CXO-l connect successively 

the adjacent pairs of external legs, including the pairs across the 

sewed positions. These factors, together with 

) --!k. ·k. - y. 1. J 
J 

are invariant under projective transformation. 

(c) The factor (y i - [R±]~~; oY(Y j) } -~ki . k j corresponds to all 

lines connecting the external leg yiwith the external leg Y
j 
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and which go round the Nloops a total number of n times (in either 

The restriction that t ~ -t.. t in the product -1 
R-t R.e t 
.~ (!)I.. 

direction) • 

-1 
or ~~, implies that a line does not go successively round the 

same loop in opposite directions. The n = 0 component describes the 

line connecting the external legs Yi with Y
j 

without surrounding 

any of the N loops •. 

(d) The factor 

corresponds to all lines connecting the external leg Yi with the 

"center" points x~), x~) of the· (Y6) loop and which go round the 

other loops a total number of n times. ThE final loop surrounded 

corresponds· to the lines connecting the (Cif3) loop with the (Yo) 

loop, and going around the loops a total number of ri times. The 

first loop surrounded must not be the (Cif3) loop, and the last must 

not be the (Y6) loop. The n = 0 component describes the lines 

directly connecting the (Cif3) loop with the (Y6) loop without going 

around any of the other N-2 loops. 



Equation (5.27) is very. useful in obtaining the overlapping 

and the nonorientable multiloop amplitudes, and also makes it easier 

to discuss the planar multiloops; we will show this in the next 

subsection. 

However, the ordering of the variables in Eq. (S.27) is not 

transparent.. Recall we started from the multiply factorized tree 

ordering 

for j S i. 

After sewing, we get two new identities, Eq. (S.lS), 

= y, 
S 

which, together with the identities Eqs. (D.2c-g) in Appendix D enable 

us to obtain the ordering of the set of variables (y. , i ~ (£ ,~*); 
.~ 

x~~); x~~), (as)E(c/..*;/:)}. We phrase the ordering as following: 18 

one simply replaces, from the original multiply factorized tree ordering, 

Eq. (S.30), all Koba-Nielsen variables associated with excited legs 

Ya' yS' (as)E(c£ *:!), by the corresponding invariant points, i.e., 

(S.31) 

We thus obtain an ordering diagram Fig. lOb, which is associated with 

the nonplanar N-loop amplitude Eq. (S.27). 

But, this ordering diagram, Fig. lOb, is incomplete in 

describing the range of integration (we need two more invariant points), 

and also suffers the shortcoming that not all external legs are treated 
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on equal footing. Consequently, the integrand of Eq. (5.27) is slightly 

unsymmetrical with respect to all external legs. For.instance, the 

external legs trapped between (CXf3) E(.:t: * ct.), always. 

remain trapped, but, by projective invariance or duality of Eq. (5.27), 

those external legs located between the invariant points of different 

but adjacent loops, e.g., Yi3+l ' Yi3+2 '··· 'YY-l in Fig. lOb, are free 

to move past invariant points, i.e., the ordering 

(1) . (2) .. Ii th d· 18 YA +l < x < .•• < x 1mp es e or er1ng, 
I-' '0f3 ' cxi3 

x~~) < ..• < x~) < R
i3CX

(Y
i3

+1 ). 

In order to get the N-loop formula ina manifestly symmetrical 

form with respect to all external legs, and to discuss the range of 

integrat:i.on in a transparently symmetrical waY,we move, [due to the 

projective invariance of the integrand in Eq. (5.27)], all those external 

legs, located between the invariant points of different but adjacent 

loops, away from the region occupied by the invariant points. A simple 

renumbering yields the new ordering diagram shown in Fig. lOc 

= [y = x(l) < Y < 
S+l OA. S 

.•• < y < y = x(2) 
- a + 1 a . at-. 

< ..• 

< y < y = x(2) < y 1 < Y < - cx+ 1 CX CXi3 cx-"": cx-2 

-1 
Since the action of· R(3CX flips legs across the (CXf3)-loop's invariant 

points [Eq. (5.32)J, the action of R;;;;; R-l . ··R-1 with total number 
'" a i3cx' 

of R's equal to N, is to flip legs across all N loops, until we 
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regain the original ordering. Hence if we move the external legs 

YO' .. 'Yo:-i (in Fig. 10c) infinite number of times past the N pairs 

of invariant points, due to the important inequality Eq. (5.32) and 

Eqs. (D.2c-g), we will asymptotically approach the two invariant points 

(1) (2) A ( , )-1 x ,x of the product projective operator R - R(3CX" 'R
AG 

• It 

has been shown18 that the invariant points x(l), x(2) lie outside the 

region occupied by the N . (1) pairs of invariant points, and hence x " 

x(2) divide the external legs variables 

invariant points of the individual Rls. 

Yo,' "YO:-l from the N pair 

18 It can be shown, that the 

region occupied by the variables Yo," 'Ya -l and the regions occupied 

by (R(3CX' •• R
Ao

)tn(yi ), i:= 0,1,"',0:-1 are disjoint (n f 0). As 

n ~ 00, we merely approach the two invariant points (1) (2) x ,x . 

Therefore, we can subtract the periodicities due to these disjoint 

regions by integrating over only one of them, i.e., integrate one of 

the variables Yo," 'YO:-l' from YO:-l to R(Yo:_l ) for instance, where 

YO:- l lies between x(l) and x(2). Exactly similar arguments should 

be applied to all those external legs trapped between each individual 

pair of invariant points, i.e., 

<. Y <. R (y )' <. x(2) for (O:A) € (J*-P). 
- 0:+1 r30: r3-1 0:r3 ' ~ ~ dl 

Consequently, in summary, the ranges of integration corresponding to 

the ordering diagram Fig. 10c, is 

:= 
.' 
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(The range of integration Ul is always determined implicitly by Ur:>') 
c. 

Notice the complete symmetry between RfjO:' sand 

A -1 
R = (RfjO:"'RAU) ,meaning that the distinction between outer and inner 

quark loops disappears, To reflect the, symmetry, the factors raised to 

the power CXO-l in Eq. (5,27) are formed to change to 9 

If we replace the expressions (5,34) and (5, 33b) into Eq, (5,27), we 

then get the completely symmetrical nonplanar N-loop formula correspond-

ing to the ordering diagram Fig, lOc: 

ft 
i=O 

[i~(a,b,c)J 

dy, 
.~ 

Equation (5,35) continued 
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Equation (5.35) c6ntinued 

x 

[ 

~. ] t(CXO-l) 
)( I I . I Xo;g ~ 

(o;g)€¢t' ~ . 

where R = (R ••• R )-1. 
~ AO. 

Note that in Eq. (5.35), we have defined [due to Eq. (5.32) ] 

(2) -t1Xl 
13 xCX~ - R~(Zl) , 

(1) 
R;(Z2)' x -

CX~ 

and 

o < X < 1-
- f3CX 

( Though the ampli t.ude corresponding to the ordering diagram Fig. lOc 

has the advantage of being symmetric in all quark loops, the actual 



calculation is much easier from theN-factorized tree in the configura-

tion given by Fig. lOb, or Fig. 9.) 

B.Overlapping Multiloop Formula 

In this subsection we give a very simple derivation of the 

overlapping multiloop formula from the nonplanar multiloop formulas 

obtained in the previous subsection A. 

If we interchange the labeling of the excited ~ leg with the 

exci ted Y leg in Fig. 9, we obtain Fig. 11. By sewing the at3 pair 

and the y,5 pair, we then obtain the overlapping multiloop diagram. 

However, the formulas of multiply factorized trees only depend on 

various cross-ratios associated with the excited legs, which in turn 

only depend on the positions of the dots attached to the excited legs. 

A comparison of Fig. 9 with Fig. 11 shows clearly that the two config-

urations Fig. 9 and Fig. 11 have identical expressions for the multiply 

factorized tree integrands, except for the ordering of the Koba-Nielsen 

variables .. It follows that sewing the configuration in Fig. 11 gives 

a multiloop integrand identical to the configuration in Fig. 9. We 

therefore conclude that the overlapping multiloop integrand is identical 

to the nonplanar multiloop integrand of Eq. (5.27); but the ordering of 

Yi and xl(), x~) are different, as already shown in Fig. 11 and 

Fig. 9 (the overlappin,gloops have overlapped invariant points.) 

Then, by the projectively invari~t nature of the overlapping 

multiloop integrand [Eq. (5.27)J, we can move those legs "inside" all 

loops to the "outSide," and so obtain, after renumbering, the ordering 

diagram for overlapping multiloops shown in Fig. 12. Because any 
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multioverlapping multiloops can always be reduced to pairwise overlapping 

loops, due to the projective invariance of our multiloop integrand, it 

is sufficient in Fig. 12 orily to consider one pair of overlapping loops 

Rl and R2 . Corresponding to the overlapping loop ordering diagram 

Fig. 12, the range of integration is 

= 

where 

of R; 

[X(2) < y 
8+1 

~ x(2) < x(l) < y. < y < ... ~ y < R(y ) < x(2)J, 
1 8-3 - 8-2 - - 0 8-3 

(5·37) 

and x(l), x(2) are the two invariant points 

x~l), x~2) are the two invariant points of 

Rl and R2 .. respectively. Notice that the product projective operator 

-1 -1 
R2 R1R2Rl is the correct projective operator to bring, say, YS-3 

across the invariant pOl-·nts [(2) (2) (1) x(l)] to the side xl ,x2 ,~ , 2 

adjacent to YO. This fact also naturally determines the factors raised 

to the power aO-l which connect the successively adjacent pair of 

external legs, it is then given by 

If we replace the last brace in Eq. (5.35) by the expression 

(5.38), Eq. (5.33b) by Eq. (5.37), and take the case N = 2 together 

with an obvious modification of the indices in Eq. (5.35), then we get 

the completely symmetrical overlapping double-loop formula corresponding 

to the overlapping ordering diagram in Fig., 12,. 

.' 
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c. Nonorientable Multiloop Formula 

The nonorientable loop diagram can be constructed from the 

multiply factorized tree diagram by sewing a pair of excited legs with 

dots on opposite sides. But two multiply factorized tree amplitudes 

with dots on opposite sides of one excited leg, say ~ leg, are 

related to each other by the twist operator, or equivalently, by inter-

changing, say Yet +1 wi th Y;[ -1' everywhere in the tree amplitude. 

It is then clear that .the nonorientablemultiloop integrand can be 

obtained from the nonplanar multiloop integrand in Eq. (5.27), by 

simply interchanging y~ +1 and Yo( -1 everywhere in it. Under this 

interchangement, however, the external legs previously trapped between 

the two invariant points x~), x~ in the nonplanar case are no 

longer confined between them. The factors raised to the power ·ao-l 

then contain factors which connect variables. associated with lines 

inside and outside the loop. Since we have the freedom to move out 

the external legs lying between x~),~) ,into the complementary 

region, we must assign a negative multiplier -~ to the nonorientable 

loop ~. After moving out all external legs away from the invariant 

points and renumbering them, we obtain the nonorientable ordering 

diagram shown in Fig. 13. (Again we only consider the nonorientable 

double-loop case.) The range of integration corresponding to the 

nonorientable ordering diagram Fig. 13, is 

= X(l) < y = x(2) < y = x(l) < y 
2 S 2· 8-1 1 . 8-2 

(5.39) 
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where A -2-2 
R = R2 Rl is the correct projective operator taking YS-3 

across the nonorientable loops Rl , R2 to the side adjacent to YO. 

Thus the factors raised to the power aO-l, is 

where 

+ R:-(z) 
~ 

= 

and X. > O. 
~-

, i 

Hence, if we replace the last brace in Eq. (5.35) by the 

expression (5.40), Eg. (5.33b) by Eq. (5.39), let all Xot: become -X~, 

and take the case N = 2 together with an obvious modification of the 

indices in Eg. (5.35), we have the completely symmetrical nonorientable 

double-loop formula corresponding to the ordering diagram Fig. 13. 

D. Planar Multiloop Formula 

The planar multiloop formula is a particular case of nonplanar 

multiloop formula, if we let all external legs inside loops disappear, 

1. e., if we set all Koba-Nielsen variables inside the loops vanish. 

The planar multiloop ordering diagram is shown in Fig. 14, which of 

course is a particular case of Fig. lOco On examining Fig. 14, it is 

trivial to write down the range of integration 
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u
2
. . [x ( 2 ) < y :: x..~ 1) < y. i: x..~2) <. ••• < Y 

S+l ..N . S l'J . . . S-2N+3 

=X(l) <y .:: x(2) <. x(l) <. y . < .•. < y < y 
1 S-2N+2 1 S-2N+l - - 1 - 0 

. A (2) 
< R(YS-2N+l) ,< x J, (5. 42 ) 

where R ;;:; .. ~ -~=l·· 'Rl - l and, the factors raised to the power CXO-l: 

x 

Again, replacing the last brace in Eq. (5.35) by the expression 

(5.43); Eq. (5.33b) by Eq. (5.42), and the factors tfT(1 - X.;e)2 
tI- ' 919 ~ . . 

by' rl J (1 - X;t.), then we get 'the symmetrical planar N-loop 
;L 

formula (with an obvious modification in the indices). 

E. General Rules for Writing Down Any 

Arbitrarily Mixed Multiloop Formula 

In this subsection we give a set of rules for writing down any 

arbitrarily mixed20 multiloop amplitudes by simply examining the corre-

sponding· mixed multiloop Feyninan-like diagrams (they are essentially 

equivalent to the corresponding ordering diagrams). 

Rule 1 

Given any mixed multiloop. Feynman diagram, we appeal to duality 

and arrange the diagram such that 

(a) no loop is allowed to be within another loop, 
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(b) no external legs.are allowed to be within overlapping loops 

and nonorientable loops, 

(c) all external legs not confined within nonplanar loops are 

bunched together, 

(d) no more than two loops ever overlap. 

It is because the range of integration is only transparent in this 

particular configuration, and the Feynman diagram simultaneously repre-

sents the ordering diagram, the we make these arrangements (a)-(d). 

(It is certainly not necessary to do so.) 

Rule 2 

We assign to each external scalar leg one Koba-Nielsenvariable 

Yi' i = 1,···,S, and one incoming four-momentum k.; to each loop 
l 

one loop momentum (1) (2) 
kc;( and three parameters X;t , X;t 'Xi which 

define a projective operator R~ (Ri.) corresponding to surrounding 

the loop in a clockwise (counter-clockwise) direction. We adopt the 

convention that 

loops, and X;t 
Rule 3 

o ::: Xc[ < 1 for planar, nonplanar and overlapping 

is negative for nonorientable loops. 

We integrate over all loop momenta kef' all multipliers Xci..' 

all invariant points x1(), X~) and all external leg variables Yi , 

i = 1,··. ,S; i.e., we perform the integrations 

dx(2)(y )( )( ) ~ a - Yb Yb - Y c Y c - Ya ' (5. 44 ) 
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where y y. yare any three fixed variables taken out from the set a' b' c 

of variables [Yi' i = 1,··· ,S; 0() ,1) all;i J. The ordering 

diagram, which determines U2 in the expression (5.44), is similar 

to the rearranged multiloop Feyriman diagram, provided we assign xJt) , 
to the points forming the loop Rti. with the main tree, and }\(l), 

to the points separating the "outside" external legs from the 

region occUpied by the loops, as shown in Fig. 15 for example, (Ul is 

implici tly determined from U
2

):. 

Rule 4 

The mixed multiloop integrand consists of 

(a) the linear dependence factors (see Rule 5), 

(b) the factors raised to the power CXO-l, which connect the 

successively adjacent pairs of external legs, and their forms depend 

on the ordering diagrams· (see Rule 6), 

(c) the divergent determinantal factors corresponding to the closed 

curves surrounding the loops, see Rule 7, and 

(d) the momentum-dependent factors corresponding to open curves 

surrounding the loops (see.RUle 8). 

Rule 5 

The linear dependence factors are: for each planar loop ~, 
a factor (1 - Xo(); for each nonplanar or overlapping loop, a factor 

(1 - X~)2; and for each nonorientable loop -;/,;, a factor (1 + 1:t-1)2. 

Rule 6 

a factor 

The adjacent pair of external legs y. 
J. and Yi+l contributes 

CX -1 
(y. - y. 1) 0 : 

J. J.+ 
Each pair of external legs, for example, 

.... ,. 
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the Y£+l and the Ym legs in Fig. 15 that are adjacent to 

x~2), contributes a factor 

and 

Similar factors correspond to the pair adjacent to the invariant points 

x(l), x(2) of the product projective operator R. The product projec-

A 

tive operator R is obtained by examining how one leg of the adjacent 

pair moves past all loops. When it passes (in counterclockwise 

direction) a planar or a nonplanar loop ;I, it acquire a factor -1 
~; 

when it passes an overlapping pair of loops :i,n the sequence .r/: ,£' , 
-1 -1 

then it acquires a factor ~, ~ Ret ,R~; and when it passes (in 

counterclockwise direction) a nonorientab1e loop ~, it acquires a 

factor 
-2 A 

~. For example, the product projective operator R in Fig. 

15 is R = ~ -2R6-~5R6R5 -~4-~3-~2-~1-1. There also occur extra 

projectively invariant factors which come from the Jacobian transforma­

tion9 from the sewing configuration (e. g., Fig.' lOb) to the symmetrical 

configuration (e.g., Fig. 10c). They are, for each planar or nonp1anar 

loop 
~ ~(aO-l) 
d-, a factor ~ - ,for each nonorientable or overlapping 

a -1 
~ a factor ~ ,and for (each) product projective operator 

A ~(ao-1) 
R a factor (~) 

loop 

Fig. 15, the factors are 

Rule 7 

The divergent factors, corresponding to the set of closed 

curves surrounding, the loops, are 



11'(1 
(iD 

-4 - Xnu)' 

where- X(iD are the multipliers of the projective group elements 

generated byR± (for all ~) such that cyclic permutations and 

inverse of cyclic permutations of the elements are' omitted. 

Rule 8 

The momentum-dependent factors, corresponding to the set of 

open curves surrounding the loops, Le., the curves connecting the 

external leg Yi to the external leg Yj; the curves connecting the 

external. leg· Yi to the "centers" xj), x~) of the loops &' s; 

and the curves connecting the "center" x~l),~) of the loop "ot to 

the "cent~r" x(l)x(2) of the loop -I, The factor. s are '£" ~' . d-o-. 

~--r rl1r' [Yi_[Rtl~;';t'(Yj»)-~ki·kj 
i,jE all externiUs -;f., ..• , -#.' E(i) n=O . 

. (n=O,ifj) 

x r--1 
iE all extennals 

. .« 
, ... ,i '"t"E (;() n=O 

Equation (5'~46) continued 



:I - 111 ,;(, t, , ... ,~" 0(" , . n=O 

f 
(1) ±J (n)· "" (1)\ 

x -[R~, .i''''''t,''!1 
X (1) :t (n) . ( 2)) 

x -[R J.;< , ,t" Xct If' 

[ ±]~) + + . ± where R Cl:. ,t:' 3 ~ ••• ~" W1. th total number of R.;e equal to 

n, and it is implied that i /= ;1.' in the product Ro( R}:, or ~~(-:t.'. 
We end this section by illustrating the rules 1-8 in a general 

example consisting of two planar loops R1 and R2, two nonp1anar 

loops· R3 and R4, one pair of overlapping loops R5 and R6, and 

one nonorientab1e loop R
7

, as shown in Fig. 15. 

the answer 

We then write down 

X L2 1r dyi n a{}l dx5t 
(i/=a,b,c) 

(y _ y)(y _ y ) (y _ y (T--('[l _ X
C
-. }J-4 

a b bee. a·' I I R 
(R:} 

Equation (5.47) continued 
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.- - . 

X (1- X1 )(1 ,- ~)(1' -'X3)2(1 - X4)2(1 - ~)2(1 - X6)2(1 +lxI7)2 

, ~" ',S , aO-1f[Y£+1-R3, (Y,m) ](X31
, ) -Y

m1

) , 0:
0

-1 
'f. '/1 (Yi -Yi +1) (1) 

" 'i =1 ' " [X3 -R3 (Y m) J , , 
(i~£,m,S)' , 

2 2' 2 ~(0:0-1) X (X1X2X3X4JS X6 X7 XR} 

E1,2,···,7 

r-rI 1Y 
~ ';/' , ... ,;/." ;f"'n=O 
e1 2,···,7 ' 
(l. ~;t' , !."~'J..",) 

'. 

x -i! -[R J '-;til x, II, x~ -[R ~ "Z"~x.:;( fI'l d-, d-

[

' (1) ± (n) (1») (2) ± (n) / (2) ) l-~k-l 'k~ If, 

1 ± n t: 2 \' (2) t n) ,,( (l)) : 
,XI. -[R JeI' ,-;f.."\X;/..H',) x£ -[R J~, ,-i" xi'" J (5.47) , 

with 



== [X(2) < x{l) < x(2) < x(l) < x(l) < x(2) ~ x(2) < x(l) < 
7 7 65 6 5 4 

~ Ym+l < R4(YS) < x~2)< ~l) < 

< i < Y < ... < Y < R (y ) < x(2) < x(l) < x(2) < 
. m - m-l - - £+1 ~ 3 m 3 2 2 

< xil ) < xi2) < x(l) < Y£ ~ Y£-l S ... ~ Yl < R(Y£) < x(2)J. 

(5. 48) 

The formula, Eq. (5.47), is manifestly projectively invariant, 

hence, any formulas related by duality to the Feynman diagram of Fig. 

15, ,can also be directly written down. In fact, the only modifications 

are the ranges of integrations and the factors raised to the power 

'. 
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VI. MULTIFACTORIZATIONS ON THE MULTI LOOPS AND THE 

PURE REGGEON MULTILOOP AMPLITUDES 

These two classes of amplitudes are the new results of this 

thesis work. 21 Since their derivations are very similar to Sec. V, 

we will not give the detailed calculations but shall only outline 

briefly how various new factors are obtained. Again, in the end one 

can intuitively interpret these new factors in a similar way to Sec.V. 

A. Loop Amplitudes With External Reggeons 

One simply way to obtain .the multiloop amplitudes with some of 

external legs excited, is to sew, inEq. (5.1), M pairs of excited 

legs with M < N. We therefore· separate out, in Eq. (5.1), those 

factors which eventually correspond to multiloops from those which 

represent the excited legs. Hence we write Eq. (5.1) as 

S+l 

x exp L L 
e(T) 

'x exp 

where [LJ is identical to the integrand of Eq. (5.1), except N is 

replaced by M.· ~ Tfie -n6tation' ('i:') indicates 'all unsewed excited legs. 

We note that the last exponent factors in Eq. (6.1) simply contribute 
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extra terms of 
[ A_l 

' P [p. ( 
tE(T) ~ t 

)Jla
t

) to the IEat3) of Eq. (S.8b), 

and extra terms of L Yat3 Pa[Pt -
l

( )Jla
t

) 
tE(T) .' 

to the IF ) 
at3 

of Eq. 

(S.8c). Consequently, all calcUlations from Eq. (5.8) go through 

exactly to Eq. (5.18). From Eq. (6.1), we calculate the integrand 

after sewing, i.e., 

identities 

A -l( 
P t Rt3Q: P s . 

I't Rf3CX P s -l( 

Yi 
. + A -l( R- 'Pt f3CX 

I == tf( I , and, using the following symbolic 
n=O n 

) = ( (-1 -1 
P t Rf3CX P s' .•. ' (6.2a) 

) = ( ) -1 -1 
Pt Rf3CX P s' (6.2b) 

)1) ± . 
(6.2c) = (IPt R~a(Y)' 

where y. is the Koba-Nielsen variable, and Eqs. (6.2a) and (6.2b) 
J. 

are understood to be sandwiched between (at I and las). We find 

again that two sets of an infinite number of cancellations occur 

beautifully in the operator part; and result in 

00 

+ L 
tE(T) 

Equation (6.3) continued 

~ 
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[RtJ;~ct' (i) k . 
. ~ 

() (2) k<f- "* [Rt] n ' .. Xi " 
t . ~ ,;t . (1) 

(6·3) (a Ipt x;;( " -kt "* -

~ k:l* 

Y.t. * 
where [I100pJ is given byEq. (5.22), with N ~M. CombiningEq. 

(6.3) with the first brace in Eq. (6.1), and then combining it with 

[L], we finally get the answer for the multiloop amplitude with T 

excited reggeons,corresponding to the ordering diagram Fig. lOb 

L 
all ;( 
€(;( ) 

+L 
tEeT) 

(6.4) 
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is given by Eq. (5.27), with Mloops, and xC), 
d' 

are the two invariant points of the loop It should b ': 

pointed out that .only the last factors raised to the power -a(kt ! 

and the factors raised to the power aO-l in (F}(5. 27) are sen:;itive 

to the ordering of the external legs. Again, it is trivial to move all 

legs away from the region occupied by, the invariant points, thereJY 

obtaining an amplitude corresponding to the ordering diagram Fig. lOco 

For simplicity, we first assume that all external legs adjacent t) all 

invariant points in Fig. 10c are not excited, then the amplitude LS 

l~~ ~ 
eXP2 L ~ L 

00 

n=O t,t'e(T) all~ 
(n=O,ttt') E(~) 

+ ~ 
n=O .. 



A simple interpretation of the last brace in Eq. (6.5) again 

emerges: 

(a) The first terms (in the exponent) 

tl ±J(n) ,,-1 I t' 
(a Pt [R';/,rf1,Pt,()a) 

describes all lines which cbnnect the reggeon t 
a w~th the reggeon 

t' a (notice t could be equal to t', for n 1 0) and which encircle 

the M loops a total number of n times. 

(b) The second terms 

(at IPt[R±Ji~~' (i) Iki ) 

describe all lines which connect the reggeon at with the external 

scalar· leg Yi and which encircle the M loops a total number of n 

times. 

(c) The last terms 

describe the lines connecting the reggeon t a with the "center" of 

the loop C{" and which encircle the M loops a total number ofn 

times. 

(d) The factors raised to the power -a(kt ) derend on the ordering 

of the particles. They appear here because, for excited legs, 

q(kt ) a aO + ~ k t
2 1 o. In the case that two excited legs are adjacent 

to the.two invariant points; for instance, if and y 13-1 are 

.excited and adjacent to (1) (2) x
rvA 

, x. 
''''I--' .Of> 

in Fig. 10c, then the corresponding 

factor should be 

',. ":'" 
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Furthermore, if the two dots associated with two excited legs "face" 

each other, then we need an asymmetrical propagator, similar to Eq. 

(4.18) . 

It should be observed that all the new factors appearing in 

Eq. (6.5), as compared with Eq. (5.35), are insensitive to the ordering 

diagrams. Consequently, the planar, overlapping and nonorientable 

multiloop diagrams with arbitrary number of excited external legs can 

again be discussed as in the previous section. In short, they are 

distinguished only by the expressions for {F \5 .35)' which have 

already been explained in ,Sec. V (A-E). 

B. The Pure Reggeon MultiloopAmplitudes 

The way to obtain this class of amplitudes is simple. One 

simply puts all Koba-Nielsen variables, in Eq. (6.5), associated with 

external scalar legs vanish. In this limit, however, there are 

extra factors similar to Eq. (6.6) appear for each loop, in addition 

to the factors raised to the power ~(kt)' Hence, the pure T-reggeon 

nonplanar multiloop amplitude corresponding to the ordering diagram 

Fig. IOc is .(Fig. 16) 

FNL (T)(M) =f 

Equation (G.7) continued 

-Ii 



Equation (6.7) continued: 

f exp~,~ 
L 

+ 

~'~',. 

t .• t' E(T) 
(n=O, tIt') 

.~ (tl [+](n) 
/ • J . a Pt R- ';f ,-P' 
all vf ' 0< 
E(;j?) 

(6.7) 

where [F', )(5.35). is the integrand of Eg. (5.35), rut with no external 

scalar legs. Agaj_n, the forms of the expression of the whole integrand 

in Eq. (6.'"{) is independent of dot positions •. \'."11en two dots of 
, . 

adjacent legs face each other .• an asymrJetrical 'propagator similar to 

Eg. (4.18) is iequired. 

'-. ' 



~66-

Equation (6.7) applies, equally well to planar, overlapping, 

and nonorientable multiloops, provided we modify the expression of 

{F t )(5.35) according to previous Sec. V (A-E). [The factors 

~{ .•• } in Eq. (5.7) should be omitted, however.] Again, one 
CX€(~*) . 
~€(;e) 

can give a set of rules for writing down any mixed multiloop amplitudes 

with any number of excited external legs. Since this is fairly obvious, 

we will not elaborate here. 



" 
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VII. CONCLUSIONS 

In this thesis we have presented a series of beautiful, elegant, 

and "simple" formulas of general tree amplitudes and general multiloop 

ampli tudes in the dual resonance model. Various ru.les have been given 

for writing down directly the formulas corresponding to the Feynman-like 

tree or loop diagrams. Interpretations of the formulas also emerge in 

very simple ways. And the essential point of this approach is that the 

formulas are mathematically unique and exact. 

The remaining problems are: 

(a) elimination of the divergent determinant factors, 

(b) explicit summation of subsets of multiloop diagrams to see if 

it is indeed tinitarized, 

(c) incorporation of internal symmetries beyong the Born terms 

(after ghosts are eliminated). 

None of these problems have been solved, however. 
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APPENDIX A. USEFUL IDENTITIES 

We denote 

then We have the following set of identities 

M+(l 

M MT = M+, 

M M T = M_, 
+ -

MxM 1 
M+ 1 

1 
= 1- x - l/x' + -

, 1 MxM = (1 - x) M_ 1 -l/x' 

T M_Cl 1) T - X)M_ = - - M x. x -
The identities involving the twist operator are 

(aIM_ = (ai, 

M_Tla) = la), 

(kla) '- -(kli) , 

(klxla) = -(kli) + (kl (1 - x) Ii) 

- (T t)-l a T t, a = a a 

T = exp(atlM la) : , a 

(A.l) 

(A.2) 

(A.4 ) 

(A.5) 

(A.6) 

(A.7 ) 

(A.8) 

(A.9) 

(A.1O) 

(A.11) 

(A.l~) 

(A.13) 
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na(k) = exp(atlk) : exp(atIM_ - ria) :, 

nat(-~) = : exp(atIM_T - r)la) : exp(alk). 

(A.14) 

(A.15) 

-. 



\ 
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APPENDIX B . RULES FOR WRITING DOWN M'JLTIPLY 

FACTORIZED TREE FORMULA
8 

Rule 1 

We assign to each leg (sca:Lar or-excited leg) one Koba-Nielsen 

variable i = 1,2,···,S, and an incoming four-momentum k .. 
l 

Corresponding to each excited leg, we assign one destruction (creation) 

operator a 
!l;n 

(a+ ), where 
!l,n 

is space-time indices, !l = 1,2,3,4; 

n is the excited harmonic oscillator mode in question, n = 1,2, .•. ,00, 

and the superscript a coincides.wi th the labeling of the Koba-Nielsen 

variables, a < S., 

Rule 2 

The scalar part of the multiply factorized tree is the 

ordinary Koba-Nielsen representation13 of the S-point dual anlpli tude, 

i.e., Eqs. (4.1) and (4.2). We denote it by 

Rule 3 

The operator part of the multiply factorized tree consists of 

the scalar products 

S 

(Olexp L r 
a i=l 

a<S (ila) 

It is 

(B.l) 

where the cross ratio Pa(i)[P~(i)J is defined on the a(~). excited 

leg, such that the first variable in the cross ratio is Ya (y~), the 

second variable is the variable behind the dot attached to the a (~) 

leg, the third variable is the variable in front of the dot attached to 

, 



the 0; (13) leg, and the fourth variable is Yi . The notation Fa[a ± lJ 

here means that if the second variable in the cross ratio is YCX+l 

(Ya - l ), then the fourth variable is also Ya +l (Ya - l ). Le., 

Para ± lJ - 0 for all Cases. We include it to ensure conservation of 

momentum in I ) . The notation Po; 
A -1 
Pf3 has been explained in .Eqs. 

(3.10-14). If P
f3

(x) == p(f3,f3-1 ,f3+1 ,x), then 

" -1.( ) Pf3 x = Yf3-1 - Y Y 
1 - x G ... ~ -@+l) 

(B.2) 

. Yf3-1 - Yf3+1 

and if Pf3 -P(f3,f3+1,f3-1,x) then 

= Y 13+1 -

Rule 4 

When two excited legs are adjacent and the two dots attached to 

them face each other, e.g., Fig. 5, then we need an asymmmetrical 

propagator, e.g., Eq. (4.18) with w
S

_l = PS+l(S - 1). In all other 

cases no modification of the ordinary propagation is required. 

Rule d 

The two amplitudes with the dot on the opposite sides of one 

excited leg, say the Ya leg, are related to each other by the twist 

operator 

with everywhere in Eq. (B.l). The only additional complication 

to this rule is the case stated in Rule 4, where we need an asymmetrical 
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APPENDIX Co INFINITE. NUMBER OF CANCELLATIONS ON Y 

We show how the infinite number of cancellations involving 

Yot: beautifully occur, and enable us to pass from 'Eq. (5. 20) to Eq. 

(5.22) •. We first consider the factors rEi.ised to the power -ki .ky in 

Eq. (5.20). They are 

x 

For n;:: 0, we have, from Eq.· (5.19), 

-1 
R.p R-f i 
cJ... c-'--

(C.l) 

or 

(n2: 1 ). 

(C.2) 



Take the infinite product over n, we get, from Eqs. (Co2) and (Co,), 

{Y.-Y~J . ]. U lim 
Y i -Y Y N-7OO 

(Co4) 

Again, using the restriction that cf:f. cfl in the product 

we can write the two limiting factors in Eqo (e.4) as" 

(Co)) 

and 

f 
±] (N) -1 )} r -(N+1) l 

~ .Yi-[R.r=a r-c?oyCYo .o·iYi-ROY (Yo)? 
, (u,,'):f.(ro) 'v. J 

(Co6) 

. 22 
But, it can be proved that, if N -700, th~ expression 



. . 
is independerit of z.Hence, Eqs. (C;5) and (c.6) are equal to 

and 

(c.8) 

respectively, where 

are the two invariant points of ROY' Substituting (C. 7) and (C. 8) 

in Eq. ( C ; 4), we get 

Similarly, those fa.ctors in Eq,' (5.20) which are raised to the power 

-ka · ky,can be shown to be equal to 

, 
! 



Equation (C.lO) continued 

.. 

x 

(C.lO) 

Hence Eq. (5.22) follows. 



APPENDIXD. THE JACOBIAN CALCULATIONS 

The transformation from the set {to:t3'YCX ' Yf3} to the new set 

is one of the most complicated calculations. We 

showhere.how Eq. (5.25) is transformed into Eq. (5.26). 

We need a set of identities connecting the old set of variables 

to the new set of variables. 

Eqs. (5.13), (5.2) and (B.2)] 

where 

t o:t3. 
a - t _ 1 d, 

o:t3 

We express 

a 
t = a-d' 

.d -
.. (Ycx - Ycx-1 )(Ye - Y(3-1) 

(YCX+1 - YCX-1 )(Yf3 +1 - Ye-1 ) . 

-1 
Rf3CX' Eq. (5. 14 ), as [using 

(D.2a) 

(D. 2b) 

Compare Eq. (D.l) with the standard form Eq. (5.21) , we obtain the set 

of identities 

(1 -a) ::;: 
. -1) 

£(1 - Xcxe ' (D.2c) 

Ye - aYe+1 
::;: £~(2) _ X-I (l~ 

x o:t3 o:t3 x o:t3 ' (D.2d) 

ayCX+l- Ycx 
::;: £~ (2) X-I _ x(l) 

x o:t3 0'43 . o:t3 ' (D.2e) 

YcxYe - YCX+lye+la ::;: 
£ (1) (2) (1 

xo:e x0:t3 
-1 ) 

- Xo:e ' (D.2f) 
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£ = (D.2g) 

From Eqs. (D.2d) and (D.2e), we can derive the identity 

a = 

With the following further identities 

- x~ 

(D.3b) 

... 
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(D.3 f ) 

one can show that the expression (5.25) is equal to \only consider one 

lOop): 

. a-l 

'" [(Ya~Ya-l)(Y/3"'Y/3-1)] 0 

Now we specialie to the frame X~) 
(1) (2) 

and Ya = xdj3' Yb = 1, ~c = xa/3' 
. .. 

a ~ 1 , 

, 

== 00, 

2 (a - d) 
ad 

(D.4) 

( 2 ) 0 Th Ri- ~ Xi xae =. en i3CX . a/3 

SO that 

(D.S) 

Hence the expression (D.4) reduces to 
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(D.6) 

The calculation of the Jacobian factor [JJ is rather complicated. But 

it gives9. 

J - = 2 
(a - d) 

Substituting Eq. (D.?) in (D.6), we obtain 

. () () -.e(k )-1 
dX [dx 1 J[dx 2 J(l _ X )2 X a 

0:13 at3 a13 at3 a13 

(D .8) 

We then uniquely generalize9 the expression (D.8) to a general frame, 

it is 

(1) (2) -.e(k,.J-l 2 (Ya-Yb) (Yb-Yc)(Yc-Ya ) 
dX·dx dx X u. (1 - X ,::J o:t3 at3 at3 0'{3 -"(XI-" 1')1) _ x(2h2 

\"' a13 a13") 

Hence the expression (5.26) follows. 
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Here we mean mixingdf planar., nonplanar, overlapping, and 

nonorientable loops in an arbitrary way. 
. . 

We tmderstand that}). cpliop obtains similar results independently. 
. , . . 

L. R. "Ford, Automorphic Functions (Chelsea Publishing Co., New 
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j" 
I 
I 
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FIGURE CAPTIONS 

Fig. 1. Feynman tree theorem for plHnar box diagram. 

Fig. 2. (a) N-point amplitude With scalar legs. 

(b) N-point tree ordering diagram. 

Fig. 3. Single factorization. 

Fig. 4. Change the Y frame to the Y' frame for second 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

5· 

6. 

7· 

8. 

9· 

factorization. 

Asymptotic propagator case (for 

Fourth-factorized tree diagloam. 

S+l a leg). 

Four-reggeon tree amplitude (symmetrical). 

N -reggeon tree amplitude (sJ llllIl.etrical) . 

2Nth-£'actorized tree diagrano (for nonplanar lOops). _0- 0 
Fig. 10. (a) Nonplanar N-loop amplitude with external scalar legs. 

(b) Partial ordering diagram, which is mimic to 2Nth-

factorized tree ordering. 

(c) Nonplanar N-loop prdering diagram. 

Fig. 11. 2Nth-£'actorized tree diagram (for o~erlapping lOops). 

Fig. 12. Overlapping double-loop ordering diagram. 

Fig. 13· NQnorientableo double-loop ordering diagram. 

Fig. 14. Planar N-loop ordering diagram. 

Fig. 15· Mixed multiloop Feynman diagram, also simultaneously repre-

sents mixed multiloop ordering diagram. 

Fig. 16. Nonplanar M-loop diagram with all external legs excited. 
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.Fig.3 
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