Lo
Bl :

1 a S  4 ,)g.iAMNCEAssquQ

UNIVERSITY OF.CALIFORNIA

Radiation Laboratory

Contract No. W-7405-cng-48

UCRL LECTURES ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS
Lecture I
Glen Culler

September 23, 1952

" Berkeley, California




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



‘UCRL-2048

University of California
v Radiation Laboratory -
2 Berkeley, California

' ' UCRL LECTURES ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS

Lecture I
~ September 23, 1952

. Glen Culler

INTERPOLATION

1. Introduction

The functions arising in applied mathematics fall into two
categoriese-fﬁnctions of a continuous variable and functions of a
'discontinuéus)v;riablé. The subject matter of "The Calculus‘of Finite
Differeﬁces" and "Interpolation" establishes criterions and methods for
choosing functions iﬁ one category to represent given functions in the
other. The purpose of this presentation is to give an elementafy treat;
ment ok differenqes,.difference tagles, the construction of polynomial
tables, interpolation formulasland interpolating polynomials, hoping in

this way to present material useful to the computer,

2. Differences and Diffefénce'Tables

The.moét common differences used in interpolation‘formulag are
the Forward, Central, and Backward Differences. The usual definitions of

these are:
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Forward Difference: Z&hf(x) f(x+ h) -_f(k)

f(x + h/2) - £f(x - h/2)

Central Difference: § hf(x)

 Backward Difference: Y;?hf(x) = f(x) - £f(x -"h).

The relationship of these three is evident from the construction'ofsa

difference table, Let a tabulated function be given; for example,

X Cf(x)
' x§' “ f(x;)
Xl‘ | f(xl)
X5 f(xé)
x3° . f(x3)

Form a new column consisting of the numbers f(xl) - f(xo),'f(xz) = £(xy),

 eee ; f(xﬁ' 1) - f(xn);‘o°° . Repeat this process to obtain higher

v

differeﬁceso
Ekémpie: . .
1st 2nd 3rd _ Lth * 5th
x - (%) Diff. Diff, Diff, Diffo_ Diff.
-2
-1 .5 3
| 1 -1
0 6 2 -2 4
3 =3 A ‘l-,./':/“'
A
1 9 -1 -6
2 -9 ' "
2 11 -10
-8
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Replacing the numbers in this table by their names according to the

previous definitions, we get a table illustrating the relationship

» the relationship of these differences,

x  f£(x) : 1st Diff.  2nd Diff.
-2 7=f(-2) ' '
T (=) - £(=3/2)  £(-1) | .
-1 5=£(-1) —— 20(-2)  2e(-1).  2£(0) -
- £(-1) f£(-1/2)  £(0) ' '
0. £(0) s %0(-1)  Pr(0)  *r(1)
£(0)  £(1/2) £(1) ~ )

1 £Q1) N 200 %) 2(2)

| £Q1). £(3/2) g2
2 f£(2)

An alternative name for the forward difference is "descending difference"

.. A n )
since /. f(k) when n =

1, 2, ... descends diagonally. Similarly, the

backward difference is sometimes called an "ascending.differénce".

3.

Factorial Polynomials and Stirling's Numbers -

To illustrate the uses of differences factorial polynomials

and Stirling's numbers will be introduced. Using these; there are simplé ways of

tabuléting polynomials and of finding polynomials which approximate a

tébulated.function.‘

A'

Factorial Polynomials:
1. Descending factorials:

2., Central factorials:

This may be equivalently written x(n) =x(x+0-1)

-n)

3. Ascending factorials:

X

e

X

(

(n

)

x(x - 1)(i - 2)(x'- 3)(eeo)(x - n;D

x(x +- lf(x + n - 2)(..,.)(x+n (n-1))

n-1

2
;(x + )x+2)(..)(x+n-1) .
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When applying factorial polynomials to functions tabulated with an inferval

hza cohstaht,ﬂit_suffices to assume h = 1 and extend the results to.

arbitrary h by making use of x(n) = yén)/n“ , where

(n) . | o |
¥y = ¥y +h)(y +20)(...)(y + (n-1)h) and x=y/h .
o ‘A (n) (n - 1)

Lemma 1: &£h “h = Ny,

S " h :

This is, of course, analogous to the rule for the derivative of y“.'
Proof: ' | S ()

Ah x:‘n) .: ‘(x + l)(X)(X - ‘l)(...)(x - n) ;-.bx(x - ]I_)(.”,)(x - n + 1)

 x(x - 1)(x - 2)(...)(x - n) [x.+ 1-(x=-n+ lﬂ |

- .(n-1) . S
= nX , where h = 1,
For h#1, o | R o (2)
. . v (n) (.n - l)
A "h n yh
h =™ T n-1
h "'h
Hence, ‘ (n) :
- .(n
-1
| Ahg_yn . yh(ln )
h

B B. Stirling's Numbers:

n v _
" When the polynomial x ,) is written as a polynomial in x with -

descending exponents, the coefficients are Stirling's numbers of order n.

(n) gm0 n n-1 n
= X +—Sl X+ ..o +S8S 4 0x

X
(o)

»
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n

Definition:. _Si_l is the i'th'Stirling number of .order n.

These numbers can be easily computed from the recursion formula

n+l n n

Si - Si—_nSi_l .

Lemma 2: Every polynomial with real coefficients has an unique

representation as a sum of factorial polynomials with'decreasing orders,

- Proof: Let f(x) = a, xn-v aj x _+ cost dn be a given polynomial
- with a; real and ‘a°'¥ 0. Suppose f(x) = Co x§?2+ ¢y x(n-}) veo 4+ Cp

and determine ¢y (1=z1, ..., n) by expanding the factorials according

to the definition of Stirling's numbers, 'Equating ay to the coefficient

of x"° 1 in this expansion, one gets:
- %% - n
% T -m 5 % T a3 -3,5] ;
So :

o n-1. n-1 n n. -
¢, T ap=-a) 5 «+ ao(sl S, -8, ) 3 ... 5 ete,
. n ) - )
By definition So =1 for every n, so Co — 4y and all other cy are
uniquely determined by these equations.

Theorem: The n'th diffgrence of an n'th degree polynomial is constant.

Proof: Let f(x) = 3, xn-+ ay xn—£ coe + 8p o By lemma 2 this can be
rewritten f(i) = Co x(nzr ¢, x(n_%) ..++Cpn and lemma 1 is now applicable.
Hence,

' ~ (n-1) (n-2)

Zﬁlf(x) = neyx + (n-1) cL X 4 ceek C o

(n-2)

‘cif(x)v n(n-1) ¢, x

- emm

A )

+ (D n2)ey <M

n! ¢, = a constant as desired.
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Equations for ¢y (i=0, ... , n)- are obtained by setting x = 0 1in .
the previous system.

_ A, o)

n!

Co

NN

Q.
i

i.
(n - i)t
" £2(0) ¢ o) o
Hence f(x) Al x n+ 4y £(0) x(n-l) e eee 4 £0) .
(n - 1)! S

Using the theorem it is only necessary to compute the first values of a

polynomial functlon 31nce all other values can be found from the dlfferences.

Example: Tabulation of e2 x° + W2 x2 + 1 = f(x).
2 | 3
x £(x) ' 1 £(x) S 1 f(x) 1 £(x)
0 1
e2’._.".2
1 e2ew?e . 6 2+ 22
2 V //’\ 2
7 e + 3% - ~ 6 e
2 _ J'>/\ L
2 8e + 4T+ L . — 12 e + 2T N
_ e »
-7 19 e + 5T 6 e
/ 2
3 27 e 4+ 91T + 1. 18 e + 2T
37e + 77 - be
g 3 ) ' ' ' 2 2
Lo bhe + 16T+ 1 . 24 e % 2m°
2 .. o ‘
6l e + 97 : 6 e2
' L ’ : 2 - N
5 etc, ’ 30 e2+ 27

_ . etc. . etc,

D
b
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Conyersely, if the tabulation of an n'th degree polynomial is -

given, then the coefficients can be determined from the tabulation. Let.

n

f(x) = ag x + a] x

+  eee 4 oAy, then

n-i+k n-i+ k

k (n - 1 k)1

£(0) .

This formula is derived by equating the coefficients of like powers in

n-1

R (n)

n

3o X" 8y x 4 ...+ a_ = f(x).= A1 £(0) x n+ _ -.rF_ZXif(O) X(l{+ £(0) .

n!

Hence, if some function has uniformly small n'th differences, one can assume

the n = 1 difference to be constant and deduce an n-1 degree polynomial

(from the formula above) as an approximation. This method sometimes yields

polYnomiéls of lower degree than the Lagrange polynomial, butlwhich it

the given function uniformly as well.

Derivations:

L. Interpolation Formulas

Newton's Divided Differences

Let f(a,), £(a;), ... f(an)‘be known function values.

1.

Definition:

kn+1.

£(x, a,) = £(x) - £(a,)
X - a,

f(x, a5, al) = f(X, ao) - f(a;o’ 8.1)
X - al

f(x’ ao, al, uoo. an) - f(x, ao, al’ LI ] an_l)-‘ f(ao"°'_,’ a'n

x-an‘
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These may be rewritten as
1. f(x) = f(a,) + (x - ao)f(x, ay)
2, f(x, ag) = f(ag, a) + (x - al)‘ £(x, aq, al) |

ce o e e ) . TICIRY 3 e .0

n + l. f(x, ao’ e e 0y an_l) : f(ao, LIS} an) + (x - an)f(x’ao e.c’.an)

Combining these equaticns one gets a ’formula. for f£(x),
Cf(x) = £lay) + (x - a0)f(ay, a7) + (x - a,)(x - a))f(a , &, a2) +ouo
T (X - a'.o)(...)(x - an_l)f(ao,' al, aé, ..)«‘,an)

b - e )k - ag) £k ay, ey a) .
| j ! o
‘Let R(x) = (x - al)(.. ) (x - ay) £(x, ags e+ ap).- Then

- f£(x) = F(x) + R(x) where F(x) is the n'th degree polynomial - (2)

formed by ﬁhe first n+ 1 terms above. Particulér chques for 849 +ee 8py
“transform F(k) into Newton's, Stirling's,-Gauss’s andﬂEvérettls interpolation
formulas aﬁd R(x) becomes respectiyel& their error terms,

When f(x) has continuous derivatives of‘orders‘l, 2;'..., n+1

the error term can be written more conveniently. . Let

C R

D(z) = £(z) -~ F(z) - (2 - a )(...)(z - ay) f£(x, Bgs eees an) where x", ’ ’
is some fixed number (x # ay) at which we wish to evaluate R(x). At '
Z = ay = 0, «es, n) ; D(ay) = f(ay) - F(ai);'but from (2),

: vf(}ai) = F(a;) so D(ay) =0 (i=0,...,n). Consider =z = x,
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D(x) = £(x) - F(x) - R(x) but from (2) f(x) = F(x) + R(x).hvencle‘ D(x) - O.

Since ap<« x < ap, D(z) vanishes at n-+ 2 points in the interval

age 2z £ a, . By Rolle's theorerﬁ, the first derivative must then vanish
at n + 1 points in this interval, the second derivatives vanishes at
n points, etc. This proves that the n+ 1 derivative of D(z) must vanish

at (at least) one‘point say ? , such that 'ao"é 5 £ a, .

(e 1) (m+1)

(z) =f (z) = (m+ 1)t £(x, ag oeey ap)

m+l : (m+ 1)

Therefore, "D (%)=0 =f¢ (g‘) - (m+ 1) £(x, 85 eee ap)

£ (Vi)

Xy, 8.5 seoes 8 - N

e n (m+ 1)!

Hence R(x) may b.e x.«rritten

R(x) = (x - ao)(...)(x - an) f(m * l)(‘{) for somé g(g vdepending on x)

(m+ 1)
a, 17‘ £ a, .
Substituting this in (1)

f(x) = f(a0)+ (x - ao) f(ay, al) +. vee + (x - ao)(...)(xi- aﬁ‘_l) flag, ooe ap)

+

- ag) e - a) £ ()
(n + 1)!

+

This is Newton's interpolation formula with divided differences.
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1. Newthﬁ's Formula.

Theﬁ»

and

thus,

X -

,_'f(ao, a

f(ao, a

= ag+ ih , i=0,1, 2, ... n.

ay+ mh , m is not necessarily

l) = f(ao-) - f'(al> = Ahf(ao):

. h
%07 -

> -

1 a2) = f(ao, ay) - f(ay, a2)
ao-az

mh

agt+ mh - ay = (m = j)n

. o )
= f(ag) + mAf(ao)+ m(m - 1) A f(a

21
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an integer.

- Anf(a0) - Aptlay)

- 2 h*

152 £(8o)
’ 2h

o) RIS |

l.+ m(m - 1)(.. ?(m - n+ l)zﬁrif(ao)

) n .

+om - )G )m-n) £
(n +1)!

+1 '
(%) :

-y >
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2. Gauss's formula of even order.

Put -a2yA =V ?
‘ayy..1 S -V éqd stop at order  2k.
1 = 0
(-1)!
: 2Y] -1 2Vl _ R 2%/ O .
f(x) = Z gci___ Az lf‘(-v) (x+v)xf"] A?V_f(-v) + R
o (2 -1 | (2 ) - -

() .

2 k+2 -1 (2k+-1)
X f
(2k+1)v

whefe R =

For the formula of odd order use the same substitution and stop at order___"
2k -1, -

3. Stirling's Formula.

Let apy - = -V
' a9 1 - MV .~ Stop at order 2.k,

:»Let ' ‘E] Cf(x) = ££x-+ 3) + f(x - %)
, 2 »

Taking the mean of the formulé resulting from this substitution'and Gauss!'s

-

formula of even order gives Stirling's formula:

k

o - [2V] -1 Y1 BV 2V | . '
e £(x) = Z x  0OS £0)+x S | +r ’
(‘ (2v - 1)t 2Vt A '
D 0 [k+g -1 (k+1) o R -
" R = x ,f o (? ) co . B

(2k +-1)!
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Aitken's Process:
Let Xy R
X5 Yo o be a tabulated function. Denote the

desired v(x) by Poo1,... n(x), where the subscripts designate the
points used and the number of 1nd1ces minus one is the degree of the

1nterpolat1ng polynomial

Steps: ) Yo X, - x|
l, . y(x) = Po’l(x) - . ‘]:x -,
1 o :
Y1 % = %
' Yo xo - x
2. . = P =
y(x). =z 0’2()() . E _ ,
2 o4 X, =X
Y2 %
. . .. Po:l(X) 'xl =X
3. y(x) = P (x) = 1 ,
0,1,2 _igf:—zz . | |
o L 'Po,z(x) x, - X
| : - P ' Po’l.. i-2 ;1'-1"‘1-1 - X
etc., using y(x) = P X = 1 »L...1-2, '

0,1,2,3’0..,1 ;c——_—_—
- e R o _ 4
., '. . 1 P ," x E—, x

: 051...1?2, i1

This procees is especially useful for two reasons: determinahts of order
'two are easily calculated on a computing machine and after each operation a
new approximatlon to the desired value is obtained; inverse 1nterpolation

is affected by Jjust rever51ng the roles of x and y in the formulas,

Y
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5, Intervpolation Polynotrials.

Lagrange, Interpolation Poclynomials.

Suppoce the following n + 1 points are given,

(xgs £(x))s (tys £(x1))5 en 5 (xp, £(xg)). We wish to find a

- polynbmial P(x) such that P(xi) ='f(xi); (1z0,1,...,n)., Denote

(x - x3)(x - xj)(..,)(x - xk) by T (%)
. ' : i,j...k

If h is one of the integers ig-j, «so, k, then CTT (xﬁ) =03
. ’ . i,Joao,k ‘ .

if h is not one of i, Jj,...;k, the 1 (xh);é 0.

13000k

~Let

(x) TT v(x) | ' T (x)

P(x) = _Li2,3..n . f(x)p _2,3..0m0 o £lx) 4 .k 0,152,051 £(xy)s

G T &) T o)

1,2,3...n 2,3,460,0 , : -~ 0,1,2,..n-1
Then
| P(xi)f”gl £(x;), (i=0,1,...,n), as desired. Such a P(x) is called
the Lagrange interpolating polynom131; | |
Theorem:
| There exists one and only oﬁe polynomial P(x) of n'th degreéAsuch_
that * P(x3) = )f(xi) for 1i=0,1, «co, N
By the fundamental of algebra ‘every n'th degfee polynomial’has~exactly.'
n roots, Let Pl(x) and Pz(x) be two polynomials of n'th degfee, both
satisfying the conditions above. The polynomial Q(x) = P (x) - Py(x)

is at most n'th degree, but Pi(x) = P2(x) for n+4 ; numbers X, X1, eeoy Xp.
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Hence Q(x) has more than n roots. This contradicts the first statement
unless Py(x) = P2(x) for all x.
Tables of Lagrange interpolation coefflclents are published and
can- be used to compute values of P(x) for approx1mat10n purposes.
Unfortunately, puttlng hlgher degree Lagrange polynomials through
more p01nts of a given function does not assure that the approximation is
uniformly improved. A counter—example is worked out in Steffensen's

: "Interpolation!.showing that an n'th degree polynomial, which passes

through n + 1 evenly distributed points of 1 , (in the interval
: 2
. 14+ x Co
- 54 x 6 5) has an error term greater than §1.82n at some
451

point in the interval, However, Weierstrass's theorem for polynomial
u_approx1mat10n establishes that: |

If f(x) 1s a contlnuous functlon throughout any finite interval
(a , b ), then there exists a sequence of polynomlals Pn(x) which

converge uniformly‘to £(x) in (a, b ).
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